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Abstract

Molecular pro�ling technologies monitor many thousands of transcripts, proteins, metabolites or other species concurrently
in a biological sample of interest. Given such high-dimensional data for di7erent types of samples, classi�cation methods
aim to assign specimens to known categories. Relevant feature identi�cation methods seek to de�ne a subset of molecules
that di7erentiate the samples. This work describes LIKNON, a speci�c implementation of a statistical approach for creating a
classi�er and identifying a small number of relevant features simultaneously. Given two-class data, LIKNON estimates a sparse
linear classi�er by exploiting the simple and well-known property that minimising an L1 norm (via linear programming)
yields a sparse hyperplane. It performs well when used for retrospective analysis of three cancer biology pro�ling data sets,
(i) small, round, blue cell tumour transcript pro�les from tumour biopsies and cell lines, (ii) sporadic breast carcinoma
transcript pro�les from patients with distant metastases ¡5 years and those with no distant metastases ¿5 years and (iii)
serum sample protein pro�les from una7ected and ovarian cancer patients. Computationally, LIKNON is less demanding
than the prevailing �lter-wrapper strategy; this approach generates many feature subsets and equates relevant features with
the subset yielding a classi�er with the lowest generalisation error. Biologically, the results suggest a role for the cellular
microenvironment in in@uencing disease outcome and its importance in developing clinical decision support systems.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Molecular pro�ling studies of di7erent types of bi-
ological specimens are both increasingly widespread
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and important. In cancer biology for example, com-
monplace investigations include monitoring the
abundances of transcripts and/or proteins in nor-
mal and aberrant (tumour) tissues, sera or cell lines
[19,6,18,39,25,34,15,36,40,26,29,35]. The adoption of
pro�ling technologies is motivated largely by a desire
to create clinical decision support systems for accurate
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cancer classi�cation and a need to identify robust and
reliable molecular targets (“biomarkers”) for interven-
tion, diagnosis and imaging. The �rst attendant analyt-
ical task is classi�cation and prediction, estimating a
classi�er from pro�ling data which assigns accurately
samples to known classes. The second task, relevant
feature identi�cation, involves de�ning a small subset
of the molecules monitored which best di7erentiate
classes.
The subject of this work is the tasks of classi-

�cation and relevant feature identi�cation in the
context of two-class molecular pro�ling data, i.e.
samples are assigned to one of two categories such
as normal or tumour specimens. Statistical challenges
associated with solving these problems include the
large number of features in an example vector (∼103–
104 molecular abundances) and the small number of
high-dimensional example vectors (∼101–102 sam-
ples). The classi�er underlying a clinical decision
support system would be expected to make precise
diagnoses for many more and diverse patient samples
than had been used for its estimation. This requirement
for systems with good predictive capability neces-
sitates classi�ers which minimise misclassi�cations
on future data, namely those with low generalisation
error.
For two-class data, the classi�cation and prediction

problem is to learn a discriminating surface which
separates the classes using a criterion such as gen-
eralisation error. Support vector machines (SVMs)
[14] are good classi�ers which achieve low gener-
alisation error by minimising an associated quantity
termed the margin. SVMs have been employed suc-
cessfully for cancer classi�cation using transcript
pro�les [10,31,36,40]. In contrast to SVMs, the newly
formulated minimax probability machine (MPM)
minimises directly an upper bound on the generali-
sation error [28]. As shown here, MPMs provide a
viable alternative to SVMs for addressing classi�-
cation and prediction problems related to pro�ling
data.
MPMs and SVMs cannot de�ne biomarkers in their

own right because each feature in an example vector
contributes to delineating the discriminating surface.
In transcript pro�ling studies, relevant feature iden-
ti�cation has oft been addressed via a �lter-wrapper
strategy [17,31,42]. The �lter generates candidate
gene subsets whilst the wrapper runs an induction

algorithm to determine the discriminative ability of
a subset. This procedure computes a statistic from
the empirical distribution of genes in the two classes
and orders genes according to this metric. Forward
or backward selection creates subsets by adding or
deleting genes successively. Each subset is used to es-
timate a classi�er and to determine its generalisation
error. A priori, the number of genes and which subset
will produce a classi�er with the lowest generalisa-
tion error is unknown. Thus, many runs are required
to converge upon a subset that constitutes biomark-
ers. Although MPMs and SVMs are good wrap-
pers, the choice of �ltering statistic remains an open
question.
This study shows the potential of sparse (linear)

classi�ers as a framework for addressing simultane-
ously the aforementioned problems of classi�cation
and relevant feature identi�cation. In so doing, con-
siderable prior statistical research is exploited in a
new application domain. Here, the focus is sparse hy-
perplanes estimated by minimising an L1 norm via
linear programming [4,14,16,20,24,38,3]. LIKNON, 1 a
speci�c implementation of this strategy, is used for
retrospective analysis of data from three exemplars
of transcript [26,41] and protein [35] pro�ling stud-
ies. LIKNON has non-trivial computational advantages
over the prevailing �lter-wrapper strategy because it
creates a classi�er and identi�es relevant features in
one pass through two-class data. Reexamination of the
transcript pro�les generates biological predictions for
subsequent experimental and clinical investigation of
two types of cancer and cellular microenvironments.
Finally, the results reveal the ability of published data
to answer unanticipated questions.

2. Materials and methods

2.1. Transcript pro8ling data: small, round,
blue cell tumours

Previously [26], cDNA microarrays were used to
monitor tumour biopsy and cell line samples from

1 LIKNON is a word for a winnowing basket used in ancient
Greece.
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four distinct classes of small, round, blue cell tumours
(SRBCTs) of childhood: neuroblastoma (NB), rhab-
domyosarcoma (RMS), the Ewing family of tumors
(EWS) and non-Hodgkin lymphoma (NHL) [26]. The
transcript pro�les consisted of 2308 nucleic acid se-
quences or “genes” monitored in 84 samples. These
data were used to categorise samples on the basis of
their cancer class (EWS, RMS, NHL or NB) and to
de�ne 96 genes which distinguished the four classes.
Each class consisted of a mixture of tumour biopsy
and cell lines samples, i.e. the origin of a specimen
was ignored during categorisation.
Here, transcript pro�les for the 84 SRBCT samples

were downloaded from http://www.nhgri.nih.gov/
DIR/Microarray/Supplement/. For each sample, the
features in the 2308-dimensional example vectors
were the log ratios of transcripts in the sample of
interest compared to a common reference [26]. To
determine whether pro�ling data have the potential
to answer unanticipated questions, the SRBCT sam-
ples were partitioned so as to probe the interplay
between tissue and cell culture cellular microenviron-
ments, and cancer class. The seven, new, two-class
data sets formulated by repartitioning the samples
were as follows: Partition A, 46 EWS/RMS tumour
biopsies and 38 EWS/RMS/NHL/NB cell lines; Par-
tition B, 21 EWS/RMS cell lines and 30 EWS/RMS
tumour biopsies; Partition C, 28 EWS tumour biop-
sies/cell lines and 23 RMS tumour biopsies/cell lines;
Partition D, 17 EWS tumour biopsies and 13 RMS
tumour biopsies; Partition E, 11 EWS cell lines and
10 RMS cell lines; Partition F, 17 EWS tumour
biopsies and 11 EWS cell lines; and Partition G,
13 RMS tumour biopsies and 10 RMS cell lines
(for NHL and NB, only cell lines were available).
The seven two-class data sets were analysed using
LIKNON and a Fisher score �lter-MPM/SVM wrapper
strategy.

2.2. Transcript pro8ling data: sporadic breast
carcinomas

Previously [41], cDNA microarrays were used to
monitor 5192 genes in 97 sporadic breast carcinoma
samples. These data were used to de�ne 70 genes
which discriminated between patients with distant
metastases ¡5 yr and those with no distant metas-
tases ¿5 yr.

Here, transcript pro�les for the 97 sporadic
breast carcinoma samples were downloaded from
http://www.rii.com/publications/vantveer.htm. For
each sample, the features in the 5192-dimensional
example vectors were the log ratios of the transcripts
in the sample of interest compared to a common
reference [41]. The two-class data set, 46 patients
with distant metastases ¡ 5 yr and 51 patients with
no distant metastases ¿ 5 yr, was analysed using
LIKNON.

2.3. Protein pro8ling data: ovarian cancer

Previously [35], SELDI-TOF mass spectroscopy
was used to generate spectra for serum samples from
una7ected and ovarian cancer patients. The protein
pro�les consisted of 15,154 Mass/Charge (M=Z) val-
ues measured in 200 samples. These data were used to
de�ne 5 “proteins” which di7erentiated non-maligant
from ovarian cancer samples.
Here, protein pro�les for the 200 serum samples

were downloaded from http://clinicalproteomics.steem.
com/. For each sample, the features in the 15,154-
dimensional example vectors were SELDI-TOF mass
spectrum amplitudes representing 15; 154 M=Z values
in the sample of interest [35]. Each M=Z value repre-
sents a low molecular weight molecule. The two-class
data set, 100 una7ected and 100 ovarian cancer serum
samples, was analysed using LIKNON.

2.4. LIKNON: simultaneous classi8cation and
relevant feature identi8cation

Consider two-class data, {(x1; y1); : : : ; (xN ; yN )},
consisting of N example vectors, xi ∈RP . The
label, yi ∈{+1;−1}, indicates whether the ex-
ample vector xi is equated with class 1 or with
class 2. For the two-class pro�ling data described
above, the number of example vectors, N , and their
dimensionality, P, are (i) small round blue cell tu-
mours, N=84; 51; 51; 30; 21; 28 and 23, and P=2308,
(ii) sporadic breast carcinomas, N =97 and P=5192
and (iii) ovarian cancer, N = 200 and P = 15;154.
Each feature xp in a P-dimensional example vector
corresponds to an observed transcript level or M=Z
value.
If two-class data can be separated by a linear deci-

sion boundary, the discriminating surface has the form

http://www.nhgri.nih.gov/DIR/Microarray/Supplement/
http://www.nhgri.nih.gov/DIR/Microarray/Supplement/
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of a hyperplane, wTx= b, parameterised in terms of a
weight vector, w∈RP , and o7set term, b∈R. A clas-
si�er is the hyperplane which satis�es the N inequal-
ities yi(wTxi − b)¿ 0 ∀i = {1; : : : ; N}. The learning
problem is to estimate the optimal weight vector w∗
and o7set b∗. Given this hyperplane, a vector x is
assigned to a class based on the sign of the corre-
sponding decision function. If sign(wT

∗x − b∗) = +1,
x is identi�ed with class 1, otherwise it is assigned to
class 2.
The problems of classi�cation and relevant fea-

ture identi�cation can be solved concurrently by
considering a sparse hyperplane, one for which the
weight vector w has few non-zero elements. Recall
that the class of a vector x is assigned according to
sign(z).

z = wTx− b=
P∑
p=1

wpxp − b=
∑
wp �=0

wpxp − b:

If a weight vector element is zero, wp=0, then feature
p in the example vector does not decide the class of x
and is thus “irrelevant”. Only a feature for which the
element is non-zero, wp �= 0, contributes to sign(z)
and is thus useful for discrimination. Thus, the prob-
lem of de�ning a small number of relevant features
(biomarkers) can be thought of as synonymous with
identifying a sparse hyperplane.
Learning a sparse hyperplane can be formu-

lated as an optimisation problem. Minimising the
L0 norm of the weight vector, ‖w‖0, minimises
the number of non-zero elements. The L0 norm is
‖w‖0= number of {p : wp �= 0}. Unfortunately, min-
imising an L0 norm is NP-hard. However, a tractable,
convex approximation is to replace the L0 norm with
the L1 norm [16]. Minimising the L1 norm of the
weight vector, ‖w‖1, minimises the sum of the abso-
lute magnitudes of the elements and sets most of the
elements to zero. The L1 norm is ‖w‖1 =

∑P
p=1 |wp|.

The optimisation problem becomes

min
w;b

‖w‖1

s: t: yi(wTxi − b)¿ 1

∀i∈{1; : : : ; N};
(1)

‖w‖1 =
P∑
p=1

|wp|; |wp|= sign(wp)wp:

Problem 1 can viewed as a special case of minimis-
ing a weighted L1 norm, minw

∑P
p=1 ap|wp|, in which

the vector of weighting coeOcients a is a unit vec-
tor, ap =1;∀p∈{1; : : : ; P}. In other words, all genes
are presumed to be equally good relevant feature can-
didates. Prior knowledge about the (un)importance
of feature p can be encoded by specifying the value
of ap.

If the data are not linearly separable, misclassi�ca-
tion can be accounted for by adding a non-negative
slack variable �i to each constraint and introducing a
weighted penalty term to the objective function

min
w;b;�

‖w‖1 + C
N∑
i=1

�i

s: t: yi(wTxi − b)¿ 1− �i;
�i¿ 0 ∀i∈{1; : : : ; N}:

(2)

The term
∑N

i=1 �i is an upper bound on the number
of misclassi�cations. The parameter C represents a
tradeo7 between misclassi�cation and sparseness. The
higher the value of C, the less sparse the solution.
Here, setting C=1 classi�ed correctly all the points in
the data sets encountered. However, the value of C can
be chosen more systematically via cross validation.
Problem (2) can be recast as a linear program-

ming problem by introducing extra variables up and
vp where wp = up − vp and |wp| = up + vp. These
variables are the pth elements of u; v∈RP . The L1
norm becomes ‖w‖1 =

∑P
p=1(up + vp) = u + v and

the problem can rewritten in a standard form as
follows:

min
u;v;b;�

(u + v) + C
N∑
i=1

�i

s: t: yi((u − v)Txi − b)¿ 1− �i;
�i¿ 0 ∀i∈{1; : : : ; N}
up¿ 0; vp¿ 0 ∀p∈{1; : : : ; P}:

(3)

Problem (3) minimises a linear function sub-
ject to linear constraints. This type of linear pro-
gramming problem has been well studied in
optimisation theory. There are eOcient algorithms for
solving problems involving N∼104 constraints and
(2 ∗ P + 1)∼104 variables. The code for LIKNON
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is available at http://www.cs.berkeley.edu/∼jordan/
liknon/.

2.5. Fisher score 8lter-MPM/SVM wrapper:
independent classi8cation and relevant feature
identi8cation

Given linearly separable two-class data, the task is
to determine a hyperplane wTz = b which separates
example vectors belonging to class 1 (x) and class
2 (y). Both MPMs and SVMs attempt to minimise
the generalisation error, i.e. misclassi�cation on future
data. The MPM framework seeks the hyperplane for
which the misclassi�cation probabilities for class 1,
P(wTx6 b), and class 2, P(wTy¿ b), are low. The
SVM framework seeks the unique discriminating hy-
perplane which maximises the margin separating the
classes. MPMs and SVMs are comparable in com-
plexity (detailed descriptions of these techniques are
available in Appendix A). Preliminary results (data
not shown) indicated that the two-class pro�ling data
examined here were indeed linearly separable. Hence,
the use of LIKNON and SVMs with linear kernels was
justi�ed.
MPMs and SVMs only address the problem of clas-

si�cation and prediction. In the �lter-wrapper strat-
egy, relevant feature identi�cation is an independent,
data preprocessing step. For simplicity and illustrative
purposes, SVM/MPM wrappers were employed in
conjunction with a Fisher score �lter. Given example
vectors assigned to class x or class y, the Fisher
score for feature p is given by Fp = ( Pxp − Pyp)2=
(�xp + �yp); Pxp and Pyp are the means of feature
p in the respective classes, whereas �xp and �yp
are standard deviations. Higher values signify more
discriminative features. Given P features ranked in
descending order according to their score F1; : : : ; FP ,
the Fisher score top-r ranked features are those
ranked 1; : : : ; r. A particular value of r signi�es a spe-
ci�c feature subset for use in estimating a classi�er.
Forward selection creates feature subsets by progres-
sively increasing the value of r in a user-de�ned
manner.
Although the recursive feature selection approach

utilises a separating hyperplane w [23], it is closer
to a �lter-wrapper strategy than to LIKNON. Features
are ordered based on |wp|, the absolute magnitude
of the elements of the weight vector (the range of

values for each feature are assumed to be the same).
Backward elimination creates feature subsets by re-
cursively removing the bottom 10% of features. The
feature subsets are used as input to a wrapper of
choice.

2.6. Computational experiments: LIKNON and
Fisher score 8lter-SVM/MPM wrapper

LIKNON creates a classi�er and identi�es relevant
features in a single pass through two-class data. The
Fisher score �lter-MPM/SVM wrapper strategy has
distinct feature subset generation and classi�cation
steps. A relevant subset is equated with the feature
subset of smallest cardinality that yields a classi�er
with the lowest generalisation error. These simultane-
ous and independent classi�cation and relevant feature
identi�cation strategies were compared by means of
the leave-one-out error, a surrogate for generalisation
error.
Given the choice of leave-one-out error as the per-

formance metric, LIKNON needs to be run twice for
a given two-class data set: �rst to identify relevant
features (a small subset l of the P input features)
and second as a classi�er which uses the resultant
l-dimensional vectors as input. Use of the conven-
tional error, number of misclassi�cations on a test set,
would require one pass through data. Results (data
not shown), indicated that for SRBCT Problem A,
all leave-one-out partitionings gave the same set of
LIKNON relevant genes as when all N example vectors
were used.
For each of the seven partitionings of the SRBCT

samples, Fisher scores for the P features in the ex-
ample vectors were computed. The Fisher score top-r
ranked features were used to generate 13 gene subsets
where r=1; 2; 4; 8; 16; 32; 64; 128; 256; 512; 1024; 2048
and 2308. Thus, LIKNON and the Fisher score �lter
de�ned 14 feature subsets that di7ered only in their
dimensionality and precise nature of the genes. The
leave-one-out error of SVMs/MPMs trained using
example vectors derived from every subset was
ascertained.
For a two-class data set, the leave-one-out error was

determined as follows. The N example vectors were
divided into an estimation set consisting of N − 1 ex-
ample vectors and a test set composed of the remain-
ing example. The MPM/SVM or LIKNON classi�er was

http://www.cs.berkeley.edu/~jordan/liknon/
http://www.cs.berkeley.edu/~jordan/liknon/
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used to predict the (known) class of the example in
the test set. This estimation and evaluation procedure
was repeated N times so that the class of each example
was assigned by a classi�er estimated using all other
examples. The leave-one-out error is the number of
misclassi�cations out of N .

3. Results

3.1. Transcript pro8les: small round blue cell
tumours

Two approaches for performing classi�cation
and relevant feature identi�cation given two-class
high-dimensional molecular pro�ling data were eval-
uated. LIKNON creates a classi�er and ascertains a
small number of relevant features simultaneously.
The widely used �lter-wrapper strategy estimates a
classi�er for every feature subset generated by an in-
dependent �ltering step. The performances of LIKNON

and a Fisher score �lter-MPM/SVM wrapper were
assessed by means of the leave-one-out error, a com-
mon proxy for generalisation error when there are
few example vectors.
MPMs are a viable alternative to SVMs for

solving the classi�cation and prediction problem
in a �lter-wrapper strategy. Table 1 presents the
leave-one-out error when the seven problems were
analysed using these classi�ers as the wrapper. Irre-
spective of the feature subset, MPMs and SVMs had
similar performance and generalised equally well.
Whereas SVMs and MPMs could operate directly in
high-dimensional spaces, the original study used the
10 dominant Principal Component Analysis compo-
nents of the 2308-dimensional example vectors as
input to arti�cial neural networks (ANNs) [26]. Since
MPMs and SVMS solve convex optimisation prob-
lems, they avoid the local minima problems which
plague ANNs.
LIKNON is computationally less demanding than the

�lter-MPM/SVM wrapper strategy in identifying rel-
evant features. Table 2 tabulates the relevant features
giving zero leave-one-out error for the seven two-class
SRBCT data sets. For a given data set, similar num-
bers of Fisher score and LIKNON relevant genes are
required and these are generally one to two orders
of magnitude smaller than the 2308 input features.

However, whilst LIKNON required one pass through
data, the �lter-wrapper approach required many runs
to pinpoint its subset. For Partition A, the 23 LIKNON

relevant features gave zero out of 84 leave-one-out
error, whereas the top-16 or top-32 Fisher score ranked
genes gave low, but not zero out of 84 leave-one-out
error (Table 1).
LIKNON relevant features should be regarded as a

small, though not necessarily unique set of biomark-
ers. Fig. 1 shows a histogram of Fisher scores for all
2308 genes overlaid with the Fisher scores of relevant
genes. LIKNON relevant genes are not necessarily asso-
ciated with high Fisher scores yet they yield classi�ers
with zero leave-one-out error. Higher Fisher scores
correspond to larger di7erences in the empirical dis-
tributions of transcript levels (more discriminative
features) so classi�ers trained with top-ranked genes
might be expected to generalise well. The results
reinforce the notion that many distinct relevant
feature subsets can �t the data equally well (see for
example [12]).
From a numerical perspective, the 84 SRBCT tran-

script pro�les are suOciently informative that biolog-
ical questions not considered in the original study can
be posed and answered (see also [32]).

3.2. Cellular microenvironment and SRBCT
classi8cation

A biological assessment of the LIKNON relevant
features reveals that the tissue or cell culture origin
of a sample a7ects the nature and number of rele-
vant genes. Table 3 lists these genes for the seven
two-class data sets. Four of these compared tumour
biopsies with tumour-derived cell lines in the context
of di7erent numbers of SRBCT classes, four (Par-
tition A: EWS, RMS, NHL, NB), two (Partition B:
EWS, RMS) and one (Partition F: EWS; G: RMS).
There were 23 relevant genes for Partition A, 21 for
B, 12 for F and 13 for G. Tissue and cell culture
microenvironments are manifestations of variations
in cell shape and cell-extracellular matrix interac-
tions. This di7erence is re@ected in relevant genes
such as actin � 2, SMA3 (smooth muscle actin 3),
and collagen type III �. The relevant genes represent
good targets for studying how tumour cells escape
quiescence and evade cell cycle arrest in vivo and
in vitro.
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Table 1
Prediction of SRBCT transcript pro�les using MPMs and SVMs.

Rank A (N = 84) B (N = 51) C (N = 51) D (N = 30) E (N = 21) F (N = 28) G (N = 23)

SVM MPM SVM MPM SVM MPM SVM MPM SVM MPM SVM MPM SVM MPM

1 10 10 7 8 3 5 2 2 1 1 17 2 2 2
2 9 9 1 3 3 3 2 1 0 0 2 1 1 1
4 6 5 2 3 4 2 2 1 0 0 0 0 0 1
8 9 4 2 4 4 1 2 0 0 2 1 0 0 0
16 8 4 3 0 0 0 2 2 0 6 2 2 0 5
32 5 2 2 11 1 4 2 12 0 1 1 4 0 1
64 3 15 3 2 0 6 0 0 0 0 1 0 0 3
128 1 2 2 3 0 3 3 1 0 0 1 2 0 1
256 0 1 0 0 0 1 3 1 0 1 1 0 0 0
512 0 0 0 0 0 1 3 2 0 2 1 1 0 0
1024 0 0 0 0 0 0 3 1 0 1 2 2 0 0
2048 2 1 0 0 0 1 2 1 1 0 2 2 0 0
2308 3 1 2 1 4 1 1 1 0 1 2 4 0 0

The seven two-class data sets and numbers of example vectors in each class (total N ) are Partition A, 46 EWS/RMS tumour biopsies
and 38 EWS/RMS/NHL/NB cell lines; Partition B, 21 EWS/RMS cell lines and 30 EWS/RMS tumour biopsies; Partition C, 28 EWS
tumour biopsies/cell lines and 23 RMS tumour biopsies/cell lines; Partition D, 17 EWS tumour biopsies and 13 RMS tumour biopsies;
Partition E, 11 EWS cell lines and 10 RMS cell lines; Partition F, 17 EWS tumour biopsies and 11 EWS cell lines; and Partition G, 13
RMS tumour biopsies and 10 RMS cell lines. For each partition, the table gives the leave-one-out error out of N for an SVM or MPM
estimated using the feature subset indicated. The �rst 12 feature subsets are the Fisher score top-r ranked genes where r takes on the
value given. The �nal “subset” corresponds to all features in the original 2308-dimensional example vectors [26].

Table 2
Identi�cation of relevant genes in SRBCT transcript pro�ling data using LIKNON and a Fisher score �lter-MPM/SVM wrapper strategy

Name Class 1 samples Class 2 samples N Classi�er

SVM MPM LIKNON

A EWS/RMS tumour EWS/RMS/NHL/NB cell line 84 256 512 23
B EWS/RMS cell line EWS/RMS tumour 51 256 16 21
C EWS tumour/cell line RMS tumour/cell line 51 16 8 8
D EWS tumour RMS tumour 30 64 64 8
E EWS cell line RMS cell line 21 2 2 2
F EWS tumour EWS cell line 28 4 4 12
G RMS tumour RMS cell line 23 4 8 13

For each of the seven two-class data sets, the total number of example vectors N is listed. “SVM” and “MPM” give the Fisher score
feature subset of smallest cardinality that yielded a classi�er with zero out of N leave-one-out error (taken from Table 1). “LIKNON” gives
the cardinality of the relevant features identi�ed; each feature subset yielded a LIKNON classi�er with zero out of N leave-one-out error.

Transcriptional di7erences between tumour biop-
sies and cell lines confound attempts to de�ne
biomarkers for classifying SRBCTs. Three Partitions
compared EWS and RMS in the context of tumour
biopsies and cell lines (Partition C), tumour biopsies
(Partition D) and cell lines (Partition E). The relevant
genes for EWS tumour biopsies and RMS tumour
biopsies (Partition D) may constitute clinically useful

biomarkers for �ne-grained cancer class diagnosis
and/or imaging. Of the 96 EWS, RMS, NHL and NB
cancer class markers identi�ed originally [26], 11
are markers for the cellular microenvironment of the
sample.
The results reiterate the view that information pro-

vided by interactions with neighbouring cells, the
composition and organisation of the surrounding
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Fig. 1. Histograms of Fisher scores for all 2308 genes in the seven SRBCT binary problems. The abscissa represents the Fisher score
and the ordinate the number of genes with that score. As might be expected, most genes have low scores and far fewer genes have high
scores. Open triangles mark the Fisher scores of the LIKNON relevant genes. For each problem, the number of triangles is the same as
the entry in the “LIKNON” column of Table 2.
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Table 3
LIKNON relevant genes for the seven SRBCT two-class data sets

A B C D E F G Image Id Gene description

• 23019 Guanine nucleotide binding protein (G protein), alpha stimulating activity polypeptide 1
• 27549 Heterogeneous nuclear ribonucleoprotein A1
• 745343 (57) Regenerating islet-derived 1 alpha (pancreatic stone protein, pancreatic thread protein)
• 809910 (44) Interferon-inducible
• 1461138 H4 histone family, member G
• 159455 Similar to vaccinia virus HindIII K4L ORF
• 845363 Non-metastatic cells 1, protein (NM23A) expressed in
• 511091 Human protein immuno-reactive with anti-PTH polyclonal antibodies mRNA, partial cds
• 782811 High-mobility group (nonhistone chromosomal) protein isoforms I and Y
• 244652 SET translocation (myeloid leukemia-associated)
• • • 814260 (75) Follicular lymphoma variant translocation 1
• • 1493527 Asparagine synthetase
• • 839736 (79) Crystallin, alpha B
• • 882522 Argininosuccinate synthetase
• • • 755474 Isoleucine-tRNA synthetase
• • • 882484 Chaperonin containing TCP1, subunit 7 (eta)
• • • 122159 (40) Collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
• • • • 45542 (62) Human insulin-like growth factor binding protein 5 (IGFBP5) mRNA
• • • 379708
• • • 530814 Selenoprotein P, plasma, 1
• • • 470261 SMA3
• • • 868304 (83) Actin, alpha 2, smooth muscle, aorta
• • • • • 51293 Aminoacylase 1

• 1492147 Ribosomal protein S4, X-linked
• 1492412 Ubiquitin A-52 residue ribosomal protein fusion product 1
• 731308 Citrate synthase
• 234376 Homo sapiens mRNA; cDNA DKFZp564F112 (from clone DKFZp564F112)
• • • 878798 Beta-2-microglobulin
• • 757489 Tubulin, alpha 2
• • 43733 (9) Glycogenin 2
• • 1492104 Tubulin, beta, 2
• • 22040 Matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase)
• • • • • 296448 (1) Insulin-like growth factor 2 (somatomedin A)

• 307660 Fatty acid binding protein 4, adipocyte
• 377461 (18) Caveolin 1, caveolae protein, 22kD
• 1476065 Leukemia-associated phosphoprotein p18 (stathmin)
• • • 207274 (2) Human DNA for insulin-like growth factor II (IGF-2); exon 7 and additional ORF

• 214990 Gelsolin (amyloidosis, Finnish type)
• 52076 (19) Olfactomedinrelated ER localized protein
• 51448 Activating transcription factor 3
• 842784 Phosphate carrier, mitochondrial

• 878833 Ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)
• 743230 Human silencing mediator of retinoid and thyroid hormone action (SMRT) mRNA
• 309864 Jun B proto-oncogene

• 128302 Parathymosin
• 298062 (25) Troponin T2, cardiac
• 823851 AE-binding protein 1
• 785847 Ubiquitin-conjugating enzyme E2M (homologous to yeast UBC12)
• 244618 (7) ESTs

Partition A, EWS/RMS tumour biopsies and EWS/RMS/NHL/NB cell lines; Partition B, EWS/RMS tumour biopsies and EWS/RMS
cell lines; Partition C, EWS tumour biopsies/cell lines and RMS tumour biopsies/cell lines; Partition D, EWS tumour biopsies and RMS
tumour biopsies; Partition E, EWS cell lines and RMS cell lines; Partition F, EWS tumour biopsies and EWS cell lines; and Partition
G, RMS tumour biopsies and RMS cell lines. For 11 clones, the number in parenthesis denotes its rank in the 96 genes de�ned by the
original study as biomarkers for the four SRBCT cancer classes irrespective the origin of the sample (ranks are taken from Table 3 of
Supplementary Methods [26]).
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extracellular matrix, and signals from soluble fac-
tors lead to cells in tissue and cell culture mi-
croenvironments operating in distinctly di7erent
contexts [7]. Whereas most tissues are normally
in a state of low proliferation, cell culture sys-
tems have been designed to study and to propagate
cells in a more de�ned and simpli�ed environment.
Thus, identifying clinically relevant biomarkers for
cancer classi�cation requires that the material assayed
capture critical determinants of in situ cellular pheno-
types.

3.3. Transcript pro8les: sporadic breast carcinomas

LIKNON performed well when applied to sporadic
breast carcinoma transcript pro�les and a two-class
data set for patients with distant metastases ¡5 yr
and those with no distant metastases¿5 yr [41]. The
leave-one-out error for the 97 5192-dimensional ex-
ample vectors was 1 out of 97.
The cellular microenvironment appears to be a fac-

tor in determining disease outcome. Table 4 lists the
72 LIKNON relevant genes. These prognostic markers
include genes involved in cell structure (troponin T1,
keratin 13, keratin 15, keratin 19, actin �2), cell–cell
communication (cadherin 7, cadherin 18), and cell
signalling (cysteine-rich angiogenic inducer 61, tissue
factor pathway inhibitor 2, small inducible cytokine
subfamily B).
The relevant genes include known biologically

and clinically useful biomarkers. For example, the
neuropeptide Y receptor Y1 has been found with
high incidence in situ invasive and metastatic breast
cancer [37]. Screening of axillary lymph nodes for
mammaglobin expression increased the detection of
breast cancer metastases compared with routine his-
tology [9]. Breast carcinoma ampli�ed sequence 1
is highly expressed in three ampli�ed breast cancer
cell lines and in one breast tumor [13]. Keratin 19
is a characteristic of a human breast epithelial cell
line with stem cell properties [22]. The open reading
frame on human chromosome 12 (HsC12orf3) is a
LIKNON relevant feature [21] for a 1987-dimensional
transcript pro�ling data set consisting of 13 gas-
trointestinal stromal tumours and 6 spindle cell tu-
mours from locations outside the gastrointestinal
tract [1].

The original study [41] de�ned 70 genes as prog-
nostic markers. Three of these, two unannotated
genes (AL080059, Contig 48328RC) and CEGP1,
are LIKNON relevant genes. A PSI-BLAST [2] search
using the CEGP1 protein sequence revealed sig-
ni�cant similarity to matrilin-2, a member of a
�lament forming family of proteins distributed in
extracellular matrices [30]. Thus, the CEGP1 gene
may encode a new matrilin with a role in breast
cancer.
Seven genes designated as prognostic markers by

two independent studies may be noteworthy candi-
dates for subsequent experimental and clinical study.
The 70 original prognostic markers were amongst 231
genes identi�ed as signi�cantly correlated with dis-
ease outcome [41]. Four of the 72 LIKNON relevant
genes in addition to the three mentioned above were
found in this set of 231 genes. These genes were phos-
phatidylinositol (4; 5) bisphosphate 5-phosphatase A,
paired basic amino acid cleaving system 4, prefer-
entially expressed antigen in melanoma, and ESTs
(Contig 48328, Contig 55725).

3.4. Protein pro8les: ovarian cancer

The performance of LIKNON on protein pro�les is
comparable to its performance on transcript pro�ling
data. The two-class data set encompassed 100 unaf-
fected and 100 ovarian cancer serum samples and fea-
tures corresponded toM=Z values rather than transcript
abundances [35]. The leave-one-out error for the 200
15,154-dimensional example vectors was 3 out of 200.
The number of features in the example vectors is con-
siderably greater than the 2308 and 5192 transcript
levels in the SRBCT and breast carcinoma transcript
pro�les.
The origin and precise nature of the proteins or pep-

tides corresponding to the 51 LIKNON relevant features
awaits future experimental determination. Thus, it is
not possible to comment on their biological signi�-
cance in ovarian cancer.

4. Discussion

The success of LIKNON in solving classi�cation and
relevant feature identi�cation problems associated
with transcript and protein pro�les augurs well for its
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Table 4
LIKNON relevant genes for a two-class data set involving sporadic breast carcinomas and 46 patients with distant metastases ¡5 yr and
51 patients with no distant metastases ¿5 yr

Id Name Description

U45975 PIB5PA Phosphatidylinositol (4,5) bisphosphate 5-phosphatase, A
NM 001611 ACP5 Acid phosphatase 5, tartrate resistant
NM 001635 AMPH Amphiphysin (Sti7-Mann syndrome with breast cancer 128kD autoantigen)
NM 000909 NPY1R Neuropeptide Y receptor Y1
NM 001647 APOD Apolipoprotein D
NM 001444 FABP5 Fatty acid binding protein 5 (psoriasis-associated)
NM 001657 AREG Amphiregulin (schwannoma-derived growth factor)
NM 002411 MGB1 Mammaglobin 1
NM 002509 NKX2B NK-2 (Drosophila) homolog B
NM 002570 PACE4 Paired basic amino acid cleaving system 4
NM 002652 PIP Prolactin-induced protein
NM 002809 PSMD3 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 3
NM 002820 PTHLH Parathyroid hormone-like hormone
NM 004291 CART Cocaine- and amphetamine-regulated transcript
NM 012342 NMA Putative transmembrane protein
NM 006186 NR4A2 Nuclear receptor subfamily 4, group A, member 2
NM 003657 BCAS1 Breast carcinoma ampli�ed sequence 1
U56725 HSPA2 Heat shock 70kD protein 2
NM 005181 CA3 Carbonic anhydrase III, muscle speci�c
U17077 BENE BENE protein
NM 006103 HE4 Epididymis-speci�c, whey-acidic protein type, four-disul�de core; putative ovarian carcinoma marker
NM 006115 PRAME Preferentially expressed antigen in melanoma
NM 002362 MAGEA4 Melanoma antigen, family A, 4
NM 020974 CEGP1 (*) Homo sapiens CEGP1 protein (CEGP1), mRNA
NM 006398 UBD Diubiquitin
NM 004988 MAGEA1 Melanoma antigen, family A, 1 (directs expression of antigen MZ2-E)
NC 001807 ND1 Human mitochondrion, complete genome
NM 007359 MLN51 MLN51 protein
NM 004950 DSPG3 Dermatan sulphate proteoglycan 3
NM 000169 GLA Galactosidase, alpha
NM 000239 LYZ Lysozyme (renal amyloidosis)
NM 001267 CHAD Chondroadherin
NM 001062 TCN1 Transcobalamin I (vitamin B12 binding protein, R binder family)
NM 000518 HBB Hemoglobin, beta
NM 001321 CSRP2 Cysteine and glycine-rich protein 2
NM 000668 ADH1B Alcohol dehydrogenase 2 (class I), beta polypeptide
NM 005794 HEP27 Short-chain alcohol dehydrogenase family member
NM 001554 CYR61 Cysteine-rich, angiogenic inducer, 61
NM 006528 TFPI2 Tissue factor pathway inhibitor 2
NM 001756 SERPINA6 Serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 6
Contig53506 TMPRSS2 Transmembrane protease, serine 2
NM 006419 SCYB13 Small inducible cytokine B subfamily (Cys-X-Cys motif), member 13 (B-cell chemoattractant)
NM 004887 SCYB14 Small inducible cytokine subfamily B (Cys-X-Cys), member 14 (BRAK)
NM 001555 IGSF1 Immunoglobulin superfamily, member 1
M63438 IGKC Immunoglobulin kappa constant
V00522 HLA-DRB3 Major histocompatibility complex, class II, DR beta 3
NM 002122 HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1
NM 004361 CDH7 Homo sapiens cadherin 7, type 2 (CDH7), mRNA
NM 004934 CDH18 Cadherin 18, type 2
NM 003283 TNNT1 Troponin T1, skeletal, slow
NM 002274 KRT13 Keratin 13
NM 002275 KRT15 Keratin 15
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Table 4 (continued)

Id Name Description

NM 002276 KRT19 Keratin 19
NM 001615 ACTG2 Actin, gamma 2, smooth muscle, enteric
AL080059 (*) Homo sapiens mRNA; cDNA DKFZp564H142 (from clone DKFZp564H142)
NM 014665 KIAA0014 KIAA0014 gene product
AK000451 Homo sapiens cDNA FLJ20444 �s, clone KAT05128
NM 020373 C12orf3 Chromosome 12 open reading frame 3
AB040886 KIAA1453 KIAA1453 protein
NM 017852 FLJ20510 Hypothetical protein FLJ20510
Contig7755 RC MGC5395 ESTs
AI497657 RC GNG4 ESTs
Contig48328 RC (*) ESTs

Contig55725 RC, ESTs; Contig50122 RC, ESTs; Contig29015 RC, ESTs; Contig44909 RC, ESTs; Contig38438 RC, ESTs
Contig37946 RC, ESTs; Contig36499 RC, ESTs; Contig45511 RC, ESTs; Contig39285 RC, ESTs

The leave-one-out error was 1 out of 97. The three genes present in the 70 prognostic markers de�ned by the original study [41] are
denoted (*).

utility in analysing other types of high-dimensional
molecular pro�ling data. Biologically, the results re-
veal a role for the cellular microenvironment in breast
cancer prognosis and its importance in developing
clinical decision support systems for cancer classi�-
cation. The small number of relevant features de�ned
here present tractable targets (putative biomarkers)
for investigations of basic mechanisms, validation via
high-density tissue microarrays [27], and eventual
deployment in the clinic.
LIKNON is based on the L1 norm optimal hyperplane

so it is applicable only for linear decision boundaries.
The L2 norm optimal hyperplane, or SVM, is more
general in that it can handle non-linear functions spec-
i�ed via a positive de�nite but otherwise arbitrary
kernel function. Current evidence suggests that
this restriction may not be limiting because linear
separability is a facet of the two-class data sets ex-
amined here and elsewhere [21] (unpublished).
The statistical task addressed by LIKNON can be

viewed as forward classi�cation: given samples as-
signed to classes, estimate good classi�ers. All seven
two-class partitionings of the SRBCT samples yielded
classi�ers with zero leave-one-out error. The inverse
classi�cation problem can be thought of as identi-
fying other, equally predictive partitionings of the
data. These new classi�cations and attendant relevant
features would require the formulation of novel

biological hypotheses aimed at explaining the com-
mon aspects of samples identi�ed with each class.
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Appendix A. Supplementary methods

The minimax probability machine (MPM) [28] is a
newly formulated technique for handling classi�cation
and prediction problems. As discussed below, MPMs
minimise directly an upper bound on the generalisa-
tion error whereas Support Vector Machines (SVMs)
focus on the associated margin. MPMs and SVMs are
comparable in complexity and possess the same ad-
vantage over ANNs. Both are less prone to over�tting
and by solving convex optimisation problems, they
avoid the local minima which plague ANNs. They
can operate in high-dimensional spaces in contrast
to ANNs where, for example, the dimensionality of
the SRBCT 2308 feature input was reduced by
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considering only the 10 dominant Principal Compo-
nent Analysis components [26].

A.1. Minimax probability machine

Let x and y denote random vectors in a two-class
classi�cation and prediction problem with means
and covariance matrices given by x∼( Px;�x) and
y∼( Py;�y). “∼” signi�es that the random variable
has the speci�ed mean and covariance matrix but
that the distribution is otherwise unconstrained
(x; Px; y; Py∈RP;�x;�y ∈RP×P). The hyperplane
wTz = b separates the two classes with maximal
probability with respect to all distributions having the
speci�ed means and covariance matrices. The mini-
max framework minimises the generalisation error by
seeking the hyperplane for which the misclassi�ca-
tion probabilities, Pr(wTx6 b) and Pr(wTy¿ b), are
low. The optimisation problem becomes

min
�;w;b

�

s: t: �¿ sup
x∼( Px;�x)

Pr{wTx6 b};

�¿ sup
y∼( Py;�y)

Pr{wTy¿ b}:
(A.1)

The quantity � can be interpreted as an upper bound
on the generalisation error. The supremum in both
constraints are computed via a theorem stated in
Bertsimas and Sethuraman [5]:

sup
y∼( Py;�y)

Pr{wTy¿ b}= 1
1 + d2

with

d2 = inf
wTy¿b

(y − Py)T�−1
y (y − Py): (A.2)

Problem (A.1) can be recast as

min
w

√
wT�xw+

√
wT�yw

s:t: wT( Px− Py) = 1: (A.3)

The optimal b∗ is obtained from

b∗ = wT
∗ Px− �∗

√
wT∗�xw∗ = wT

∗ Py + �∗
√
wT∗�yw∗;

�∗ = 1=(
√
wT∗�xw∗ +

√
wT∗�yw∗); (A.4)

where w∗ is the optimal w in (A.3). The optimal
�∗=1=(1+�2∗). Problem (A.3) is a second-order cone
programme (SOCP). EOcient algorithms for solving
this type of convex optimisation problem are avail-
able [8,33]. MPMs were implemented using an itera-
tive scheme [2].

A.2. Support vector machines

The SVM framework also seeks a hyperplane but its
geometric underpinning results in the introduction of a
quantity termed a margin [14]. Amongst all separating
hyperplanes, there is a unique hyperplane which yields
the maximum margin of separation between the two
classes. SVMs minimise the generalisation error by
�nding this optimal hyperplane, one which maximises
this attendant margin. The �nal optimisation problem
is

max
�
L(�) =−1

2

∑
ij

�i�jK(zi ; zj) +
∑
i

�i

s: t:06 �i6C; (A.5)

∑
i∈ Class1

�i =
∑

j∈Class2

�j; (A.6)

where �i and �j are dual variables. C is a user-de�ned
penalty determining the number of permissible
misclassi�cations; higher values signify that fewer
outliers are ignored (C → ∞ corresponds to the hard
margin case). Here, C was �xed at 100. Preliminary
experiments indicated that the two-class data sets
were linearly separable so only linear kernels,
K(zi ; zj) = zTi zj, were considered. Thus, the optimal
values for w∗ and b∗ are w∗ =

∑
i∈Class1 �izi −∑

j∈Class2 �jzj and b∗ is computed from the KKT
conditions (see [11]).
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