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Abstract
This paper addresses the issue of feature selection for linear classifiers given the moments of the
class conditional densities. The problem is posed as findinga minimal set of features such that
the resulting classifier has a low misclassification error. Using a bound on the misclassification
error involving the mean and covariance of class conditional densities and minimizing anL1 norm
as an approximate criterion for feature selection, a secondorder programming formulation is de-
rived. To handle errors in estimation of mean and covariances, a tractable robust formulation is also
discussed. In a slightly different setting the Fisher discriminant is derived. Feature selection for
Fisher discriminant is also discussed. Experimental results on synthetic data sets and on real life
microarray data show that the proposed formulations are competitive with the state of the art linear
programming formulation.

1. Introduction

The choice of useful features for discriminating between two classes is animportant problem and
has many applications. This paper addresses the issue of constructing linear classifiers using a small
number of features when data is summarized by its moments.

A linear two-class classifier is a function defined as

f (x) = sgn(w>x−b). (1)

The classifier outputs 1 if the observationx ∈ R
n falls in the halfspace{x|w>x > b}, otherwise it

outputs−1. During training, the parameters,{w,b}, of the discriminating hyperplanew>x = b are
computed from a specified data setD = {(xi ,yi)|xi ∈ R

n,yi = {1,−1}, i = 1, . . . ,m}.
Finding useful features for linear classifiers is equivalent to searching for a w, such that most

elements ofw are zero. This can be understood as when theith component ofw is zero, then by (1)
the ith component of the observation vectorx is irrelevant in deciding the class ofx. Using theL0

norm ofw, defined as
‖w‖0 = |S| S= {i|wi 6= 0},

the problem of feature selection can be posed as a combinatorial optimization problem:

minimize
w,b

‖w‖0,

subject to yi
(

w>xi −b
)

≥ 1, ∀1≤ i ≤ m.
(2)

The constraints ensure that the classifier correctly assigns labels to all training data points. Due to
the unwieldy objective the formulation is intractable for largen (Amaldi and Kann, 1998). A heuris-
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tic tractable approximation to the proposed objective is to minimize theL1 norm ofw. For a discus-
sion of this issue see Chen et al. (1999), and for other approximations toL0 norm see Weston et al.
(2003). In the sequel, we will enforce the feature selection criterion by minimizing theL1 norm.

Let X1 andX2 denoten dimensional random vectors belonging to class 1 and class 2 respec-
tively. Without loss of generality assume that class 1 is identified with the labely = 1, while class
2 is identified with labely = −1. Let the mean and covariance ofX1 be µ1 ∈ R

n andΣ1 ∈ R
n×n

respectively. Similarly forX2 the mean and covariance beµ2 ∈R
n andΣ2 ∈R

n×n respectively. Note
that Σ1 andΣ2 are positive semidefinite symmetric matrices. In this paper we wish to address the
problem of feature selection for linear classifiers givenµ1,µ2,Σ1 andΣ2.

Lanckriet et al. (2002a,b) addressed the problem of classification given µ1, µ2, Σ1 andΣ2 in a
minimax setting. In their approach, a Chebychev inequality is used to bound theerror of misclas-
sification. We wish to use the same inequality along with theL1 norm minimization criterion for
feature selection. This leads to a Second Order Cone Programming problem(SOCP). SOCPs are a
special class of nonlinear convex optimization problems, which can be efficiently solved by interior
point codes (Lobo et al., 1998). We also investigate a tractable robust formulation, which takes into
account errors in estimating the moments.

The paper is organized as follows. In Section 2 the linear programming approach is discussed.
The main contributions are in Section 3 and Section 4. The Chebychev boundand the feature
selection criterion leads to a SOCP. The Fisher discriminant is also rederived using the Chebychev
bound. We also discuss feature selection for the Fisher discriminant. A robust formulation is dis-
cussed in Section 4. Experimental results for these formulations are shownin Section 5. The
concluding section summarizes the main contributions and future directions.

2. Linear Programming Formulation for Feature Selection

The problem of finding a{w,b}, so that the hyperplanew>x = b discriminates well between two
classes and also selects a small number of features, can be posed by the following optimization
problem.

minimize
w,b

‖w‖1,

subject to yi
(

w>xi −b
)

≥ 1, ∀1≤ i ≤ m.
(3)

At optimality it is hoped that most of the elements of the weight vectorw are zero. The above
formulation can be posed as a Linear Programming (LP) problem by introducing two vectors in the
following way.

w = u−v; ‖w‖1 = (u+v)>e; u ≥ 0, v ≥ 0. (4)

This makes the nonlinear objective linear (see Fletcher, 1989) and the optimization problem can be
posed as the following LP.

minimize
u,v,b

(u+v)>e,

subject to yi
(

(u−v)>xi −b
)

≥ 1 ∀1≤ i ≤ m,

u ≥ 0, v ≥ 0.

(5)

The computational advantages of solving LPs make the above formulation extremely attractive.
In the next section we discuss the problem of feature selection when data issummarized by the
moments.
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3. Feature Selection Using Moments

Let the data for each class be specified by the first two moments, the mean andcovariance. The
problem of feature selection, given the moments, is approached in a worstcase setting by using
a multivariate generalization of Chebychev-Cantelli inequality. The inequalityis used to derive a
SOCP, which yields a classifier using a very small number of features.

The following multivariate generalization of Chebychev-Cantelli inequality willbe used in the
sequel to derive a lower bound on the probability of a random vector taking values in a given half
space.

Theorem 1 LetX be a n dimensional random vector. The mean and covariance ofX be µ∈R
n and

Σ ∈ R
n×n. LetH (w,b) = {z|w>z < b,w,z ∈ R

n,b∈ R} be a given half space, withw 6= 0. Then

P(X ∈ H ) ≥ s2

s2 +w>Σw
(6)

where s= (b−w>µ)+, (x)+ = max(x,0).

For proof see Appendix A.
The theorem says that the probability of the event that an observation drawn fromX takes values

in the halfspaceH , can be bounded usingµ andΣ. Let X1 ∼ (µ1,Σ1) denote a class of distributions
that have meanµ1, and covarianceΣ1, but are otherwise arbitrary; likewise for class 2,X2 ∼ (µ2,Σ2).
The discriminating hyperplane tries to place class 1 in the half spaceH1(w,b) = {x|wTx > b} and
class 2 in the other half spaceH2(w,b) = {x|wTx < b}. To ensure this, one has to find{w,b} such
thatP(X1 ∈ H1) andP(X2 ∈ H2) are both high. Lanckriet et al. (2002a,b) considers this problem
and solves it in a minimax setting.

In this paper we consider the problem of feature selection. As remarked before, feature selection
can be enforced by minimizing theL1 norm ofw. To this end, consider the following problem

min
w,b

‖w‖1,

s.t Prob(X1 ∈ H1) ≥ η,

Prob(X2 ∈ H2) ≥ η,

X1 ∼ (µ1,Σ1), X2 ∼ (µ2,Σ2). (7)

In most cases the objective yields a sparsew. The two constraints state that the probability of
belonging to the proper half space should be atleast more than a user defined parameterη. The
parameterη takes values in(0,1). Higher the value ofη, more stringent is the requirement that all
points belong to the correct half space.

The problem (7) has two constraints, one for each class, which states that the probability of a
random vector taking values in a given half space is lower-bounded byη. These constraints can be
posed as nonlinear constraints by applying theorem 1 (see Lanckriet etal., 2002b). The constraint
for class 1 can be handled by setting

Prob(X1 ∈ H1) ≥
(wTµ1−b)2

+

(wTµ1−b)2
+ +wTΣw

≥ η,
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which yield two constraints

w>µ1−b≥
√

η
1−η

√

wTΣ1w; w>µ1−b≥ 0.

Similarly applying theorem 1 to the other constraint, two more constraints are obtained. Note that
the constraints are positively homogenous, that is, ifw,b satisfies the constraints then acw,cb also
satisfies the constraints wherec is any positive number. To deal with this extra degree of freedom
one can require that the classifier should separateµ1 andµ2 even ifη = 0. One way to impose this
requirement is via the constraint

wTµ1−b≥ 1, b−wTµ2 ≥ 1.

As both the matricesΣ1 andΣ2 are positive semi-definite, there exist matricesC1 andC2 such that

Σ1 = C1C>
1 , Σ2 = C2C>

2 .

The problem (7) can now be stated as a deterministic optimization problem

min
w,b

‖w‖1,

s.t w>µ1−b≥
√

η
1−η‖C>

1 w‖2,

b−w>µ2 ≥
√

η
1−η‖C>

2 w‖2,

wTµ1−b≥ 1,

b−wTµ2 ≥ 1.

The nonlinear objective can be tackled, as in (4), by introducing two vectors u andv, which leads
to the formulation

min
u,v,b

(u+v)>e,

s.t (u−v)>µ1−b≥
√

η
1−η‖C>

1 (u−v)‖2,

b− (u−v)>µ2 ≥
√

η
1−η‖C>

2 (u−v)‖2,

(u−v)>µ1−b≥ 1,

b− (u−v)>µ2 ≥ 1,

u ≥ 0,v ≥ 0. (8)

This problem is convex, and is an instance of SOCP. The nonlinear constraints are called Second
Order Cone(SOC) constraints. A SOC constraint on the variablex ∈ R

n is of the form

c>x+d ≥ ‖Ax+b‖2,

whereb ∈ R
m,c ∈ R

n,A ∈ R
m×n are given. Minimizing a linear objective over SOC constraints is

known as SOCP problems. Recent advances in interior point methods for convex nonlinear opti-
mization (Nesterov and Nemirovskii, 1993) have made such problems feasible. As a special case of
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convex nonlinear optimization SOCPs have gained much attention in recent times.For a discussion
of efficient algorithms and applications of SOCP see Lobo et al. (1998).

On the training data set, the error rate of the classifier is upper bounded by 1−η. This upper
bound also holds for the generalization error (Lanckriet et al., 2002b)if the test data comes from a
distribution having the same mean and covariance as the training data. Asη is increased, the data
is forced to lie on the correct side of the hyperplane with more probability. This should result in a
smaller training error. Again with increasingη, sparseness would decrease, as more stress is given
to accuracy. Thus the parameterη trades off accuracy with sparseness.

3.1 Feature Selection for Fisher Discriminants

In this section we derive the Fisher discriminant using the Chebychev bound and discuss a formula-
tion for feature selection. For a linearly separable dataset, one can find{w,b} so that all observations
belonging to class 1(class 2) obeyw>x1 ≥ b (w>x2 ≤ b), which impliesw>X1 ≥ b(w>X2 ≤ b). If
X = X1−X2 defines the difference between the class conditional random vectors, then X lies in
the halfspaceH (w) = {z|w>z ≥ 0}. One can derive the Fisher discriminant by considering the
following formulation

max
w,η

η

s.t Prob(X ∈ H ) ≥ η, X ∼ (µ,Σ). (9)

As X1 andX2 are independent the mean ofX is µ= µ1−µ2 and covarianceΣ = Σ1 +Σ2. Using the
Chebychev bound (6) the constraint can be lower bounded by

Prob(X ∈ H ) ≥ (w>µ)2

(w>µ)2 +w>Σw
; w>µ≥ 0,

and hence it follows that (9) is equivalent to solving

max
w

{w>(µ1−µ2)}2

w>(Σ1 +Σ2)w
, (10)

which is same as the Fisher discriminant. The above formulation shows that Fisher discriminant
can be understood as computing a discriminant hyperplane whose generalization error is less than
1−η∗, where

η∗ =
d(w∗)

1+d(w∗)
; d(w∗) = max

w

{w>(µ1−µ2)}2

w>(Σ1 +Σ2)w
.

The bound holds provided the data distribution has the neccessary first and second moments. One
can incorporate feature selection by minimizing theL1 norm ofw for a fixed value ofη as follows

min
w,b

‖w‖1

s.t Prob(X ∈ H ) ≥ η, X ∼ (µ1−µ2,Σ1 +Σ2)

(11)
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and arguing as in (8) the following SOCP

min
w,b

‖w‖1,

s.t w>(µ1−µ2) ≥
√

1−η
η

√

w>(Σ1 +Σ2)w,

w>(µ1−µ2) ≥ 1, (12)

is obtained. The parameterη ensures that the resulting classifier has a misclassification error less
than 1−η, while feature selection is ensured by the objective.

3.2 Estimation of Mean and Covariance for Each Class

Let T1 = [x11, . . . ,x1m1] be the data matrix for one class, say with labely = 1. Similarly T2 =
[x21, . . . ,x2m2] be the data matrix for the other class having the labely=−1. Both the matrices have
the same number of rows,n, the number of features. The columns correspond to data points;m1 data
points for the first class andm2 data points for the other class. For microarray data sets the number
of features,n, is in thousands, while the number of examples,m1 or m2, is less than hundred.

In the present formulation, empirical estimates of the mean and covariance are used

µ1 = x1 =
1

m1
T1e, µ2 = x2 =

1
m2

T2e;

Σ1 = Σ1 = C1CT
1 , C1 =

1√
m1

(T1−µ1e>);

Σ2 = Σ2 = C2CT
2 , C2 =

1√
m2

(T2−µ2e>).

Note that the covariances are huge matrices (of sizen×n). Instead of storing such huge matrices one
can store the much smaller matricesC1 andC2 of sizen×m1 andn×m2 respectively. The resulting
classifier is heavily dependent on the estimates of the mean and covariance.In the next section, we
will discuss classifiers which are robust to errors in the estimation of mean and covariance.

4. A Robust Formulation

In practical cases it might happen that the error rate of the classifiers is well above 1−η. As pointed
out by Lanckriet et al. (2002b), this problem often occurs when the training data set has very few
data-points compared to the number of features, for example, microarray data sets. In such cases the
estimates of mean and covariance are not very accurate. It will be useful, especially for microarray
data sets, to explore formulations which can yield classifiers robust to suchestimation errors. In the
following, we discuss one such formulation.

We assume that the means and covariances take values in a specified set, in particular(µ1,Σ1) ∈
U1 whereU1 ⊂ R

n ×S+
n and S+

n is the set of all positive semidefiniten× n matrices. Similarly
another setU2 is defined which characterizes the values of(µ2,Σ2). Consider the robust version of
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formulation (7),

min
w,b

‖w‖1,

s.t Prob(X1 ∈ H1) ≥ η,

Prob(X2 ∈ H2) ≥ η,

X1 ∼ (µ1,Σ1) X2 ∼ (µ2,Σ2),

(µ1,Σ1) ∈U1, (µ2,Σ2) ∈U2. (13)

It ensures that the misclassification rate of the classifier is always less than1−η, for any arbitrary
distribution whose means and covariances take values in some specified sets.

The tractability of this formulation depends on the definition of the setsU1 andU2. We assume
that the sets describing the values of means and covariances are independent of one another, more
preciselyUm1,Um2,Uv1 andUv2 describe the uncertainty in the values ofµ1,µ2,Σ1 andΣ2 respec-
tively. As before, applying the Chebychev bound and with a reformulationof (8) the following
robust version

minw,b,t1,t2 ‖w‖1

s.t. w>µ1−b≥ t1 ∀µ1 ∈Um1,

b−w>µ2 ≥ t2 ∀µ2 ∈Um2,
√

w>Σ1w ≤
√

1−η
η t1 ∀Σ1 ∈Uv1,

√

w>Σ2w ≤
√

1−η
η t2 ∀Σ2 ∈Uv2,

t1 ≥ 1, t2 ≥ 1 (14)

is obtained. The reformulation is obtained by modifying the SOC constraint corresponding to class
1 by introducing a new variablet1 as follows,

w>µ1−b≥ t1 ≥
√

η
1−η

‖C>
1 w‖2, t1 ≥ 1.

Likewise another variable is introduced to deal with the other SOC constraintbelonging to class 2.
To restrict the uncertainty to a low dimension space the following assumption is made.
Assumption 1 The random vectorX1 takes values in the linear span of columns ofT1, while the
random vectorX2 takes values in the linear span of columns ofT2. More precisely then dimensional
random vectorsX1 and X2 are linearly related to am1 dimensional random vectorZ1 and am2

dimensional random vectorZ2 respectively as follows

X1 = T1Z1, X2 = T2Z2. (15)

For microarray data setsm1 andm2 are much smaller thann. Thus, the assumption restricts the
random variablesX1 and X2 to much smaller dimension spaces. Letµz1, Σz1 be the mean and
covariance of the random variableZ1, andµz2, Σz2 be the mean and covariance of the random
variableZ2. It follows that

µ1 = T1µz1, µ2 = T2µz2; Σ1 = T1Σz1T>
1 , Σ2 = T2Σz2T>

2 .

1423



BHATTACHARYYA

Clearly then the sample estimatesz1 andz2 are related tox1 andx2 by

xi = Tizi Σi = TiΣziT>
i , Σzi =

1
mi

(I− ee>)∀i ∈ {1,2}. (16)

Assuming an ellipsoidal uncertainty on the estimate ofµ1 and in light of (16), we define

Um1 = {µ1|µ1 = T1µz1, (µz1− z1)
>T>

1 T1(µz1− z1) ≤ δ2}.

For the uncertainty setUm1 and a givenw the constraint

w>µ1−b≥ t1 ∀µ1 ∈Um1,

is equivalent to
min

µ1∈Um1
w>µ1−b≥ t1. (17)

Noting that minimizing a linear function over an ellipsoid is a convex optimization problem having
the following closed form solution (see Appendix B),

min
µ1∈Um1

w>µ1 =
1

m1
w>T1e−δ‖T1w‖, (18)

the constraint (17) can be restated as

1
m1

w>T1e−b≥ t1 +δ‖T1w‖. (19)

Similarly for µ2 the uncertainty set is defined as

Um2 = {µ2|µ2 = T2µz2, (µz2− z2)
>T>

2 T2(µz2− z2) ≤ δ2},

and analogous to (19) the following constraint

b− 1
m2

w>T2e ≥ t2 +δ‖T2w‖, (20)

is obtained. Following Lanckriet et al. (2002b), the sets characterizing the covariance matrices are
defined using Frobenius norm

Uvi = {Σi |Σi = TiΣziT
>
i ‖Σzi−Σzi‖F ≤ ρ} i = {1,2}.

Imposing robustness to estimation errors in the covariance matrixΣi is equivalent to the constraint

maxΣi∈Uvi

√

w>Σiw ≤
√

1−η
η

ti , i = {1,2}. (21)

Using the result (see Appendix B)

maxΣi∈Uvi

√

w>Σiw =
√

w>Ti(Σzi +ρI)T>
i w,

1424



SOCPFORMULATION FOR FEATURE SELECTION

η 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99
fs 10 10 10 10 10 10 9, 10 7,8,9,10

Table 1: The set of selected features, fs, for various values ofη on synthetic data set. See text for
more details.

the formulation (14) turns out to be

minw,b,t1,t2 ‖w‖1,

s.t. 1
m1

w>T1e−b≥ t1 +δ‖T1w‖2,

b− 1
m2

w>T2e ≥ t2 +δ‖T2w‖2,

‖C>
1zT

>
1 w‖2 ≤

√

1−η
η t1,

‖C>
2zT

>
2 w‖2 ≤

√

1−η
η t2,

t1 ≥ 1 t2 ≥ 1, (22)

an SOCP. The matrixC1z is obtained by using the cholesky decomposition of the regularized matrix
Σz1 +ρI , similarly for C2z.

As a consequence of Assumption 1, one needs to factorize matrices of sizem1×m1, andm2×
m2 instead of a much largern× n matrix for the Frobenius norm uncertainty model. Thus, the
assumption has computational benefits but it is quite restrictive. However, inabsence of any prior
knowledge, this maybe a good alternative to explore. In the next section, we experiment on the
formulations (8) and (22) on both synthetic and real world microarray datasets.

5. Experiments

The feature selection abilities of the proposed formulations were tested on both synthetic and real
world data sets. As a benchmark, the performance of the LP formulation on the same data sets are
also reported.

Consider a synthetic data set generated as follows. The class label,y, of each observation was
randomly chosen to be 1 or−1 with probability 0.5. The first ten features of the observation,x,
are drawn asyN (−i,1), whereN (µ,σ2) is a gaussian centered aroundµ and varianceσ2. Nine
hundred ninety other features were drawn asN (0,1). Fifty such observations were generated. The
feature selection problem is to detect the first ten features, since they arethe most discriminatory
from the given pool of 1000 features, when the sample size is fifty.

The features were selected by the following procedure (see?). From the data set fifty partitions
was generated by holding out one example as test data and others as training data. For each partiton,
formulation (8) was solved on the training set for a fixed value ofη using the open source package
SEDUMI (Sturm, 1999) to obtain a set of features and the resulting classifier was used to predict
the label of test data. The union of fifty sets of features is reported in Table 1 for various values of
η. The average number of errors on all the fifty test sets, the Leave one out(LOO) error, was found
to be 0. For low values ofη sayη = 0.2, only one feature, feature number 10, was selected. This
is not surprising because among the ten features, feature number 10 hasthe most discriminatory
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power. As the value ofη is increased the formulation reports more discriminatory features. For
η = 0.95, the formulation reported{7,8,9,10}, a set of four features. This shows that inspite
of sample size being low compared to the number of features this formulation is ableto discover
the most discriminatory features. The corresponding list of features selected by the LP(5) is fs=
{2,3,4,5,6,7,8,9,10}. Both the formulations pick up the most discriminatory features but the LP
formulation picks up more features. The experiment was repeated for 100randomly generated data
sets, and gave similar results. This demonstrates that the formulation (8) picksup discriminatory
features and is comparable to the LP formulation.

We also experimented with the robust formulation (14) for different valuesof δ, andρ. In Figure
1 number of features are plotted for various values ofδ. As δ increases, the number of features
selected by the formulation (22) increases, the value ofρ was zero for the reported experiment. The
robust formulation tries to maintain the classification accuracy even when the estimates of mean
and covariance are not correct. To ensure this, more features are needed to maintain the accuracy.
Similar results were also obtained by varyingρ.
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Figure 1: Plots of number of selected features versusη for various values ofδ.

The formulation (8) was tested on six data sets (B, C, D, E, F, G) defined byBhattacharyya et al.
(2003). These binary classification problems are related to Small Round Blue Cell Tumors (SR-
BCT). Each data set have various number of data points but have the samenumber of features,
n = 2308.

From the given data set, a partition was generated by holding out a data point as test set while
the training set consisted of all the other data points. For each fixed value of η, the formulation
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data set B C D E F G
SOCP 38 46 25 1 23 21

LP 21 8 8 2 12 13

Table 2: Number of selected features for which the LOO error was minimum. The row titled SOCP
tabulates the minimum number of features reported by (8) for which the LOO error was
zero. The row titled LP tabulates the number of features selected by the LP formulation.
Total number of features isn = 2308

was solved for all possible partitions. For each partition the resulting classifier was tested on the
held out data point. Average number of errors over all the partitions was reported as the LOO
(leave one out) error. The results were compared against the linear programming formulation(5).
Table 2 compares the number of features required to attain a zero LOO error by formulations (8)
and (5). In both cases very small number of features, less than 2% of thetotal number of 2308
features, were selected. However the LP formulations almost always found a smaller set of features.
Figures 2, 3, 4 show plots for the number of features selected by (8) forvarious values ofη. As η
increases, the number of features increase. For comparison, the number of features selected by the
LP formulation is also plotted on the same graph. Figures 5, 6, 7 show plots forthe LOO error the
SOCP formulation. Asη increases the LOO error decreases. This conforms to the view that asη
increases, the classifier is forced to be accurate which leads to increasein the number of features.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

η

di
m

ecvsrc

SOCP
LP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

η

di
m

etvsec

SOCP
LP

Figure 2: Plots of number of selected features versusη for data sets E, F.

6. Conclusions and Future Directions

The problem of selecting discriminatory features by using the moments of the class conditional
densities was addressed in the paper. Using a Chebyshev-Cantelli inequality, the problem was posed
as a SOCP. The above approach was also used to derive a formulation for doing feature selection
for Fisher discriminants. A robust formulation was discussed which yields classifiers robust to
estimation errors in the mean and covariance.

1427



BHATTACHARYYA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

η

di
m

etvsrt

SOCP
LP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

η

di
m

evsr

SOCP
LP

Figure 3: Plots of number of selected features versusη for data sets D, C.
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Figure 4: Plots of number of selected features versusη for data sets G, B.

On a toy data set, the formulation discovered the discriminatory features. Theformulation has
a parameterη, which can trade off accuracy with number of features. For small valuesof η, low
number of discriminatory features are reported, while asη is increased the formulation reports more
number of features. As borne out by experiments on the microarray data sets, the accuracy of the
classifier increases asη is increased.

The approach in this paper can also be extended to design nonlinear classifiers using very
few support vectors. Let the discriminating surface be{x|∑i αiK(xi ,x) = b} which divides the n-
dimensional Euclidean space into two disjoint subsets{x|∑i αiK(x,xi) < b} and{x|∑i αiK(x,xi) >

b}, where the kernelK, is a functionK : R
n ×R

n → R obeying the Mercer conditions (Mercer,
1909).

One can restate the nonlinear discriminating surface by a hyperplane inmdimensions,

H = {x|α>k(x)−b = 0}

wherem is the number of examples andk(x) is a vector inm dimensions whoseith component
is k(x,xi). The set of support vectors is defined byS= {i|αi 6= 0}. We wish to find a decision
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Figure 5: Plots of LOO error versusη for data sets E, F.
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Figure 6: Plots of LOO error versusη for data sets D, C.

surface utilizing very small number of these vectors, or in other words, thegoal is to minimize the
cardinality of the setS, which can be approximated by theL1 norm ofα.

Let k1 = k(X1) be a random vector corresponding to class 1 whilek2 = k(X2) be another random
vector belonging to class 2. Let the means ofk1 andk2 be k̃1 andk̃2 respectively and the covariance
beΣ̃1 andΣ̃2 respectively. The problem can be approached as in (7) and on applying the Chebychev
bound (6) the following formulation

min
α,b

‖α‖1,

s.t α>k̃1−b≥
√

η
1−η

√

α>Σ̃>
1 α,

b−α>k̃2 ≥
√

η
1−η

√

α>Σ̃>
2 α,

α>k̃1−b≥ 1,

b−α>k̃2 ≥ 1, (23)

is obtained. We believe this can have non-trivial advantages for data-mining problems.
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Figure 7: Plots of LOO error versusη for data sets G, B.
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Appendix A. The Chebychev-Cantelli inequality

In this appendix we prove a multivariate generalization of the one sided Chebychev inequality. This
inequality will be used to derive a lower bound on the probability of a multivariate random variable
taking values in a given half space. Marshall and Olkin (1960)(also seePopescu and Bertsimas,
2001) proved a more general case.

We first state and prove the Chebychev inequality for a univariate random variable, (Lugosi,
2003). It would be useful to recall the Cauchy-Schwartz inequality. Let X andY be random variables
with finite variances,E(X−E(X))2 < ∞ andE(Y−E(Y))2 < ∞, then

|E[(X−E(X))(Y−E(Y))]| ≤
√

E(X−E(X))2E(Y−E(Y))2.

Chebychev-Cantelli inequality Let s≥ 0, Then

P(X−E(X) < s) ≥ s2

s2 +E(X−E(X))2 .

Proof Let Y = X−E(X). Note thatE(Y) = 0. For anys,

s= E(s−Y) ≤ E((s−Y)I{Y<s}(Y)).

For anys≥ 0, using the Cauchy-Schwartz inequality

s2 ≤ E(s−Y)2
E(I2

{Y<s}(Y)),

= E(s−Y)2P(Y < s),

= (E(Y2)+s2)P(Y < s). (24)
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On rearranging terms one obtains

P(Y < s) ≥ s2

E(Y2)+s2

and the result follows.

The above inequality can be used to derive a lower bound on the probabilityof a random vector
taking values in a given half space.

Theorem 1 Let X be a n dimensional random vector. The mean and covariance ofX be µ∈ R
n

and Σ ∈ R
n×n. Let H (w,b) = {z|w>z < b,w,z ∈ R

n,b ∈ R} be a given half space, withw 6= 0.
Then

P(X ∈ H ) ≥ s2

s2 +w>Σw
,

where s= (b−w>µ)+, (x)+ = max(x,0).
Proof There are two cases:b≤ w>µ andb > w>µ.

For the caseb≤ wTµ, s= 0, and plugging its value in the Chebychev-Cantelli inequality, yields
P(X∈H )≥ 0, which is trivially true. For the other caseb> wTµ, by definitions= b−wTµ. Define
Y = w>x, so thatE(Y) = wTµ E(Y−E(Y))2 = w>Σw. We have

P(X ∈ H ) = P(Y < b) = P(Y−E(Y) < s).

Application of Chebyshev-Cantelli inequality to the above relationship givesour desired result. This
completes the proof.

Note that the proof does not requireΣ to be invertible. For a more general proof pertaining to convex
sets and tightness of the bound see (Marshall and Olkin, 1960, Popescuand Bertsimas, 2001).

Appendix B. Uncertainty in Covariance Matrices

Consider the following problem

maxΣ

√

w>Σw,

Σ = TΣzT
>
,

‖Σz−Σz‖F ≤ ρ. (25)

Eliminating the equality constraint the objective can be stated as
√

w>Σw =

√

w>TΣzT>w.

Introduce a new variable∆Σ ∈ S+
n , so thatΣz = Σz+∆Σ, and the optimization problem (25) can be

stated as

max∆Σ

√

w>T(Σz+∆Σ)T>w,

s.t. ‖∆Σ‖F ≤ ρ.

(26)

The optimal is achieved at∆Σ = ρI , see Appendix C in Lanckriet et al. (2002b) for a proof.
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B.1 Notation

The vector[1,1, . . . ,1]> will denoted bye, and[0, . . . ,0] by 0, the dimension will be clear from the
context. Ifw = [w1, . . . ,wn]

>, we writew ≥ 0 to meanwi ≥ 0,∀i ∈ {1, . . . ,n}. The euclidean norm

of a vectorx = [x1, . . . ,xn]
>, will be denoted by‖x‖2 =

√

∑n
i=1x2

i , while the 1-norm ofx will be

denoted by‖x‖1 = ∑n
i=1 |xi |. The indicator function defined on the setA, denoted byIA(x), is

IA(x) =

{

1 x∈ A
0 otherwise.

The cardinality of setA is given by|A|. The Frobenius norm of am×n matrix A, is denoted by

‖A‖F =
√

∑m
i=1 ∑n

j=1a2
i j .
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