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Abstract

When constructing a classifier, the probability of correct classification of future data points should
be maximized. We consider a binary classification problem where the mean and covariance matrix
of each class are assumed to be known. No further assumptions are made with respect to the class-
conditional distributions. Misclassification probabilities are then controlled in a worst-case setting:
that is, under all possible choices of class-conditional densities with given mean and covariance
matrix, we minimize the worst-case (maximum) probability of misclassification of future data points.
For a linear decision boundary, this desideratum is translated in a very direct way into a (convex)
second order cone optimization problem, with complexity similar to a support vector machine
problem. The minimax problem can be interpreted geometrically as minimizing the maximum of
the Mahalanobis distances to the two classes. We address the issue of robustness with respect to
estimation errors (in the means and covariances of the classes) via a simple modification of the
input data. We also show how to exploit Mercer kernels in this setting to obtain nonlinear decision
boundaries, yielding a classifier which proves to be competitive with current methods, including
support vector machines. An important feature of this method is that a worst-case bound on the
probability of misclassification of future data is always obtained explicitly.

Keywords: classification, kernel methods, convex optimization, second order cone programming

1. Introduction

Consider the problem of choosing a linear discriminant by minimizing the probabilities that data
vectors fall on the wrong side of the boundary. One way to attempt to achieve this is via a
generative approach in which one makes distributional assumptions about the class-conditional
densities and thereby estimates and controls the relevant probabilities. The need to make distri-
butional assumptions, however, casts doubt on the generality and validity of such an approach,
and in discriminative solutions to classification problems it is common to attempt to dispense with
class-conditional densities entirely.

Rather than avoiding any reference to class-conditional densities, it might be useful to attempt
to control misclassification probabilities in a worst-case setting; that is, under all possible choices
of class-conditional densities with a given mean and covariance matrix, minimize the worst-case
(maximum) probability of misclassification of future data points. Such a minimax approach could
be viewed as providing an alternative justification for discriminative approaches. In this paper we
show how such a minimax program can be carried out in the setting of binary classification. Our
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approach involves exploiting the following powerful theorem due to Marshall and Olkin (1960),
which has recently been put in the light of recent convex optimization techniques by Popescu and
Bertsimas (2001):

sup
y∼(ȳ,Σy)

Pr{y ∈ S} =
1

1 + d2
, with d2 = inf

y∈S
(y − ȳ)T Σy

−1(y − ȳ),

where y is a random vector, S is a given convex set, and where the supremum is taken over all
distributions for y having mean ȳ and covariance matrix Σy (assumed to be positive definite for
simplicity). This theorem provides us with the ability to bound the probability of misclassifying
a point, without making Gaussian or other specific distributional assumptions. We will show how
to exploit this ability in the design of linear classifiers, for which the set S is a half-space. The
usefulness of this theorem will also be illustrated in the case of unsupervised learning, for the single
class problem.

One of the appealing features of this formulation is that one obtains an explicit upper bound on
the probability of misclassification of future data: 1/(1 + d2). We will also show that the learning
problem can be interpreted geometrically, as yielding that hyperplane that minimizes the maximum
of the Mahalanobis distances from the class means to the hyperplane.

Another feature of this formulation is the possibility to study directly the effect of using plug-in
estimates for the means and covariance matrices rather then their real, but unknown, values. We
will assume the real mean and covariance are unknown, but bounded in a convex region and show
how this affects the resulting classifier: it amounts to incorporating a regularization term in the
estimator and results in an increase in the upper bound on the probability of misclassification of
future data.

A third important feature of this approach is that, as in linear discriminant analysis (Mika et al.,
1999), it is possible to generalize the basic methodology to allow nonlinear decision boundaries via
the use of Mercer kernels. The resulting nonlinear classifiers are competitive with existing classifiers,
including support vector machines.

The paper is organized as follows: in Section 2 we present the minimax formulation for linear
classifiers and our main results. In Section 3, we show how a simple modification of our method
makes it possible to treat estimation errors in the mean and covariance matrices within the minimax
formulation. The single class case is studied in Section 4. In Section 5 we deal with kernelizing the
method. Finally, we present empirical results in Section 6. The results in Sections 2, 5 and 6 have
been presented earlier (Lanckriet et al., 2002a), and are expanded significantly in the current paper,
while the results in Sections 3 and 4 are new. Matlab code to build and evaluate the different types
of classifiers can be downloaded from http://robotics.eecs.berkeley.edu/ g̃ert/.

2. Minimax Probabilistic Decision Hyperplane

In this section, the minimax formulation for linear classifiers is presented. After defining the problem
in Section 2.1, we state the main result in Section 2.2 and propose an optimization algorithm in
Section 2.3. In Section 2.4 and 2.5, we show how the optimization problem can be interpreted in a
geometric way. Section 2.6 addresses the effect of making Gaussian assumptions and the link with
Fisher discriminant analysis is discussed in Section 2.7.

2.1 Problem Definition

Let x and y denote random vectors in a binary classification problem, modelling data from each
of two classes, with means and covariance matrices given by (x̄, Σx) and (ȳ, Σy), respectively, with
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x, x̄,y, ȳ ∈ Rn, and Σx, Σy ∈ Rn×n both symmetric and positive semidefinite. With a slight abuse
of notation, we let x and y denote the classes.

We wish to determine a hyperplane H(a, b) = {z | aTz = b}, where a ∈ Rn\{0} and b ∈ R,
which separates the two classes of points with maximal probability with respect to all distributions
having these means and covariance matrices. This is expressed as

max
α,a 6=0,b

α s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α (1)

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ α,

where the notation x ∼ (x̄, Σx) refers to the class of distributions that have prescribed mean x̄ and
covariance Σx, but are otherwise arbitrary; likewise for y.

Future points z for which aTz ≥ b are then classified as belonging to the class associated with
x, otherwise they are classified as belonging to the class associated with y. In formulation (1) the
term 1− α is the worst-case (maximum) misclassification probability, and our classifier minimizes
this maximum probability.

For simplicity, we will assume that both Σx and Σy are positive definite; our results can be
extended to the general positive semidefinite case, using the appropriate extension of Marshall and
Olkin’s result, as discussed by Popescu and Bertsimas (2001). However, we do not handle this case
here, since in practice we always add a regularization term to the covariance matrices. A complete
discussion of the choice of the regularization parameter is given in Section 3.

2.2 Main Result

We begin with a lemma that will be used in the sequel.

Lemma 1 Using the notation of Section 2.1, with ȳ, Σy positive definite, a 6= 0, b given, such that
aT ȳ ≤ b and α ∈ [0, 1), the condition

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ α (2)

holds if and only if

b− aT ȳ ≥ κ(α)
√

aT Σya, (3)

where κ(α) =
√

α
1−α .

Proof of lemma: In view of the result of Marshall and Olkin (1960) and using S = {aTy ≥ b},
we obtain:

sup
y∼(ȳ,Σy)

Pr{aTy ≥ b} =
1

1 + d2
, with d2 = inf

aT y≥b
(y − ȳ)T Σy

−1(y − ȳ). (4)

The minimum distance d admits a simple closed-form expression (see Appendix A):

d2 = inf
aT y≥b

(y − ȳ)T Σy
−1(y − ȳ) =

max((b− aT ȳ), 0)2

aT Σya
. (5)
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The probability constraint (2) in this lemma is equivalent to supy∼(ȳ,Σy) Pr{aTy ≥ b} ≤ 1 − α.
Using (4), this becomes 1 − α ≥ 1/(1 + d2) or d2 ≥ α/(1 − α). Taking (5) into account, this is
expressed as

max((b− aT ȳ), 0) ≥ κ(α)
√

aT Σya where κ(α) =
√

α

1− α
.

If aT ȳ ≤ b, we have max((b− aT ȳ), 0) = b− aT ȳ and this indeed reduces to

b− aT ȳ ≥ κ(α)
√

aT Σya.

This concludes the proof. ¤

Our main result is stated below.

Theorem 2 If x̄ = ȳ, then the minimax probability decision problem (1) does not have a meaningful
solution: the optimal worst-case misclassification probability that we obtain is 1−α∗ = 1. Otherwise,
an optimal hyperplane H(a∗, b∗) exists, and can be determined by solving the convex optimization
problem:

κ−1
∗ := min

a

√
aT Σxa +

√
aT Σya s.t. aT (x̄− ȳ) = 1, (6)

and setting b to the value

b∗ = aT
∗ x̄− κ∗

√
aT∗ Σxa∗,

where a∗ is an optimal solution of (6). The optimal worst-case misclassification probability is
obtained via

1− α∗ =
1

1 + κ2∗
=

(√
aT∗ Σxa∗ +

√
aT∗ Σya∗

)2

1 +
(√

aT∗ Σxa∗ +
√

aT∗ Σya∗
)2 .

If either Σx or Σy is positive definite, the optimal hyperplane is unique.

Once an optimal hyperplane – called a minimax probabilistic decision hyperplane – is found,
classification of a new data point znew is done by evaluating sign(aT∗ znew− b∗): if this is +1, znew is
classified as belonging to class x, otherwise znew is classified as belonging to class y. This algorithm
for binary classification is called the Minimax Probability Machine (MPM) for binary classification.

Proof of theorem: Consider the second constraint in (1), with given a 6= 0. Using Lemma 1,
this constraint can be expressed as

b− aT ȳ ≥ κ(α)
√

aT Σya where κ(α) =
√

α

1− α
. (7)

We can handle the first constraint in (1) in a similar way (just write aTx ≤ b as −aTx ≥ −b and
apply the result (7)). Notice that we can indeed apply Lemma 1 in both cases: when maximizing
α, we prefer a hyperplane for which aT ȳ ≤ b ≤ aT x̄, since otherwise α = 0.
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The optimization problem (1) then becomes:

max
α,a 6=0,b

α s.t. −b + aT x̄ ≥ κ(α)
√

aT Σxa (8)

b− aT ȳ ≥ κ(α)
√

aT Σya.

Since κ(α) is a monotone increasing function of α, we can change variables and rewrite our problem
as

max
κ,a 6=0,b

κ s.t. aT ȳ + κ
√

aT Σya ≤ b ≤ aT x̄− κ
√

aT Σxa, (9)

the optimal values of κ and of the worst-case misclassification probability 1− α being related by

α∗ =
κ2∗

1 + κ2∗
.

Further, we can eliminate b from (9):

max
κ,a 6=0

κ s.t. aT ȳ + κ
√

aT Σya ≤ aT x̄− κ
√

aT Σxa. (10)

Since we want to maximize κ, the inequalities in (9) will become equalities at the optimum. An
optimal value of b will thus be given by

b∗ = aT
∗ x̄− κ∗

√
aT∗ Σxa∗ = aT

∗ ȳ + κ∗
√

aT∗ Σya∗,

where a∗ and κ∗ are optimal values of a and κ respectively. Rearranging the constraint in (10), we
obtain the optimization problem

max
κ,a 6=0

κ s.t. aT (x̄− ȳ) ≥ κ

(√
aT Σxa +

√
aT Σya

)
. (11)

If x̄ = ȳ, then a 6= 0 implies κ = 0, which in turn yields α = 0. In this case, the minimax
probability decision problem (1) does not have a meaningful solution, and the optimal worst-case
misclassification probability is 1− α∗ = 1.

Let us proceed with the assumption x̄ 6= ȳ. We observe that condition (11) is positively
homogeneous in a: if a satisfies (11), sa with s ≥ 0 also does. Furthermore, (11) implies aT (x̄−ȳ) ≥
0. Since x̄ 6= ȳ, we can set aT (x̄ − ȳ) = 1 without loss of generality. This implies a 6= 0, and in
turn,

√
aT Σxa +

√
aT Σya 6= 0. Thus we can write the optimization problem as

max
κ,a

κ s.t. κ ≤
(√

aT Σxa +
√

aT Σya
)−1

aT (x̄− ȳ) = 1,

which allows us to eliminate κ:

min
a
‖Σx

1/2a‖2 + ‖Σy
1/2a‖2 s.t. aT (x̄− ȳ) = 1. (12)

The above problem is convex, feasible (since x̄ 6= ȳ), and its objective is bounded below, therefore
there exists an optimal point, a∗. When either Σx or Σy is positive definite, the strict convexity of
the objective function implies that the optimal point is unique. This ends our proof of Theorem 2.
¤
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2.3 Solving the Optimization Problem

Problem (6) is a convex optimization problem, more precisely a second order cone program (SOCP)
(Boyd and Vandenberghe, 2001). General-purpose programs such as SeDuMi (Sturm, 1999) or
Mosek (Andersen and Andersen, 2000) can handle those problems efficiently. These codes use
interior-point methods for SOCP (Nesterov and Nemirovsky, 1994; Lobo et al., 1998), which yield
a worst-case complexity of O(n3). Of course, the first and second moments of x,y must be estimated
beforehand, using for example sample moment plug-in estimates x̂, ŷ, Σ̂x, Σ̂y for x̄, ȳ, Σx, and Σy

respectively. This brings the total complexity to O(n3 + Nn2), where N is the number of data
points. This is the same complexity as the quadratic programs one has to solve in linear support
vector machines (Schölkopf and Smola, 2002).

To gain more insight into the nature of the problem, we propose the following simple and
perhaps more transparent iterative least-squares method to globally solve the problem. Similar
iterative procedures to solve weighted least-squares problems have been applied before in the SVM
literature to achieve an approximate solution as in the Least Squares SVM described by Suykens
and Vandewalle (1999), or an exact solution as by Pérez-Cruz et al. (2001).

Notice that we can write a = a0+Fu, where u ∈ Rn−1, a0 = (x̄−ȳ)/‖x̄−ȳ‖22, and F ∈ Rn×(n−1)

is an orthogonal matrix whose columns span the subspace of vectors orthogonal to x̄ − ȳ. Hence,
we can eliminate the constraint in (12) and write this as an unconstrained SOCP:

min
u
‖Σx

1/2(a0 + Fu)‖2 + ‖Σy
1/2(a0 + Fu)‖2.

An equivalent form is

inf
u,β>0,η>0

β +
1
β
‖Σx

1/2(a0 + Fu)‖22 + η +
1
η
‖Σy

1/2(a0 + Fu)‖22. (13)

This equivalence can be understood by fixing u and minimizing the objective in (13) with respect
to β and η. Notice that a factor 1

2 over each term has been dropped in (13). This is irrelevant for
the optimal value of u, β and η, although it has to be taken into account when computing κ∗ and
α∗.

The function to be minimized is jointly convex in u, β, η (as follows easily from the convexity of
the function f(x, t) = x2/t over the domain {(x, t) : x ∈ R, t > 0}). To minimize (13), we used an
iterative least-squares approach based on the above formulation, with regularization of the Hessian
for computational stability. The algorithm, which is presented in high-level pseudocode in Table 1,
is an instance of ”Block Coordinate Descent” (Bertsekas, 1999). At iteration k, we first minimize
with respect to β, η by setting βk = ‖Σx

1/2(a0 +Fuk−1)‖2 (β-step) and ηk = ‖Σy
1/2(a0 +Fuk−1)‖2

(η-step). Those minimizers are unique. Then we minimize with respect to u by solving a least-
squares problem in u with β, η fixed (u-step). As already mentioned, this least-squares step is
regularized: a regularization term δI (with δ > 0 small) is added to the Hessian of the least-squares
step. This makes the Hessian positive definite. Thus, for the u-step also, the minimum is uniquely
attained. As shown by Bertsekas (1999), these features imply the convergence of the above block
coordinate descent method.

2.4 Geometric Interpretation

Problem (6) admits an appealing geometric interpretation, which we obtain via convex duality. To
address a meaningful problem we assume x̄ 6= ȳ and for simplicity we further assume that either
Σx or Σy is positive definite.
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Get estimates x̂, ŷ, Σ̂x, Σ̂y

Compute a0 ← (x̂− ŷ)/‖x̂− ŷ‖22
F ∈ Rn×(n−1) (an orthogonal matrix whose columns span
the subspace of vectors orthogonal to x̂− ŷ)
G ← FT Σ̂xF
H ← FT Σ̂yF
g ← FT Σ̂xa0

h ← FT Σ̂ya0

Initialize β1 = 1, η1 = 1, k = 1

Repeat MLS ← 1
βk

G + 1
ηk

H + δI

bLS ← −
(

1
βk

g + 1
ηk

h
)

solve MLSuk = bLS w.r.t. uk

ak ← a0 + F ∗ uk

βk+1 ←
√

aT
k Σ̂xak

ηk+1 ←
√

aT
k Σ̂yak

k ← k + 1
Until stop criterion satisfied

Assign a ← ak−1

b ← aT x̂− βk
βk+ηk

κ ← 1
βk+ηk

α ← κ2

1+κ2

Table 1: Algorithmic description of the iterative procedure to solve the optimization problem
for a linear MPM. The stop criterion can be chosen by the user, e.g., stopping
when the relative change in βk + ηk is small enough or a maximum number of iter-
ations has been reached. A Matlab implementation of this algorithm is available on
http://robotics.eecs.berkeley.edu/ g̃ert/.
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To obtain the dual of the problem, we first express (12) as the following constrained minimax
problem:

λ∗ := min
a

max
λ,u,v

uT Σx
1/2a + vT Σy

1/2a + λ(1− aT (x̄− ȳ)) : ‖u‖2 ≤ 1, ‖v‖2 ≤ 1.

The above is based on the following expression for the 2-norm of a vector z: ‖z‖2 = max{uT z : ‖u‖2 ≤
1}. Exchanging the min and max operators in the above yields the lower bound

λ∗ ≥ max
λ,u,v

g(λ,u,v) : ‖u‖2 ≤ 1, ‖v‖2 ≤ 1,

where g is the so-called dual function:

g(u,v, λ) = max
a

uT Σx
1/2a + vT Σy

1/2a + λ(1− aT (x̄− ȳ)) =
{

λ if λx̄− Σx
1/2u = λȳ + Σy

1/2v
−∞ otherwise.

We obtain the dual problem as

max
λ,u,v

λ : ‖u‖2 ≤ 1, ‖v‖2 ≤ 1, λx̄− Σx
1/2u = λȳ + Σy

1/2v.

Our assumptions (x̄ 6= ȳ and either Σx or Σy positive definite) imply that the above is strictly
feasible. Since the original primal problem also is, we can invoke standard convex duality theorems
(see e.g., Boyd and Vandenberghe, 2001) and conclude that both problems have the same optimal
values, and both are attained. Further, positive definiteness of Σx (or Σy) guarantees that the
optimal value is non zero. Hence, we may make the change of variable κ := 1/λ in the dual
problem and rewrite it as

min
κ,u,v

κ : x̄ + Σx
1/2u = ȳ + Σy

1/2v, ‖u‖2 ≤ κ, ‖v‖2 ≤ κ. (14)

At the optimum, we have

λ∗ = ‖Σx
1/2a∗‖2 + ‖Σy

1/2a∗‖2 = 1/κ∗.

In the dual form (14), our problem admits the following geometric interpretation. For given
κ ≥ 0, consider two ellipsoids centered around the means of the two classes, and shape determined
by their covariance matrices:

Ex(κ) = {x = x̄ + Σx
1/2u : ‖u‖2 ≤ κ}, Ey(κ) = {y = ȳ + Σy

1/2v : ‖v‖2 ≤ κ}. (15)

These sets correspond to the points whose Mahalanobis distances to the class means are less than
a specified number κ.

Clearly, for κ large enough, these sets intersect. Problem (14) amounts to finding the smallest
κ for which these ellipsoids intersect. For the optimal κ, the ellipsoids will be tangent to each
other. The minimax probabilistic decision hyperplane is then the common tangent to the optimal
ellipsoids. This is illustrated in Figure 1.
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Figure 1: Geometric interpretation of the minimax probability machine. To find the minimax prob-
abilistic decision hyperplane, consider non-intersecting ellipsoids centered around the
means of each class, shape determined by the covariance matrices of each class, which
are growing at the same rate, controlled by increasing κ in (15). Finding the optimal
decision hyperplane corresponds to finding the smallest κ = κ∗ for which these growing
ellipsoids intersect (14). For the optimal κ∗, the ellipsoids will be tangent to each other,
and their common tangent is the minimax probabilistic decision hyperplane. The inter-
section point has the same Mahalanobis distance κ∗ to the two classes, and it minimizes
the maximum of the Mahalanobis distances to the two classes, as explained in Section
2.5. The optimal worst-case misclassification probability can be read directly from the
figure as 1− α∗ = 1/(1 + κ2∗).

2.5 Additional remarks

Another interpretation of our problem assumes a data generation mechanism with bounded uncer-
tainty, where data points in each class are chosen arbitrarily within the ellipsoids Ex(κ) and Ey(κ),
defined by (15). We are then asking if there exists a robust linear separator; that is, a hyperplane
such that for any choice of the data points within their respective ellipsoid, the classifier produces
the correct classification. The answer is yes, if the ellipsoids do not intersect, and no otherwise.
The minimax probability separator finds the largest κ for which robust separation (in the above
sense) is feasible. Thus, we can restate the problem as finding the smallest κ such that Ex(κ) and
Ey(κ) intersect:

min
κ,z

κ : κ2 ≥ (z− x̄)T Σx
−1(z− x̄), κ2 ≥ (z− ȳ)T Σy

−1(z− ȳ),

or, alternatively, as minimizing the maximum of the Mahalanobis distances to the two classes:

κ∗ = min
z

max
(
‖Σx

−1/2(z− x̄)‖2, ‖Σy
−1/2(z− ȳ)‖2

)
.
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At optimum, the intersection point has the same Mahalanobis distance to both classes. The optimal
worst-case misclassification probability is related to the above optimal value κ∗ by 1−α∗ = 1/(1 +
κ2∗).

An interesting analogy to this result can be found in SVM classification (Bennett and Breden-
steiner, 2000; Crisp and Burges, 1999). In that case, the dual to the problem of finding the maximal
margin is the problem of finding points in the convex hulls of the two classes that are closest. This
corresponds to a quadratic program (QP) instead of a second order cone program (SOCP).

Another interesting connection with maximal margin classification can be found when viewing
the constraints of the original problem (1) in the light of Lemma 1. The constraint (3) is very
similar to the constraints in hard margin SVMs. In the MPM case, we have one constraint per
class (instead of as many constraints as there are data points in SVMs), where κ(α) corresponds to
the margin (normalized to one in SVMs) and an extra factor

√
aT Σa is added for each class. Thus,

minimax probabilistic classification is similar to maximum margin classification with respect to the
mean of the classes, where a factor that depends on the covariance matrices of each of the classes
pushes the threshold towards the class with lower covariance. Unlike support vector classification,
for which the points close to the decision boundary are most important, the MPM looks at the
margin between the means of both classes, which rather represent the “typical” examples of each of
the classes. By paying more attention to the “typical” rather than the boundary points, the MPM
is in some sense similar to the relevance vector machine proposed in Tipping (2000). Furthermore,
the MPM is related to vicinal risk minimization (Chapelle et al., 2001; Vapnik, 1999), in which
SVMs were “improved” using the covariance of the classes to push the hyperplane away from the
samples that belong to the class with the largest covariance matrix.

2.6 Making Gaussian Assumptions

It is interesting to see what happens if we make distributional assumptions; in particular, let us
assume that x ∼ N (x̄, Σx) and y ∼ N (ȳ, Σy). The first constraint in (1) then becomes:

inf
x∼N (x̄,Σx)

Pr{aTx ≥ b} = Pr

{
N (0, 1) ≥ b− aT x̄√

aT Σxa

}

= 1− Φ

(
b− aT x̄√
aT Σxa

)

= Φ

(
−b + aT x̄√

aT Σxa

)
≥ α,

where Φ(z) is the cumulative distribution function for a standard normal Gaussian distribution:

Φ(z) = Pr {N (0, 1) ≤ z} =
1√
2π

∫ z

−∞
exp(−s2/2) ds.

Since Φ(z) is monotone increasing, we can write the first constraint in (1) as

−b + aT x̄ ≥ Φ−1(α)
√

aT Σxa.

The same can be done for the second constraint in (1). This leads to the following optimization
problem:

max
α,a 6=0,b

α s.t. −b + aT x̄ ≥ Φ−1(α)
√

aT Σxa

b− aT ȳ ≥ Φ−1(α)
√

aT Σya.
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This has the same form as (8), but now with κ(α) = Φ−1(α) instead of κ(α) =
√

α
1−α . α again

disappears from the optimization problem because κ(α) is monotone increasing. We thus solve the
same optimization problem and find the same decision hyperplane aTz = b. The only difference
lies in the value of the worst-case misclassification probability 1 − α associated with κ∗: α will
be higher under Gaussian assumptions (α∗gauss = Φ(κ∗)), so the hyperplane will have a higher
predicted probability of classifying future data correctly. This is expected: the extra knowledge
resulting from the Gaussian assumption should indeed allow us to predict a higher probability of
correct future classification.

2.7 Link with Fisher Discriminant Analysis

A discriminant hyperplane based on the first two moments can also be computed via Fisher dis-
criminant analysis (FDA). This involves solving the following optimization problem (Fukunaga,
1990):

max
a

κFDA(a) :=
|aT (x̄− ȳ)|√

aT Σxa + aT Σya
. (16)

The optimal a for the FDA cost function, which we denote as aFDA∗ , corresponds to a direction
which gives good separation between the two projected sets aTx and aTy with small projected
variances. However it is not known whether this optimal direction aFDA∗ can be used to compute a
bound on the generalization error.

On the other hand, the minimax hyperplane is obtained by solving the following optimization
problem:

max
a

κMPM(a) :=
|aT (x̄− ȳ)|√

aT Σxa +
√

aT Σya
.

As we have seen, this optimization problem is motivated theoretically as the minimization of a
worst-case misclassification probability. Optimizing the MPM cost function also involves seeking
an optimal direction a, denoted aMPM∗ , in which we have good separation between the two projected
sets aTx and aTy with small projected variances, but the way in which the means and covariances
are combined is different in MPM and FDA .

¿From the proof of Theorem 2, we also know that for a given a such that

κ ≤ aT (x̄− ȳ)√
aT Σxa +

√
aT Σya

,

the worst-case misclassification probability β(a) associated with a separating hyperplane H(a, b) is
bounded above by 1− α = 1

1+κ2 , if b is feasible for problem (8), that is:

aT ȳ + κ
√

aT Σya ≤ b ≤ aT x̄− κ
√

aT Σxa.

To obtain the smallest possible upper bound we let κ increase to κMPM(a) for a given a. This
implies that for every a 6= 0, the misclassification probability for the hyperplane H(a, b) is bounded
above as follows:

β(a) ≤ 1
1 + κMPM(a)2

,

provided b = aT x̄− κMPM(a)
√

aT Σxa.
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Using the fact that
√

2κMPM(a) ≥ κFDA(a), we obtain an upper bound on the generalization
error for FDA:

β(aFDA
∗ ) ≤ 1

1 + κMPM(aFDA∗ )2
≤ 1

1 + 0.5κFDA(aFDA∗ )2
, (17)

provided we discriminate between points using a decision hyperplane H(aFDA∗ , bFDA∗ ) where

bFDA
∗ = (aFDA

∗ )T x̄− κMPM(aFDA
∗ )

√
(aFDA∗ )T Σx(aFDA∗ ).

This not only gives us a bound on the FDA generalization error, it also gives us a way to optimally
determine the intercept b for FDA, without assuming Gaussian class-conditional distributions. In
case of equal covariance, Σx = Σy, the two bounds in (17) are equal, and FDA and MPM provide
identical classifiers.

Fisher discriminant analysis is essentially a feature extraction method that aids in classification
without specifically aiming at solving the classification problem. The FDA criterion function κFDA

is built upon the intuition that “separation” (as characterized by first and second moments) is
useful, and upon the desideratum of computational efficiency. Indeed, the solution of (16) is found
by solving a generalized eigenvalue problem. The criterion function for MPM, on the other hand,
differs from the FDA criterion function in detail, but due to its similar form preserves the intuition
of finding a direction that separates the data. It does so while aiming directly at solving the
classification problem, and yields an algorithm with similar complexity.

3. Robustness to Estimation Errors

In practical experiments, it may well happen that the error rate computed on the test set is greater
than 1 − α∗. This seems to contradict the previous claim that 1 − α∗ is an upper bound on
misclassification error.

This apparent paradox has to do with estimation errors. Since we do not know the mean and
covariance a priori, they need to be estimated from the data. The validity of the bound depends
on how good the estimate is. This is an issue especially in the “small sample” case. In this section
we outline an approach to the estimation problem based on robust optimization.

3.1 The Robust Decision Problem

We start from the original problem as defined in (1) and modify it as follows. We now assume
that the mean and covariance matrix of each class are only known within some specified set. In
particular, we assume that (x̄, Σx) ∈ X , where X is a subset of Rn × S+

n , where S+
n is the set of

n× n symmetric, positive semidefinite matrices. Likewise we define a set Y describing uncertainty
in the mean and covariance matrix of the random variable y.

We pose the robust counterpart to the original problem, defined as:

max
α,a 6=0,b

α s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α ∀ (x̄, Σx) ∈ X , (18)

inf
x∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ α ∀ (ȳ, Σy) ∈ Y.

In other words, we would like to guarantee a worst-case misclassification probability for all distribu-
tions which have unknown-but-bounded mean and covariance matrix, but are otherwise arbitrary.
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Using the previous approach it is straightforward to obtain an equivalent formulation of the
robust problem:

max
κ,a 6=0,b

κ s.t. ∀ (x̄, Σx) ∈ X , −b + aT x̄ ≥ κ
√

aT Σxa (19)

∀ (ȳ, Σy) ∈ Y, b− aT ȳ ≥ κ
√

aT Σya.

3.2 A Specific Uncertainty Model

The complexity of the above problem depends of course on the structure of the sets X and Y. We
now consider a specific choice for these sets, that is both realistic from a statistical viewpoint and
tractable numerically. Specifically, we consider

X =
{
(x̄, Σx) : (x̄− x̄0)T Σx

−1(x̄− x̄0) ≤ ν2, ‖Σx − Σx
0‖F ≤ ρ

}
,

Y =
{
(ȳ, Σy) : (ȳ − ȳ0)T Σy

−1(ȳ − ȳ0) ≤ ν2, ‖Σy − Σy
0‖F ≤ ρ

}
.

(20)

Here, ν ≥ 0 and ρ ≥ 0 are fixed (to simplify, we assume them to be the same for both X and
Y). The notation x̄0, Σx

0 stands for our “nominal” estimate of the mean and covariance matrix,
respectively. The matrix norm involved in the above is the Frobenius norm: ‖A‖2F = Tr(AT A).

In our model, the mean of class x belongs to an ellipsoid centered around x̄0, with shape
determined by the (unknown) Σx. The covariance matrix itself belongs to a matrix norm ball (in
the space of symmetric matrices of order n) centered around Σx

0. Note that we are not including
positive semidefiniteness constraints on the covariance matrices in our model. This means that
we are taking a more conservative view and enlarging the uncertainty set. For small values of
the uncertainty size ρ, and provided both covariance estimates Σx

0 and Σy
0 are positive definite,

this assumption is done without harm, since the matrix norm ball will be included in the cone of
positive semidefinite matrices.

Our model for the mean uncertainty is motivated by the standard statistical approach to estimat-
ing a region of confidence based on Laplace (that is, second-order) approximations to a likelihood
function (see e.g., Kass et al., 1988). The model for uncertainty in the covariance matrix is perhaps
less classical from a statistical viewpoint, but it leads to a regularization term of a classical form.
The specific values of ν and ρ in our model can be determined based on the central limit theorem
or on resampling methods.

3.3 Estimation Errors in the Means

We first consider the case where the covariance matrix for each class is known. Later, we will
extend our results to the case ρ > 0.

For a given a and x̄0, we have (see Appendix B)

min
x̄ : (x̄−x̄0)T Σx

−1(x̄−x̄0)≤ν2
aT x̄ = aT x̄0 − ν

√
aT Σxa. (21)

Using this result, we obtain the following expression for problem (19):

max
κ,a 6=0,b

κ s.t. −b + aT x̄0 ≥ (κ + ν)
√

aT Σxa (22)

b− aT ȳ0 ≥ (κ + ν)
√

aT Σya.

Note that the optimization problem (8) and (22) are actually the same; only the optimal values
of κ differ. Let κ−1∗ be the optimal value of problem (6). Then the optimal solution to the robust
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version above is given by

κrob
∗ = κ∗ − ν.

If the optimal value of the original (non-robust) problem (6) is below ν, that is κ∗ < ν, we conclude
that the robust version is not feasible; in other words, there is no way to find a hyperplane which
separates the two classes in the robust minimax probabilistic sense. The worst-case misclassification
probability is then 1 − αrob∗ = 1. If κ∗ ≥ ν, the robust hyperplane is the same as the non-robust
one; the only change is in the increase in the worst-case misclassification probability, which now is

1− αrob
∗ =

1
1 + (κ∗ − ν)2

.

This gives us a new interpretation of the optimal κ∗ in problem (6) of Theorem 2. The optimal
κ∗ is the worst-case uncertainty in the means (in the sense of our ellipsoidal model) that can be
tolerated. If the level of uncertainty is more than κ∗ then the robust problem becomes infeasible.

This can be understood deterministically via the interpretation given in Section 2.5. Consider
again the ellipsoids given by (15). Now assume that the means (that is, the centers of the ellipsoids)
are uncertain; in our model, the center x̄ is allowed to vary in the ellipsoid Ex(ν), whose shape and
orientation is the same as Ex(κ). This simply means that we can reformulate the robust problem
as a variant of the original one, where we enlarge Ex(κ) by changing κ to κ + ν. This is illustrated
in Figure 2.

3.4 Estimation Errors in the Covariance Matrix

In this section we consider the case where there is uncertainty in the covariance but the mean is
accurately estimated from the samples (ν = 0).

To address the robustness conditions in (19), we are led to the following problem:

max
Σ

aT Σa : ‖Σ− Σ0‖F ≤ ρ,

where a is given for now. The optimal value of the above problem is (see Appendix C):

max
Σ : ‖Σ−Σ0‖F≤ρ

aT Σa = aT
(
Σ0 + ρIn

)
a, (23)

where In is the n× n identity matrix.
Problem (19) reads now

max
κ,a 6=0,b

κ s.t. −b + aT x̄ ≥ κ
√

aT (Σx + ρIn)a (24)

b− aT ȳ ≥ κ
√

aT (Σy + ρIn)a.

The robust problem is thus exactly the same as the original one, with a term ρIn added to the
covariance matrices.

We can interpret the term ρIn as a regularization term. In the original statement of Theorem
2, if the estimates of the covariance matrices are not positive definite, the original problem is not
strictly convex. This leads to potentially many solutions, possible discontinuities, and numerical
problems. Adding such a term will make the solution unique and also a continuous function of the
input data.
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Figure 2: Geometric interpretation of the result with estimation errors in the means. Again, we
consider the ellipsoids Ex(κ) and Ey(κ) given by (15). But now their centers x̄ and ȳ are
allowed to vary within ellipsoids Ex(ν) and Ey(ν), with centers x̄0 and ȳ0, and shape and
orientation similar to that of Ex(κ) and Ey(κ), respectively. Because of the similarity in
shape and orientation of the κ-ellipsoids and the ν-ellipsoids, we can simply reformulate
the robust problem as the original one, where the growth of Ex and Ey is now controlled
by κ + ν (where ν is fixed and κ varied) instead of κ. The optimal value κ∗ for the
original problem (6) is linked with the optimal solution κrob∗ to the robust version (22):
κ∗ = κrob∗ + ν.

3.5 Summary of Robustness Results

When both ν > 0 and ρ > 0, that is, in the case of combined uncertainty for both means and
covariance matrices, we simply apply the results pertaining to the uncertainty on the covariance
matrices to the modified problem (22). Starting from (22), we obtain a formulation similar to (24),
with κ + ν in the constraints instead of κ. Our findings can be summarized as follows.

Theorem 3 The optimal robust minimax probability classifier from problem (18) with sets X , Y
given by (20) can be obtained by solving problem (6), with Σx = Σx

0 +ρIn, Σy = Σy
0 +ρIn. If κ−1∗

is the optimal value of that problem, the corresponding worst-case misclassification probability is

1− αrob
∗ =

1
1 + max(0, (κ∗ − ν))2

.

4. Single Class Case

In this section we extend our minimax approach to classification to the single class case, with linear
decision boundaries.

The problem addressed in Section 2 is one of supervised learning: for each data point, a label
+1 or −1 is given, and the goal is to classify future data as belonging to one of these two classes.
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In the most general case, unsupervised learning essentially involves estimation of the density from
which given data points x are drawn. A simplified version of this problem estimates quantiles of
this distribution: for α ∈ (0, 1], one computes a region Q such that Pr{x ∈ Q} = α (Schölkopf and
Smola, 2002). If α is chosen close to 1, this amounts to outlier detection: most of the data will be
contained inside the region Q, and a data point outside Q can be considered as an outlier. Let us
consider data x ∼ (x̄, Σx) and the linear case where Q is a half-space not containing the origin.
Our basic question is: is the origin an outlier with respect to the data?

For simplicity, we assume that the covariance matrix Σx is positive definite. In practice, this
will always be the case, since we will add a regularization term to the covariance matrix. This is
discussed at the end of this section. Given α ∈ (0, 1), we seek a half-space Q(a, b) = {z | aTz ≥ b},
with a ∈ Rn\{0} and b ∈ R, and not containing 0, such that with probability at least α, the data
lies in Q, for every distribution having mean x̄ and covariance matrix Σx:

inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α.

We want the region Q to be tight, so we maximize its Mahalanobis distance to the origin:

max
a 6=0,b

b√
aT Σxa

s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α. (25)

Future points z for which aT∗ z ≤ b∗ can then be considered as outliers with respect to the region
Q, with the worst-case probability of occurrence outside Q given by 1− α.

Next we prove the following result.

Theorem 4 If we assume that the covariance matrix Σx is positive definite, the single-class prob-
lem (25) is strictly feasible if and only if ζ > κ(α), where

ζ :=
√

x̄T Σx
−1x̄, κ(α) =

√
α

1− α
,

and 1 − α the worst-case probability of occurrence outside region Q. In this case, the optimal
half-space Q(a∗, b∗) is unique, and determined by

a∗ =
Σx

−1x̄
ζ2 − κ(α)ζ

, b∗ = 1. (26)

Proof of theorem: Note that Q(a, b) does not contain 0 if and only if b > 0. Also, the
optimization problem (25) is positively homogeneous in (a, b). Thus, without loss of generality,
we can set b = 1 in problem (25). Finally, we observe that the change of notation a → Σx

−1/2a,
x̄ → Σx

1/2x̄ allows us to assume Σx = I in the derivations that follow.
Consider the constraint in (25), with a 6= 0. Using the proof of Lemma 1, allows us to obtain

an equivalent constraint:

max((aT x̄− 1), 0)2

aTa
≥ α

1− α
,

which, in view of α ∈ (0, 1), is equivalent to

aT x̄− 1 ≥ κ(α)‖a‖2.
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The above also implies a 6= 0. Hence, the optimization problem (25) can be equivalently written
as:

min
a

‖a‖2 : aT x̄ ≥ 1 + κ(α)‖a‖2. (27)

Decomposing a as λx̄ + z, where the variable z satisfies zT x̄ = 0, we easily obtain that at the
optimum, z = 0. In other words, the optimal a is parallel to x̄, in the form a = λx̄, and the
problem reduces to the one-dimensional problem:

min
λ

|λ|‖x̄‖2 : λx̄T x̄ ≥ 1 + κ(α)‖x̄‖2|λ|.

The constraint in the above implies that λ ≥ 0, hence the problem reduces to

min
λ

λ : λ(x̄T x̄− κ(α)‖x̄‖2) ≥ 1, λ ≥ 0.

The results of the theorem follow directly. ¤

One could consider this single-class problem as a particular case of the two-class problem, where
the mean and the covariance of the origin are known, i.e., ȳ = 0 and Σy = O – where 0 and O
denote respectively the null vector and the null matrix of dimension n. Simplifying and solving
(12) in this case will indeed lead to the right orientation of the half-space, i.e., the right value for
the optimal a∗. However, as can directly be seen from the geometrical interpretation in Figure 1,
it will lead to an offset b∗ = 0, which is wrong in general.

Remark. The results from Section 3 can readily be extended to the single class case. Let the
uncertainty on the mean and the covariance matrix of x again be given by (20). The worst-case
probability of occurrence outside region Q is still given by 1− α. The optimal half-space is unique
(indeed, Σx + ρIn is positive definite) and determined by

a∗ =
(Σx + ρIn)−1x̄

ζ2 − (κ(α) + ν)ζ
with ζ =

√
x̄T (Σx + ρIn)−1x̄,

if the choice of α is such that κ(α) + ν ≤ ζ or α ≤ (ζ−ν)2

1+(ζ−ν)2
. Notice that the uncertainty in the

covariance matrix Σx leads to the typical, well-known regularization for inverting this matrix. If
the choice of α is not feasible or if x̄ = 0, the problem does not have a solution.

5. Kernelization

In this section we describe the “kernelization” of the minimax approach described in Section 2. We
seek to map the problem to a higher-dimensional feature space Rf via a mapping ϕ : Rn 7→ Rf ,
such that a linear decision boundary H(a, b) = {ϕ(z) ∈ Rf | aT ϕ(z) = b} in the feature space Rf

corresponds to a nonlinear decision boundary D(a, b) = {z ∈ Rn | aT ϕ(z) = b} in the original space
Rn (a ∈ Rf\{0} and b ∈ R).

Let the data be mapped as

x 7→ ϕ(x) ∼ (ϕ(x), Σϕ(x)),

y 7→ ϕ(y) ∼ (ϕ(y), Σϕ(y)).
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A nonlinear decision boundary in Rn can then be obtained by solving the minimax probability
decision problem (1) in the higher-dimensional feature space Rf :

max
α,a 6=0,b

α s.t. inf
ϕ(x)∼(ϕ(x),Σϕ(x))

Pr{aT ϕ(x) ≥ b} ≥ α (28)

inf
ϕ(y)∼(ϕ(y),Σϕ(y))

Pr{aT ϕ(y) ≤ b} ≥ α.

To carry out this program, we need to reformulate the minimax problem in terms of a given kernel
function K(z1, z2) = ϕ(z1)T ϕ(z2) satisfying Mercer’s condition.

5.1 Why the Kernel Trick Works

The kernel trick will only work if problem (28) can be entirely expressed in terms of inner products
of the mapped data ϕ(z) only. Fortunately, this is indeed the case (even if we take uncertainty in
the means and covariance matrices into account), provided we use an appropriate class of estimates
for the means and covariance matrices, as defined in the following corollary to Theorem 2.

Corollary 5 Let {xi}Nx
i=1 and {yi}Ny

i=1 be the training data points in the classes corresponding to x
and y respectively. If x̄, ȳ, Σx, Σy can be written as

x̄ =
Nx∑
i=1

λixi, ȳ =
Ny∑
i=1

ωiyi,

Σx = ρxIn +
Nx∑
i=1

Λi(xi − x̄)(xi − x̄)T ,

Σy = ρyIn +
Ny∑
i=1

Ωi(yi − ȳ)(yi − ȳ)T ,

where In is the identity matrix of dimension n, then the optimal a will lie in the span of the data
points {xi}Nx

i=1 and {yi}Ny

i=1.

The additional regularization terms ρxIn and ρyIn are useful in light of the robustness results
in Section 3.4.

Proof of corollary: We can write any a as a = ad + ap, where ad is the projection of a in the
span of the data (vector space spanned by all the data points {xi}Nx

i=1 and {yi}Ny

i=1), whereas ap is
the orthogonal component to the data. One can then easily check that

√
aT Σxa =

√√√√aT
d

Nx∑
i=1

Λi(xi − x̄)(xi − x̄)Tad + ρx(aT
d ad + aT

p ap),

√
aT Σya =

√√√√aT
d

Ny∑
i=1

Ωi(yi − ȳ)(yi − ȳ)Tad + ρy(aT
d ad + aT

p ap),

aT (x̄− ȳ) = aT
d (x̄− ȳ),

because aT
p xi = 0, i = 1, . . . , Nx, aT

p yi = 0, i = 1, . . . , Ny and aT
d ap = 0. So, an orthogonal com-

ponent ap of a won’t affect the constraint in (6). Since the objective is to be minimized, we get
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ap = 0, so a = ad: the optimal a will lie in the span of the data points {xi}Nx
i=1 and {yi}Ny

i=1. Notice
that if ρx = ρy = 0, both objective and constraint of (6) will not be affected by an orthogonal
component ap of a. Since ap doesn’t play any role at all, we can as well put ap = 0 and obtain the
minimal norm a. ¤

As a consequence, we can write a as a linear combination of the data points and then solve
for the coefficients. By doing so, one can easily check that the optimization problem (6) can be
entirely expressed in terms of inner products between data points {xi}Nx

i=1 and {yi}Ny

i=1 only, if the
conditions of the corollary are fulfilled. This will make the kernelization of our approach possible.

5.2 Notation

Before stating the “kernelized” version of Theorem 2, we introduce the following notation. Let
{xi}Nx

i=1 and {yi}Ny

i=1 be the training data points in the classes corresponding to x and y respectively,
and let {ti}N

i=1 denote the set of all N = Nx + Ny training data points where

ti = xi i = 1, 2, . . . , Nx

ti = yi−Nx i = Nx + 1, Nx + 2, . . . , N.

The Gram matrix K can now be defined as Kij = ϕ(ti)T ϕ(tj) = K(ti, tj) for i, j = 1, 2, . . . , N
where the first Nx rows and the last Ny rows of K are denoted by Kx and Ky, respectively:

K =
(
Kx

Ky

)
.

The block-row-averaged Gram matrix L is then obtained by setting the row average of the Kx-block
and the Ky-block equal to zero:

L =
(
Kx − 1Nxl

T
x

Ky − 1Ny l
T
y

)
=

(√
NxLx√
NyLy

)
,

where 1m is a column vector of ones of dimension m. The row averages lTx and lTy are N -dimensional
row vectors given by:

(lTx )i =
1

Nx

Nx∑
j=1

K(xj , ti),

(lTy )i =
1

Ny

Ny∑
j=1

K(yj , ti).

5.3 Result

Theorem 6 If lx = ly, then the minimax probability decision problem (28) does not have a so-
lution. Otherwise, an optimal decision boundary D(γ, b) can be determined by solving the convex
optimization problem:

κ−1
∗ := min

γ

√
γTLT

xLxγ +
√

γTLT
yLyγ s.t. γT (lx − ly) = 1, (29)
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and setting b to the value

b∗ = γT
∗ lx − κ∗

√
γT∗ LT

xLxγ∗,

where γ∗ is an optimal solution of (29). The optimal worst-case misclassification probability is
obtained via

1− α∗ =
1

1 + κ2∗
=

(√
γT∗ LT

xLxγ∗ +
√

γT∗ LT
yLyγ∗

)2

1 +
(√

γT∗ LT
xLxγ∗ +

√
γT∗ LT

yLyγ∗
)2 .

Because both LT
xLx and LT

yLy are positive semidefinite but not positive definite, the optimal hyper-
plane is not unique.

Once an optimal decision boundary is found, classification of a new data point znew is done by
evaluating sign(aT∗ ϕ(znew)− b∗) = sign

((∑Nx+Ny

i=1 [γ∗]iK(ti, znew)
)
− b∗

)
(notice that this can be

evaluated only in terms of the kernel function); if this is +1, znew is classified as belonging to class
x, otherwise znew is classified as belonging to class y.

Proof of theorem: In order to solve (28), we can apply Theorem 2. If the distributions of
ϕ(x) and ϕ(y) have the same mean: ϕ(x) = ϕ(y), then the minimax probability decision problem
(28) does not have a solution. Otherwise, an optimal hyperplane H(a, b) in Rf can be determined
by solving the convex optimization problem:

κ−1
∗ := min

a

√
aT Σϕ(x)a +

√
aT Σϕ(y)a s.t. aT (ϕ(x)− ϕ(y)) = 1, (30)

and setting b to the value

b∗ = aT
∗ ϕ(x)− κ∗

√
aT∗ Σϕ(x)a∗, (31)

where a∗ is an optimal solution of (30).
However, we do not wish to solve the convex optimization problem in this form, because we

want to avoid using f or ϕ explicitly. We first form sample estimates of the means and covariances
ϕ(x), ϕ(y), Σϕ(x) and Σϕ(y):

ϕ̂(x) =
1

Nx

Nx∑
i=1

ϕ(xi),

ϕ̂(y) =
1

Ny

Ny∑
i=1

ϕ(yi),

Σ̂ϕ(x) =
1

Nx

Nx∑
i=1

(ϕ(xi)− ϕ̂(x))(ϕ(xi)− ϕ̂(x))T ,

Σ̂ϕ(y) =
1

Ny

Ny∑
i=1

(ϕ(yi)− ϕ̂(y))(ϕ(yi)− ϕ̂(y))T ,
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and plug these into the objective function and the constraint in (30):

κ−1
∗ := min

a

√
aT Σ̂ϕ(x)a +

√
aT Σ̂ϕ(y)a s.t. aT (ϕ̂(x)− ϕ̂(y)) = 1. (32)

Those estimates satisfy the conditions of Corollary 5, now applied in Rf . So, without loss of
generality, we can write a as

a =
Nx∑
i=1

αiϕ(xi) +
Ny∑
j=1

βjϕ(yj). (33)

This last equation could be derived in a more formal way by using the representer theorem
(Schölkopf and Smola, 2002).

As explained above, a consequence of Corollary 5 is that objective and constraints can be
entirely expressed in terms of inner products of ϕ(z) only. When substituting expression (33) for
a in (32), we indeed see that both the objective and the constraints can be written in terms of the
kernel function K(z1, z2) = ϕ(z1)T ϕ(z2). We obtain:

κ−1
∗ := min

γ

√
γTLT

xLxγ +
√

γTLT
yLyγ s.t. γT (lx − ly) = 1,

where γ = [α1 α2 · · · αNx β1 β2 · · · βNy ]
T . We can also write this as

κ−1
∗ := min

γ
‖Lxγ‖2 + ‖Lyγ‖2 s.t. γT (lx − ly) = 1,

which is a second order cone program (SOCP) (Boyd and Vandenberghe, 2001) that has the same
form as the SOCP in (12) and can thus be solved in a similar way. Notice that, in this case, the
optimizing variable is γ ∈ RNx+Ny instead of a ∈ Rn. Thus the dimension of the optimization
problem increases, but the solution is more powerful because the kernelization corresponds to a
more complex decision boundary in Rn.

Similarly, the optimal value b∗ of b in (31) will then become

b∗ = γT
∗ lx − κ∗

√
γT∗ LT

xLxγ∗ = γT
∗ ly + κ∗

√
γT∗ LT

yLyγ∗,

where γ∗ is an optimal value of γ. ¤

Remark. Notice that this kernelization will in general be possible when expressing ϕ(x), ϕ(y), Σϕ(x),
and Σϕ(y) as

ϕ(x) =
Nx∑
i=1

λiϕ(xi),

ϕ(y) =
Ny∑
i=1

ωiϕ(yi),

Σϕ(x) = ρxIf +
Nx∑
i=1

Λi(ϕ(xi)− ϕ(x))(ϕ(xi)− ϕ(x))T ,

Σϕ(x) = ρyIf +
Ny∑
i=1

Ωi(ϕ(yi)− ϕ(y))(ϕ(yi)− ϕ(y))T ,

575



Lanckriet, El Ghaoui, Bhattacharyya and Jordan

where If is the identity matrix of dimension f . Indeed, from Corollary 5, we know that the optimal
a will lie in the span of the mapped data {ϕ(ti)}N

i=1 and as a consequence, the optimization problem
(28) can be entirely expressed in terms of inner products of the mapped data only. Even if we take
uncertainty in the means and covariance matrices into account (that is ν 6= 0, ρx = ρy 6= 0, see
Section 3), we can still kernelize the MPM and obtain the convex optimization problem

κ−1
∗ := min

γ

√
γT (LT

xLx + ρxK)γ +
√

γT (LT
yLy + ρyK)γ s.t. γT (lx − ly) = 1,

and optimal value for b

b∗ = γT
∗ lx − κ∗

√
γT∗ (LT

xLx + ρxK)γ∗.

The optimal worst-case misclassification probability is obtained via

1− αrob
∗ =

1
1 + max(0, (κ∗ − ν))2

.

This approach is able to deal with uncertainty in the means and covariance matrices of the
mapped data. However, it will not necessarily regularize the kernel MPM, since the Gram matrix
K may not be positive definite. For regularization purposes, it is thus advantageous to add a term
ρIN to K, where ρ > 0 is small.

5.4 Single Class Case

In a similar way, a nonlinear region Q for the single class case can be obtained in Rn by mapping
the data x 7→ ϕ(x) ∼ (ϕ(x), Σϕ(x)) and solving (25) in the higher-dimensional feature space Rf :

max
a 6=0,b

b√
aT Σϕ(x)a

s.t. inf
ϕ(x)∼(ϕ(x),Σϕ(x))

Pr{aT ϕ(x) ≥ b} ≥ α. (34)

Again, this optimization problem can be reformulated in terms of a given kernel function K(z1, z2) =
ϕ(z1)T ϕ(z2) satisfying Mercer’s condition.

Theorem 7 Let α ∈ (0, 1]. If this choice of α is feasible, that is

∃ γ : γT lx − 1 ≥ κ(α)
√

γTLT
xLxγ,

then an optimal region Q(γ, b) can be determined by solving the (convex) second order cone pro-
gramming problem:

min
γ

γTLT
xLxγ s.t. γT lx − 1 ≥ κ(α)

√
γTLT

xLxγ,

where κ(α) =
√

α
1−α and b = 1. The worst-case probability of occurrence outside region Q is given

by 1− α. If LT
xLx is positive definite, the optimal half-space is unique and determined by

γ∗ =
(LT

xLx)−1lx
ζ2 − κ(α)ζ

with ζ =
√

lTx (LT
xLx)−1lx,

if the choice of α is such that κ(α) ≤ ζ or α ≤ ζ2

1+ζ2 .
If the choice of α is not feasible or if lx = 0 (in this case, no α ∈ (0, 1] will be feasible), problem

(34) does not have a solution.
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Once an optimal decision region is found, future points z for which aT∗ ϕ(z) =
∑Nx

i=1[γ∗]iK(xi, z) ≤
b∗ (notice that this can be evaluated only in terms of the kernel function), can then be considered
as outliers with respect to the region Q, with the worst-case probability of occurrence outside Q
given by 1− α.

6. Experiments

In this section we report the results of experiments that we carried out to test our algorithmic
approach. The validity of 1− α as the worst-case probability of misclassification of future data is
checked, and we also assess the usefulness of the kernel trick in this setting. We compare linear
kernels and Gaussian kernels.

Experimental results on standard benchmark problems are summarized in Table 2. The Wis-
consin breast cancer dataset contains 16 missing examples which were not used. The breast cancer,
pima diabetes, ionosphere and sonar data were obtained from the UCI repository. The pima dia-
betes data were normalized. Data for the twonorm problem were generated as specified by Breiman
(1998). Each dataset was randomly partitioned into 90% training and 10% test sets. The kernel
parameter (σ) for the Gaussian kernel (e−‖x−y‖2/σ) was tuned using cross-validation over 50 random
partitions of the training set. The reported results are the averages over 50 random partitions for
both the linear kernel and the Gaussian kernel with σ chosen as above.

Dataset Linear kernel Gaussian kernel BPB SVML SVMG
α TSA α TSA

Twonorm 80.4±0.1 % 95.8±0.4 % 91.3±0.1 % 95.7±0.5 % 96.3 % 95.1±0.6 % 96.1±0.4 %

Breast cancer 84.4±0.1 % 97.0±0.4 % 89.1 ± 0.1 % 96.9±0.3 % 96.8 % 96.4±0.4 % 96.5 ± 0.3 %

Ionosphere 65.5±0.3 % 83.4±0.9 % 89.3±0.2 % 91.5±0.7 % 93.7 % 87.1±0.9 % 94.1±0.7 %

Pima diabetes 32.2±0.2 % 76.3±0.6 % 32.5±0.2 % 76.2±0.6 % 76.1 % 77.9±0.7 % 77.9±0.7 %

Sonar 67.0±0.4 % 74.9±1.4 % 99.9 ± 0.1 % 87.5±0.9 % - 76.1±1.5 % 86.6±1.0 %

Table 2: Lower bound α and test-set accuracy (TSA) compared to BPB (best performance in the
article of Breiman (1998)) and to the performance of an SVM with linear kernel (SVML)
and an SVM with Gaussian kernel (SVMG).

The results are comparable with those in the existing literature (Breiman, 1998) and with those
obtained with support vector machines. Also, we notice that α is smaller than the test-set accuracy
in all cases, except for the sonar data, with Gaussian kernel. Furthermore, α is smaller for a linear
decision boundary then for the nonlinear decision boundary obtained via the Gaussian kernel. This
clearly shows that kernelizing the method leads to more powerful decision boundaries.

We notice that, for the above binary classification problems with benchmark data, using plug-in
estimates of mean and covariance matrix without robustness considerations is successful—in some
sense the bias incurred by the use of plug-in estimates in the two classes appears to “cancel” and
have diminished overall impact on the discriminant boundary. To show that having poor plug-in
estimates for one class and better plug-in estimates for the other can bias the solution and the lower
bound α, and that a robust approach can improve this result, consider the following toy example
(Matlab code for this example is available on http://robotics.eecs.berkeley.edu/ g̃ert/ ).

Suppose data points of class x are generated by a 2-dimensional Gaussian distribution with
x̄ = [0 0]T and Σx = I and data points of class y by another 2-dimensional Gaussian distribution
with ȳ = [0 3]T and Σy = I. A small training data sample consisting of 10 points of each class
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is depicted in Figure 3. As one can see, the few training samples from class x are concentrated
around the mean, while the few training samples from class y are somewhat more spread out.
The empirical estimates Σ̂x and Σ̂y of Σx and Σy will reflect this imbalance, leading to the false
impression of a more concentrated distribution for class x than for class y. As expected, training
a standard linear MPM will lead to a decision line clearly biased towards the origin, as shown by
the dotted red line in Figure 3. The lower bound on the correct classification of future data points
(assuming Gaussian distributions) turns out to be 95.6%. However, for a test set consisting of 50
points from each class (see Figure 3), the obtained accuracy is only 90%, which obviously violates
the lower bound.

To see how a robust linear approach improves this result, we train a robust linear MPM spec-
ifying the uncertainty parameters as ρx = ‖Σx − Σ̂x‖F = 0.87, ρy = ‖Σy − Σ̂y‖F = 0.19 and
ν2 = max{(x̄ − x̂)T Σx

−1(x̄ − x̂), (ȳ − ŷ)T Σy
−1(ȳ − ŷ)} = 0.59, using our knowledge of the real

means and covariance matrices in this case. One can notice that indeed ρx > ρy, corresponding to
the clear difference in quality of the empirical moment estimates for both classes, as noticed earlier.
Moreover, the robust approach clearly reduces the bias on the decision line as can be seen in Figure
3 (solid red line). The lower bound on the correct classification of future data points decreases
to 76.8%, while the performance on the same test data increases to 94%. So, the lower bound is
respected in the robust case and the performance improves. For comparison, the dashed black line
in Figure 3 corresponds to a linear 1-norm soft margin SVM with regularization parameter C = 1,
with a test set performance of 92%.

This shows how the robust MPM clearly improves on the standard MPM when a bias is incurred
by the use of plug-in estimates of unbalanced quality in the two classes. For most of the benchmark
data sets used for Table 2, this imbalance doesn’t seem to be significant. However, in the single-
class setting, the uncertainty due to estimation of x̄ and Σx translates directly into movement of
the discriminant boundary and cannot be neglected. For the robust non-linear (kernelized) version
of the single-class MPM, as well as experimental results in robust novelty detection, we refer to
Lanckriet et al. (2002b).

7. Conclusions

The problem of linear discrimination has a long and distinguished history. Many results on mis-
classification rates have been obtained by making distributional assumptions (e.g., Anderson and
Bahadur, 1962). Our results, on the other hand, make use of the moment-based inequalities of
Marshall and Olkin (1960) to obtain distribution-free results for linear discriminants. We consid-
ered the case of binary classification, where only the mean and covariance matrix of the classes
are assumed to be known. The minimax probabilistic decision hyperplane is then determined by
optimizing the worst-case probabilities over all possible class-conditional distributions.

We have addressed issues of robustness when plug-in estimates are used for means and covariance
matrices instead of their real, but unknown values. We have also shown how to exploit Mercer
kernels to generalize our algorithm to nonlinear classification. Experimental results show that our
method is competitive with the existing literature and furthermore, our method yields an explicit
upper bound on the probability of future misclassification.

The computational complexity of our method is comparable to the quadratic program that
one has to solve for the support vector machine (SVM). While we have used a simple iterative
least-squares approach, we believe that there is much to gain from exploiting analogies to the SVM
and developing specialized optimization procedures for our algorithm, in particular procedures that
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Figure 3: Minimax probabilistic decision line (dotted red line), robust minimax probabilistic deci-
sion line (solid red line) and the decision line for a linear 1-norm soft margin SVM with
C = 1 (dashed black line) in R2. Training points are indicated with black +’s for class x
and magenta ¤’s for class y. Test points are indicated with blue ×’s for class x and green
o’s for class y. Notice how the robust approach clearly reduces the bias on the decision
line and improves the test set performance compared to the standard linear MPM.

break the data into subsets. Another direction that we are currently investigating is the extension
of our approach to multiway classification.
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Appendix A. Proof of Expression (5)

We want to find a closed-form expression for d2:

d2 = inf
aT y≥b

(y − ȳ)T Σy
−1(y − ȳ).

First notice that if aT ȳ ≥ b, then we can just take y = ȳ and obtain d2 = 0, which is certainly the
optimum because d2 ≥ 0 and we take the infimum.
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Let’s now assume aT ȳ ≤ b. We can write this as d2 = infcT w≥f wTw, where w = Σy
−1/2(y−ȳ),

cT = aT Σy
1/2 and f = b− aT ȳ ≥ 0. We then form the Lagrangian:

L(w, λ) = wTw + λ(f − cTw),

which is to be maximized with respect to λ ≥ 0 and minimized with respect to w. At the optimum,
2w = λc and f = cTw. So, λ = 2f

cT c
such that indeed λ ≥ 0 because f > 0. Also, w = dc

cT c
. This

yields:

d2 = inf
aT y≥b

(y − ȳ)T Σy
−1(y − ȳ) =

(b− aT ȳ)2

aT Σya
.

Combining both cases aT ȳ ≥ b and aT ȳ ≤ b in one expression:

d2 = inf
aT y≥b

(y − ȳ)T Σy
−1(y − ȳ) =

max((b− aT ȳ), 0)2

aT Σya
,

which proves expression (5).

Appendix B. Proof of Expression (21)

To solve the constrained optimization problem

min
x̄ : (x̄−x̄0)T Σx

−1(x̄−x̄0)≤ν2
aT x̄,

we form the Lagrangian

L(x̄, λ) = aT x̄ + λ((x̄− x̄0)T Σx
−1(x̄− x̄0)− ν2),

which is to be maximized with respect to λ ≥ 0 and minimized with respect to x̄. At the optimum:

∂

∂x̄
L(x̄, λ) = a + 2λΣx

−1x̄− 2λΣx
−1x̄0 = 0

⇒ x̄ = x̄0 − 1
2λ

Σxa, (35)

∂

∂λ
L(x̄, λ) = (x̄− x̄0)T Σx

−1(x̄− x̄0)− ν2

=
1

4λ2
aT Σxa− ν2 = 0 (36)

⇒ λ =

√
aT Σxa

4ν
, (37)

where (35) is substituted to obtain (36). Substitution of (37) in (35) gives the optimal value for x̄
and leads to:

min
x̄ : (x̄−x̄0)T Σx

−1(x̄−x̄0)≤ν2
aT x̄ = aT x̄0 − ν

√
aT Σxa,

which proves expression (21).
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Appendix C. Proof of Expression (23)

To solve the constrained optimization problem

max
Σ

aT Σa : ‖Σ− Σ0‖F ≤ ρ,

we can let Σ be of the form Σ = Σ0 + ρ∆Σ, without loss of generality. Recall that the norm used
here is the Frobenius norm: ‖A‖2F = Tr(AT A). The optimization problem then becomes:

max
∆Σ : ‖∆Σ‖F≤1

aT Σ0a + ρaT ∆Σa.

To find the value of ∆Σ that maximizes this, we first solve

max
∆Σ : ‖∆Σ‖F≤1

aT ∆Σa. (38)

Notice that, using the Cauchy-Schwarz inequality, we have

aT ∆Σa ≤ ‖a‖2‖∆Σa‖2 ≤ ‖a‖2‖∆Σ‖F ‖a‖2 ≤ ‖a‖22,
because of compatibility of the Frobenius matrix norm and the euclidean vector norm and because
‖∆Σ‖F ≤ 1.

So, the objective of (38) is upper bounded by ‖a‖22. For ∆Σ the unity matrix, this bound is
attained. We obtain

max
Σ : ‖Σ−Σ0‖F≤ρ

aT Σa = aT
(
Σ0 + ρIn

)
a = aT Σ0a + ρaTa,

which proves expression (23).
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