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Abstract

This paper addresses the issue of feature selection farlelassifiers given the moments of the
class conditional densities. The problem is posed as findingnimal set of features such that
the resulting classifier has a low misclassification errosing a bound on the misclassification
error involving the mean and covariance of class conditideasities and minimizing ab; horm

as an approximate criterion for feature selection, a secodédr programming formulation is de-

rived. To handle errors in estimation of mean and covarigre&actable robust formulation is also
discussed. In a slightly different setting the Fisher disorant is derived. Feature selection for
Fisher discriminant is also discussed. Experimental tesul synthetic data sets and on real life
microarray data show that the proposed formulations argetitive with the state of the art linear

programming formulation.

1. Introduction

The choice of useful features for discriminating between two classesiisortant problem and
has many applications. This paper addresses the issue of constructinglassifiers using a small
number of features when data is summarized by its moments.

A linear two-class classifier is a function defined as

f(x) =sgnw'x—b). (1)

The classifier outputs 1 if the observatipre R" falls in the halfspacgx|w'x > b}, otherwise it
outputs—1. During training, the parametersy, b}, of the discriminating hyperplang’x = b are
computed from a specified data §et= {(x;,yi)|xi € R"yi = {1,-1},i=1,...,m}.

Finding useful features for linear classifiers is equivalent to seagdbinaw, such that most
elements ofv are zero. This can be understood as wherittheomponent ofv is zero, then by (1)
theith component of the observation vectois irrelevant in deciding the class gf Using thely
norm ofw, defined as

IWllo = IS S= {iwi # 0},
the problem of feature selection can be posed as a combinatorial optimizaildam:
minimize ||w||o,
w,b (2)

subjéct to yi(w'xi—b)>1, vi<i<m

The constraints ensure that the classifier correctly assigns labels tdrafigrdata points. Due to
the unwieldy objective the formulation is intractable for lang@\maldi and Kann, 1998). A heuris-
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tic tractable approximation to the proposed objective is to minimizé therm ofw. For a discus-
sion of this issue see Chen et al. (1999), and for other approximatidgsiorm see Weston et al.
(2003). In the sequel, we will enforce the feature selection criterion bjnmeing thelL1 norm.

Let X; and X, denoten dimensional random vectors belonging to class 1 and class 2 respec-
tively. Without loss of generality assume that class 1 is identified with the {abel, while class
2 is identified with labely = —1. Let the mean and covariance Xf be; € R" andX; € R™"
respectively. Similarly foX, the mean and covariance pge R" andZ, € R"*" respectively. Note
that>; andX, are positive semidefinite symmetric matrices. In this paper we wish to address the
problem of feature selection for linear classifiers givern,, 21 and,.

Lanckriet et al. (2002a,b) addressed the problem of classificati@mgiv |2, 21 andZ, in a
minimax setting. In their approach, a Chebychev inequality is used to bouradrtireof misclas-
sification. We wish to use the same inequality along withlth@orm minimization criterion for
feature selection. This leads to a Second Order Cone Programming pr@@o#). SOCPs are a
special class of nonlinear convex optimization problems, which can beefficsolved by interior
point codes (Lobo et al., 1998). We also investigate a tractable robustifiation, which takes into
account errors in estimating the moments.

The paper is organized as follows. In Section 2 the linear programmingagipis discussed.
The main contributions are in Section 3 and Section 4. The Chebychev lamahthe feature
selection criterion leads to a SOCP. The Fisher discriminant is also redi@sueg the Chebychev
bound. We also discuss feature selection for the Fisher discriminant. ustrédrmulation is dis-
cussed in Section |4. Experimental results for these formulations are shoBection| 5. The
concluding section summarizes the main contributions and future directions.

2. Linear Programming Formulation for Feature Selection

The problem of finding gw, b}, so that the hyperplangx = b discriminates well between two
classes and also selects a small number of features, can be posed bNothimd optimization
problem.
minimize ||w||1,
wb €)
subjectto y;j (w'xi—b) >1, V1<i<m
At optimality it is hoped that most of the elements of the weight veetare zero. The above
formulation can be posed as a Linear Programming (LP) problem by infragitweo vectors in the
following way.
W=u—V; |[wt=(u+Vv)'e u>0 v>0. (4)

This makes the nonlinear objective linear (see Fletcher, 1989) and the @itoniproblem can be
posed as the following LP.
minimize (u+v)'e,
u,v,b
subjectto yi (u—v)'xi—b) >1 V1<i<m, (5)
u>0,v>0.

The computational advantages of solving LPs make the above formulatie@melyr attractive.
In the next section we discuss the problem of feature selection when dstanimarized by the
moments.
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3. Feature Selection Using M oments

Let the data for each class be specified by the first two moments, the meaoarénce. The
problem of feature selection, given the moments, is approached in a eawstsetting by using
a multivariate generalization of Chebychev-Cantelli inequality. The inequaliyged to derive a
SOCP, which yields a classifier using a very small number of features.

The following multivariate generalization of Chebychev-Cantelli inequality kéllused in the
sequel to derive a lower bound on the probability of a random vectorgakilues in a given half
space.

Theorem 1 LetX be a n dimensional random vector. The mean and covariankebefic R" and
T eR™N LetH(w,b) = {zlw'z < b,w,zc R",b € R} be a given half space, with # 0. Then

S
P(Xéﬂ)Zm (6)

where s= (b—w'p),, (X); = maxx,0).

For proof see Appendix A.

The theorem says that the probability of the event that an observatiwn th@m X takes values
in the halfspace/, can be bounded usingandX. Let Xy ~ (,Z1) denote a class of distributions
that have meap, and covariancg;, but are otherwise arbitrary; likewise for class,~ (2, Z2).
The discriminating hyperplane tries to place class 1 in the half sp@ao®, b) = {x|w"x > b} and
class 2 in the other half spadé(w,b) = {xjw'x < b}. To ensure this, one has to figd/, b} such
thatP(X1 € #4) andP(X, € #H,) are both high. Lanckriet et al. (2002a,b) considers this problem
and solves it in a minimax setting.

In this paper we consider the problem of feature selection. As remagfetehfeature selection
can be enforced by minimizing thg norm ofw. To this end, consider the following problem

min w
nir Wi,

st Prob(X1 € #H1) > n,
Prob(X; € #5) > n,
X1~ (H1,21), X2~ (2, 22). (7)

In most cases the objective yields a spanse The two constraints state that the probability of
belonging to the proper half space should be atleast more than a usexddedirameten. The
parameten takes values irf0,1). Higher the value of}, more stringent is the requirement that all
points belong to the correct half space.

The problem[(7) has two constraints, one for each class, which statebéharobability of a
random vector taking values in a given half space is lower-bounded Bjese constraints can be
posed as nonlinear constraints by applying theorem 1 (see Lanckaiet2002b). The constraint
for class 1 can be handled by setting

(W'l —b)2 >,

Prob(X1 € #1) >
rob(Xa € 74) 2 (W —b)Z +wTsw —
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which yield two constraints

Wiy —b> /:Li—n\/szlw; w'p—b>0.

Similarly applying theorem!1 to the other constraint, two more constraints are ethtdiote that
the constraints are positively homogenous, that i, B satisfies the constraints thema, cb also
satisfies the constraints wherdés any positive number. To deal with this extra degree of freedom
one can require that the classifier should separatnd|, even ifn = 0. One way to impose this
requirement is via the constraint

wim—b>1 b—wp>1.
As both the matrice&; andX, are positive semi-definite, there exist matri€asandC, such that
Y1 =C1C{, I, =C,C,.
The problem((I7) can now be stated as a deterministic optimization problem

min w
i Jwllz,

st wi—b> /7% [IC{ w2,
b—wpp >\ /1 (ICo w2,

wig—b>1,
b—wlp > 1.

The nonlinear objective can be tackled, as in (4), by introducing two x&atandv, which leads
to the formulation

min (u+v)Te,
u,v,b

st (U=v)T—b> /F)CT (u=V)|

b—(u=v)T2 > /£ 1ICF U=Vl
U—v)Tu —b>1,
b—(U—Vv)Tp>1,
u>0,v>0. (8)

This problem is convex, and is an instance of SOCP. The nonlinear amtstare called Second
Order Cone(SOC) constraints. A SOC constraint on the variaBI&" is of the form

c'x+d> [|Ax+Db]2,

whereb € R™ c e R", A € R™" are given. Minimizing a linear objective over SOC constraints is
known as SOCP problems. Recent advances in interior point methodsrfegxnonlinear opti-
mization (Nesterov and Nemirovskii, 1993) have made such problems feas#héespecial case of
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convex nonlinear optimization SOCPs have gained much attention in recent lioresdiscussion
of efficient algorithms and applications of SOCP see Lobo et al. (1998).

On the training data set, the error rate of the classifier is upper bounded- by This upper
bound also holds for the generalization error (Lanckriet et al., 200#@ test data comes from a
distribution having the same mean and covariance as the training datpisAscreased, the data
is forced to lie on the correct side of the hyperplane with more probabilitis §ould result in a
smaller training error. Again with increasimg sparseness would decrease, as more stress is given
to accuracy. Thus the parametetrades off accuracy with sparseness.

3.1 Feature Selection for Fisher Discriminants

In this section we derive the Fisher discriminant using the Chebychewdenohdiscuss a formula-
tion for feature selection. For a linearly separable dataset, one cajwfibd so that all observations
belonging to class 1(class 2) obey x; > b (w'x, < b), which impliesw ™ X; > b(w'X; < b). If

X = X1 — X2 defines the difference between the class conditional random vectersXthes in

the halfspace#f (w) = {z|w'z > 0}. One can derive the Fisher discriminant by considering the
following formulation

max n
w,
st ProbXeH)>n, X~ (KI). 9)

As X; andX, are independent the meanXfis u= i, — l» and covarianc& = 21 + 2,. Using the
Chebychev bound (6) the constraint can be lower bounded by

(w'p)?

> .
Prob(X € H) > Wz wTsw

w'pu>o0,

and hence it follows that (9) is equivalent to solving

(W' (s — o)}
T o0

which is same as the Fisher discriminant. The above formulation shows that Eiskriminant
can be understood as computing a discriminant hyperplane whose lgetiEna error is less than
1—n*, where

e dws) W (- )}
L © l+d(w)’ (W)_mv?XWT(ZHZz)W'

The bound holds provided the data distribution has the neccessarnnfirseaond moments. One
can incorporate feature selection by minimizing thenorm ofw for a fixed value ofj as follows

min w
i wilx

st Prob(X e H)>n, X~ (l—H2,Z1+22)
(11)
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and arguing as in (8) the following SOCP

min [[wl[1,
w,b
st wl(p—pe) > \/13—”\/WT(21+22)W,
W (b — ) > 1, (12)

is obtained. The parametgrensures that the resulting classifier has a misclassification error less
than 1—n, while feature selection is ensured by the objective.

3.2 Estimation of Mean and Covariance for Each Class

Let Ty = [X11,...,X1m,] be the data matrix for one class, say with lapet 1. Similarly T, =

[X21, - - -, Xom,] b€ the data matrix for the other class having the Igkel-1. Both the matrices have

the same number of rows, the number of features. The columns correspond to data pointiata
points for the first class amik, data points for the other class. For microarray data sets the number
of featuresn, is in thousands, while the number of examplasor my, is less than hundred.

In the present formulation, empirical estimates of the mean and covariasoset

1 1
H1=X1 m 1© Mo = X2 2

51=31=CiC], C1= (Ty —we’);

I

_ 1
Zz = Zz = CzCT, C2 = — -|-2—|.J.zeT .
2 Co= )
Note that the covariances are huge matrices (ofrsizm). Instead of storing such huge matrices one
can store the much smaller matri€égsandC, of sizen x my andn x np respectively. The resulting
classifier is heavily dependent on the estimates of the mean and covaliatite next section, we
will discuss classifiers which are robust to errors in the estimation of meshoaariance.

4. A Robust Formulation

In practical cases it might happen that the error rate of the classifieslialbvove 1-n. As pointed
out by Lanckriet et al) (2002b), this problem often occurs when theitig data set has very few
data-points compared to the number of features, for example, microatagets. In such cases the
estimates of mean and covariance are not very accurate. It will bel usgbecially for microarray
data sets, to explore formulations which can yield classifiers robust toestiomation errors. In the
following, we discuss one such formulation.

We assume that the means and covariances take values in a specifiedagicutep(jy, 21) €
U1 whereU; C R" x § and S is the set of all positive semidefinitex n matrices. Similarly
another set), is defined which characterizes the valueg|ef 2,). Consider the robust version of
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formulation (7),
min w
wi,b H ||17

st Prob(X; € #) > n,
Prob(X, € H3) > n,
X1~ (M, 21) X2 ~ (K2, Z2),
(Ma,Z1) € Ug, (M2, Z2) € Ua. (13)

It ensures that the misclassification rate of the classifier is always les& thgnfor any arbitrary
distribution whose means and covariances take values in some specified sets

The tractability of this formulation depends on the definition of the SetandU,. We assume
that the sets describing the values of means and covariances are iheleipeinone another, more
preciselyUm,Unp,Uy1 andU,, describe the uncertainty in the valuesafip, 21 andZ, respec-
tively. As before, applying the Chebychev bound and with a reformulaifo8) the following
robust version

MiNw b, t, w2
st. W' —b >t Vi € Upy,
b—w'pp > to Vi € Upp,

\ WTZJ_W <4/ ]-H—ntl V&1 €Uy,
\/ WTZZW <4/ 1H—nt2 V22 € Uy,

t1>1 tp>1 (14)

is obtained. The reformulation is obtained by modifying the SOC constrairggimonding to class
1 by introducing a new variablg as follows,

Wi —b>t >, /lﬂ—nucfwyz, t1>1.

Likewise another variable is introduced to deal with the other SOC conshralimging to class 2.
To restrict the uncertainty to a low dimension space the following assumption is.mad
Assumption 1 The random vectoK; takes values in the linear span of columnsTgfwhile the
random vectoK, takes values in the linear span of column3ofMore precisely tha dimensional
random vectorsXy and X, are linearly related to ay dimensional random vectat; and amp
dimensional random vectds respectively as follows

X1=TiZ1, Xo=TZ,. (15)

For microarray data sets; andm, are much smaller than. Thus, the assumption restricts the
random variablexX; and X, to much smaller dimension spaces. Igt, >,; be the mean and
covariance of the random variably, and,, 2, be the mean and covariance of the random
variableZ,. It follows that

W =Tily, o =Tolp; Z1=TiZaT, Zo=ToZpT, .
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Clearly then the sample estima®sandz, are related t&; andX, by

_ - = 1 .
X =Tizi =TT, Zi= ﬁ(l —ee')vie {1,2}. (16)

Assuming an ellipsoidal uncertainty on the estimatgyadind in light of (16), we define
Umn = {talth = Tabkr, (Ba—21) T Ta(pn —22) < 3%}
For the uncertainty sét,; and a giverw the constraint
W —b >t Vi € Uy,

is equivalent to

min WTH]_*bztl. a7
p1E€UmL

Noting that minimizing a linear function over an ellipsoid is a convex optimizationlprothaving
the following closed form solution (see Appendix B),

. 1
min W'y = —w' Tye— 3| Tyw|, (18)
M1 €Um my

the constraint (17) can be restated as
1T
—W Tle—b2t1+6||T1W||. (19)
m
Similarly for gz the uncertainty set is defined as

Une = {lelte = oz, (M2 —22) ' T To(ie — 22) < &%},

and analogous to (19) the following constraint
1T
b— el Toe > tr + 8| Taw||, (20)

is obtained. Following Lanckriet et al. (2002b), the sets characterizengdtiariance matrices are
defined using Frobenius norm

Ui = {Zi|Zi =TZ%T' 22— Zillr <p} i={1,2}.

Imposing robustness to estimation errors in the covariance n&tisxequivalent to the constraint

mavg,cu, VT Ew < [ = (1.2) (21)

Using the result (see Appendix B)

mave, u, VW ZW = /W T (S + o) T W,

1424



SOCPFORMULATION FOR FEATURE SELECTION

[n[0 [0.2]0.4]06]0.8]0.9]0.95 0.99
| fs|10] 10|10 | 10[ 10 | 10| 9,10] 7,8,9,10

Table 1. The set of selected features, fs, for various valugsasf synthetic data set. See text for
more details.

the formulation[(14) turns out to be

n“”MQHJz ”mwla
St. mileTle— b >ty + || Taw||2,

b— %WTTze >+ 6||T2WH2,

ICLT Wil2 < /30,
IC5, T wll2 < /30,

t1>1t>1, (22)

an SOCP. The matri&,; is obtained by using the cholesky decomposition of the regularized matrix
S+ pl, similarly for Co,.

As a consequence of Assumption 1, one needs to factorize matrices afsizen, andm, x
mp instead of a much largar x n matrix for the Frobenius norm uncertainty model. Thus, the
assumption has computational benefits but it is quite restrictive. Howevalnsience of any prior
knowledge, this maybe a good alternative to explore. In the next sect®mxperiment on the
formulations|(8) and (22) on both synthetic and real world microarray sta

5. Experiments

The feature selection abilities of the proposed formulations were testedtiosyuthetic and real
world data sets. As a benchmark, the performance of the LP formulatiore@wathe data sets are
also reported.

Consider a synthetic data set generated as follows. The clasyjadedach observation was
randomly chosen to be 1 erl with probability 05. The first ten features of the observatian,
are drawn agyA\((—i,1), whereA( (i, 62) is a gaussian centered aroup@nd variances®. Nine
hundred ninety other features were drawra, 1). Fifty such observations were generated. The
feature selection problem is to detect the first ten features, since théyeangost discriminatory
from the given pool of 1000 features, when the sample size is fifty.

The features were selected by the following procedure Tselerom the data set fifty partitions
was generated by holding out one example as test data and others ag tlatainFor each partiton,
formulation (8) was solved on the training set for a fixed valug oking the open source package
SEDUMI (Sturm, 1999) to obtain a set of features and the resulting ckrssifis used to predict
the label of test data. The union of fifty sets of features is reported ile Tafor various values of
n. The average number of errors on all the fifty test sets, the Leaveut(i€ds) error, was found
to be 0. For low values aff sayn = 0.2, only one feature, feature number 10, was selected. This
is not surprising because among the ten features, feature number iiehasst discriminatory
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power. As the value of} is increased the formulation reports more discriminatory features. For
n = 0.95, the formulation reportedl7,8,9,10}, a set of four features. This shows that inspite
of sample size being low compared to the number of features this formulation isoatticover
the most discriminatory features. The corresponding list of featurestselby the LP(5) is fs-
{2,3,4,5,6,7,8,9,10}. Both the formulations pick up the most discriminatory features but the LP
formulation picks up more features. The experiment was repeated foah@80mly generated data
sets, and gave similar results. This demonstrates that the formulation (8)upickscriminatory
features and is comparable to the LP formulation.

We also experimented with the robust formulation (14) for different vadfidsandp. In Figure
1 number of features are plotted for various value®.ofAs & increases, the number of features
selected by the formulation (22) increases, the valyewés zero for the reported experiment. The
robust formulation tries to maintain the classification accuracy even wherstimeages of mean
and covariance are not correct. To ensure this, more featuresedechtd maintain the accuracy.
Similar results were also obtained by varying

500 T T T T T

450

400+

350

w

o

o
T

number of features
N N
(=] a
o o
T T

[N

a

o
T

100

50

o

0.1 0.2 0.3 0.4 0.5

Figure 1: Plots of number of selected features verpfa various values od.

The formulation|(8) was tested on six data sets (B, C, D, E, F, G) definBth&tgacharyya et al.
(2003). These binary classification problems are related to Small Rourd@ili Tumors (SR-
BCT). Each data set have various number of data points but have thensanter of features,
n = 2308.

From the given data set, a partition was generated by holding out a dataapdést set while
the training set consisted of all the other data points. For each fixed valyetbe formulation
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dataset B | C | D |E| F | G
SOCP 38|46 | 25| 1|23|21
LP 21, 8| 8|2 |12 13

Table 2: Number of selected features for which the LOO error was minimumrdvtitled SOCP
tabulates the minimum number of features reported by (8) for which the L@ was
zero. The row titled LP tabulates the number of features selected by theinBl&dion.
Total number of features is= 2308

was solved for all possible partitions. For each partition the resulting ckxsgiéis tested on the
held out data point. Average number of errors over all the partitions epsrted as the LOO
(leave one out) error. The results were compared against the linegnaprming formulation(5).
Tablel 2 compares the number of features required to attain a zero LOChgrformulations|(8)
and (5). In both cases very small number of features, less than 2% tdttdierumber of 2308
features, were selected. However the LP formulations almost alwagd fosmaller set of features.
Figures 2, 3, 4 show plots for the number of features selected by (8afmus values of]. Asn
increases, the number of features increase. For comparison, the moinfdsstures selected by the
LP formulation is also plotted on the same graph. Figures/5, 6, 7 show pldtsf@OO error the
SOCP formulation. Ag) increases the LOO error decreases. This conforms to the view tihat as
increases, the classifier is forced to be accurate which leads to inanghsenumber of features.

eeeeeeeeeeee
25

- socp
= LP

201 4 4 20

Figure 2: Plots of number of selected features versfe data sets E, F.

6. Conclusions and Future Directions

The problem of selecting discriminatory features by using the moments of the ataditional
densities was addressed in the paper. Using a Chebyshev-Cantelélibedoe problem was posed
as a SOCP. The above approach was also used to derive a formulatbirfg feature selection
for Fisher discriminants. A robust formulation was discussed which yidhissifiers robust to
estimation errors in the mean and covariance.
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25

- socP
= LP

20F 4 a0F

Figure 3: Plots of number of selected features versfer data sets D, C.

ntvsrc tvsc

- socP - socp
= LP = LP

25

201

Figure 4: Plots of number of selected features versfer data sets G, B.

On a toy data set, the formulation discovered the discriminatory featuredoirhalation has
a parameten, which can trade off accuracy with number of features. For small valtigs low
number of discriminatory features are reported, whilg &sincreased the formulation reports more
number of features. As borne out by experiments on the microarray etstettse accuracy of the
classifier increases agsis increased.

The approach in this paper can also be extended to design nonlinedfiarsassing very
few support vectors. Let the discriminating surface{lgS; aiK(x;,x) = b} which divides the n-
dimensional Euclidean space into two disjoint sub$ets; oK (x, x;) < b} and{x| 3; a;K(x,xi) >
b}, where the kerneK, is a functionK : R" x R" — R obeying the Mercer conditions (Mercer,
1909).

One can restate the nonlinear discriminating surface by a hyperplamdimensions,

H = {x|a"k(x) —b=0}

wherem is the number of examples akgx) is a vector inm dimensions whoséh component
is k(x,xi). The set of support vectors is defined 8y= {i|a; # 0}. We wish to find a decision
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etvsit

Figure 6: Plots of LOO error versusfor data sets D, C.

surface utilizing very small number of these vectors, or in other wordgydhkis to minimize the

cardinality of the se§, which can be approximated by the norm ofa.

Letk; =K(X1) be a random vector corresponding to class 1 while k(X2) be another random
vector belgnging to class 2. Let the mean&péndk, bek; andk; respectively and the covariance
beX; andZ, respectively. The problem can be approached as in (7) and on apihgiChebychev

bound ((6) the following formulation

min a
mir lalls,

TL ST
st a'ki—b>, /ﬂ—n\/cﬂzla,
b—aTk, > ,/ﬂ—n\/oﬁi}a,

CXTR]_— b>1,
b—(XTr(z >1,

is obtained. We believe this can have non-trivial advantages for datagpnitlems.
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Figure 7: Plots of LOO error versusfor data sets G, B.
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Appendix A. The Chebychev-Cantélli inequality

In this appendix we prove a multivariate generalization of the one sidedyChebinequality. This
inequality will be used to derive a lower bound on the probability of a multitarandom variable
taking values in a given half space. Marshall and Olkin (1960)(alsdPsgescu and Bertsimas,
2001) proved a more general case.

We first state and prove the Chebychev inequality for a univariate randwiable, (Lugosi,
2003). Itwould be useful to recall the Cauchy-Schwartz inequalityXLandY be random variables
with finite variancesE(X — E(X))? < o andE(Y —E(Y))?2 < o, then

E[(X=EX))(Y =E(Y))]| < \/E(X —E(X))?E(Y —E(Y))

Chebychev-Cantélli inequality Let s> 0, Then

S
P(X—E(X) <s) > FTEXEXP

Proof LetY = X —E(X). Note thatE(Y) = 0. For anys,
s=E(s—Y) <E((s—Y)lyg(Y)).
For anys > 0, using the Cauchy-Schwartz inequality

82 < E(S_Y)ZE(I{ZY<S} (Y))’
= E(s—-Y)?P(Y<59),
(E(Y?) +S)P(Y <s). (24)
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On rearranging terms one obtains
PY<s)>—r——
¥ <9z gyp72

and the result follows. [ |

The above inequality can be used to derive a lower bound on the probalbiitsandom vector
taking values in a given half space.

Theorem 1 Let X be a n dimensional random vector. The mean and covarianxebef pc R"
ands € R™". Let #H(w,b) = {zlw'z < b,w,z € R",b € R} be a given half space, witl # 0.
Then

P(X € #) > _ s
T E4wlEw’
where s= (b—w '), (X); = maxXx,0).
Proof There are two cases:<w'pandb >w'p.
For the cas® < w' 1, s= 0, and plugging its value in the Chebychev-Cantelli inequality, yields

P(X € H) >0, which is trivially true. For the other cabe> w', by definitions=b—w' . Define
Y =w'x, sothatE(Y)=w"py E(Y -E(Y))?=w'Zw. We have

P(X € H) =P(Y <b) = P(Y —E(Y) < 9).

Application of Chebyshev-Cantelli inequality to the above relationship givedesired result. This
completes the proof. [ |

Note that the proof does not requiréo be invertible. For a more general proof pertaining to convex
sets and tightness of the bound see (Marshall and Olkin, 1960, Popres&ertsimas, 2001).

Appendix B. Uncertainty in Covariance Matrices
Consider the following problem
maxs vV w'Zw,

T=T,T',
sz*izHF S p. (25)

Eliminating the equality constraint the objective can be stated as

VWIIw = /WTTZ, T Tw.

Introduce a new variabl&s € Sf, so thats, = 3, + A%, and the optimization problem (25) can be
stated as

maXas \/WTT (Z,+ 05T Tw,
s.t. ”AZHF <p.
(26)

The optimal is achieved &2 = pl, see Appendix C in Lanckriet et al. (2002b) for a proof.
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B.1 Notation

The vector{1,1,...,1] " will denoted bye, and|0,...,0] by 0, the dimension will be clear from the
context. Ifw = [wy,...,wy] ", we writew > 0 to mearw; > 0,Vi € {1,...,n}. The euclidean norm

of a vectorx = [xg,...,%y] ", will be denoted byx||2 = 1/ S, X%, while the 1-norm ok will be
denoted byl|x|1 = 3.4 [xi|. The indicator function defined on the getdenoted bya(x), is

nof 1 xeA
A=Y 0 aherwise

The cardinality of sef is given by|A|. The Frobenius norm of e x n matrix A, is denoted by
1Al = /51 S i af
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