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Abstract

This paper proposes a new approach for classifying multivariate time-series with applications to the problem of writer independent
online handwritten character recognition. Each time-series is approximated by a sum of piecewise polynomials in a suitably defined
Reproducing Kernel Hilbert Space (RKHS). Using the associated kernel function a large margin classification formulation is proposed
which can discriminate between two such functions belonging to the RKHS. The associated problem turns out to be an instance of con-
vex quadratic programming. The resultant classification scheme applies to many time-series discrimination tasks and shows encouraging
results when applied to online handwriting recognition tasks.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding temporal sequences is an important task
having many applications in diverse domains like online
handwriting recognition, speech recognition, etc. The task
of temporal sequence understanding often boils down to
assigning proper labels to such sequences. Characters writ-
ten on a tablet PC or a handheld PDA by a stylus, is repre-
sented by the coordinates of the stylus at different time
instants, and can be interpreted as a two dimensional
time-series. The online handwriting recognition task is to
infer the character given in such a sequence. A similar
situation arises in speech processing where utterances of
various words, vowels, etc. are represented by multidimen-
sional time-series of LPC coefficients. In general a time-ser-
ies is represented as a collection of time ordered vectors
F ¼ fFðt1Þ;Fðt2Þ; . . . ;FðtnÞg where F is the time-series,
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FðtiÞ denotes a vector sampled at the time instant ti 2 R,
ti < tj whenever i < j and n is the number of sampled points
in the time-series. In this paper, we study the problem of
classifying such multivariate time-series and develop algo-
rithms suitable for application to online handwriting recog-
nition on a handheld device like PDA.

The problem of time-series classification has been well
studied in the area of speech processing where Hidden
Markov Models (HMMs) have emerged as a powerful tool.
The applicability of HMMs to online handwriting recogni-
tion was explored in (Binsztok and Artières, 2004) with
mixed results. In recent times Support Vector Machines
(SVMs) (Vapnik, 2000) have emerged as a powerful tool
for classifying fixed length vectors. The main research issue
in extending the SVM formulation to time-series data is the
design of kernel function. The Fisher kernel (Jaakkola and
Haussler, 1998) was an important breakthrough, which
was successfully applied to classifying protein sequences.
Each kernel computation requires two passes of a forward
backward algorithm on a pre-trained HMM and hence is
computationally heavy. Alternatively it is possible to derive
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Fig. 1. Plot of basis functions with q = 1 and q = 2.

934 K. Kumara et al. / Pattern Recognition Letters 29 (2008) 933–937
kernels based on dynamic programming based alignment
for classification of sequences (Watkins) Dynamic Time
Warping (DTW) is an instance of such an approach, which
was explored by Bahlmann et al. (2002) for online hand-
writing recognition with encouraging results over HMM
based classifiers. A variant of DTW which uses clustering
techniques was proposed in (Bahlmann and Burkhardt,
2003). The state of the art for online handwriting recogni-
tion seems to be the online SNT algorithm (Ratzlaff, 2003).

The work reported in the paper is closely related to Sivar-
amakrishnan and Bhattacharyya (2004), where each time-
series is approximated by a sum of piecewise linear functions
and resampled to get a fixed length vector. The obtained vec-
tor was used to train a SVM classifier. The approach is a two
step procedure where in the first step the time-series is repre-
sented as a fixed length vector by interpolation and sampling
and in the next step the vector is used with a standard clas-
sifier. The main contribution of the paper is to propose a
kernel function for time-series which can be used not only
for classification, but other applications like clustering, nov-
elty detection, etc. The other important contribution is to
generalize the piecewise linear interpolation scheme used
in (Sivaramakrishnan and Bhattacharyya, 2004) to piece-
wise polynomials in a Reproducing Kernel Hilbert Space
(RKHS) setting. This is interesting in its own right as it
might open up new applications which involve interpola-
tion. Lastly the paper also gives an O(n) algorithm for com-
puting the interpolation step rather than an O(n3) algorithm
proposed in (Sivaramakrishnan and Bhattacharyya, 2004).

This paper is organized as follows. Section 2 details the
contributions of the paper, it starts by describing a scheme
for interpolation of a time-series by sum of polynomials in
a RKHS. The scheme is used to derive a continuous func-
tion describing the time-series. A large margin formulation
is later derived to discriminate these interpolated functions.
Section 3 describes the empirical evaluation of the pro-
posed formulation with the state of the art on several
benchmark datasets. Finally we end with the concluding
remarks in Section 4.

2. Time-series classification

In this section we start by briefly describing an interpo-
lation scheme due to Moore Moore (1985) (Chapter 9),
which uses piecewise polynomial functions as basis func-
tions. The interpolation scheme is used to represent each
time-series as a function and using a large margin approach
we show how to discriminate between such functions.

2.1. Kernel interpolation

Let 0 6 s1 < s2 . . . sn�1 < sn 6 1 be a sequence of points
and let Fi ¼FðsiÞ be the function F : ½0; 1� ! R evalu-
ated at si. The interpolation problem can be viewed as
approximating F given D ¼ fðsi;FiÞj1 6 i 6 ng.

Denote by Hq the space of all functions f : ½0; 1� ! R,
whose qth derivatives are in L2ð0; 1Þ. It can be shown that
Hq is a RKHS (Moore, 1985) with the inner product
defined as

hf ; gi ¼
Xq�1

j¼0

f ðjÞð0ÞgðjÞð0Þ
j!

þ
Z 1

0

f ðqÞðtÞgðqÞðtÞdt; ð1Þ

where f 2Hq; g 2Hq and f(r)(t) denotes the rth derivative.
The reproducing kernel for the RKHS is

Rq
s ðtÞ ¼

Xq�1

j¼0

sjtj

ðj!Þ2
þ
Z minðs;tÞ

0

ðs� uÞq�1ðt � uÞq�1 du

ððq� 1Þ!Þ2
ð2Þ

As special case of the above functions

Rq
s ðtÞ ¼

1þminðs; tÞ q ¼ 1

1þ st þ st2

2
� t3

6
if t < s

1þ st þ s2t
2
� s3

6
if t > s

)
q ¼ 2:

8><
>:

Fig. 1 shows the basis functions for Rq
0:9ðtÞ with q = 1

and q = 2.
Consider the function F

FðsÞ ¼
Xn

j¼1

cjRq
sj
ðsÞ; ð3Þ

where the basis function Rq
sj
ðsÞ are piecewise polynomial.

For any 0 6 s 6 1 and f 2 Hq, the basis functions satisfies,
hf ;Rq

s i ¼ f ðsÞ, which is also referred as the RKHS prop-
erty. To ensure F best approximates F, one can choose
c by requiring that, hðF�FÞ;Rq

si
i ¼ 0 8i ¼ 1; 2; . . . ; n:

Using Eq. (3) and the RKHS property, the above set of
equations reduces to,

Pn
i¼1hRq

si
;Rq

sj
ici ¼FðsjÞ or F ¼ Gc.

This is a set of linear equations in c and can be efficiently
solved. It can be shown that such a choice of c is optimal
and the resulting F best approximates F given D.

The use of the kernel as specified in Eq. (2), enables us to
easily incorporate higher order interpolants without chang-
ing the structure of the problem. The coefficients ci can be
calculated by solving linear equations, i.e. c ¼ G�1F. This
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can be easily modified to incorporate regularization on the
coefficients c as

c ¼ arg min
c
ðjjGc�Fjj2 þ kjjcjj2Þ;

where k is the regularization parameter. The ability to
incorporate interpolations of different complexities and
do regularization are the main advantages of the chosen
interpolation kernel.

2.2. Classification of univariate time-series

A univariate time-series F ¼ fF1; . . . ;Fng Fi ¼
FðtiÞ, evaluated at time instants FðtiÞ 2 R; 0 6 t1 < t2 � � �
< tn, can be approximated by a continuous function (3).
the basis coefficients c can be chosen to satisfy

Gc ¼ ½F1 � � �Fn�T; ð4Þ

where Gij ¼ hRq
si
;Rq

sj
i, is the Gram Matrix for the basis ele-

ments Rq
si
. The learning problem can be posed as that of

computing a classifier on the dataset T ¼ fðFi; yiÞjFi 2
Hq; yi 2 �1 81 6 i 6 Ng. More precisely the problem can
be stated as finding a w 2Hq and b 2 R so that the deci-
sion function given by, y ¼ signðhF;wi þ bÞ; can correctly
predict the class label of a given time-series. A w chosen
such that it has the minimum norm hw,wi provides the best
generalization (Vapnik, 2000). The formulation for finding
w and b is

min
w2Hq;b

1

2
hw;wi

subject to yiðhw;Fii þ bÞP 1

1 6 i 6 N

ð5Þ

As w 2Hq, one can express w as linear combination of the
basis functions in Hq, specifically, wðtÞ ¼

PM
j¼idjRq

mj
ðtÞ,

where, mj are normalized time instants such that mj 2 [0,
1]. The vector m = [m1,. . .,mM] needs to be chosen appro-
priately depending on the data. The inner product between
two functions F1 ¼

Pn1
i¼1ciRq

si
and F2 ¼

Pn2
j¼1djRq

sj
is given

by

hF1;F2i ¼
Xn1

i¼1

Xn2

j¼1

cidjhRq
si
;Rq

sj
i: ð6Þ

Using the above definition the inner product of w and data
F is

hw;Fi ¼
XM

i¼1

Xn

j¼1

dicjhRq
mi
;Rq

sj
i ¼ dTAc;

where c = [c1,. . .,cn] is a vector determined by (4). The A

matrix is given by

Aij ¼ hRmi ;Rsji 1 6 i 6 M ; 1 6 j 6 n; ð7Þ

where M is the number of basis functions describing w.
Again from the definition of the inner product (6), the
objective can be stated as
jjwjj2 ¼ hw;wi ¼
XM

i¼1

XM

j¼1

didjhRq
mi
;Rq

mj
i: ð8Þ

Using (8) the optimization problem (5) can be restated as

min
d;b

1

2
dTBd

subject to yiðdTAðiÞcðiÞ þ bÞP 1

1 6 i 6 N ;

ð9Þ

where B is the Gram matrix for the basis functions given
by, Bij ¼ hRq

mi
;Rq

mj
i from Eq. (8), A(i) and c(i) is the A matrix

and c vector, respectively, for the ith data point.
The matrix B is positive semi-definite and hence the opti-

mization problem (9) is an instance of convex quadratic pro-
gramming and can be solved by standard tools. The decision
function can now be evaluated as, y = sign(dTAc + b).

The above formulation (9) provides a unified scheme for
time-series classification and is the main contribution of
this paper. In the following paragraphs, the above formu-
lation is cast as an optimization problem which can be han-
dled by standard SVM solvers (Chang and Lin, 2001). The
formulation is extended to handle multivariate data. A sim-
ple O(n) scheme is also suggested for linear interpolation.

2.3. A time-series kernel

The Gram matrix B can be factorized as B = URUT.
Where U is the matrix formed by normalized eigen vectors
and R is a diagonal matrix, the eigen values being the diag-
onal elements. It can be shown that UUT = UTU = I.
Based on this we can extract a kernel from (9) that can
be used for comparing similarity between sequences of
time-series. Let d ¼ U T R�

1
2u, where R�

1
2 is the inverse of

the matrix square root of the diagonal matrix R. Substitut-
ing in (9) one obtains the following formulation:

min
u;b

1

2
uTu

subject to yiðuTX i þ bÞP 1;

1 6 i 6 N ;

ð10Þ

where X i ¼ R�
1
2UAðiÞcðiÞ: The matrix R�

1
2U can be precom-

puted for faster operation. The formulation (10) is equiva-
lent to an SVM (Vapnik, 2000) with the Kernel, KðX i;X jÞ
¼ X T

i X j.
In the case of handwritten data the PDA gives two time-

series, one for each coordinate or in case of speech data
there can be multiple time varying features. The theory
developed so far can handle only univariate time-series.
In the following we generalize the approach to handle mul-
tivariate time-series.

In general consider a vector of functions with L dimen-
sions, F ¼ ½F1; . . . ;FL�T. The inner product of two such
functions F and G, each with L dimension hF ;Gi ¼

PL
l¼1

hF l;Gli: Using this definition one can compute the kernel
as
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Kði; jÞ ¼
XL

l¼1

X T
il
X jl
¼ X T

i X j; ð11Þ

where X i ¼ ½X T
i1
; . . . ;X T

il
�T, which is equivalent to concate-

nating the univariate vectors X il .
As in standard SVM procedure one can derive the dual

of the formulation in Eq. (10) and relax the formulation to
handle non-separable data by using any positive definite
kernel and restricting the ais to be less than a user defined
constant C > 0 (Vapnik, 2000)

min
a

1

2

X
i

X
j

aiajyiyjKðX i;X jÞ �
X

i

ai

subject to
X

i

yiai ¼ 0

0 6 ai 6 C; 1 6 i 6 N :

ð12Þ

We have experimented with the Radial Basis kernel,
KðX i;X jÞ ¼ e�ckX i�X jk2

.
Finally we are ready to state our classification

algorithm.

Algorithm 1. Algorithm for classification of time-series.

Given: Training Data T. Parameters: Sampling
Instants m, Kernel Order q.
Re-scale time axis to [0,1] for each time-series Fi.
Find the coefficients c(i) by solving (4).
Find A(i) for the ith time-series at time instants spec-
ified by m (see (7)).
Calculate Xi using X i ¼ R�

1
2UAðiÞcðiÞ.

Use the appropriate kernel (11) or (2.3) and solve
using SVM.
2.4. Fast inversion scheme for piecewise linear basis functions

The calculation of vectors Xi, depends on time-series
interpolation, which is a costly task. However, for piece-
wise linear basis functions, q = 1 (see Eq. (1)), it is possible
to do the interpolation cheaply. Note that the basis func-
tions can be written as

RtðsÞ ¼
1þ s 0 6 s 6 t

1þ t t 6 s 6 1:

�

The structure of the basis functions can be exploited to ob-
tain a recursive formula for ci which leads to a fast algo-
rithm for interpolation.

Consider a function f whose values are available at var-

ious time instants, si, 1 6 i 6 n. We are interested in finding

ci such that f ðsÞ ¼
P

iciRsiðsÞ. See that si < sj whenever i < j

which gives f ðsjÞ ¼
P

i<jcið1þ siÞ þ ð1þ sjÞð
P

iPjciÞ. Also

note that, f ðsj�1Þ ¼
P

i<j�1cið1þ siÞ þ ð1þ sj�1Þð
P

iPj�1

ciÞ. Subtracting one from the other we have,
f ðsjÞ � f ðsj�1Þ ¼ ðsj � sj�1Þ

P
iPjci. The coefficients c can

be calculated as follows:
cj ¼
f ðsjÞ � f ðsj�1Þ

sj � sj�1

�
X
i>j

ci: ð13Þ

The boundary conditions being, cn ¼ f ðsnÞ�f ðsn�1Þ
sn�sn�1

and
c1 ¼ f ðs1Þ

1þs1
�
P

i>1ci. This sets up a recursive formula for cal-
culating ci, see that it proceeds backwards starting from n.
The worst case time complexity of the above algorithm is
O(n) which is again considerably cheaper than the matrix
inversion step.
2.5. A comparison with resampled approach

In (Sivaramakrishnan and Bhattacharyya, 2004) a two
step scheme for interpolation and resampling was used
with SVM classification. The classification kernel in such
a case is a simple L2 product of the resampled vector.
Kij = (A(i)c(i))T(A(j)c(j)), where c is the coefficients of basis
functions (4), and A is as defined in (7). In the proposed
formulation, the kernel obtained after optimization is given
by, Kij ¼ X T

i X j ¼ ðAðiÞcðiÞÞT B�1ðAðjÞcðjÞÞ. Thus, if the matrix
B is identity, then the two formulations are identical.

In this section, we have proposed a formulation for clas-
sifying time-series and discussed several ways in which the
formulation can be practically applied to real world prob-
lems. One of the strengths of our formulation is that we can
employ polynomials of any positive order. It must be noted
that as the order increases, the piecewise polynomials
attain increasingly complicated shapes. Trade off must be
decided between the complexity of the piecewise polyno-
mial and the extent of fitting that is done.
3. Experiments

In this section, the efficacy of the large margin classifier
proposed in the previous section is tested on three bench-
mark datasets from Unipen (Guyon et al., 1994) and the
results are compared with other state of the art algorithms
such as CSDTW (Bahlmann and Burkhardt, 2003) and
Online SNT algorithm (Ratzlaff, 2003).

Experiments were conducted on the standard train_r01_
v07 package from unipen, more specifically experiments
were conducted on three datasets namely, 1a (digits), 1b
(uppercase alphabets) and 1c (lowercase alphabets).
Results from other authors (Ratzlaff, 2003) are available
on these datasets for comparison.

The data needs to be preprocessed before applying the
proposed formulation (12). The first step involves convert-
ing the unipen form data into a time-series containing a ser-
ies of [x,y, t] for each character. This is achieved by
extracting strokes from the data, and obtaining the time-
series for each of the strokes. Time-series for a character
is obtained by concatenating the time-series obtained by
individual strokes in the character. Each of the series is fur-
ther normalized in x, y, such that the character lies in a
fixed size box of 50 � 50 points. The scaling is done such
that the aspect ratio of the character was maintained.



Table 1
QP formulation with a Gaussian kernel with first and second order
interpolation compared with other state of the art methods

Data Approach Error
(%)

q = 1 q = 2

Unipen dataset
(R01/V07) 1a

QP Gaussian 2.87 2.87 3.9

Digits (0–9) CSDTW (Bahlmann and
Burkhardt, 2003)

2.9

DAG–SVM–GDTW
(Bahlmann et al., 2002)

3.8

HMM (Hu et al., 2000) 3.2
OnSNT (Ratzlaff, 2003) 1.1

Unipen dataset
(R01/V07) 1b

QP Gaussian 8.52 8.52 11.46

Upper case
alphabets (A–Z)

CSDTW (Bahlmann and
Burkhardt, 2003)

7.2

DAG–SVM–GDTW
(Bahlmann et al., 2002)

7.6

HMM (Hu et al., 2000) 6.4
OnSNT (Ratzlaff, 2003) 4.5

Unipen dataset
(R01/V07) 1c

QP Gaussian 10.78 10.78 13.76

Lower case
alphabets (a–z)

CSDTW (Bahlmann and
Burkhardt, 2003)

9.3

DAG–SVM–GDTW
(Bahlmann et al., 2002)

12.1

HMM (Hu et al., 2000) 14.1
OnSNT (Ratzlaff, 2003) 7.9
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The character is also translated on both x and y axes such
that the minimum value for these axes is zero. The code for
preprocessing, training and testing are available for down-
load from our site (Code for QP formulation).

The preprocessed data was randomly divided into three
sets, with 50% of the data used for training, 16% for vali-
dation and the remaining 33% of the data used as the
unseen test data set. Classifiers were tuned on the valida-
tion set to obtain the best values for the classifier parame-
ters c of the Gaussian kernel, m the number of basis vectors
in the discriminating function and c the cost parameter of
SVM. The classifiers so tuned was used for classification
of the unseen test data. The results of the experiments
along with results from previous work are provided in
Table 1.

In the previous section it was shown that (9) can be
solved by standard SVM solvers. The experiments were
carried out by adding these custom kernels to the libsvm
package (Chang and Lin, 2001). The kernel in Eq. (11)
takes different forms with different order of interpolation.
We have limited our experiments up to second order inter-
polants (q = 1, q = 2 in Eq. (1)). The experiments can be
easily extended to higher order interpolants.

The performance of our QP formulation is competitive
to state of the art methods in all the three benchmark data-
sets. The performance of the linear interpolation is slightly
better than that of the quadratic interpolation scheme. This
may be specific to the online handwriting domain.
4. Conclusion

In this paper a large margin based classification
scheme is described for classifying multivariate time-ser-
ies. The scheme proceeds by representing each time-ser-
ies as a sum of piecewise polynomial basis functions
through a kernel interpolation technique. Using the ker-
nel a large margin formulation is developed which is
capable of classifying such interpolated functions. The
formulation is shown to be competitive in writer inde-
pendent handwriting recognition on four real world
datasets. Initial experiments have shown that the scheme
is profitable in any other domain like speaker identifica-
tion. A set of kernels were also extracted for classifica-
tion with standard tools, the kernels can also be used in
other machine learning tasks. We also give a fast algo-
rithm for computing the interpolation when piecewise
linear basis functions are used. As a by-product the ker-
nel interpolation described can be useful in many other
machine learning tasks.
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