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Abstract

Molecular profiling can generate abundance measurements for thousands of transcripts, proteins,
metabolites or other species (features) in, for example, normal and tumor tissue samples (data
points). Given such two-class, high-dimensional data, sparse hyperplanes are successful statistical
algorithms for classifying data points into one of two categories (classification and prediction) and
defining a small subset of discriminatory features (relevant feature identification). However, this and
other extant classification methods address implicitly the issue of observed data being a combination
of underlying signals and noise. Recently, robust optimization has emerged as a powerful framework
for handling uncertain data explicitly. Here, ideas from this field are exploited to develop robust
sparse hyperplanes, i.e., classification and relevant feature identification algorithms that are resilient
to variation in the data. Specifically, each data point is associated with an explicit data uncertainty
model in the form of an ellipsoid parameterized by a center and covariance matrix. The task of
learning a robust sparse hyperplane from such data is formulated as a Second Order Cone Program
(SOCP). Gaussian and distribution-free data uncertainty models are shown to yield SOCPs that
are equivalent to the SCOP based on ellipsoidal uncertainty. The real-world utility of robust sparse
hyperplanes is demonstrated via retrospective analysis of breast cancer-related transcript profiles.
Data-dependent heuristics are used to compute the parameters of each ellipsoidal data uncertainty
model. The generalization performance of a specific implementation, designated robust LIKNON,
is better than its nominal counterpart. Finally, the strengths and limitations of robust sparse
hyperplanes are discussed.



Introduction

Transcript, protein, metabolite or other molecular profiling technologies yield data that pose chal-
lenges for biologists and statisticians alike. In transcriptional profiling, currently the most mature
and widely deployed technology [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], the abundances of nucleic acid se-
quences (genes for brevity) are monitored in biological samples of interest. Frequently, the number
of molecular species measured exceeds the number of samples assayed by one to two orders of mag-
nitude. Thus, the input for subsequent analysis is high-dimensional data where each feature (gene,
protein, metabolite and so on) in a data point (sample) represents the abundance of a species.

This work considers scenarios in which data points are assigned to one of two categories. Given
two-class high-dimensional data, one biological question is ascertaining a small number of features
able to distinguish different classes of data points. Classification and prediction methods estimate
a model from data and employ the learned system to assign the class of a previously unseen data
point. For example, a classifier trained using breast tissue samples could presage a clinical decision
support system designed to predict whether a new patient sample was or was not normal. Relevant
feature identification methods define a subset of the features able to discriminate between classes.
Enumerating genes able to distinguish normal from malignant samples could portend novel and/or
improved targets for intervention, diagnosis and imaging (“biomarkers”).

Sparse classifiers are statistical algorithms for classification (differentiating two classes of data
points) and relevant feature identification (specifying a small subset of discriminatory features). For
linearly separable data, the decision surface separating the classes is a hyperplane parameterized
by a weight vector and an offset term. A sparse weight vector, one with few non-zero elements,
specifies the relevant features. Sparse hyperplanes can be estimated from data by formulating an
optimization problem as a linear program (LP) that minimizes an /; norm [12, 13, 14, 15, 16, 17, 18].

Nominal LIKNON is a specific implementation of nominal sparse hyperplanes that has been
applied to a variety of real-world transcript and protein profiles [19, 20, 21]. Computationally,
it had non-trivial advantages over the prevailing multistep filter-wrapper strategy because one
pass through data yielded both a classifier and relevant features. Biologically, the distinguishing
features suggested gene biomarkers for a number of cancers. Subsequent hidden Markov model-
based sequence analysis of the protein product of one of these biomarkers resulted in the definition
and characterization of a novel, phylogenetically conserved protein family [20].

Non-random and random processes give rise to uncertain profiling data. Observed abundance
measurements can be viewed as signals that are a convolution of the (patho)biology or stimulus
under investigation, and technical factors (see for example [22]). However, extant classification
methods such as nominal sparse hyperplanes account for biological and experimental variability
only implicitly. Thus, nominal LIKNON yields a linear classifier and relevant features that may not
be immune to variation in the data. This work proposes robust sparse hyperplanes as classification
and relevant feature identification models that are resilient to this key facet of real-world data.
Realizing these models requires building upon, and exploiting recent advances in the field of robust
optimization [23, 24], an area under-explored in computational biology.

Here, a sparse hyperplane is “robust” if it classifies correctly all permissible values of the data.
The notion of “uncertainty” is made explicit by specifying the allowable values of a data point
via an ellipsoidal data uncertainty model parameterized by a center (location) and covariance
matrix (shape). The task of learning a robust sparse hyperplane from such models is posed as
a robust LP [23] and a Second Order Cone Program (SOCP). SOCPs are a class of non-linear
convex optimization problems that can be solved efficiently using interior-point algorithms and
methods and, like LPs, have single global solutions (see [24]). Two other data uncertainty models,



Gaussian or distribution-free, yield equivalent SOCPs. Robust LIKNON is a specific implementation
of robust sparse hyperplanes based on ellipsoidal data uncertainty models. The size of the SOCP
to be solved is reduced by assuming that some data points are associated with identically shaped
uncertainty: one covariance matrix per data point is replaced by one (class-independent) or two
(class-dependent) matrices per data set.

The utility of robust sparse hyperplanes is illustrated using published transcript profiles for
3226 genes in 7 BRCA1 and 15 BRCA2/Sporadic breast tumor samples [5]. Since repeated mea-
surements were not available, data-dependent heuristics were employed to specify the 22 ellipsoid
centers, and to compute a feature-dependent diagonal covariance matrix for points in the data set
(22) or each category (7, 15). To investigate the effect of different amounts of data uncertainty,
the covariance matrix was scaled via a user-defined noise level parameter p. Robust LIKNON hy-
perplanes estimated across a range of noise values all specified a small number of relevant features
(10-20) and yielded good linear classifiers (low or zero classification error). Hyperplanes in which
the shape of the uncertainty associated with each category was unique (two class-dependent co-
variance matrices) were more robust than ones where all points had identically shaped uncertainty
(one class-independent matrix). On a standard computer, typical runtimes were a few minutes and
the memory requirements were small.

This paper concludes with a discussion of implementation and model selection (number of rele-
vant features) issues. In addition, robust sparse hyperplanes are compared with a recent heuristic,
Monte Carlo-based strategy for estimating a linear classifier and defining a small number of infor-
mative features from uncertain data [25].

Materials and Methods

Transcriptional profiling data

Published cDNA microarray data for BRCA1 mutation positive, BRCA2 mutation positive and spo-
radic breast tumor samples [5] were downloaded from http://www.nhgri.nih.gov/DIR/Microarray/
NEJM_Supplement. The transcript profile for a sample consists of logs transformed ratios of (back-
ground corrected) fluorescent intensities for genes in the sample of interest versus a reference sam-
ple. There were 3226 genes (features) and 22 samples (data points). The 7 BRCA1 samples were
designated the +1 class and the 15 BRCA2 and sporadic samples the —1 class.

Sparse hyperplanes: nominal Liknon

Consider a two-class data set consisting of N data points, {(x,,yn)}_;. Each data point is a P-
dimensional vector of features, x,, € R”, assigned to one of two categories, y, € {+1,—1}. Assume
that the classes are linearly separable. A classifier for such data is a hyperplane parameterized
by a weight vector, w € R”, and an offset from the origin, b € R. The hyperplane H(w,b) can
be used to predict the class of a data point x € RY by computing sign(w’x + b). If this value
is positive, x is identified with the +1 class, otherwise it belongs to the —1 class. Points that
define the hyperplane, positive half-space (+1 class), and negative half-space (—1 class) are the
sets {x|wlx = b}, {x|wlx > b}, and {x|wTx < b} respectively.

A sparse classifier addresses the dual problem of discriminating between classes and identifying
a small number of relevant features. For a sparse hyperplane, this translates to a weight vector
w with few non-zero elements. The rationale is that if the pth element of w is non-zero, w? # 0,
the corresponding feature xP contributes to sign(w’x + b) and hence the class of point x. When
wP = 0, 2P plays no role in determining the class. Although many single features could differentiate



the classes on their own, the ensuing classifiers are unlikely to generalize well to previously unseen
examples (overfitting). Thus, the goal is to find a sparse weight vector with a small, as opposed to
the smallest, number of non-zero elements.

Norm minimization

The problem of estimating a sparse hyperplane from data can be addressed by minimizing the [
norm of the weight vector w subject to a requirement that the classification error be low. The [y
norm of a vector is the number of non-zero elements, ||w||g = cardinality{p : wP # 0}. However,
minimizing the o norm of high-dimensional vectors is NP-hard [26]. A computationally tractable
approximation to minimizing the lp norm of a vector is to minimize its /; norm [12] (see [27] for a
discussion of zero-norms and linear models). The I; norm is the sum of the absolute magnitudes
of its elements, ||w|j; = Y1, [w?|.
The basic optimization problem for learning a sparse hyperplane from training data is then

min Iwlly + C Y0 &n
subject to Yn(Wix, +b) >y — &,
y=1, & >0, n=1,...,N. (1)

The slack variables, &,, provide a mechanism for handling an error in the assigned class, y,,.
This quantity measures how much the point x,, fails to have a margin of v from the hyperplane,
&, = max{0,v — yn (W%, +b)}. When &, > v, the point is misclassified. The number of mistakes
made by a hyperplane on training data is the number of data points for which the slack variable
exceeds the margin. Since all values scale with the margin, it must be greater than zero to avoid
the minimal, but not useful all-zero solution |w|; = 0. Typically in this sort of optimization work,
v is set to 1, as in (1).

The user-defined regularization parameter, C, weighs the contribution of misclassifications (if
any). Larger values result in fewer errors being ignored and a desire for good training error. C' — 0
indicates little penalty for misclassification whereas C' — oo is equivalent to a hard margin limit
where no data point is ignored. Together, &, and C' influence the sparseness of the solution.

Nominal Liknon

Nominal LIKNON is a specific implementation of nominal sparse hyperplanes that has been discussed
elsewhere [19, 20, 21]. Briefly, the attractive aspects of optimization problem (1) are (i) it can be
cast as an LP so there are no local minima and an optimum solution can be found, and (ii) efficient
algorithms for solving LPs involving ~10,000 variables and ~10,000 constraints are available. Ver-
sions of nominal LIKNON based upon on the standalone open source code lpsolve (http://www.
netlib.org/ampl/solvers/lpsolve/) or Matlab (http://www.themathworks.com) are available
at http://www.cs.berkeley.edu/” jordan/liknon/.

The value of the margin influences the magnitude of the hyperplane with larger (smaller) ~
values resulting in larger (smaller) weight vectors w. In practice, limitations in the numerical
precision of solvers may lead to “hidden implementation errors”. To ameliorate such potential
problems, an important pre-processing step is to scale the data into a reasonable range.

Robust sparse hyperplanes: robust Liknon

A robust sparse classifier is one in which the decision boundary and set of relevant features are
resilient to uncertainty in the data. As a consequence of the margin v = 1, a solution to optimization



problem (1) does yield a sparse hyperplane with some intrinsic robustness. However, the robust
optimization paradigm provides a formal, explicit framework for handling data uncertainty and
thus a principled approach to estimating robust sparse hyperplanes.

Data uncertainty model and robust LPs

Assume that the observed and all allowable values of a data point can be described by a data
uncertainty model; an uncertainty set U is the collection of values specified by this model. The
robust counterpart of the sparse hyperplane optimization problem (1) stipulates that all realizations
of the data, every admissible value x;, in each uncertainty set U,,, satisfy the inequality constraint

min [wli+C &

subject to Y, (W xi +b) >1—&,
for all Xin € Uy
€, >0, n=1,...,N. (2)

The robust LP (2) could be solved by instantiating admissible values that approximate every
uncertainty set and incorporating each ensuing “pseudopoint” as an additional, explicit linear con-
straint. To estimate a sparse hyperplane that was robust and generalized well, each U,, would need
to be specified by a large corpus of pseudopoints. Results (data not shown) indicate that adding a
few additional linear constraints to the sparse hyperplane formulation does improve performance.
However, an optimization problem with far more constraints would be impractical because the
resulting LP would be too large.

Ellipsoidal data uncertainty model and SOCPs

The task of estimating a robust sparse hyperplane can be simplified by enunciating a data uncer-
tainty model and converting multiple linear constraints into a single non-linear constraint. This
work considers a simple ellipsoidal data uncertainty model and recasts the robust LP (2) as an
SOCP. Conceptually each feature (gene) is allowed a “noise range” around the measured value,
which leads to the geometrical concept of a high-dimensional ellipsoid centered on the point speci-
fied by the vector of measured values. Specifically, the uncertainty set I is defined by a bounded
ellipsoid parameterized by two second order statistics, a location X € R”, and a shape, R € RF*P,

U = {xi|(xi — %X)R*(x; — x) < 1}
= {xl[R(xi = x)[]2 < 1}, (3)

where x; is an admissible value. The Iy norm of a vector w is |[w]||s = (wT'w)!/2. The shape can
be interpreted as the covariance matrix, 3, that is the matrix of squared axes length defining the
ellipsoid, R = v/%; the location, X, can be equated with the expected value (center).

An optimal solution to robust sparse hyperplane optimization problem (2) is one in which the
hyperplane, H(w,b), does not intersect any ellipsoidal data uncertainty model, £(x,3). This is
true if the following inequality holds for every ellipsoid,

w!'x + b > ||=Y2w]|s. (4)

The left hand side is the distance between the ellipsoid center X and the hyperplane (m in Figure 1);
the right hand side is the distance between X and a line parallel to the hyperplane and tangential
to the ellipsoid (r in Figure 1).



Inequality (4) can be used to collapse separate constraints for each admissible value in the
robust LP (2) into one term involving the /2 norm of the weight vector,

min wli OXY 6
subject to yn(Wix, +b)>1-¢,
Y (W% + 1) > || Wl — &,
>0 n=1,...,N. (5)

The non-linear l5 constraint prevails when the ellipsoidal uncertainty exceeds the margin, ||2711/ 2w||2 >
1.

Optimization problem (5) is not linear and so no longer an LP. However, it is an instance of an
SOCP. This class of convex optimization problems has the general form

min e’'x
X
subject to ¢l x +d; > || Aix + bi|2
i=1,...,1

where A; is a matrix, ¢; and x are vectors, and b; and d; are scalars. Efficient interior-point
algorithms for solving SOCPs involving thousands of variables and constraints are available.

A convenient way to rewrite (5) is to introduce an auxiliary variable ¢ that bounds the non-linear
constraint,

min  wl+ O &

subject to  yn (W %, +b) >1—¢&,
YUn(W%n +b) >ty — &n
1= wllz < tn
t, >0
£.>0 n=1,...,N. (6)

Robust Liknon

A robust sparse hyperplane can be estimated from data {&€, (X, %), yn}2_; using the SOCP (6).
Since every one of the N data points has its own covariance matrix 3., this formulation results in
a large optimization problem (needing N PxP matrices or if ¥,, is diagonal, N % P values). Such
problems are computationally too costly for current SOCP solvers (which have limitations that
are now being addressed) so at present it is necessary to impose some restrictions on the shape
matrices. The size of the SOCP to be solved can be reduced considerably by assuming that the
shape of the uncertainty for a defined set of points is identical.

The use of class-dependent covariance matrices results in an SOCP with two data uncertainty
constraints. When data points in the same category are assumed to share a common matrix, i.e.,
¥p=%4ify, =41 or ¥, =X_ if y, = —1, the optimization problem becomes

min [wlh +C L 6

)

subject to yn(Wix, +b)>1-¢,



yn(WTin + b) > ty — £n7 Yn = +1
Yn(Wikn +0) >t — &, yp=-—1
1/2
1=V 2wl <ty

1= 2wl <t
ty >0, t_>0
£, >0 n=1,...,N. (7)

A class-independent covariance matrix results in an SOCP with one data uncertainty con-
straint. When all data points are presumed to share the same matrix, ¥ for y, = {+1,—1}, the
optimization problem becomes

min Jwlh +C X0 6

subject to Y, (W%, +b) >1—&,
yn(wTin +b)>t—¢&,
15wl <t
t>0
£n>0, n=1,...,N. (8)

Problems (7) and (8) contain almost identical linear constraints for each data point. Combining
them yields formulations with reduced memory requirements,

min lwll +C 30l én
w,€

subject to Yy, (WI%k, +b) >t — &y Yn = +1
yn(WTin +0) >t =&, yn=-—1
1/2
12y wla <ty

1= 2wl <t
to>1, to>1
€, >0 n=1,...,N, (9)

and

min [lwlh + O &

subject to Yy, (W%, +b) >t —&,
1=y 2wl <t
t>1
£, >0 n=1,...,N. (10)

Robust LIKNON is a specific implementation of the above SOCPs. The software employs the
extant, standalone, open source SOCP solver SeDuMi [28], and Matlab (http://www.mathworks.
com); the code is available as Supplementary material. These robust sparse hyperplane problems
revert to the nominal sparse hyperplane problem (1) when the data have no associated uncertainty,
i.e, the non-linear ellipsoid terms vanish when [|X|2 = 0.

The Appendix provides a statistical interpretation of robust LPs when the data are assumed
to be Gaussian or distribution-free random variables. In both cases, the ensuing optimization
constraints are the same as those based on ellipsoidal data uncertainty models.



Ellipsoidal data uncertainty model parameters: location x and shape X

Estimating the parameters of a robust sparse hyperplane from data is distinct and separate from
ascertaining the parameters of each ellipsoidal data uncertainty model. Currently, robust LIKNON
solves SOCPs based on class-dependent (X1, ¥_, (7)) and class-independent (X4, (8)) covariance
matrices. Here, each matrix is assumed to be diagonal so only the X!, ... PP terms need to be
specified a priori. In a feature-dependent diagonal covariance matrix, the 3PP terms are unique. In
a feature-independent matrix, all ¥PP terms are identical (this converts ellipsoids into same-radius
spheres).

Data sets without replicates

Given data in which a biological sample is assayed only once, the prevailing scenario in current
molecular profiling studies, robust LIKNON implements the following data-dependent heuristics to
set the location and shape parameter values for each ellipsoidal data uncertainty model.

The ellipsoid center is equated with an observed data point, x; = x;.

A covariance matrix is computed using the observed range of features in J data points. If x? is
the measured value of feature p in data point j, its variation, a?, is

y— P i p L
a’ = {max x mjm:cj}, j=1,...,J.

(11)

For ¥, ¥_, and X4, J is the number of data points in the +1 class, -1 class, and data set
respectively.

In a feature-dependent (diagonal) covariance matrix, the shape of the uncertainty for feature p
is set using its variation,

PP = P, (12)
and with its standard deviation being
J J 2
1 1
of = S @)= 5D 4
j=1 J=1
(13)
can be set directly
YPP = gP (14)
or in a globally scaled manner
P
_1|a
PP — 2p=1 1] oP. (15)

31 (07)(o?)

In a feature-independent (diagonal) matrix, the shape of the uncertainty for all features is set
to that for the feature having the smallest variation,

pr:\/]_D{minap}, p=1,...,P. (16)
p



Data sets with replicates

If the same biological sample is assayed multiple times, the parameters can be computed from the
empirical distribution of the data. Given R independent measurements of feature p in the same
sample, the location and shape can be set using

R
i,p Zr:l 'r{')
R
PP 1 R D2 1 R D 2
Y = Ezrzl( 7") - Ezrzlxr .

(17)

User-defined noise level parameter p

Computational experiments designed to evaluate the performance of robust LIKNON require data
sets in which the level of variability associated with the data can be quantified. Here, a noise level
parameter, 0 < p < 1, is introduced to scale each diagonal element of the covariance matrix, p>FP.
When p = 0, data points are associated with no noise (the nominal LIKNON case). The p value
acts as a proxy for data variability.

Sparse hyperplane regularization parameter C

An attractive aspect of the sparse hyperplane formulations is the presence of only one free param-
eter, the regularization parameter C. In these optimization problems, C' and the slack variables £
perform the dual function of handling non-linearly separable data and tuning the sparsity of the
solution. Both appear in the objective function but only & appears in the constraints.

To obtain a feasible solution to an optimization problem, all the constraints need to be satisfied.
In practice, the precise C' value, 0.0 < C' < oo, plays a critical role in determining whether this is
true and the sparsity of the final weight vector w. Recall that if the slack variable is greater than
the margin, &, > 1, the point x,, lies on the “wrong” side of the hyperplane and is misclassified. If
0 <&, <1, the point is classified correctly.

When the data are not linearly separable, C' should be small to allow £ to exceed the margin if
necessary. When C' = 0, there is no control over £ and no solution is found. If C' = oo, the slack
variables are forced to zero and no misclassifications are allowed. A good solution lies between
these lower and upper bounds. A hyperplane that makes few errors and has a small number of
non-zero elements can be found by increasing C' above zero. The sharpness of the transition from
no solution to a solution depends on the data and particular implementation. As C' exceeds this
value, the weight vector becomes less sparse.

Sparse hyperplane performance

Two metrics were devised to assist in evaluating the generalization performance of a sparse hyper-
plane estimated from data {(xpn,yn)}2_; or {En(Xn, Sn), Yn 1. Let ¥, = pX be the covariance
matrix for an ellipsoidal data uncertainty model and let H(ws,bs) be the optimal (nominal or
robust) hyperplane.

The “ordinary rule” for classifying a data point x is as follows. If wlx > b,, x is assigned to
the +1 class. If W*Tx < by, x is identified with the -1 class. An ordinary error occurs when the

class predicted by the hyperplane differs from the known class of the data point.
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The “worst case rule” determines whether an ellipsoid with center x intersects the hyperplane.
Some allowable values of x will be classified incorrectly if |w2x + b,| < ||Ei/2w:{||2, i.e., m < rin
Figure 1. A worst case error occurs if the data point has an ordinary error (lies on the wrong side
of the decision boundary) or if the ellipsoid and hyperplane overlap (some permissible values lie on
the wrong side of the decision boundary).

The number of relevant features at noise p is the number of non-zero elements of the optimal

weight vector w, F(p) = cardinality{p : w} # 0}, p=1,..., P.

Results

The performance of nominal and robust sparse hyperplanes was investigated using an illustrative,
real-world, two-class, transcriptional profiling data set (Section ). The breast tumor sample profiles
represent transcript abundances in N = 22 samples, {(x,, yn)}—;. Each data point is a vector of
logo transformed measurements, x,, = {z,..., 2z} where P = 3226, and z}, is the observed value
of feature p in data point n. The 7 BRCA1 samples are assigned to the class y, = +1; the 15
BRCA2 and sporadic samples belong to the other class, y, = —1.

Nominal sparse hyperplane performance

In the sparse hyperplane optimization problem, the regularization parameter C plays a key role
in determining both classification performance and sparsity of the weight vector. Nominal sparse
hyperplanes were computed using the profiling data for a range of C' values. For each C-specific
nominal LIKNON linear classifier, the ordinary error of the data and the number of relevant features
(non-zero elements of the weight vector) were determined. The results are given in Table 1.

The solution to the optimization problem depends upon C. There is a sharp transition between
no solution (all elements of the weight vector vector are zero) and a good solution. At C' =
0.1082275, there is no solution so every point is classified incorrectly. At C' = 0.1082276, there are
2 ordinary errors and 7 relevant features. As C' increases, the sparse hyperplane makes fewer errors
and the weight vector becomes less sparse. A value of C' = 0.3 yields a nominal sparse hyperplane
that generalizes well (zero ordinary error) and identifies a small number of relevant features (17
genes).

Robust sparse hyperplane performance

Robust sparse hyperplanes were computed using ellipsoidal data uncertainty models at a range of
C and p values. Two types of models were examined, (i) the shape of the uncertainty was assumed
to be the same for all data points, i.e., class-independent covariance matrices were computed using
all 22 data points (X4), and (ii) the shape of the uncertainty was assumed to be different for each
category, i.e. class-independent covariance matrices were computed using 7 BRCA1 data points
(X4) and 15 BRCA1/Sporadic data points (X_). In each case, these matrices were diagonal and
feature-dependant (Equation 12). For each C- and p-specific robust LIKNON linear classifier, the
ordinary error, worst case error and number of relevant features were determined. The results are
given in Table 2.

The sensitivity of sparse hyperplanes to misclassified data points can be adjusted via C. Larger
values attempt to achieve full linear separability (potentially overfitting the data) whereas smaller
values may ignore some outliers. The two largest settings, C = 0.2 and 0.5, yield few relevant
features (“F(p)”) and classifiers that generalize well (low “Ordinary” and “Worst case” error). This

11



is consistent with results using nominal LIKNON in which a nominal sparse hyperplane estimated
using C' = 0.3 has the best performance (Table 1).

For increasingly uncertain data, the hyperplane becomes less sparse (the weight vector w has
more non-zero elements). As p becomes larger, the number of relevant features increases slightly
and both types of classification error become larger. Overall, robust sparse hyperplanes employ
only 10-20 out of the 3226 features (genes) to form the robust linear classifier. In some instances,
a worst case error is due to the hyperplane intersecting a data uncertainty ellipsoid rather than
the point being on the wrong side of the decision boundary (see, for example, results for C' = 0.2,
p=0.1 and X4). In terms of worst case error, a C' = 0.5 nominal LIKNON hyperplane is robust at
noise levels p < 0.3.

Ellipsoidal data uncertainty models utilizing class-dependent covariance matrices (X4,3_) are
preferable to ones using a class-independent matrix (X1). When the shape of the uncertainty
associated with points in each category is modeled separately, the robust sparse hyperplane specifies
fewer features and has smaller errors than one where the category is ignored. This difference is
most marked at high noise levels, p > 0.3.

Robust sparse hyperplanes are more resilient to data uncertainty than their nominal counterpart.
Robust LIKNON hyperplanes have fewer ordinary and worst case errors than nominal LIKNON (see,
for example, results for C' = 0.2, p = 0 — 0.7 for both types of covariance matrices).

Number of relevant features F(p)

There exist many small feature subsets that are equally good at distinguishing classes, i.e., there
is no single “best” set of discriminatory features (see also [29]). For the data set examined here, a
robust sparse hyperplane estimated using regularization parameter C' = 0.5, noise level p = 0.0—0.7,
and diagonal, feature-dependent, class-dependent covariance matrices yields a linear classifier with
17-20 genes, and zero ordinary and worst case error. The benefit of a multiplicity of accurate
classifiers is the ability to develop clinical tests, each based on a different set of tens of genes, that
generalize well to new patients. The disadvantage is that experimentalists interested in molecular
mechanisms and evaluating targets for therapeutic intervention would prefer few genes.

Formulation and numerical issues

The hyperplane parameter values found are sensitive to the SOCP formulation that is solved.
Table 2 shows that at the regularization parameter threshold, C' = 0.109, a solution is found for
the formulation based on class-dependant covariance matrices but there is no solution when a
class-independent matrix is used. Numerical issues also lead to a slight variation in the number of
relevant features. Once a solver has found an optimal weight vector, the “non-zero” elements of w
are determined according to whether w,, exceeds a “small” threshold. This work employed a cutoff
of 1E — 8 so any value below this is set to zero.

Table 3 lists relevant features for two specific nominal and robust LIKNON linear classifiers. For
the robust LIKNON 18 and 20 gene solutions listed in Table 2, the weights of the additional genes
outside the 17 in Table 3 are very small.

Implementation and runtimes

The computational experiments described here used nominal and robust sparse hyperplanes imple-
mented using Matlab and run on a 466 MHz DEC Alpha computer in a typical university network
environment. For the core algorithm, runtimes were 13 seconds for nominal LIKNON (using the built

12



in linear solver linprog), 60 seconds for robust LIKNON (using SeDuMi) with a class-independent
covariance matrix, and 75 seconds for robust LIKNON (using SeDuMi) with class-dependent covari-
ance matrices. An additional 15 seconds were required for starting up Matlab, reading in files and
setting up the problem. The memory requirements were 82 and 54 MBytes for robust and nominal
LIKNON respectively.

Discussion

Two-class high-dimensional data arise in many domains. Key statistical tasks are learning a classi-
fier that generalizes well, and identifying a small number of features able to distinguish the classes.
Previously, it was shown that a sparse hyperplane can address these tasks simultaneously because
the parameters of such a model, the weight vector and offset, define a linear decision surface and the
non-zero elements of the weight vector specify the discriminatory features. This work (i) proposes
robust sparse hyperplanes as a classification and relevant identification model that is resilient to
uncertainty in the data points, (ii) formulates the optimization problem for estimating a model
from data as an SOCP, and (iii) demonstrates the potential of a specific implementation, robust
LIKNON, on an illustrative, real-world data set. Because of practical limitations imposed by extant
solvers, the computational cost of the SOCP is reduced by introducing similar shape matrices for
sets of data points. In the future however, such restrictions should be removed yielding enhanced
models with potentially better performances. Although the robust sparse hyperplanes developed
here were motivated by a need to analyze transcriptional profiling data, they can be applied to
(noisy) two-class, high-dimensional data from other areas.

Recently, Kim et al [25] proposed an alternative strategy for determining a linear classifier that
is robust to noise in transcriptional profiling data. Given a set of genes (features), the hyperplane
is computed using an analytic spherical noise model. Sets of 1-3 genes are found via an exhaustive
search that enumerates all combinations. This strategy becomes intractable for larger sets so a
guided random walk is used for 4 or more genes. For the data set examined here, 140 hours on
a supercomputer cluster was needed to identify at least 11 pairs of genes that separate the data.
Estimating a hyperplane for a set of genes is fast so it is likely that most of the time was spent
discovering gene sets. In contrast, the robust sparse hyperplanes proposed here permit use of a
more complex data uncertainty model (ellipsoids with different shapes), can determine discrimina-
tory genes at the same time as learning the hyperplane parameters, and are computationally less
demanding.

On the same breast cancer transcript profiles, robust LIKNON finds a sparse solution, 7-10 genes
that separate the data, whereas the approach of Kim et al find a sparser solution, 2 genes. Recall
that minimizing the [y norm of the weight vector (subject to low classification error), ||w||o, would
yield a sparse hyperplane. This is an NP-hard problem so the tractable convex approximation
exploited here (and by others) is to minimize the /; norm, ||w||;. Thus, although both small gene
sets generalize equally well, the minimal I; solution is not a minimal [y solution (2 genes). This
discrepancy will probably arise in other data sets but the magnitude will differ. We are not aware
of any formal analysis which addresses the difference, if any, between minimal [y and [/ solutions
when the test error is identical.

It is unlikely that the sparse hyperplane min||w||; problem can be modified to yield a number of
non-zero elements close to the min||w||y solution. First, sparsity is sensitive to many facets of the
data (quality, precision, pre-processing, noise level p), the free-parameter setting used to estimate
a hyperplane (regularization parameter C), and implementation issues (32 or 64 bit computer,
particular solver, and so on). The [1-based cost function minimizes a linear combination of the
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weight vector elements, w?, so their absolute magnitudes are important. In this simple unweighted
sum, if wP is large, the corresponding feature in the data, xP, is small, and vice-versa. This cost
function has no direct control over the number of genes in a solution. Numerically, a 20 gene
(“mediocre” scoring) solution where wP = 0.01 is “better” than a 2 gene (“low” scoring) solution
where wP = 1, i.e. (20 % 0.01 = 0.2) < (21 = 2). Biologically however, the 2 gene solution
is probably desirable. Smaller wP — less sparse vectors — are more likely because there are many
features with sufficiently large xP values that can form solutions with small w? values compared to
ones with small 2P values that would require large w? values. Clearly, the data pre-processing step
can influence the final solution so any transformation applied should lead to larger z? values for
characteristics a user wishes to emphasize.

Despite the limitations discussed above, robust sparse hyperplanes hold potential as a technique
for analyzing molecular profiles in particular and two-class high-dimensional data in general. Future
directions include exploring different generative models for the data and more general covariance
structures [24]. It may become necessary to formulate robust sparse classifiers in which classes are
separated by complex (non-linear) decision boundaries.
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Figure 1: The intersection of an ellipsoid, £(%,X), and a hyperplane, H(w,b). The dotted line
is parallel to the hyperplane and is a tangent to the ellipse. The normal distance from x to the
hyperplane is m = |wx +b|/||w|2. The distance from x to the dotted line is r = (w''Sw)/2/||w||.
When m = r, the hyperplane is tangent to the ellipse and when m < r the hyperplane intersects
the ellipse.
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Table 1: The performance of nominal LIKNON linear classifiers learned using transcriptional profil-
ing data (3226 genes, 22 samples) and different settings of the regularization parameter C' (the noise
level parameter p was zero). For each C value examined, the table lists the number of ordinary
errors out of 22 (Errors) and the number of relevant features out of 3226 (F(p = 0.0)).

C Errors | F(p =0.0)
0.1082275 22 0
0.1082276 2 7
0.109 2 7
0.11 2 7
0.1125 2 8
0.125 1 10
0.15 1 14
0.2 1 14
0.3 0 17
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Table 2: The performance of robust and nominal LIKNON linear classifiers computed using tran-
scriptional profiling data and different settings of the regularization parameter C' and noise level
parameter p. For robust sparse hyperplanes, the shape of the ellipsoidal data uncertainty was the
same for all data points (class-independent covariance matrix, ¥4 ) or different for each category
(class-dependent covariance matrices, ¥4 and ¥_). For nominal sparse hyperplanes, the results are
for the nominal classifier found using p = 0. The abbreviations and symbols are “Robust”, robust
LikNON; “Nominal”, nominal LIKNON (p = 0); “F(p)”, number of relevant features out of 3226;
“Ordinary”, ordinary error out of 22; “Worst case”, worst case error out of 22 with the number
in parenthesis indicating the number points where the ellipsoid and hyperplane intersect; “x”, no
solution could be found; “NA”, calculation of worst case error requires that the data are associated
with some uncertainty, i.e., p > 0; and {, a 6 gene solution in which the corresponding elements
in the weight vector had values just above the 1E — 8 threshold used to assign zero-elements. No
solutions were found for C' < 0.109.
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Table 3: Genes discriminating 7 BRCA1 breast tumor samples from 15 BRCA2/Sporadic samples.
I indicates relevant features that are common to the nominal and robust LIKNON linear classifiers.

Robust LIKNON: C = 0.5; p = 0.001; diagonal, feature-dependent covariance matrices 34,3

Feature | Weight | IMAGE | Annotation

179 | -0.146735 | 809627 | nuclear receptor interacting protein 1
297 | -0.010796 | 246786 | Human orphan G protein-coupled receptor (RDC1) mRNA, partial cds
336 | -0.447493 | 823940 | T transducer of ERBB2, 1
435 | 0.160054 45542 | Human insulin-like growth factor binding protein 5 (IGFBP5) mRNA
478 | 0.108011 309032 | Human cleavage and polyadenylation specificity factor mRNA, complete cds
739 | -0.010240 | 214068 | I GATA-binding protein 3

1008 | -0.278422 | 897781 | keratin 8

1697 | -0.033875 | 247233 | ESTs

1934 | 0.025315 66977 | ESTs, Highly similar to CGI-103 protein (H.sapiens)

2226 | -0.001733 | 282980 | ESTs

2272 | 0.104417 | 309583 | 1 ESTs

2632 | -0.017060 40111 | transcription factor 8 (represses interleukin 2 expression)

2633 | -0.041071 40151 | apolipoprotein D

2890 | 0.033002 26167 | Fas (TNFRSF6)-associated via death domain

2893 | 0.154681 32790 | mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)

3080 | 0.062061 280768 | I transmembrane 4 superfamily member 1

3199 | 0.155637 | 375635 | transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)

Nominal LikNON: C' = 0.109
Feature | Weight | IMAGE | Annotation

336 | -0.170155 | 823940 | i transducer of ERBB2, 1
739 | -0.162721 | 214068 | I GATA-binding protein 3
991 | 0.022604 46916 | matrix metalloproteinase 16 (membrane-inserted)

1482 | 0.356199 839736 | crystallin, alpha B

1859 | 0.049336 | 307843 | ESTs

2272 | 0.061724 | 309583 | 1 ESTs

3080 | 0.060753 | 280768 | I transmembrane 4 superfamily member 1
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Appendix

Statistical interpretation of the robust LP

The fundamental classification problem can be viewed from a statistical perspective [24]. The basic
optimization problem for learning a sparse hyperplane (1) has two terms and various constraints.
The first term pertains to the weight vector, ||[w||1, and a second is designed to account for possible
misclassifications in the data, C ZZ«LV:1 &,. These two terms are the same in all formulations and so
not relevant to subsequent discussions. The focus here is the noise models in the constraints.

Consider the situation in which each deterministic constraint, yn(WTxn + b) > 0, should hold
with a probability or confidence exceeding 7,

min |w||1
w

subject to  Prob(y,(w!x, +b) > 0) >
n>0, n=1,...,N. (18)

Higher values of 1 denote more a stringent requirement that the point x, belong to the correct
half-space.

The probability constraint in (18) can be expressed as a second order cone constraint identical
in character to that based on the use of ellipsoidal data uncertainty models. The two formula-
tions derived below make different assumptions about the distribution of the data x: Gaussian or
distribution-free. Both scenarios presume that a data point, x € R, is a random variable whose
distribution is specified by a mean, fi € R”, and covariance matrix, ¥ € RF*F,

Probability constraint for Gaussian random variable

Let n > 0.5 and assume that the random variable is distributed according to a Gaussian with mean

fi and variance 0% € R, x ~ N (fi,02). Let p = —(w'x), i = —(w'%), and 0 = (w/'Sw)/2 =
$1/2w]|,. Substituting and rearranging, the probability constraint in (18) can be written as,
g ging y
-0 b-i
Prob (M < M) > (19)
o o

By definition, (u — fi)/o is a zero-mean unit variance Gaussian random variable so the probability

(19) becomes
Prob (u - b—_ﬂ> _ (b_“> >
o o

1 e
):E/_of = dt. (20)

Thus, the probability constraint in (18) can be expressed as

D(z

b—

o

=

> & 1(n), or equivalently, i+ ®(n)o <b. (21)

Since 7 > 0.5, ®~!(n) > 0 so the constraint is a second order constraint and can be written as

Yn (W5 +b) = &7 ()| 5/ 2 w2
n>05 n=1,...,N. (22)
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Given that 7 is specified a priori, ®~!(n) is simply a constant which scales the covariance matrix
¥ and is thus identical to the ellipsoid constraint in (5). Thus, an LP in which the data are treated
as Gaussian random variables yields an SOCP constraint (22) that, up to a multiplicative factor,
is equivalent to one based on an ellipsoidal data uncertainty model (5).

Probability constraint for distribution-free random variable

Transcript profiling data seldom follow a Gaussian distribution. In situations when only second
order statistics are available, the multivariate Chebyshev bound and a worst-case setting can be
used to express the probability constraint (18). Assume that only the first two moments of a
random variable, x, are known. Let x ~ (f1,%) denote all possible distributions with mean i and
covariance matrix . An existing theorem [30, 31] states that the supremum of the probability that
a random vector takes a value in an arbitrary closed convex set S is

1
sup Prob(xeS) = ——
) 1+d?
2 = inf (o — WIS (o — f1). (23)
ac

Using the above observation and the fact a half-space produced by a hyperplane is a closed convex
set, previous work [32] has shown that the probability constraint in (18) can be expressed as a
second order cone constraint,

wlji+b> wliYw. (24)

Hence, the original problem constraint in (18) can be rewritten as

Yn (W5 +b) = K012 2w
n>0, n=1,...,N. (25)
where r(n) = /11
Given that 7 is specified a priori, k(n) is simply a constant which scales the covariance matrix
> and, again, has the same form as the above Gaussian case. Thus, an LP in which the data
are treated as random variables for which only the first two moments are known yields an SOCP
constraint (25) that is, up to a multiplicative factor, identical to one based on an ellipsoidal data
uncertainty model (5), and one that assumes Gaussian random variables (22).
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