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Abstract—A video is understood by users in terms of entities present in it. Entity Discovery is the task of building appearance model for

each entity (e.g., a person), and finding all its occurrences in the video. We represent a video as a sequence of tracklets, each spanning

10-20 frames, and associated with one entity. We pose Entity Discovery as tracklet clustering, and approach it by leveraging Temporal

Coherence (TC): the property that temporally neighboring tracklets are likely to be associated with the same entity. Our major

contributions are the first Bayesian nonparametric models for TC at tracklet-level. We extend Chinese Restaurant Process (CRP) to

TC-CRP, and further to Temporally Coherent Chinese Restaurant Franchise (TC-CRF) to jointly model entities and temporal segments

using mixture components and sparse distributions. For discovering persons in TV serial videos without meta-data like scripts, these

methods show considerable improvement over state-of-the-art approaches to tracklet clustering in terms of clustering accuracy, cluster

purity and entity coverage. The proposed methods can perform online tracklet clustering on streaming videos unlike existing

approaches, and can automatically reject false tracklets. Finally we discuss entity-driven video summarization- where temporal

segments of the video are selected based on the discovered entities, to create a semantically meaningful summary.

Index Terms—Bayesian nonparametrics, Chinese restaurant process, temporal coherence, temporal segmentation, tracklet clustering,

entity discovery, entity-driven video summarization
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1 INTRODUCTION

ONLINE video repositories like Youtube, Dailymotion etc
have been experiencing an explosion of user-generated

videos. Such videos are often shot/recorded from the televi-
sion by users, and uploaded onto these sites. They have
very little metadata like dialogue scripts, or a textual sum-
mary/representation of the content. When an user searches
these repositories by keywords, (s)he is suggested hundreds
of videos, out of which (s)he may choose a small number for
viewing. This has given rise to the topic of Video Summariza-
tion [41], which aims to provide the user a short but compre-
hensive summary of the video. However, the current state-
of-the-art mostly provides a few keyframes as summary,
which may not have much semantic significance. The high-
level semantic information of videos that is most important
to users is carried by entities- such as persons or other
objects. With the recent progress in object detection [29], [35]
in single images and videos, it is now possible to have a
high-level representation of videos in terms of such entities.
One effective way of summarization is to have a list of enti-
ties that appear frequently in a video. Further, an user may
want to watch only a part of a video, for example wherever
a particular person (or set of persons) appears, which

motivate the tasks of Entity Discovery and Entity-driven
Summarization [42] of videos.

The problem of automated discovery of persons from videos
along with all their occurrences has attracted a lot of inter-
est [36], [37], [38] in video analytics. Existing attempts try to
leverage meta-data such as scripts [37], [38] and hence do
not apply to videos available on the wild, such as TV-Series
episodes uploaded by viewers on Youtube (which have no
such meta-data). In this paper, we consider the completely
unsupervised version- where we need to learn an appear-
ance model for each entity (say a person) and also find all
its occurences. Our goal is to design algorithms which can
work on long videos, and for any type of entity. We pose it
as tracklet clustering, as done in [25]. Tracklets [28] are
formed by detections of an entity from a short contiguous
sequence of 10-20 video frames. They have complex spatio-
temporal properties. Given a video in the wild it is unlikely
that the number of entities will be known, so the method
should automatically adapt to unknown number of entities.
To this end we advocate a Bayesian non-parametric clustering
approach to Tracklet clustering and study its effectiveness
in automated discovery of entities with all their occurrences
in long videos. The main challenges are in modeling the
spatio-temporal properties.

To the best of our knowledge the problem of entity dis-
covery from videos “on the wild” has not been studied
either in Machine Learning or in Computer Vision commu-
nity. The existing methods are not appropriate either
because they require number of clusters to be specified
([13], [24], [25]) or because they need additional information
like scripts or annotated training videos ([37], [38]). Also, it
must be clearly understood that the aim is different from
tracking- where tracklets are linked on a short range, i.e.,
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over adjacent frames. But here we aim to link tracklets on a
long range also, i.e., they need not be from adjacent frames.

To explain the spatio-temporal properties we introduce
some definitions. A track is formed by detecting entities (like
people’s faces) in each video frame, and associating detec-
tions across a contiguous sequence of frames (typically a few
hundreds in a TV series) based on appearance and spatio-tem-
poral locality. Each track corresponds to a particular entity,
like a person in a TV series. Forming long tracks is often diffi-
cult, especially if there are multiple detections per frame.
This can be solved hierarchically, by associating the detec-
tions in a short window of frames (typically 10-20) to form
tracklets [28] and then linking the tracklets from successive
windows to form tracks. The short-range association of tracklets
to form tracks is known as tracking. But in a TV series video,
the same person may appear in different (non-contiguous)
parts of the video, and so we need to associate tracklets on a
long-range basis also (see Fig. 1). Moreover the task is compli-
cated by lots of false detections which act as spoilers. Finally,
the task becomes more difficult on streaming videos, where
only one pass is possible over the sequence.

A major cue for this task comes from a very fundamental
property of videos: Temporal Coherence (TC). This property
manifests itself at detection-level as well as tracklet-level; at
feature-level as well as at semantic-level. At detection-level
this property implies that the visual features of the detec-
tions (e.g., appearance of an entity) are almost unchanged
across a tracklet (See Fig. 2). At tracklet-level it implies that
spatio-temporally close (but non-overlapping) tracklets are likely
to belong to the same entity (Fig. 3). Additionally, overlapping
tracklets (that span the same frames), cannot belong to the same
entity. A tracklet can be easily represented as all the associ-
ated detections are very similar (due to detection-level TC).
Such representation is not easy for a long track where the
appearances of the detections may gradually change.

Contribution Broadly, this paper has two major contribu-
tions: it presents the first Bayesian nonparametric models
for TC in videos, and also the first entity-driven approach to
video modeling. To these ends, we explore tracklet cluster-
ing, an active area of research in Computer Vision, and

advocate a Bayesian non-parametric(BNP) approach for it.
We apply it to an important open problem: discovering enti-
ties (like persons) and all their occurrences from videos of
movies and TV-series, in absence of any meta-data, e.g.,
scripts. We use a simple and generic representation leading
to representing a video by a matrix, whose columns repre-
sent individual tracklets (unlike other works which repre-
sent an individual detection by a matrix column, and then
try to encode the tracklet membership information). We
propose Temporally Coherent-Chinese Restaurant process
(TC-CRP), a BNP prior for enforcing coherence on the track-
lets. Our method yields a superior clustering of tracklets
over several baselines, on short benchmark videos as well
as longer videos downloaded from Youtube. As an advan-
tage it does not need the number of clusters in advance. It is
also able to automatically filter out false detections, and per-
form the same task on streaming videos, which are impossible
for existing methods of tracklet clustering. We extend TC-
CRP to the Temporally Coherent Chinese Restaurant Fran-
chise (TC-CRF), that jointly models short video segments
and further improves the results. We show that the pro-
posed methods can be applied to entity-driven video sum-
marization, by selecting a few representative segments of
the video in terms of the discovered entities.

2 PROBLEM DEFINITION

In this section, we elaborate on our task of tracklet cluster-
ing for entity discovery in videos.

2.1 Notation

In this work, given a video, we fix beforehand the type of
entity (eg. person/face, cars, planes, trees) we are interested
in, and choose an appropriate detector like [29], [35], which
is run on every frame of the input video. The detections in
successive frames are then linked based on spatial locality,
to obtain tracklets. At most R detections from R contiguous
frames are linked like this. The tracklets of length less than
R are discarded, hence all tracklets consist of R detections.
We restrict the length of tracklets so that the appearance of
the detections remain almost unchanged (due to detection-
level TC), which facilitates tracklet representation. At R ¼ 1
we work with the individual detections.

We represent a detection by a vector of dimension d. This
can be done by downscaling a rectangular detection to d� d

square and then reshaping it to a d2-dimensional vector of
pixel intensity values (or some other features if deemed
appropriate). Each tracklet i is a collection of R detections

fIi1; . . . ; IiRg. Let the tracklet i be represented by Yi ¼
PR

j¼1
Ii
j

R .

So finally we have N vectors (N : number of tracklets).
The tracklets can be sorted topologically based on their

spatio-temporal positions, like starting and ending frame

Fig. 2. TC at Detection level: Detections in successive frames (linked to
form a tracklet) are almost identical in appearance, i.e., have nearly
identical visual features.

Fig. 1. Top: a window consisting of frames 20000,20001,20002, Bottom:
another window- with frames 21000,21001,21002. The detections are
linked on spatio-temporal basis to form tracklets. One person (marked
with red) occurs in both windows, the other character (marked with blue)
occurs only in the second. The two red tracklets should be associated
though they are from non-contiguous windows.

Fig. 3. TC at Tracklet level: Blue tracklets 1,3 are spatio-temporally close
(connected by broken lines), and belong to the same person. Similarly
red tracklets 2 and 4.
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indices. Each tracklet i has a predecessor tracklet prevðiÞ and a
successor tracklet nextðiÞ based on the spatio-temporal loca-
tions of tracklets in the video. A tracklet i is the predecessor
of tracklet j if the last detection of i appears in a frame closer
to the frame containing the first detection of j, and also if the
spatial coordinates of the last detection of tracklet i are
closer to those of the first detection of tracklet j, compared
to the last detection of any other tracklet. Similarly, successor
is also defined. Each tracklet has an unique predecessor and
successor. For example, in Fig. 3, the tracklet length R ¼ 2,
and there are 4 tracklets. They are numbered based on their
spatio-temporal locations. prevð3Þ ¼ 1 and prevð4Þ ¼ 2,
while succð1Þ ¼ 3 and succð2Þ ¼ 4.

Each tracklet i has a conflicting set of tracklets CF ðiÞ
which span frame(s) that overlap with the frames spanned
by i. Each detection (and tracklet) is associated with an
entity, which are unknown in number, but presumably
much less than the number of detections (and tracklets).
These entities are represented by vectors, say f1;f2; . . . ;fK -
the appearance models for the entities. Each tracklet i is associ-
ated with an entity indexed by Zi, i.e., Zi 2 f1; 2; . . . ; Kg. So,
in Fig. 3 CF ð1Þ ¼ 2; CF ð2Þ ¼ 1; CF ð3Þ ¼ 4; CF ð4Þ ¼ 3. Also,
Z1 ¼ Z3 ¼ 1; Z2 ¼ Z4 ¼ 2. The system is illustrated in Fig. 4
by a flow-chart.

2.2 Entity Discovery

Let each video be represented as a sequence of d-dimen-
sional vectors fY1; . . . ; YNg along with the set fprevðiÞ;
nextðiÞ; CF ðiÞgNi¼1. We aim to learn the vectors ff1;f2; . . . ; g
and the assignment variables fZigNi¼1. In addition, we have
constraints arising out of temporal coherence and other proper-
ties of videos. Each tracklet i is likely to be associated with
the entity that its predecessor or successor is associated
with, except at shot/scene changepoints. Moreover, a track-
let i cannot share an entity with its conflicting tracklets
CF ðiÞ, as the same entity cannot occur twice in the same
frame. This notion is considered in relevant litera-
ture [13], [24]. Mathematically, the constraints are:

ZprevðiÞ ¼ Zi ¼ ZnextðiÞ8i 2 f1; . . . ; Ngw:h:p:
Zi =2 fZj : j 2 CF ðiÞg8i 2 f1; . . . ; Ng: (1)

These constraints give the task a flavour of non-parametric
constrained clustering with must-link and don’t-link con-
straints. Learning a fk-vector is equivalent to discovering an
entity by learning its appearance model, and its occurences are
found by learning the set of associated tracklets fi : ZðiÞ ¼ kg.

Finally, the video frames can be grouped into short
segments, based on the starting frame numbers
F ð1Þ; F ð2Þ; . . . ; F ðNÞ of the N tracklets. Consider any track-
let i and its successor j ¼ succðiÞ, with starting frames F ðiÞ
and F ðjÞ. If the gap between frames F ðiÞ and F ðjÞ is larger
than some threshold (much longer than the tracklet length
R), then we consider a new temporal segment of the video
starting from F ðjÞ, and add j to a list of changepoints (CP).
No tracklet can be present across segments. The beginning
of a new temporal segment does not necessarily mean a
scene change, the large gap between frames F ðiÞ and F ðjÞ
may be caused by failure of detection or tracklet creation.
The segment index of each tracklet i is denoted by SðiÞ.

3 RELATED WORK

Person discovery in videos is a task which has recently
received attention in Computer Vision. Cast Listing [36] is
aimed to choose a representative subset of the face detec-
tions or face tracks in a movie/TV series episode. Another
task is to label all the detections in a video, but this requires
movie scripts [37] or labelled training videos having the
same characters [38]. Scene segmentation and person dis-
covery are done simultaneously using a generative model
in [44], but once again with the help of scripts. An unsuper-
vised version of this task is considered in [24], which per-
forms face clustering in presence of spatio-temporal
constraints as already discussed. For this purpose they use
a Markov Random Field, and encode the constraints as cli-
que potentials. Another recent approach to face clustering
is [13] which incorporates some spatio-temporal constraints
into subspace clustering.

Tracklet association tracking is a core topic in computer
vision, in which a target object is located in each frame
based on appearance similarity and spatio- temporal local-
ity. A more advanced task is multi-target tracking [33], in
which several targets are present per frame. A tracking par-
adigm that is particularly helpful in multi-target tracking is
tracking by detection [34], where object-specific detectors
like [35] are run per frame (or on a subset of frames), and
the detection responses are linked to form tracks. From this
came the concept of tracklet [28] which attempts to do the
linking hierarchically. This requires pairwise similarity
measures between tracklets. Multi-target tracking via track-
lets is usually cast as Bipartite Matching, which is solved
using Hungarian Algorithm. Tracklet association and face
clustering are done simultaneously in [25] using HMRF.
The main difference of face/tracklet clustering and person
discovery is that, the number of clusters to be formed is not
known in the latter.

A somewhat related task was attempted more recently
in [46], where the aim is to find “topical objects” or objects
that appear repeatedly in the video. This may be used to

Fig. 4. A flow-chart illustrating the overall approach, especially the pre-
processing.
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identify leading actors in a movie/TV-series. They make use
of a parametric Bayesian approach (topic model). However,
the method is quite different, as they do not consider tem-
poral coherence but instead focus on co-occurring low-level
visual features.

Independent of videos, Constrained Clustering is itself a
field of research. Constraints are usually must-link and don’t-
link, which specify pairs which should be assigned the same
cluster, or must not be assigned the same cluster. The con-
straints can be hard [7] or soft/probabilistic [8]. Constrained
Spectral Clustering has also been studied recently [11], [12],
which allow constrained clustering of datapoints based on
arbitrary similarity measures.

All the above methods suffer from a major defect- the
number of clusters needs to be known beforehand. A way to
avoid this is provided by Dirichlet Process, which is able to
identify the number of clusters from the data. It is a mixture
model with infinite number of mixture components, and
each datapoint is assigned to one component. A limitation of
DP is that it is exchangeable, and cannot capture sequential
structure in the data. For this purpose, aMarkovian variation
was proposed: Hierarchical Dirichlet Process- Hidden Mar-
kov Model (HDP-HMM). A variant of this is the stickyHDP-
HMM (sHDP-HMM) [18], which was proposed for temporal
coherence in speech data for the task of speaker diarization,
based on the observation that successive datapoints are
likely to be from the same speaker and so should be assigned
to the same component. Another Bayesian nonparametric
approach for sequential data is the Distance-Dependent Chi-
nese Restaurant Process (DDCRP) [20], which defines distan-
ces between every pair of datapoints, and each point is
linked to another with probability proportional to such dis-
tances. A BNP model for subset selection is Indian Buffet
Process (IBP) [21], a generative process for a sequence of
binary vectors. This has been used for selecting a sparse sub-
set of mixture components (topics) in Focussed TopicModel-
ling [22] as the CompoundDirichletMixtureModel.

Finally, Video Summarization has been studied for a few
years in the Computer Vision community. The aim is to pro-
vide a short but comprehensive summary of videos. This
summary is usually in the form of a few keyframes, and
sometimes as a short segment of the video around these
keyframes. A recent example is [41] which models a video
as a matrix, each frame as a column, and each keyframe as a
basis vector, in terms of which the other columns are
expressed. A more recent work [39] considers a kernel
matrix to encode similarities between pairs of frames, uses
it for Temporal Segmentation of the video, assigns an impor-
tance label to each of these segments using an SVM (trained
from segmented and labelled videos), and creates the sum-
mary with the important segments. However, such summa-
ries are in terms of low-level visual features, rather than
high-level semantic features which humans use. An attempt
to bridge this gap was made in [42], which defined movie
scenes and summaries in terms of characters. This work
used face detections along with movie scripts for semantic
segmentation into shots and scenes, which were used for
summarization. Very recently, semantic summarization has
been attempted in case of surveillance [43], where fre-
quently appearing traffic movement patterns forming the
basis of summarization.

4 GENERATIVE PROCESS FOR TRACKLETS

We now explain our Bayesian Nonparametric model TC-
CRP to handle the spatio-temporal constraints (Eq. 1) for
tracklet clustering, and describe a generative process for
videos based on tracklets.

4.1 Bayesian Nonparametric Modelling

In Section 2, we discussed the vectors f1;f2; . . . each of
which represent an entity. In this paper we consider a
Bayesian approach with Gaussian Mixture components
Nðfk;S1Þ to account for the variations in visual features of
the detections, say face detections of a person. As already
mentioned, number of components K is not known before-
hand, and must be discovered from the data. That is why
we consider nonparametric Bayesian modelling. Also, as
we shall see, this route allows us to elegantly model the tem-
poral coherence constraints. In this approach, we shall rep-
resent entities as mixture components and tracklets as
draws from such mixture components.

Dirichlet Process [14] has become an important clustering
tool in recent years. Its greatest strength is that unlike K-
means, it is able to discover the correct number of clusters.
Dirichlet Process is a distribution over distributions over a
measurable space. A discrete distribution P is said to be dis-
tributed as DP ða; HÞ over space A if for every finite parti-
tion of A as fA1; A2; . . . ; AKg, the quantity fP ðA1Þ; . . . ;
P ðAKÞg is distributed as DirichletðaHðA1Þ; . . . ;aHðAKÞÞ,
where a is a scalar called concentration parameter, and H is a
distribution over A called Base Distribution. A distribution
P � DP ða; HÞ is a discrete distribution, with infinite sup-
port set ffkg, which are draws fromH, called atoms.

4.2 Modeling Tracklets by Dirichlet Process

We consider H to be a d� dimensional multivariate Gauss-
ian with parameters m and S0. Each atom corresponds to an
entity (e.g. a person). The generative process for the set

fYigNi¼1 is then as follows:

P � DP ða; HÞ;Xi � P; Yi � NðXi;S1Þ8i 2 ½1; N �: (2)

Here Xi is an atom. Yi is a tracklet representation corre-
sponding to the entity, and its slight variation from Xi (due
to effects like lighting and pose variation) is modelled using
NðXi;S1Þ.

Using the constructive definition of Dirichlet Process,
called the Stick-Breaking Process [15], the above process can
also be written equivalently as

p̂k � Betað1;aÞ;pk ¼ p̂k

Yk�1

i¼1

ð1� p̂i�1Þ;fk � H8k 2 ½1;1Þ

Zi � p; Yi � NðfZi
;S1Þ8i 2 ½1; N�:

(3)

Here p is a distribution over integers, andZi is an integer that
indexes the component corresponding to the tracklet i. Our
aim is to discover the values fk, which will give us the enti-
ties, and also to find the values fZig, which define a cluster-
ing of the tracklets. For this purpose we use collapsed Gibbs
Sampling, where we integrate out the P in Equation 2 orG in
Equation 3. The Gibbs Sampling Equations pðZijZ�i; ffkg; Y Þ
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and pðfkjf�k; Z; Y Þ are given in [16]. ForZi,

pðZi ¼ kjZ�i;fk; YiÞ / pðZi ¼ kjZ�iÞpðYijZi ¼ k;fÞ (4)

Here, pðYijZi ¼ k; fÞ ¼ N ðYijfk;S1Þ is the data likelihood
term. We focus on the part pðZi ¼ kjZ�iÞ to model TC.

4.3 Temporally Coherent Chinese Restaurant
Process

In the generative process (Equation 3) all the Zi are drawn
IID conditioned on p. Such models are called Completely
Exchangeable. This is, however, often not a good idea for
sequential data such as videos. In Markovian Models like
sticky HDP-HMM, Zi is drawn conditioned on p and Zi�1.
In case of DP, the independence among Zi-s is lost on inte-
grating out p. After integration the generative process of
Eq. 3 can be redefined as

fk � H8k;ZijZ1; . . . ; Zi�1 � CRP ðaÞ;Yi � NðfZi
;S1Þ: (5)

The predictive distribution for ZijZ1; . . . ; Zi�1 for Dirichlet
Process is known as Chinese Restaurant Process (CRP).

It is defined as pðZi ¼ kjZ1:i�1Þ ¼ Ni
k

N�1þa
if k 2 fZ1; . . . ; Zi�1g

;¼ a
N�1þa

otherwise where Ni
k is the number of times the

value k is taken in the set fZ1; . . . ; Zi�1g.
We now modify CRP to handle the Spatio-temporal cues

(Eq. 1) mentioned in the previous section. In the generative
process, we define pðZijZ1; . . . ; Zi�1Þ with respect to prevðiÞ,
similar to the Block Exchangeable Mixture Model as defined
in [19]. Here, with each Zi we associate a binary change vari-
able Ci. If Ci ¼ 0 then Zi ¼ ZprevðiÞ, i.e., the tracklet identity is

maintained. But if Ci ¼ 1, a new value of Zi is sampled.
Note that every tracklet i has a temporal predecessor
prevðiÞ. However, if this predecessor is spatio-temporally
close, then it is more likely to have the same label. So, the
probability distribution of change variable Ci should
depend on this closeness. In TC-CRP, we use two values (k1
and k2) for the Bernoulli parameter for the change variables.
We put a threshold on the spatio-temporal distance between
i and prevðiÞ, and choose a Bernoulli parameter for Ci based
on whether this threshold is exceeded or not. Note that
maintaining tracklet identity by setting Ci ¼ 0 is equivalent
to tracking.

Several datapoints (tracklets) arise due to false detec-
tions. We need a way to model these. Since these are very
different from the Base mean m, we consider a separate
component Z ¼ 0 with mean m and a very large covariance
S2, which can account for such variations. The Predictive
Probability function(PPF) for TC-CRP is defined as follows:

T ðZi ¼ kjZ1:i�1; C1:i�1; Ci ¼ 1Þ ¼ 0 if k 2 fZCF ðiÞg � f0g
/ b if k ¼ 0

/ nZC
k1 if k 2 fZ1; . . . ; Zi�1g; k =2 fZCF ðiÞg

/ a otherwise;

(6)

where ZCF ðiÞ is the set of values of Z for the set of tracklets

CF ðiÞ that overlap with i, and nZC
k1 is the number of points j

(j < i) where Zj ¼ k and Cj ¼ 1. The first rule ensures that
two overlapping tracklets cannot have same value of Z. The
second rule accounts for false tracklets. The third and fourth

rules define a CRP restricted to the changepoints where
Cj ¼ 1. The final tracklet generative process is as follows:

Algorithm 1. TC-CRP Tracklet Generative Process

1: fk � Nðm;S0Þ 8k 2 ½1;1Þ
2: for i ¼ 1 : N do
3: if distði; prevðiÞÞ � thres then
4: Ci � Berðk1Þ
5: else
6: Ci � Berðk2Þ
7: end if
8: if Ci ¼ 1 then
9: draw Zi � T ðZijZ1; . . . ; Zi�1; C1; . . . ; Ci�1;aÞ
10: else
11: Zi ¼ ZprevðiÞ
12: end if
13: if Zi ¼ 0 then
14: Yi � Nðm;S2Þ
15: else
16: Yi � NðfZi

;S1Þ
17: end if
18: end for

where T is the PPF for TC-CRP, defined in Eq. 6.

4.4 Inference

Inference in TC-CRP can be performed easily through Gibbs
Sampling. We need to infer Ci, Zi and fk. As Ci and Zi are
coupled, we sample them in a block for each i 2 ½1; N � as
done in [19]. If Ciþ1 ¼ 0 and Ziþ1 6¼ Zi�1, then we must have
Ci ¼ 1 and Zi ¼ Ziþ1. If Ciþ1 ¼ 0 and Ziþ1 ¼ Zi, then Zi ¼
Ziþ1, and Ci is sampled from BernoulliðkÞ. In case Ciþ1 ¼ 1
and Ziþ1 6¼ Zi�1, then ðCi ¼ a; Zi ¼ kÞ with probability pro-
portional to pðCi ¼ aÞpðZijZ�i; Ci ¼ aÞÞpðYijZi ¼ k;fkÞ. If
a ¼ 0 then pðZi ¼ kjZ�i; Ci ¼ 1Þ ¼ 1 if Zi�1 ¼ k, and 0 other-
wise. If a ¼ 1 then pðZijZ�i; Ci ¼ aÞÞ is governed by TC-
CRP. For sampling fk, we make use of the Conjugate Prior
formula of Gaussians, to obtain the Gaussian posterior with

mean ðnkS
�1
1 þ S

�1Þ�1ðS�1
1 Yk þ S

�1
mÞ where nk ¼ jfi : Zi ¼

kgj, and Yk ¼
P

i:Zi¼k Yi. Finally, we update the hyperpara-

meters m and S after every iteration, based on the learned
values of ffkg, using Maximum Likelihood estimate. k1,k2
can also be updated, but in our implementation we set them
to 0:001 and 0:1 respectively, based on empirical evaluation
on one held-out video. The threshold thres was also simi-
larly fixed.

5 GENERATIVE PROCESS FOR VIDEO SEGMENTS

In the previous section, we considered the entire video as a
single block, as the TCCRP PPF for any tracklet i involves
ðZ;CÞ-values from all the previously seen tracklets through-
out the video. However, this need not be very accurate, as
in a particular part of the video some mixture components
(entities) may be more common than anywhere else, and for
any i, Zi may depend more heavily on the Z-values in tem-
porally close tracklets than the ones far away. This is
because, a TV-series video consists of temporal segments like
scenes and shots, each characterized by a subset of persons
(encoded by binary vector BS). The tracklets attached to a
segment s cannot be associated with persons not listed by
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Bs. To capture this notion we propose a new model: Tempo-
rally Coherent Chinese Restaurant Franchise (TC-CRF) to
model a video temporally segmented by S (see Section 2).

5.1 Temporally Coherent Chinese Restaurant
Franchise

Chinese Restaurant Process is the PPF associated with
Dirichlet Process. Hierarchical Dirichlet Process (HDP) [17]
aimed at modelling grouped data sharing same mixture compo-
nents. It assumes a group-specific distribution ps for every
group s. The generative process is:

p̂k � Betað1;aÞ; pk ¼ p̂k
Yk�1

i¼1

ð1� p̂i�1Þ;fk � H 8k 2 ½1;1Þ

ps � p8s 2 ½1;M�;Zi � pSðiÞ; Yi � NðfZi
;S1Þ8i 2 ½1; N �;

(7)

where datapoint i belongs to the group SðiÞ. The PPF corre-
sponding to this process is obtained by marginalizing the
distributions p and fpg, and is called the Chinese Restaurant
Franchise process, elaborated in [17]. In our case, we can
modify this PPF once again to incorporate TC, analogously
to TC-CRP, to have Temporally Coherent Chinese Restau-
rant Franchise (TC-CRF) Process.

Algorithm 2. TC-CRF Tracklet Generative Process

1: fk � Nðm;S0Þ
2: for s ¼ 1 : M do
3: Bs � IBP ðg; B1; . . . ; Bs�1Þ
4: end for
5: for i ¼ 1 : N do
6: if Si ¼ SprevðiÞ then
7: if distði; prevðiÞÞ � thres then
8: Ci � Berðk1Þ
9: else
10: Ci � Berðk2Þ
11: end if
12: else
13: Ci ¼ 1
14: end if
15: if Ci ¼ 1 then
16: draw Zi � TF ðZijBSðiÞ; Z1; . . . ; Zi�1; C1; . . . ; Ci�1;aÞ
17: else
18: Zi ¼ ZprevðiÞ
19: end if
20: if Zi ¼ 0 then
21: Yi � Nðm;S2Þ
22: else
23: Yi � NðfZi

;S1Þ
24: end if
25: end for

In our case, a group corresponds to a temporal segment,
and as alreadymentioned, wewant a binary vectorBs, which
indicates the components that are active in segment s. But
HDP assumes that all the components are shared by all the
groups, i.e., any particular component can be sampled in any
of the groups. We can instead try sparse modelling by incorpo-
rating fBsg into themodel, as done in [22] for Focussed Topic
Models. For this purpose we put an IBP [21] prior on the fBsg
variables, where pðBsk ¼ 1jB1; . . . ; Bs�1Þ / nk where nk is the

number of times component k has been sampled in all scenes
before s, and pðBsknew jB1; . . . ; Bs�1Þ / g. The TC-CRF PPF is
then as follows:

TF ðZi ¼ kjBs;Z1:i�1; C1:i�1; Ci ¼ 1Þ ¼ 0 if k 2 fZCF ðiÞg � f0g
¼ 0 if Bsk ¼ 0

/ b if k ¼ 0

/ nSZC
sk1 if Bsk ¼ 1; k 2 fZgs; k =2 fZCFðiÞg
/ a if Bsk ¼ 1; k =2 fZgs; k =2 fZCF ðiÞg;

(8)

where s ¼ SðiÞ, the index of the temporal segment to which
the datapoint i belongs. Based on TC-CRF, the generative
process of a video, in terms of temporal segments and track-
lets, is given below: where TF is the PPF for TC-CRF,
and SðiÞ is the temporal segment index associated with
tracklet i.

5.2 Inference

Inference in TC-CRF can also be performed through Gibbs
Sampling. We need to infer the variables fBg, fCg, fZg and
the components ffg. In segment s, for a datapoint i where
Ci ¼ 1, a component fk may be sampled with pðBsk ¼
1; Zi ¼ kjB�sk; Z�iÞ / nSZC

sk1 , which is the number of times fk

has been sampled within the same segment. If fk has never
been sampled within the segment but has been sampled in
other segments, pðBsk ¼ 1; Zi ¼ kjB�sk; Z�iÞ / ank, where
nk is the number of segments where fk has been sampled
(Corresponding to pðBskÞ ¼ 1 according to IBP), and a is the
CRP parameter for sampling a new component. Finally, a
completely new component may be sampled with probabil-
ity proportional to a. Note that pðBsk ¼ 0; Zi ¼ kÞ ¼ 08k.

6 RELATIONSHIP WITH EXISTING MODELS

TC-CRP draws inspirations from several recently proposed
Bayesian nonparametric models, but is different from each
of them. It has three main characterestics: 1) Changepoint-
variables fCg 2) Temporal Coherence and Spatio-temporal
cues 3) Separate component for non-face tracklets. The con-
cept of changepoint variable was used in Block-exchange-
able Mixture Model [19], which showed that this
significantly speeds up the inference. But in BEMM, the Ber-
noulli parameter of changepoint variable Ci depends on
ZprevðiÞ while in TC-CRP it depends on distði; prevðiÞÞ.
Regarding spatio-temporal cues, the concept of providing
additional weightage to self-transition was introduced in
sticky HDP-HMM [18], but this model does not consider
change-point variables. Moreover, it uses a transition distri-
bution Pk for each mixture component k, which increases
the model complexity. Like BEMM [19] we avoid this step,
and hence our PPF (Eq. (6)) does not involve ZprevðiÞ.
DDCRP [20] defines distances between every pair of data-
points, and associates a new datapoint iwith one of the pre-
vious ones (1; . . . ; i� 1) based on this distance. Here we
consider distances between a point i and its predecessor
prevðiÞ only. On the other hand, DDCRP is unrelated to the

original DP-based CRP, as its PPF does not consider nZ
k : the

number of previous datapoints assigned to component k.
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Hence our method is significantly different from DDCRP.
Finally, the first two rules of TC-CRP PPF are novel.

TC-CRF is inspired by HDP [17]. However, once again
there are three differences mentioned above hold good. In
addition, the PPF of TC-CRF itself is different from Chinese
Restaurant Franchise as described in [17]. The original CRF is
defined in terms of two concepts: tables and dishes, where
tables are local to individual restaurants (data groups) while
dishes (mixture components) are global, shared across restau-
rants (groups). Also individual datapoints are assigned mix-
ture components indirectly, through an intermediate
assignment of tables. The concept of table, which comes due
to marginalization of group-specific mixture distributions,
results in complex book-keeping, and the PPF for datapoints
is difficult to define. Here we avoid this problem, by skipping
tables and directly assigning mixture components to data-
points in Eq. (8). Inspiration of TC-CRF is also drawn from
IBP-Compound Dirichlet Process [22]. But the inference pro-
cess of [22] is complex, since the convolution of theDP-distrib-
uted mixture distribution and the sparse binary vector is
difficult to marginalize by integration. We avoid this step by
directly defining the PPF (Eq. (8)) instead of taking the DP
route. This approach of directly defining the PPF was taken
for DD-CRP [20] also.

7 EXPERIMENTS ON PERSON DISCOVERY

One particular entity discovery task that has recently
received a lot of attention is person discovery from movies/
TV series. We carried out extensive experiments for person
discovery on TV series videos of various lengths.

Benchmark Videos First of all, we made use of three videos
that have been used recently for the related task of face clus-
tering, in [24] and [25]. These are Frontal, Notting Hill and
Big Bang Theory- Season 1 Episode 1. These videos have only
4 or 5 persons. Notting-Hill video has 4,660 face detections
and Frontal has 4,267. In contrast, Big Bang Theory (Season
1 Episode 1) has 25,523 face detections. In these videos, the
ground-truth clusterings are available.

New Videos We collected three episodes of The Big Bang
Theory (Season 1). Each episode is 20-22 minutes long, and
has 7-8 characters (occurring in at least 100 frames). We also
collected 6 episodes of the famous Indian TV series “The
Mahabharata” fromYoutube. Each episode of this series is 40-
45minutes long, and has 15-25 prominent characters. So here,
each character is an entity. These videos are much longer than
those studied in similar works like [25], and have more char-
acters. Also, these videos are challenging because of the some-
what low quality and motion blur. Transcripts or labeled
training sets are unavailable for all these videos. As usual in
the literature [24], [25], we represent the persons with their
faces. We obtained face detections by running the OpenCV
Face Detector on each frame separately. As described in Sec-
tion 2 the face detections were all converted to grayscale,
scaled down to 30� 30, and reshaped to form 900-dimen-
sional vectors.We considered tracklets of sizeR ¼ 10 and dis-
carded smaller ones. The dataset details are given in Table 1.

7.1 Alternative Methods

Very recently, HMRF-based constrained clustering has been
used for face clustering in [24] and [25]. This method also

requires the number of clusters to be specified. However,
we found that this method runs into numerical problems
whenever the number of clusters is over 10, which is the
case in many of our videos. So, we limited comparison with
this method to only the benchmark videos, namely Notting-
Hill, Frontal and BBTs1e1.

A recent method for face clustering using track informa-
tion is WBSLRR [13] based on Subspace Clustering. Though
in [13] it is used for clustering detections rather than track-
lets, the change can be made easily. Apart from that, we can
use K-means Clustering and Constrained Clustering as
baselines, and we choose a recent method [12]. TC and
frame conflicts are encoded as must-link and don’t-link con-
straints respectively. A big problem is that the number of
clusters to be formed is unknown. For this purpose, we note
that the tracklet matrix formed by juxtaposing the tracklet
vectors should be approximately low-rank because of the simi-
larity of spatio-temporally close tracklet vectors. Such repre-
sentation of a video as a low-rank matrix has been
attempted earlier [4], [30]. We can find a low-rank represen-
tation of the tracklet matrix by any suitable method, and
use the rank as the number of clusters to be formed in spec-
tral clustering. We found that, among these the best perfor-
mance is given by Sparse Bayesian Matrix Recovery
(SBMR) [6]. Others are either too slow (BRPCA [5]), or
recover matrices with ranks too low (OPTSPACE [3]) or too
high (RPCA [4]). Finally, we compare against another well-
known sequential BNP method- the sticky HDP-HMM [18].

7.2 Performance Measures

In case of face clustering, the measure used in [24] and [25]
is clustering accuracy. However, this can be used only if the
ground-truth clustering is known. For long videos this is
difficult to annotate, so we need other measures.

The task of entity discovery with all their tracks is novel
and complex, and has to be judged by suitable measures.
We discard the clusters that have less than 10 assigned
tracklets. It turns out that the remaining clusters cover about
85� 95 % of all the tracklets. Further, there are some clus-
ters which have mostly (70 % or more) false (non-entity)
tracklets. We discard these from our evaluation. We call the
remaining clusters as significant clusters. We say that a signifi-
cant cluster k is “pure” if at least 70 % of the tracklets assigned to
it belong to any one person A(say Sheldon for a BBT video, or
Arjuna for a Mahabharata video). We also declare that the
cluster k and its corresponding mixture component fk cor-
responds to the person A. Also, then A is considered to be
discovered. The threshold of purity was set to 70 percent

TABLE 1
Details of Datasets

Dataset #Frames #Detections #Tracklets #Entities Entity Type

BBTs1e1 32,248 25,523 2,408 7 Person(Face)

BBTs1e3 31,067 21,555 1,985 9 Person(Face)

BBTs1e4 28,929 20,819 1,921 8 Person(Face)

Maha22 66,338 37,445 3,114 14 Person(Face)

Maha64 72,657 65,079 5,623 16 Person(Face)

Maha65 68,943 53,468 4,647 22 Person(Face)

Maha66 87,202 76,908 6,893 17 Person(Face)

Maha81 78,555 62,755 5,436 22 Person(Face)

Maha82 86,153 52,310 4,262 24 Person(Face)
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because we found this roughly the minimum purity needed
to ensure that a component mean is visually recognizable as
the entity (after reshaping to d� d) (See Fig. 5). We measure
the Purity: fraction of significant clusters that are pure, i.e., corre-
spond to some entity. We also measure Entity Coverage: the
number of persons (entity) with at least 1 cluster (at least 10
tracklets) corresponding to them. Next, we measure Tracklet
Coverage: the fraction of tracklets that are assigned to pure clus-
ters. Effectively, these tracklets are discovered, and the ones
assigned to impure clusters are lost.

We also inspected the “false” clusters, i.e., the ones dis-
carded for having over 70 percent false tracklets. Most of
them were entirely made of such false tracklets, and less
than 0:5 percent of the entity tracklets are “lost” by discard-
ing these clusters. Also, none of the competing methods has
any advantage over the others in this regard.

7.3 Comparison with HMRF on Benchmark Videos

First, we compare TC-CRP to HMRF [24], [25] in terms of
face clustering accuracy. Here, the comparison is limited to
the three benchmark videos where face clustering results by
HMRF is available. It is not possible to compare the videos
that we collected, since we do not have the ground-truth
clustering for them.

In this comparison, for the parametric method (HMRF)
the number of clusters is set to the known number of per-
sons (as done in the papers). In case of TCCRP, this number
is estimated. The results are shown in Table 2. Unfortu-
nately, TCCRP always finds more clusters than the true
number of entities, so that the clustering accuracy suffers.

Still, TCCRP has the better performance on BBTs1e1 and
Notting-Hill. Here, TCCRF is not used since the Frontal
video is short, and for Notting-Hill we do not have the shot
information.

7.4 Person Discovery Results

Next, we move on to person discovery, on the datasets that
we discussed in Table 1. Here, the number of clusters is not
provided to any method, and for parametric methods like
Constrained Clustering and WBSLRR, this number is esti-
mated as explained in Section 7.1. Here, HMRF is not appli-
cable since it faces numerical problems due to the larger
number of clusters to be formed. The results on the three
novel measures discussed above are shown in Tables 3, 4,
and 5. In terms of the three measures, TC-CRF is usually the
most accurate, followed by TC-CRP, and then sHDP-HMM.
This demonstrates that BNP methods are more suitable to
the task. The constrained spectral clustering-based method
is competitive on the purity measure, but fares very poorly
in terms of tracklet coverage. This is because, it forms many
small pure clusters, and a few very large impure clusters
which cover a huge fraction of the tracklets. Thus, a large
number of tracklets are lost. Also, it appears that
K-means can be better than constrained clustering on the
short BBT videos in terms of cluster purity, but the impor-
tance of the constraints becomes evident on the longer vid-
eos with more persons.

In the above experiments, we used tracklets with size
R ¼ 10. We varied this number and found that, for R ¼ 5
and even R ¼ 1 (dealing with detections individually), the
performance of TC-CRF, TC-CRP and sHDP-HMM did not
change significantly. On the other hand, the matrix returned

TABLE 2
Comparison of TCCRP and HMRF by Clustering

Accuracy on the Benchmark Dataset

Dataset TCCRP HMRF

Frontal 0.74 0.91
Notting-Hill 0.86 0.77
BBTs1e1 0.70 0.66

TABLE 3
Purity Results for Different Methods

Dataset TCCRF TCCRP sHDP
-HMM

SBMR+
ConsClus

SBMR+
Kmeans

WBS
-LRR

BBTs1e1 0.88 (48) 0.75 (36) 0.84 (44) 0.67 (48) 0.77 (56) 0.73 (45)
BBTs1e3 0.88 (50) 0.83 (40) 0.76 (37) 0.80 (15) 0.72 (46) 0.67 (43)
BBTs1e4 0.93 (40) 0.89 (36) 0.83 (29) 0.77 (31) 0.74 (46) 0.71 (41)
Maha22 0.91 (67) 0.87 (69) 0.86 (74) 0.94 (44) 0.65 (68) 0.83 (79)
Maha64 0.95 (113) 0.92 (105) 0.91 (97) 0.85 (88) 0.82 (90) 0.75 (81)
Maha65 0.97 (95) 0.89 (85) 0.90 (89) 0.86 (76) 0.86 (83) 0.82 (84)
Maha66 0.91 (76) 0.96 (73) 0.95 (80) 0.87 (84) 0.86 (90) 0.81 (81)
Maha81 0.89 (91) 0.89 (88) 0.84 (95) 0.87 (84) 0.70 (86) 0.74 (78)
Maha82 0.92 (52) 0.88 (50) 0.86 (58) 0.78 (63) 0.78 (65) 0.83 (64)

The number of significant clusters are written in brackets.

Fig. 5. Face detections (top), and the corresponding atoms (reshaped to
square images) found by TC-CRP (bottom).

TABLE 5
Tracklet Coverage Results for Different Methods

Dataset TCCRF TCCRP sHDP
-HMM

SBMR+
ConsClus

SBMR+
Kmeans

WBS
-LRR

BBTs1e1 0.82 0.67 0.79 0.29 0.70 0.73
BBTs1e3 0.86 0.88 0.68 0.09 0.71 0.53
BBTs1e4 0.92 0.82 0.78 0.22 0.74 0.62
Maha22 0.90 0.90 0.86 0.43 0.68 0.69
Maha64 0.93 0.90 0.81 0.39 0.81 0.62
Maha65 0.94 0.85 0.91 0.40 0.80 0.68
Maha66 0.74 0.80 0.68 0.43 0.84 0.65
Maha81 0.80 0.75 0.66 0.46 0.60 0.50
Maha82 0.76 0.81 0.64 0.37 0.77 0.64

TABLE 4
Entity Coverage Results for Different Methods

Dataset TCCRF TCCRP sHDP
-HMM

SBMR+
ConsClus

SBMR+
Kmeans

WBS
-LRR

BBTs1e1 6 6 5 5 4 4
BBTs1e3 9 7 6 8 6 7
BBTs1e4 6 8 8 6 6 8
Maha22 14 14 14 10 10 14
Maha64 14 13 14 11 13 13
Maha65 17 19 17 13 16 17
Maha66 13 15 13 9 10 11
Maha81 21 21 20 14 18 20
Maha82 21 19 20 10 12 16
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by SBMR had higher rank (120-130 for R ¼ 1) as the number
of tracklets increased.

Number of significant clusters: It may be noted that the
number of significant clusters formed is a matter of concern,
especially from the user’s perspective. A small number of
clusters allow him/her to get a quick summary of the video.
Ideally there should be one cluster per entity, but that is not
possible due to the significant appearance variations (See
Fig. 6). The number of clusters formed per video by the dif-
ferent methods is indicated in Table 3. It appears that none
of the methods have any clear advantage over the others in
this regard. However, for a direct comparison we make
another experiment. Here, the number of clusters for the
parametric methods is set in such a way that they form
roughly the same number of significant clusters as the pro-
posed method which gives best result (TCCRF or TCCRP).
These results are shown in Table 6. Table 6 shows that, even
for same number of significant clusters TCCRF/TCCRP
continues to give best clustering purity.

7.5 Online Inference

We wanted to explore the case of streaming videos, where
the frames appear sequentially and old frames are not stored.
This is the online version of the problem, the normal Gibbs
Sampling will not be possible. For each tracklet i, we will
have to infer Ci and Zi based on CprevðiÞ, ZprevðiÞ and the

ffkg-vectors learnt from fY1; Y2; . . . ; Yi�1g. Once again,
ðCi; ZiÞ is sampled as a block as above, and the term
pðZijZ�i; Ci ¼ aÞÞ follows from the TC-CRP PPF (Eq. 6). The
same thing can be done for TC-CRF also. Instead of drawing
one sample per data-point, an option is to draw several sam-
ples and consider the mode. In the absence of actual stream-
ing datasets we performed the single-pass inference (Section
7.5) on two of the videos from each set- Mahabharata and Big
Bang Theory. We used the same performance measures as
above. The existing tracklet clustering methods discussed in
Section 7.1 are incapable in the online setting, and sticky
HDP-HMM is the only alternative. The results are presented
in Table 7, which show TC-CRP to be doing the best on the
Mahabharata videos and TC-CRF on the Big Bang Theory
ones. Notably, the figures for TC-CRP and TC-CRF in the
online experiment are not significantly lower than those in
the offline experiment (except one or two exceptions), unlike
sHDP-HMM. This indicates that the proposed methods
converge quickly, and so aremore efficient offline.

7.6 Outlier Detection / Discovery of False Tracklets

Face Detectors such as [29] are trained on static images, and
applied on the videos on per-frame basis. This approach
itself has its challenges [26], and the complex videos we con-
sider in our experiments do not help matters. As a result,
there is a significant number of false (non-face) detections,
many of which occur in successive frames and hence get
linked as tracklets. Identifying such junk tracklets not only
helps us to improve the quality of output provided to the
users, but may also help to adapt the detector to the new

domain, by retraining with these new negative examples, as
proposed in [27].

We make use of the fact that false tracklets are relatively
less in number (compared to the true ones), and hence at
least some of them can be expected to deviate widely from
the mean of the tracklet vectors. This is taken care of in the
TC-CRP tracklet model, through the component f0 that has
very high variance, and hence is most likely to generate the
unusual tracklets. We set this variance S2 as S2 ¼ cS1,
where c > 1. The tracklets assigned Zi ¼ 0 are reported to
be junk by our model. It is expected that high cwill result in
lower recall but higher precision (as only the most unusual
tracklets will go to this cluster), and low c will have the
opposite effect. We study this effect on two of our videos-
Maha65 and Maha81 (randomly chosen) in Table 8 (See
Fig. 7 for illustration). As baseline, we consider K-means or
spectral clustering of the tracklet vectors. We may expect
that one of the smaller clusters should contain mostly the
junk tracklets, since faces are roughly similar (even if from
different persons) and should be grouped together. How-
ever, for different values of K (2 to 10) we find that the

TABLE 6
Cluster Purity Results for Different Methods When Number

of Significant Clusters Is Same (Shown in Brackets)

Dataset TC ConsClus Kmeans WBSLRR

BBTs1e1(48) 0.88 0.67 0.84 0.73
BBTs1e3(50) 0.88 0.67 0.77 0.68
BBTs1e4(40) 0.93 0.68 0.73 0.71
Maha22 (67) 0.91 0.96 0.66 0.80
Maha64 (113) 0.95 0.88 0.87 0.83
Maha65 (95) 0.97 0.92 0.74 0.85
Maha66 (76) 0.96 0.87 0.80 0.78
Maha81 (91) 0.89 0.91 0.66 0.77
Maha82 (52) 0.92 0.75 0.75 0.80

The first method is either TCCRF or TCCRP- whichever does better.

TABLE 7
Online (Single-Pass) Analysis on four Videos

Dataset Maha65

Measure TC-CRF TC-CRP sHDPHMM

Purity 0.86 (56) 0.89(79) 0.84 (82)
Entity Coverage 14 15 16
Tracklet Coverage 0.75 0.80 0.77

Dataset Maha81
Measure TC-CRF TC-CRP sHDPHMM

Purity 0.71 (55) 0.84(74) 0.70(57)
Entity Coverage 19 21 17
Tracklet Coverage 0.51 0.62 0.49

Dataset BBTs1e1
Measure TC-CRF TC-CRP sHDPHMM

Purity 0.87 (39) 0.73 (33) 0.50 (14)
Entity Coverage 5 3 3
Tracklet Coverage 0.80 0.65 0.40

Dataset BBTs1e4
Measure TC-CRF TC-CRP sHDPHMM

Purity 0.92 (45) 0.88 (32) 0.75(28)
Entity Coverage 7 6 7
Tracklet Coverage 0.87 0.81 0.67

Fig. 6. Different atoms for different poses of same person.
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clusters are roughly of the same size, and the non-face track-
lets are spread out quite evenly. Results are reported for the
best K (K ¼ 10 for both). Note that because of the large
number of tracklets (Table I) it is difficult to count the total
number of non-face ones. So for measuring recall, we simply
mention the number of non-face tracklets recovered (recall*),
instead of the fraction. It is clear that TC-CRP significantly
outperforms clustering on both precision and recall*.

7.7 Evaluation of TC Enforcement

The aim of TC-CRP and TC-CRF is to encourage TC at the
semantic level, that spatio-temporally close but non-over-
lapping tracklets should belong to the same entity. In the
Bayesian models like sHDP-HMM, TC-CRP and TC-CRF,
these cues are modelled with probability distributions, in
WBSLRR with convex regularization and in constrained
clustering they are encoded as hard constraints. We now
evaluate how well the different methods have been able to
enforce these cues. We create ground-truth tracks by linking
the tracklets which are spatio-temporally close to each other
(with respect to the chosen threshold thres in the generative
process), and belong to the same entity. All the tracklets in
each ground-truth track should be assigned to the same
cluster. This is the task of tracklet linking. We measure what
fraction of the these ground-truth tracks have been assigned
entirely to single clusters by the different methods. We do not
compare SBMR+ConsClus, since it uses hard constraints.
The results are shown in Table 9. We find that TC-CRF is
the best once again, followed by TC-CRP and sHDP-HMM.
WBSLRR has significantly poorer performance, though it
springs a surprise on BBTs1e1.

7.8 Scalability and Efficiency

The proposed methods TC-CRP and TC-CRF are far most
scaleable than WBSLRR, because the latter requires several
matrices for ADMM of size N �N . The methods based on
spectral clustering also require one N �N similarity matrix.
The storage requirements for TC-CRP, sHDP-HMM and K-
means is OðN þK þDKÞ, where D is the dimensionality
and K is the number of clusters formed, which are both
much smaller than N . The first component accounts for the
assignments to discrete variables per tracklet (Z and C), the

second component accounts for the CRP counts nZC and the
last component accounts for the atoms or cluster centers.
For TC-CRF, it is OðN þ SK þDKÞ where S is the number
of temporal segments.

For WBSLRR the computational complexity per iteration
is OðN2Þ and for SBMR it is OðDN3 þND3Þ. For spectral

clustering, the complexity is OðN3 þN2DÞ. For sHDP-
HMM, TC-CRP and TC-CRF the complexity is OðNDKÞ per
iteration. Moreover, these methods are found to converge
very fast. So it turns out that in terms of computational and
space complexity also the proposed methods are far supe-
rior to the alternatives.

8 DISCOVERY OF NON-PERSON ENTITIES

To emphasize the fact that our methods are not restricted to
faces or persons, we used two short videos-one of cars and
another of aeroplanes. The cars video consisted of five cars of
different colors, while the aeroplanes video had six planes of
different colors/shapes. These were created by concatenat-
ing shots of different cars/planes in the Youtube Objects
datasets [45]. The objects were detected using the Object-spe-
cific detectors [35]. Since here the color is the chief distin-
guishing factor, we scaled the detections down to 30� 30
and reshaped them separately in the 3 color channels to get
2,700-dimensional vectors. Here R ¼ 1 was used, as these
videos are much shorter, and using long tracklets would
have made the number of data-points too low. Both videos
have 750 frames. The Cars video has 694 detections, and the
Aeroplanes video has 939 detections. The results are shown in
Table 10 and Fig. 8. Once again, TC-CRP does well.

9 SEMANTIC VIDEO SUMMARIZATION

In this section, we discuss how the above results on entity
discovery can be used to obtain a sematic summary of the
video. For this purpose we consider two approaches: entity-
based and shot-based.

9.1 Entity-Based Summarization

The process of entity discovery via tracklet clustering
results in formation of clusters. In case of the Bayesian
methods like TC-CRF, TC-CRP and sHDP-HMM, each clus-
ter can be represented by the mean vector of the corre-
sponding mixture component. In case of non-Bayesian
approaches like SBMR+Consclus and WBSLRR, it is possi-
ble to compute the cluster centers as the mean of the tracklet
vectors assigned to each cluster. Each cluster vector fk can
be reshaped to form a visual representation of the cluster.
This representation of clusters provides us a visual list of
the entities present in the video, which is what we call
entity-based summarization of the video.

Any summary should have two properties: 1) It should
be concise 2) It should be representative. Along these lines, an
entity-based summary should have the property that it
should cover as many entities as possible, with least number

TABLE 8
Discovery of Non-Face Tracklets

Dataset Maha65 Maha81

Method Precision Recall* Precision Recall*

KMeans 0.22 73 0.19 39
Constrained Spectral 0.30 12 0.12 16
TCCRP (c=5) 0.98 79 0.57 36
TCCRP (c=4) 0.98 87 0.64 47
TCCRP (c=3) 0.95 88 0.62 54
TCCRP (c=2) 0.88 106 0.50 57

Fig. 7. Non-face tracklet vectors (reshaped) recovered by TC-CRP. Note
that one face tracklet has been wrongly reported as non-face.

Fig. 8. Car detections (top), and the corresponding atoms (reshaped to
square images) found by TC-CRP (bottom).
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of clusters. On the other hand, the selected clusters should
cover a sufficiently large fraction of all the tracklets. In our
evaluation of entity discovery (Section 7) we have measured
Entity Coverage, Tracklet Coverage and Number of significant
clusters. These same measures are useful in evaluating the
summarization. Entity Coverage and Tracklet Coverage
should be high, and number of significant clusters should
be low (See Figs. 9, 10, and 11). To make the evaluation
more comprehensive, we define two more measures: 1) Con-
ciseness: defined as the ratio of Entity Coverage to the num-
ber of significant clusters, and 2) Representativeness: defined
as the ratio of the Tracklet Coverage to the number of signif-
icant clusters.

The results are shown in the Tables 11 and 12.We find that
in terms of Conciseness, TC-CRP turns out to be the best,

while the other methods are all comparable when averaged
across the videos. In terms of Representativeness, TC-CRP is
once again the best by a long way, while TC-CRF and sHDP-
HMMare at par. The non-Bayesianmethods areway behind.

9.2 Shot-Based Summarization

Another way of summarization is by a collection of shots.
[42] follows this approach, and selects a subset of the shots
based on the total number of characters (entities), number
of prominent characters (entities) etc. A shot is a contiguous
sequence of frames that consist of the same set of entities. It
is possible to organize the video into temporal segments
based on the cluster indices assigned to the tracklets. In a
frame f , let fZgf denote the set of cluster labels assigned to
the tracklets that cover frame f . For two successive frames
f1 and f2, if fZgf1 ¼ fZgf2 we say that they belong to the

same temporal segment, i.e., T ðf2Þ ¼ T ðf1Þ. But if
fZgf1 6¼ fZgf2, then we start a new temporal segment, i.e.,

T ðf2Þ ¼ T ðf1Þ þ 1. By this process, the frames of the video
are partitioned into temporal segments. The cluster labels
are supposed to correspond to entities, so each temporal
segment should correspond to a shot. Each such segment
can be easily represented with any one frame, since all the
frames in a segment contain the same entities. This provides
us a shot-based summarization of the video.

As in the case with entities, once again a large number of
temporal segments are created by this process, with several
adjacent segments corresponding to the same set of entities.
This happens because often several clusters are formed for

Fig. 9. Entity-based summarization of Big Bang Theory episode 4 using
TC-CRF.

TABLE 9
Fraction of Ground Truth Tracks That Are Fully Linked

Dataset TCCRF TCCRP sHDPHMM WBSLRR

BBTs1e1 0.65 0.54 0.42 0.93
BBTs1e3 0.74 0.71 0.59 0.22
BBTs1e4 0.72 0.69 0.54 0.34
Maha22 0.83 0.81 0.80 0.61
Maha64 0.80 0.80 0.79 0.55
Maha65 0.86 0.81 0.81 0.63
Maha66 0.86 0.79 0.78 0.52
Maha81 0.86 0.82 0.83 0.61
Maha82 0.89 0.86 0.84 0.64

TABLE 10
Purity, Entity Coverage and Tracklet Coverage Results
for Different Methods on Cars and Aeroplanes Videos

Dataset TCCRP sHDPHMM SBMR+
ConsClus

WBSLRR

Cars 0.94 (35) 0.92 (12) 1.00 (54) 0.24 (21)
Aeroplanes 0.95 (43) 0.87 (15) 0.84 (44) 0.21 (24)

Dataset TCCRP sHDPHMM SBMR+
ConsClus

WBSLRR

Cars 5 5 5 2
Aeroplanes 6 5 6 4

Dataset TCCRP sHDPHMM SBMR+
ConsClus

WBSLRR

Cars 0.73 0.69 1.00 0.04
Aeroplanes 0.93 0.70 0.88 0.09

Fig. 10. Entity-based summarization of Mahabharata Episode 22 using
TC-CRF. Each image is a reshaped cluster mean.

Fig. 11. Entity-based summarization of Mahabharata Episode 22 using
WBSLRR. WBSLRR creates many more clusters than TC-CRF, but
both discover the same number of persons (14). Hence the summary by
TC-CRF is more concise.
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the same entity. Analogous to Entity Coverage, we define Shot
Coverage as the total number of true shots that have at least one
temporal segment lying within it. We then define significant
segments as those which cover a sufficient number (say 100)
of frames. Finally, we define Frame Coverage as the fraction of
the frameswhich come under the significant segments.

To evaluate such shot-based summarization, once again
we need to consider the two basic properties: conciseness
and representativeness. These are measured in exact anal-
ogy to the entity-based summarization discussed above
(See Figs. 12 and 13). The Conciseness of the summary is
defined as the ratio of the Shot Coverage to the number of
significant segments, while the Representativeness of the
summary is defined as the ratio of the Frame Coverage to

the number of significant segments. The results are shown
in Tables 13 and 14 . This time we find that in terms of repre-
sentativeness TC-CRF leads the way, followed by TC-CRP.
In terms of conciseness the best performance is given by
WBSLRR, which however does poorly in terms of
representativeness.

10 CONCLUSION

In this paper, we considered an entity-driven approach to
video modelling. We represented videos as sequences of
tracklets, each tracklet associated with an entity. We
attempted entity discovery: appearance-modeling the prom-
inent entities in a video, and discovering all their occurences.

TABLE 11
Conciseness Results for Different Methods

for Entity-Based Summarization

Dataset TCCRF TCCRP sHDPHMM SBMR+
ConsClus

WBSLRR

BBTs1e1 0.13 0.17 0.11 0.10 0.09
BBTs1e3 0.18 0.18 0.16 0.53 0.16
BBTs1e4 0.15 0.22 0.28 0.19 0.20
Maha22 0.21 0.20 0.19 0.23 0.18
Maha64 0.12 0.12 0.14 0.11 0.16
Maha65 0.18 0.22 0.19 0.17 0.20
Maha66 0.17 0.21 0.16 0.11 0.14
Maha81 0.23 0.24 0.21 0.17 0.26
Maha82 0.40 0.38 0.34 0.16 0.25

TABLE 13
Conciseness Results for Different Methods

for Shot-Based Summarization

Dataset TCCRF TCCRP sHDPHMM SBMR+
ConsClus

WBSLRR

BBTs1e1 0.86 0.80 0.75 0.74 0.80
BBTs1e3 0.84 0.74 0.71 0.82 0.64
BBTs1e4 0.67 0.57 0.55 0.75 0.60
Maha22 0.41 0.39 0.40 0.30 0.53
Maha64 0.32 0.34 0.34 0.26 0.27
Maha65 0.30 0.29 0.30 0.24 0.32
Maha66 0.14 0.14 0.12 0.11 0.21
Maha81 0.37 0.34 0.36 0.24 0.17
Maha82 0.36 0.33 0.38 0.23 0.41

TABLE 14
Representativeness (�100) Results for Different

Methods for Shot-Based Summarization

Dataset TCCRF TCCRP sHDPHMM SBMR+
ConsClus

WBSLRR

BBTs1e1 0.72 0.73 0.75 0.77 0.80
BBTs1e3 0.68 0.63 0.64 0.68 0.74
BBTs1e4 0.88 0.93 0.89 0.75 0.87
Maha22 0.66 0.61 0.63 0.53 0.24
Maha64 0.42 0.41 0.40 0.42 0.23
Maha65 0.47 0.43 0.45 0.18 0.26
Maha66 0.43 0.42 0.42 0.44 0.10
Maha81 0.45 0.46 0.46 0.19 0.29
Maha82 0.59 0.59 0.57 0.38 0.24

Fig. 12. Shot-based summarization of Mahabharata Episode 22 using
TC-CRF, using one frame per significant segment.

Fig. 13. Shot-based summarization of Mahabharata Episode 22 using
SBMR+ConsClus. SBMR+ConsClus creates more significant segments
to cover roughly the same set of true shots as TC-CRF, so TC-CRF
summary is more concise.

TABLE 12
Representativeness (�100) Results for Different Methods

for Entity-Based Summarization

Dataset TCCRF TCCRP sHDPHMM SBMR+
ConsClus

WBSLRR

BBTs1e1 1.7 1.86 1.80 0.60 1.60
BBTs1e3 1.72 2.2 1.83 0.60 1.23
BBTs1e4 2.3 2.28 2.69 0.71 1.51
Maha22 1.39 1.30 1.16 0.99 0.87
Maha64 0.82 0.86 0.84 0.44 0.76
Maha65 0.99 1.00 1.02 0.53 0.81
Maha66 0.97 1.10 0.85 0.51 0.80
Maha81 0.88 0.85 0.69 0.55 0.64
Maha82 1.46 1.62 1.10 0.59 1.00
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We cast this as tracklet clustering and considered a Bayesian
nonparametric approach which can automatically discover
the number of clusters to be formed. We leveraged the Tem-
poral Coherence property of videos to improve the cluster-
ing by our first model: TC-CRP. The second model TC-CRF
was a natural extension to TC-CRP, to jointly model short
temporal segments within a video, and further improve
entity discovery. These methods have several additional
abilities like performing online entity discovery efficiently,
and detecting false tracklets. We used the discovered entities
for semantic video summarization. An extension of this
work would be to reduce the number of clusters formed per
entity, without compromising on purity.
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