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Abstract

Motivation: T-cell epitopes serve as molecular keys to initiate adaptive immune responses.

Identification of T-cell epitopes is also a key step in rational vaccine design. Most available methods

are driven by informatics and are critically dependent on experimentally obtained training data.

Analysis of a training set from Immune Epitope Database (IEDB) for several alleles indicates that

the sampling of the peptide space is extremely sparse covering a tiny fraction of the possible non-

amer space, and also heavily skewed, thus restricting the range of epitope prediction.

Results: We present a new epitope prediction method that has four distinct computational mod-

ules: (i) structural modelling, estimating statistical pair-potentials and constraint derivation, (ii)

implicit modelling and interaction profiling, (iii) feature representation and binding affinity predic-

tion and (iv) use of graphical models to extract peptide sequence signatures to predict epitopes for

HLA class I alleles.

Conclusions: HLaffy is a novel and efficient epitope prediction method that predicts epitopes for

any Class-1 HLA allele, by estimating the binding strengths of peptide-HLA complexes which is

achieved through learning pair-potentials important for peptide binding. It relies on the strength of

the mechanistic understanding of peptide-HLA recognition and provides an estimate of the total

ligand space for each allele. The performance of HLaffy is seen to be superior to the currently avail-

able methods.

Availability and implementation: The method is made accessible through a webserver http://pro

line.biochem.iisc.ernet.in/HLaffy.

Contact: nchandra@biochem.iisc.ernet.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recognition of short peptides by HLA molecules is a fundamental

requirement for triggering T-cell responses. HLA genes are highly

polymorphic forming hundreds of different alleles (Sette and Sidney,

1999). The alleles understandably have a common scaffold and

exhibit variations in their peptide binding pockets (Murphy et al.,

2007) so that each allele preferentially binds a distinct subset of pep-

tides. In an individual, cells expressing up to six different alleles are

present, each capable of recognizing a large number of peptides.

Such multi-specificity enables them to recognize a wide array of
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potential antigens from pathogenic organisms and other sources.

The most preferred length of the peptide is 9 amino acids, although

peptides with 8–10 amino acids, are also recognized in some cases

(Hewitt, 2003). The number of possible nonameric peptides that are

theoretically possible is as high as 512 billion. Experimental identifi-

cation of such a large repertoire of epitopes for each allele is virtu-

ally impossible, making it important to have reliable and accurate

methods for predicting epitopes for different alleles. The need for

powerful methods to predict potential epitopes has become even

more important as hundreds of bacterial and viral genomes have

been sequenced, increasing the need for understanding their antige-

nicity profiles.

A number of methods have been developed for predicting T cell

epitopes over the last two decades (Lundegaard et al., 2010). They

can be broadly divided into four classes, as methods based on: (i) se-

quence motif detection, (ii) empirical scoring matrices and profiles

implicitly encoding more complex sequence patterns, (iii) machine

learning algorithms applied to experimentally determined data and

(iv) structure-based methods. The motif methods are the first to be

developed among all the prediction methods and are based on the

identification of preferred amino acid residues at different positions.

Some positions which were identified as heavily contributing to rec-

ognition were termed ‘anchor residues’ in the nonameric peptides

(Hobohm and Meyerhans, 1993). The motifs or patterns describing

the positions of the anchors and the residue preferences were derived

for different alleles (Rammensee et al., 1999). Anchor motifs have

been used to search for antigenic regions in sequences of infectious

viruses, bacteria and parasites. The amino acid preferences in these

motifs however turn out to be an insufficient criteria for recognition,

leading to prediction accuracies of only about 70%. Although an-

chor residues contribute significantly to the HLA-peptide binding,

large scale analysis of experimental data have shown that other resi-

due positions on binder peptides contribute equally in stabilizing the

peptide-HLA complex. Consequently new scoring matrices were

derived by analyzing experimentally measured binding affinities for

hundreds of different peptides to each allele (Parker et al., 1994).

However, these methods assume that the contribution of different

residues were independent of each other and most models were addi-

tive in nature.

Data-driven methods were developed to utilize available large-

scale experimental data. One such approach is regression analysis

that estimates the response function, which in this case is binding af-

finity, from a given set of data and response variables, generally

using a polynomial function. Regression analysis based methods

were used to obtain quantitative prediction in terms of half lives of

dissociation of b-microglobulin from the HLA complex. Other ma-

chine learning (Lundegaard et al., 2008; Peters and Sette, 2005;

Roomp et al., 2010) and QSAR approaches (Doytchinova et al.,

2004) that have been attempted include artificial neural networks

and hidden Markov models that correlate measurable properties of

different peptides with their binding potential.

Approaches that use explicit structural information in general

are believed to provide detailed insights into the process of peptide

recognition, thereby resulting in more accurate predictions.

However, progress in this direction has been very slow, primarily be-

cause structural modelling is a computationally intensive process,

rendering it feasible only on a small scale (Kumar and Mohanty,

2007; Schueler-Furman et al., 2000). More recently, a method based

on molecular dynamics simulations and estimation of free energy of

binding between peptide and HLA molecules has been attempted

(Yanover and Bradley, 2011). The applicability of this method is

seen to be limited due to the amount of time each simulation

requires. Methods that indirectly capture structural information

have also been used, which show reasonable prediction accuracies

(Hoof et al., 2009; Lundegaard et al., 2008).

This work introduces a new method HLaffy, for prediction of

peptide HLA binding affinity. The method stands on the strength of

a mechanistic model of peptide-HLA recognition. Distinct advan-

tages of this method are: (i) it uses structural information explicitly,

(ii) it samples the naturally occurring peptide space in bacteria and

viruses systematically and hence is not restricted by available experi-

mental data, (iii) it assigns weights to different interactions and

through that, it identifies important pair potentials and (iv) it uses a

graphical model to represent the epitope pool efficiently. The

method is implemented on a webserver, made accessible at http://pro

line.biochem.iisc.ernet.in/HLaffy/.

2 Methods

2.1 Datasets
The list of 2010 HLA class-1 alleles was obtained from

ImMunoGeneTics database (IMGT) (Robinson et al., 2013). For 43

of these alleles, information about peptides they recognize along

with their individual binding strengths, was obtained from IEDB

(Vita et al., 2010). Similar but independently curated data for HLA-

peptide association for 32 alleles is available from MHC Binding,

Non-binding peptide database (MHCBN) (Bhasin et al., 2003).

Only those unique to MHCBN were taken for validation purposes.

Crystal structures of 21 different alleles as complexed with their re-

spective peptides are available from PDB (Berman et al., 2000).

2.2 Implementation and web-server
Affinity estimation and peptide ranking modules are computation-

ally intensive, and are therefore implemented in Cþþ. Publicly

available GLPK library is used for solving linear optimization.

Eigen3 library is used for linear algebraic operations and solving the

graphical model (http://eigen.tuxfamily.org). The prediction tool is

made publicly available at http://proline.biochem.iisc.ernet.in/

HLaffy.

The HLaffy suite involves four core modules. Figure 1 shows

the different computational steps involved in these processes and

their logical dependencies. (i) Structural modelling of � 16 000 com-

plexes from a dataset of experimentally determined peptides, fol-

lowed by computation of statistical pair-potentials. (ii) Design of a

representative peptide library and obtaining allele specific inter-mo-

lecular residue–residue contact profiles. (iii) Implicit modelling of

peptide binding modes and feature extraction and binding affinity

estimation. (iv) Deriving a graphical model for each allele, and ob-

taining a sequence profile of the predicted set of high-affinity

epitopes.

2.3 Structural modelling of peptide-HLA complexes
This computational module includes three distinct steps: (i) obtain-

ing a dataset of known peptides, (ii) molecular modelling and (iii)

computing statistical contact potentials. First, a set of � 16 000 ex-

perimentally known peptides with respective HLA alleles was ob-

tained from the IEDB database. Peptides with binding affinities

� 500 nM are considered to be strong binders. Models of HLA-

molecules are built using homology modelling (Sali and Blundell,

1993). In Class-1 HLA molecules, the peptide binding groove is

closed at both ends and narrow, thereby restricting conformational

flexibility for the bound peptides. Structural superposition of nona-

meric bound peptides obtained from the PDB shows high
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conservation in the backbone structures, all in an extended conform-

ation (� 1 Å). Hence, the peptide complexes are built by obtaining

the peptide backbone from the template structures and modelling

the side chains by a standard rotamer search. SCWRL4 (Krivov

et al., 2009) software was used for fixing rotamers. Complexes thus

obtained were further energy minimized using GROMACS (Hess

et al., 2008; Van Der Spoel et al., 2005). This process produces

atomic level structural models of peptide-HLA complexes, allowing

a detailed residue contact analysis.

2.4 Statistical pair-potentials for peptide HLA interaction

interfaces
Statistical potentials capture information bias in a knowledge base.

If one occurrence of one event influences the occurrence of another,

they tend to show some extent of correlation in their joint occur-

rence order. This particular fact is captured through statistical po-

tential. In this context, events are occurrences of interactions

between a peptide residue and a HLA residue at the binding site.

The evaluation of the statistical pair potential, also referred to as

contact pair potential (CPP) from a given dataset is given as

u ai; aj

� �
¼ �kT � log

Nobs ai; aj

� �
Nexp ai; aj

� �
 !

(1)

where Nexp and Nobs are the expected and observed number of inter-

actions between a peptide and a HLA residue of types ai and aj. uðai;

ajÞ is the contact potential between them. k and T represent the

Boltzmann constant and temperature respectively. The estimation of

statistical potential (Eq. 1) demands accurate evaluation of residue-

residue contacts (Nexp) between the peptide and the HLA. Non-co-

valent interactions between two residues are decided by their chem-

ical nature and atomic distances between them. The polar nature of

the solvent causes a local screening effect, due to which the inter-

action strength dies off quickly with increasing distance. The varying

side chain length and flexibility results in a different influence radius

for different amino acids. To determine expected contacts (Nexp),

first the feasible dihedral sampling space was estimated through equ-

librium molecular dynamics simulations of alanine flanked tri-pep-

tides in water (for 2 ns). The dihedral space is represented as a solid

cone encompassing a conformational space cone for each residue

type. The smallest amino acid glycine does not have a side-chain and

therefore the influence area for glycine is described using a sphere,

while, for other residues, the influence volume is represented as a

cone. The cone is described using two parameters, the solid angle

subtended at Ca, with its axis defined by the vector joining Ca � Cb

atoms of the residue, and the height of the cone. In a peptide-HLA

complex, if the conformational space cones of any two residues

intersect, they are considered to have the potential to interact and

therefore included in the ‘expected interactions’ count. The entire

set of residue pairs whose cones intersect contribute to the Nexp par-

ameter in Eq. 1. If a peptide residue lies within a distance of 4.5 Å of

the HLA site residue, they are said to be in contact and counted for

the Nobs parameter. Estimations for Nexp and Nobs are described

below

Nobs ai; aj

� �
¼
XN
k¼1

Xlp

u¼1

Xlh

v¼1

d a pk
u

� �
¼ ai; a hk

v

� �
¼ aj

� �
Cobs pk

u; h
k
v

� �

Nexp ai; aj

� �
¼
XN
k¼1

Xlp

u¼1

Xlh

v¼1

d a pk
u

� �
¼ ai; a hk

v

� �
¼ aj

� �
jneighbor pk

u

� �
j

Nobs pk
u;h

k
v

� �

where Cobsðpk
u; h

k
vÞ is the number of contacts observed in the struc-

ture k between peptide residue pu and HLA residue hv. að•Þ maps

the peptide or HLA residue position to the corresponding amino-

acid; neighborðpk
uÞ, returns neighbouring HLA residues around pu,

in structure k, that is inside the possible interaction sphere.

2.5 Designing a representative peptide library (RPL)
There are over 20 naturally occurring amino-acids. Peptides are

short polymers of amino-acids. Typical MHC binding peptide lig-

ands are nine-residue long, which theoretically leads to 209 different

peptides. This space is too large for a thorough exploration. Hence a

small representative library of peptides has been designed, such that

the peptide space is uniformly sampled. The designed library ensures

that all possible binary tuples have been sampled equally for any

two positions of the design nonameric peptide sequences. For a com-

bination of any two positions i and j, where i; j 2 f1 . . . 9g and i 6¼ j,

all 400 possible tuples are sampled.

The design of this library involves cyclic codes. All possible

tuples (pair) generated from a character set (20 amino acids), can be

Fig. 1. The HLaffy workflow illustrating four main modules which comprises the prediction suite and their logical dependencies. (a) Structural modelling, (b) com-

puting contact pair potentials, (c) interaction profiling and (d) graphical models for epitope pool representation. An user can input a query genome or individual

protein sequence and obtain a set of predicted epitopes as the output. External resources used in the prediction suite are also indicated

HLaffy: peptide HLA affinity prediction 2299
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factorized into a set of circular permutation groups. Groups are ab-

stract algebraic structures. It refers to a finite/infinite set of elements

that satisfies closure, associativity, identity property and inverse

property. Permutation groups consist of elements corresponding to

permutations of all elements of a given set M. Permutation groups

are written as

1 2 3 . . . n

rð1Þ rð2Þ rð3Þ . . . rðnÞ

 !
(2)

where rðiÞ is a corresponding permutation map of position i. A cir-

cular permutation generates the element permutation map as

rðiÞ ¼ ðiþ kÞmod n, denoted by P
o
n;k, where k is a number between

0 to n, n being the number of elements the set contains. 0 refers to

an identity permutation. Due to the group property P
o
n;ki
� P

o
n;kj

2 P
o
n;�. All possible tuples can be factored as S� S ¼ [k¼0...jSj

fS•P
�

jSj;kg. The • operator defines concatenation of two fields, gener-

ating a tuple. It must be noted that, in case of a prime value of n, the

tuple set generated by this process is non-overlapping and covers the

entire tuple set. Therefore, S•P
�

n;k1
•P

�

n;k2
• . . .P

�

n;kp
, defines a ðpþ 1Þ-

length peptide sequence. Right from the very first sequence position,

for any two positions i and j in the sequence, the sequence permuta-

tion can be given as P
�

jSjþkj�ki
. In order to efficiently explore the pep-

tide nonameric sequence space, character sets were extended to

prime number cardinality by repeating naturally frequently occur-

ring amino acid residues. The peptide library generator sequence is

then given as

P
�

n;0 • P
�

n;1 • P
�

n;2 • . . . • P
�

n;p

P
�

n;1 • P
�

n;3 • P
�

n;5 • . . . • P
�

n;ð2pþ1Þmodn

..

. ..
. ..

. ..
. ..

.

P
�

n;n�2 • P
�

n;ð2n�4Þmodn • P
�

n;5n�6 • . . . • P
�

n;ð �ðpþ1Þn� �ð2pþ2ÞÞmodn

(3)

The design steps are explained in Algorithm 1. ‘A’ refers to set of

all possible amino-acids. The design reports a matrix of size

m2 � ðmþ 1Þ, m being the size of the character set used for the de-

sign. As per this design, all possible amino acid pairs between any

two positions are explored. This design strategy can generate a pep-

tide library of maximum sequence length m which is same as the

length of the character set. Permutation of the columns in any order

will generate a new set of peptide sequences, still satisfying the

paired exploration condition. The generator described in Eq. 3 gen-

erates a compressed peptide library, ensuring that at all possible pos-

ition pairs of the sequence, all possible binary aminoacid tuples have

occurred atleast once. With a minimum redundancy of two for 20

naturally occurring amino-acids, and for 9 length peptide sequence,

the size of this peptide library is 1012.

2.6 Implicit structure prediction
The previous section is restricted to � 16 000 peptide-HLA com-

plexes whose structures were explicitly modelled. However, in real-

ity, the number of complexes was not restricted to these 16 000, but

may run into several billions. Explicit structural modelling is a com-

putationally intensive step. A faster approximation of inter-residue

contact patterns is therefore necessary. To address this, a linear opti-

mization problem was framed. For a given peptide-HLA pair, the

interaction profile is estimated by choosing weights xi;j that maxi-

mize the contact potential by using the statistical pair potentials

(CPP). Bounds on the selection of xi;j incorporates structural restric-

tion information.

max
wi;j

X
i;j

xi;j � uðaðpiÞ; aðhjÞÞ

Subjected to : 0 � xi;j � ci;jðaðpiÞÞ8 i; j

X
i

xi;j � Hmax
j 8 j

X
j

xi;j � Pmax
i ðaðpiÞÞ8 i

where

uð•; •Þ

represents the CPP, as obtained from Eq. 1.

ci;jðaðpiÞÞ; Hmax
j

and

Pmax
i ðaðpiÞÞ

represent the geometric constraints for each peptide-HLA residue

pair interaction, cumulative HLA and peptide residue interactions

respectively. An accurate estimate of these geometric constraints

was obtained by detailed modelling of each peptide-HLA complex

from the RPL (Section 2.3).

2.7 Feature representation and binding affinity

prediction
The half maximal inhibitory concentration (IC50) is a measure of ef-

fective concentration of a substance required to inhibit a particular

biological function. The IC50 measure for peptide-HLA complex is

often used as a yard-stick for evaluating binding strength of an anti-

genic peptide. At a very low concentration a logðIC50Þ value closely

estimates the Gibbs free energy (DG) associated with the binding.

The Gibbs free energy associated with the physical binding process

has enthalpic and entropic components. These energy contributions

arise due to the network of inter-atomic interactions. Thus the change

in Gibb’s free energy of binding (DG) should be a function of all pos-

sible atomic interactions at the molecular interface. Implicit structural

modelling explained in Section 2.3 yields atomic contact patterns at

the peptide interface. These molecular interaction patterns are used

to define feature representations. Earlier studies have shown that lin-

ear classifiers show poor performance in predicting strong HLA-bind-

ing peptides. The exact functional form of the dependencies between

different variables are not known. To capture the non-linear nature

of the function, Gaussian process regression methods were used.

A Gaussian process defines a ‘prior’ over functions, which are

later converted to a ‘posterior’ over functions on observation

(Rasmussen and Williams, 2006). A Gaussian process for regression

resembles the k-neighbourhood predictor, but it provides much

more smooth and stable prediction with standard error estimates.

Neighbour information is encoded in terms of a kernel function (j).

Kernel functions are positive definite and commutative in nature. A

squared exponential kernel, jðx; x0Þ ¼ r2
f expð� dðx;x0 Þ

l2
Þ, was used in

this study. A Gaussian process assumes that the response variable

follows a Gaussian distribution over the observations. For a given

set of observations X ¼ fx1; x2; . . . ; xng and their reported response

value y ¼ fy1; y2; . . . ; yng, it writes the joint probability distribution

2300 S.Mukherjee et al.
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as a Gaussian distribution with zero mean and covariance matrix.

Covariances are estimated using a kernel function. Thus for a new

observation ð�; �Þ, the distribution is given as

y

y�

" #
	 N 0;

K KT
�

K� K�;�

" # !
(4)

This property of Gaussian distribution, enables the estimation of

the value for the new observation as y�jy 	 NðK�K�1y;K�;�K
�1KT

� Þ.
The evaluation of the inverse of the covariance matrix is computa-

tionally intensive. The Covariance matrix is a positive definite ma-

trix in nature. The computational intensive step of computing the

inverse is averted by use of ‘Cholesky decomposition’.

This module estimates IC50 values for each implicitly modelled

complex. The total energy estimate for the system can be approxi-

mated as an individual contribution by electrostatic, van der Waals

and solvation energy terms. Earlier studies have explored linear

models and have found the prediction accuracy to be low (Lafuente

and Reche, 2009). Therefore, a non-linear Gaussian process regres-

sion scheme is used, with a square exponential kernel.

2.8 Graphical models and representation of epitope

pools
The Regression model described in the previous section estimates

the binding affinity. The predicted affinity provides a basis for clas-

sifying peptide sequences into binder and non-binder classes. This

decision is threshold based. 500 nM is considered as a cut-off for

strong binder peptides. Regression model is non-linear in nature,

and does not provide insight into the mechanistic understanding of

the process of binding. A graphical model representation is used to

gain an insight to the nature of antigenic peptide sequence profiles.

Graphical models express the positional dependency among pep-

tide residue positions. A probabilistic graphical model (PGM) is a

tool that helps to represent the conditional dependence structures

among random variables, for probabilistic inference for modelling

problems involving many variables. PGM defines a unique factor-

ization of random variables. In a PGM, factorization is a process of

presenting joint probabilities for Bayesian inference, in terms of

multiplication of conditionally independent joint probabilities of

factor graphs as PðX1;X2; . . . ;XnÞ ¼
Q

i¼1...n PðXijpðXiÞÞ, where Xi

represents each random variable in the process and pðXiÞ, represents

its parent nodes. Each sequence position of the nonameric sequence

is modelled as a discrete random variable, which takes a value be-

tween f1 . . . 20g, corresponding to 20 distinct amino acids. For the

appropriate factorization scheme, the dependence structure among

the variables must be known. Chow-Liu algorithm has been used to

extract the dependency structure between the random variables

(Chow and Liu, 2006). This algorithm uses mutual information be-

tween all pairs of variables. Mutual information (MI) content be-

tween two variables describes the extent of dependence between two

variables. The variables with strong correlation show a high value

for mutual information content, while a zero value represents inde-

pendence between the variables. Chow-Liu algorithm poses the

structure determination problem as a two clique problem. It reports

a maximum weighted (based on MI content) spanning tree that cap-

tures dependencies between different variables. The MI is evaluated

from a set of strong binder epitope sequences, as predicted by the

non-linear predictor from a pool of a large set of naturally occurring

sequences.

The basic assumptions associated with the Chow-Liu algorithm

are: (i) it cannot handle missing data, (ii) variables are discrete and

(iii) data is independently and identically distributed.

3 Results and discussion

3.1 Contact based pair potential (CPP)
The workflow used in this study is illustrated in Figure 1. Since experi-

mental binding affinities are available only for 16 450 peptide-HLA

pairs, covering 43 alleles, three dimensional structures of these com-

plexes were modelled (Supplementary Material). For each complex, a

contact matrix is computed by counting number of different residue-

pairs involved in interactions between peptide (pi) and HLA (hj) resi-

dues. The frequency of occurrence of such residue-pairs in all com-

plexes are then combined to derive a contact pair-potential(CPP).

Figure 2 illustrates the CPP matrix, which indicates observed prefer-

ences of the 20 amino acids in the peptide (in rows) and in different

HLA alleles (in columns). Higher preference for arginine and lysine of

the peptides interacting with aspartic acid of the HLA molecule and

similarly tyrosine of the peptides interacting with asparagine of the

HLA molecule are clearly seen. Figure 2 illustrates the contact potential

for all residue-combinations. Conserved residues in the HLA molecules

such as the tyrosine can also be seen to interact with several amino acid

types in peptides. The derived matrix is asymmetric unlike those for

protein-protein interactions and also shows specific residue biases.

3.2 Interaction profiles for each allele
A second line of input that is required for affinity prediction is allele-

specific interaction information. 57 different residues form the binding

site. Of these it is well known that, at least 21 positions vary signifi-

cantly across alleles. Therefore the interaction profiles for individual

alleles will provide a more accurate picture of the nature and affinity

of the peptides it can recognize. Experimental information about the

peptide ligands is not available for all alleles. A representative peptide

library was first designed. The library was designed with a goal of (i)

covering all possible tuples in the peptide size and (ii) covering inter-

actions of all possible residue-pairs between the peptide and the HLA

molecules. The representative peptide library (RPL) consisting of

1012 peptides was generated (Supplementary Material). For each al-

lele, a complex was modelled with each peptide in the RPL, ultimately

yielding 2010�1012 complexes. The number of polar and non-polar

contacts were calculated in each case and summarized over each allele

to output a 57� 20� 9 matrix. From this, the contact range statistics

for each allele are derived and the maximum values in the range serve

as bounds or structural constraints for the next step in the workflow

(Fig. 1). The bounds derived for one sample allele each in the A, B

and C loci is shown in Figure 3. The figure shows the strength of inter-

action for each residue-pair between the two molecules, for example

alleles. Similar figures can be obtained for all alleles through an inter-

active query using the web-resource http://proline.biochem.iisc.ernet.

in/HLaffy. On an average a binding site residue in the HLA molecule

is seen to interact with four peptide residues and ranges from one to

six depending on its position. Similarly, the number of HLA residues a

peptide residue can interact with is decided by its position on the pep-

tide. The HLA bound peptide conformation is generally seen to have

a central bulge, because of which residues P4 and P5 have fewer inter-

actions restricting the number of contacts to three, whereas for P2 and

P9 positions, which serve as anchor residues, interactions with six resi-

dues on an average are observed. P1 and P8 residues are also located

deep inside the grooves, consistent with a higher number of hydropho-

bic interactions as compared to those in the middle of the peptide.

3.3 Implicit interaction modelling to cater to any

peptide-HLA complex
The previous section provides information about allele-specific

interaction profiles, computed from explicit structural models of 16
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000þ complexes. Since it is impractical to explicitly model billions

of complexes, implicit modelling was carried out for the peptide in

the groove of a given HLA molecule. This amounts to implicitly esti-

mating the most feasible position and conformation of the peptide

residues in the context of the HLA molecules. This is posed as a lin-

ear optimization problem, where the contact potential is maximized

for a given peptide-HLA pair, using constraints from the previous

module. This exercise yields an approximate estimate of the contacts

of the peptide residues in the HLA groove for each peptide-HLA

pair, and thereby provides a very large resource of peptide-HLA

pairs. To validate how well the implicit modelling fares, we test if

interaction counts of complexes with explicit structural models are

reproduced well. 16 450 complexes with explicit structural models

were taken and the interaction counts for the corresponding pairs

from the large peptide-HLA dataset generated in this step are com-

pared. A difference matrix is then generated, which shows similar-

ities greater than 70% in their contact profiles. This exercise

therefore indicates that the implicit modelling captures the

Fig. 2. Contact pairs derived from complexes of protein crystal structures and modelled structures with strong binding peptides. Rows represent peptide residue

types. Residues in the HLA binding groove are represented as columns. Circle sizes correspond to the score of the contact pair potential matrix. Cumulative fre-

quencies of amino acids in peptide and HLA binding grooves are shown in the histograms, which are shown along the side and top margin respectively

Fig. 3. Geometric constraints obtained from the structure modeling of the RPL. For each HLA sequences, the relative contact between peptide and HLA residues,

are shown in each block as a circle. The larger the circle diameter, stronger is the atomic contact as derived from structural modeling. Cumulative interaction

count of each peptide residue with HLA molecule is represented in the last column as a histogram. Similarly cumulative residue-wise peptide contacts for the

HLA sequence is shown in the histogram at the bottom
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interaction profiles of peptide-HLAs reasonably well, with an added

advantage of a much larger coverage of the peptide space and caters

to any given HLA allele.

3.4 Predicting IC50 values for a given peptide-HLA pair
From the previous module, interaction profiles are obtained, which

are used to construct the feature vectors for each peptide-HLA com-

plex. The feature vectors represent all possible interaction pairs at

each position of the peptide. These features are used in the Gaussian

Process for estimating binding affinities. The feature vectors are spe-

cific to each complex and are also meaningful in capturing differ-

ences between various complexes. The Gaussian process yields a

close estimation of the binding strength of a given peptide to a given

HLA allele (Fig. 4). To validate the performance of the method, the

following analyses were carried out:

i. IC50 value predicted by HLaffy was compared with an inde-

pendent dataset, with experimentally derived affinities, and the

correlation was found to be 0.85 and a prediction accuracy of

92% (Supplementary Material).

ii. A 5-fold cross-validation exercise was performed for the IEDB

dataset with (8 500 complexes), and the average prediction ac-

curacy was found to be 82.5%.

iii. HLaffy performance was compared with three other available

methods from literature, which are ANN, NetMHCpan and

SMM, for the same dataset. The receiver operator curve (ROC)

shown in Figure 4b, which indicates that the performance of

HLaffy is significantly improved as compared to the other three

methods (supplementary material). Prediction accuracies for

specific alleles were computed for 31 alleles. The best perform-

ance was observed for alleles A*32:01, A*02:06 and B*15:03

are over 
 0:85. B*54:01 allele shows low Pearson correlation

of 0.73 (Supplementary Material).

3.5 Graphical models and presentation of epitope pools
A given gene or genome sequence is scanned to identify the set of

peptides that can bind to a given HLA allele. This has been made

available for web-interactive querying at HLaffy. By default all

those peptides that have estimated IC50 values of � 50 nM are con-

sidered as possible epitopes for the given allele. The value is chosen

because it is a well-accepted cutoff for strong binders (Roomp et al.,

2010). A given sequence can be queried for any of the 1000 alleles.

Conversely, any given sequence can be queried for a given allele as

well. As an example, the entire set of 4300 viral genomes (1 99 708

sequences) are taken from the NCBI repository and scanned for epi-

topes of 3 different alleles, one from each of A, B and C loci.

So far, the analyses have captured residue preferences for indi-

vidual peptide-HLA residue-pairs, in line with an additive model.

However, the linear optimization along with the CPPs computed

earlier indicates that some positions show a trend of dependent pref-

erences between them. In other words, there can be scenarios where

a residue at position 4 can have a strong preference for the residue

type at position 7. From the set of peptides predicted as strong bind-

ers for each of these alleles individually, probability matrices captur-

ing the preferred residues at each of the nine peptide positions are

written out. These are represented in the form of sequence logos and

are shown in Figure 5. In this example, a strong preference for T, D

and Y residues at positions 2, 3 and 9 respectively are seen for allele

A*01:01. On the other hand strong preferences for P, R and L at

positions 2, 3, 9 are seen for the B*07:02 allele. Positions 2 and 9 of

the peptide are well known to serve as anchors and have strong resi-

due preferences. This analysis identified these as expected, but in

addition strong preferences are identified at other positions as well

for different alleles. Knowledge of such influences is extremely use-

ful for first gaining a mechanistic understanding of the precise inter-

actions that contribute to binding, which is then directly applicable

for predicting peptides for a given allele.

3.6 Estimating epitope pools
The number of peptides predicted from a given genome varies con-

siderably for different alleles. A large scale epitope prediction exer-

cise was carried out. Epitopes were predicted for 1110 distinct

alleles, with 359 A, 562 B and 189 C alleles respectively. The ana-

lysis shows that on average that more number of epitopes are pre-

sented by A alleles compared to B or C alleles. Epitope prediction

over all known viral proteins, shows that the number of epitopes

presented by A*02:11, A*02:69 and A*30:04 is significantly higher

(�9000 peptide antigens) compared to other alleles. Among B al-

leles, B*15 alleles show a high degree of antigen presentation

strength, with an antigen pool size as large as 6000 peptides. Among

C alleles C*03 loci shows a high degree of peptide recognition. 46

out of the 1110 alleles can recognize as many as 4000 distinct

epitopes.

4 Conclusion

In this study, we present a new method HLaffy, for predicting pep-

tide ligands for HLA class-1 molecules, based on a multi-module

Fig. 4. Benchmarking and validation of HLaffy for accuracy of peptide-HLA binding affinity prediction. (a) Predicted IC50 using Gaussian Process regression shows

strong correlation with experimentally obtained IC50 values drawn as a log–log plot. (b) Receiver Operator Characteristic curve for comparative study of predic-

tion accuracies among different prediction methods for the same dataset
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workflow. HLaffy first obtains a mechanistic understanding of the

recognition specificity and is capable of explaining experimentally

observed binding affinities for a large dataset of peptides. It then

identifies the highest contributing pair potentials and learns cross-

residue influences through graphical models. The implicit structural

modelling is a new contribution towards understanding peptide rec-

ognition by HLA molecules and estimating their binding strengths.

This leads to a phenomenal increase in coverage of the peptide

space. Another novel aspect of this study is to obtain a high correl-

ation of observed IC50 values with interactions, which has been pos-

sible because of weighting different interactions and estimating their

relative contributions through feature representation. A high correl-

ation implies that the IC50 values can be rationalized from the struc-

tures of peptide-HLA complexes. Sequence logos used widely in

literature as a representation of the sequence patterns of epitopes is

an elegant method to identify individual residue preferences but are

not directly useful for identifying inter-residue dependencies. Besides

these, another contribution from the study is a novel design strategy

for constructing a representative peptide library. The graphical

model used in this study is capable of capturing such dependencies

systematically. HLaffy with its ability to sample the peptide space

more comprehensively opens up new possibilities to explore the rep-

ertoire of epitopes that can be recognized by a given allele, providing

estimates of the total epitope pool sizes for each allele. The import-

ance of predicting epitopes for HLA molecules is well recognized in

the field since it can be applied in diverse areas such as vaccine dis-

covery, understanding disease susceptibilities, autoimmune disorders

and in estimating success of organ transplants.
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