1188 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000

Improvements to the SMO Algorithm for SVM Regression
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy

~ Abstract—This paper points out an important source of ineffi-  problem and the associated KKT optimality conditions. We
ciency in Smola and Schélkopf’s sequential minimal optimization also point out how these conditions lead to proper criteria
(SMO) algorithm for support vector machine (SVM) regression ¢4 tarminating algorithms for designing SVM for regression.

that is caused by the use of a single threshold value. Using clues ; ; - . .
from the KKT conditions for the dual problem, two threshold pa- Section Il gives a brief overview of the SMO algorithm

rameters are employed to derive modifications of SMO for regres- for regression. In Section IV we point out the inefficiency
sion. These modified algorithms perform significantly faster than associated with the way SMO uses a single threshold value and

the original SMO on the datasets tried. describe the modified algorithms in Section V. Computational
|ndex Terms_QuadratiC programming’ regression’ Sequentia| ComparISOI’l |S done Il’l Sect'on VI PSGUdOCOdeS that are needed
minimal optimization (SMO) algorithm, support vector machine  for implementing the modified algorithms are given in [8].
(SVM).
Il. THE SVM REGRESSIONPROBLEM AND OPTIMALITY
I. INTRODUCTION CONDITIONS

UPPORT vector machine (SVM) is an elegant tool for The basic problem addressed in this pap_er is the regression
Ssolving pattern recognition and regression problems. oveioblem. The tutorial by Smola and Schélkopf [9] gives a
the past few years, it has attracted a lot of researchers from §god overview of the solution of this problem using SVM's.
neural network and mathematical programming communityroughout the paper we will useto denote the input vector
the main reason for this being its ability to provide excelleft theé SVM andz to denote the feature space vector which is
generalization performance. SVMs have also been demdglated tox by a transformationz = ¢(x). Let the training
strated to be valuable for several real-world applications. ~ Set.{zi,d:}, consist ofm data points where; is the:-th input

In this paper, we address the SVM regression probleR@ttern andi; is the corresponding target valug, € R. The
Recently, Smola and Schélkopf [9], [10] proposed an iteratigeal of SVM regression is to estimate a functipfx) that is as
algorithm, called sequential minimal optimization (SMO), forclose” as _poss!ble to the target Valué,,sfor everyz; and. at
solving the regression problem using SVM. This algorithm € same time, is as *flat” as possible for good generalization.
an extension of the SMO algorithm proposed by Platt [7] fofhe function f is represented using a linear function in the
SVM classifier design. Computational speed and ease of ifgature space
plementation are some of the noteworthy features of the SMO .
algorithm. In a recent paper [6], some improvements to Platt's Ha)=w-¢z) +b
SMO algorithm for SVM classifier design were suggested. lghere) denotes the bias. As in all SVM designs, we define
this paper, we extend those ideas to Smola and Scholkopfg kernel functionk(z, 2) = ¢(x) - #(&), where *” denotes
SMO algorithm for regression. The improvements suggestgher product in the: space. Thus, all computations will be
in this paper enhance the value of SMO for regression evggne using only the kernel function. This inner-product kernel
fgrther. In particular, we point out an'important source of ine'ffihe|ps in taking the dot product of two vectors in the feature
ciency caused by the way SMO maintains and updates a singlce without having to construct the feature space explicitly.
threshold value. Getting clues from optimality criteria assocCizercer's theorem [2] tells the conditions under which this
ated with the Karush—Kuhn—Tucker (KKT) conditions for thgarnel operator is useful for SYM designs.
dual pro_blem, we suggest the. use of two threshold parametergor S\/M regression purposes, Vapnik [11] suggested the use
and devise two modified versions of SMO for regression thgf c.insensitive loss function where the error is not penalized
are much more efficient than the original SMO. Computationgk |ong as it is less than It is assumed here thatis known
comparison on datasets show that the modifications perfogthriori. Using this error function together with a regularizing
significantly better than the original SMO. term, and letting;; = ¢(z;), the optimization problem solved

This paper is organized as follows. In Section Il we briefly,, the support vector machine can be formulated as
discuss the SVM regression problem formulation, the duaY

.1
min o [lw]® +C D (& +€)
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of f and the amount up to which deviations larger thaare Casel)o; = ot =0
tolerated.

Let us definew(c, o) = 3, (c; — o)z, We will refer to —e<(F-p)<e (1)
theag’) as Lagrange multipliers. Using Wolfe duality theory, it ~55e oy = C
can be shown that the") are obtained by solving the following ‘
Dual problem: F,—p>e (1b)
1 2 Case3)a, = C
max Zd Z(az—i—a)— §||w(a,a)||
i F,—p<—e (1c)

s.t. Z(m —al) =

Case4)w; € (0,C)

o, 0f €0,C] Vi (D) Fi—fB=ec (1d)
Once ther; andc/, are obtained, the primal variables, b, &;, Case 5)a; € (0,0)
and¢] can be easily determined by using the KKT conditions
for the primal problem. F,—p=—e (1e)

The feature space (and heneg) can be infinite di-
mensional. This makes it computationally difficult to
solve the primal problem (P). The numerical approaci < < C¥; Loy _O{L 0 <CO‘ ;C} L= {i gl _08‘ TAIO}
in SVM design is to solve the dual problem since |2tI (e IO" I O‘L; }I 35? eFm _dFa = 0}. Also,
is a finite-dimensional optimization problem. (Note thaf ‘0 = 0o U Lop- LETUS @ISO deting; andt; as
w(q,a/).w(ma’) :.Zi Ej(az—a;)(aj—ag)k(xz,xj)) To Ei=F +e ifielyUlb,
derive proper stopping conditions for algorithms which solve _F ficlo Ul
the dual, it is important to write down the optimality conditions ThTe v € doa U A1

Define the following index sets at a given Iy, = {i : 0 <

for the dual. The Lagrangian for the dual is and
1 EI.FZ‘—G ifiEIoaU_lg,
LD:§||w(a,a’)||2—2dz(ocz—oc;) :E+f ifieIObUIl-
' Using these definitions we can rewrite the necessary conditions
i+a)+p i —a) — ey ; :
+ Fz(a o)+ Z @i = ) z; e mentioned in (1a)—(1e) as
—Zm —Zé —ai) = (O~ o). p2F YielhULUL
g B<FE, VielgUlUls. (2)
Let It is easily seen that the optimality conditions will hold iff
Fy = d; —w(a, ) - 2 there exists @ satisfying (2).
e ’ o Let us define
The KKT conditions for the dual problem are bup = min{F} : i € Iy UI; UI;}
aL bow = max{ s :i € IgU I; Uly). 3)
G = it et B8 =0 ‘ t oWhU L}

OLn Then the optimality conditions will hold at sonaeiff
Gap T e Pt m=0 brow < bup (@)
mioi =0, m 20, w20 There exists a close relationship between the threshold

) , ere exists a close relationship between the threshold pa-
Yiey =0, 920, ;20 ramete in the primal problem and the multipligs, The KKT
6i(C—a;)=0, 620, «<C conditions of the primal (P) and dual (D) problem imply that,
n(C—al)=0, 7 >0, o <C. at optimality, 3 and b are identical This can be seen from the
following: 1) setting the derivative of the Lagrangian of (P) with

These conditions are both necessary and sufficient for optespect td to zero gives the equality constraint in (D) and 2) in

mality. Hereafter, we will refer to them aptimality conditions Lp, 3 is the Lagrangian multiplier of that equality constraint;

These optimality conditions can be simplified by consideringnd hence, at optimalityand/3 coincide. Therefore, in the rest

the following five cases. It is easy to check that at optimalityf the paper;? andd will denote one and the same quantity.

for every i, a; and ¢ cannot be nonzero at the same time. We will say that an index paifi, ;) defines aviolation at

Hence cases correspondingdgy, # 0 have been left out. («, ) if one of the following two sets of conditions holds:

(It is worth noting here that in the SMO regression algorithm . _

and its modifications discussed in this paper, the condition, ¢ €loU L UL, je€lpULUlz and F; > F; (5a)

a;of = 0 Vi is maintained throughout.) ielZhbULUI;, jelyoulbUul, and F; < L. (5b)
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Note that optimality condition will hold a iff there does not following reasons. First, they require that the kernel matrix be
exist any index pai(s, j) that defines a violation. computed and stored in memory. This requires extremely large
Since, in numerical solution, it is usually not possible tsmemory. Second, these methods involve expensive matrix oper-
achieve optimality exactly, there is a need to define approximattons such as Cholesky decomposition of a large submatrix of
optimality conditions. The condition (4) can be replaced by the kernel matrix. Third, coding of these algorithms is difficult.
Attempts have been made to develop methods that overcome
blow < bup + 27 (6)  some or all of these problems. One such method is chunking.
. . The idea here is to operate on a fixed size subset of the training
wherer is a positive tolerance parameter. (In the pseudocodest . : : .
: . i . sét at a time. This subset is called the working set and the op-
given in [8], [10], this parameter is referred totd ). Cor- .~ .~ . . . .
: L Lo timization subproblem is solved with respect to the variables
respondingly, the definition of violation can be altered by re- : . .
lacing (5a) and (5b), respectively, by corresponding to the examples in the worlgng set and a set of
P ' ' support vectors for the current working set is found. These cur-
iclbUL UL, jel,ULUIL and F;> Fy+2r rent support vecto.rs are t'hen usedto determingthe newworking
(7a) set. This new set is nothing but a set of worst input data points
. . _ . which violate the optimality conditions for the current estimator.
i€loUL UL, jelhULUl, and F; <F;—27.  The new optimization subproblem is solved and this process is

(7b) repeated until the optimality conditions are satisfied for all the

_ S _ ~ examples.
Hereafter in the paper, when optimality is mentioned it will pjatt [7] proposed an algorithm, called SMO for the SVM
mean approximate optimality. classifier design. This algorithm puts chunking to the extreme
Let by iteratively selecting working sets of size two and optimizing

the target function with respect to them. One advantage of using
working sets of size two is that the optimization subproblem can
{ge solved analytically. The chunking process is repeated till all
the training examples satisfy the optimality conditions. Smola
and Schoélkopf [9], [10] extended these ideas for solving the re-

E,=F - 3.

Using (1) itis easy to check that optimality holds iff there exis
a b such that the following hold for every

o >0=>E,>e—1 (8a) gression problem using SVM's. We describe this algorithm very
i <C=E <c+tr (8b) briefly _below. The details, together with a psel_Jdococ_J_e can be
, found in [9], [10]. We assume that the reader is familiar with
@>0=E s —et+7 (8c) them. To convey our ideas compactly we employ the notations

o) <C=>E; > —c—1. (8d) used in [9], [10].

. . ) . The basic step in the SMO algorithm consists of choosing a
The_se conditions are used in [9], .[10] together with a .S.pec'ﬁélir of indexes(41, i) and optimizing the dual objective func-
cHh0|ce oft to Ichecl;]n‘ aﬁ e_xagfle violates tge KKJ Cond't'or?stion in (D) by varying the Lagrange multipliers corresponding
owever, upgsst € choice biurns OUF to be rig t using t etoil and:s only. We make one important comment here on the
above conditions for checking optimality can be incorrect. \/\{;Fle of the threshold parametet, As in [9], [10] and in Sec-
n b 1

will say more about this in Section IV after a brief discussion qf,, || |et £ denote the output error on thith pattern. Let us

qula and Schqlkopf S .SMO algorithm in the next section. oo\l the indices of the two multipliers chosen for joint optimiza-
Itis also possible to give an alternate approximate optimali %n in one step as, andi, . To take a step by varying the La-

condition based on the closeness of the dual objective functi rrénge multipliers of examplés andis, we only need to know

to the optimal value, estimated using duality gap ideas. Thisjis ~ E, = F, — F,,. Therefore a knowledge of the value of
fine, but care is needed in choosing the tolerance used; seeé‘:“{l nOtZTiGEdeZa o t;i.e a step

for a related discussion. This criterion has the disadvantage t ahe method followed to choosie andi, at each step is cru
) -

tisa sm_gle global_ co_n(_j|t|on |nvol\_/|_ng all On the o'gher hand, cial for finding the solution of the problem efficiently. The SMO
(7) consists of an individual condition for each pair of mdext-?
|

12

. ) . orithm employs a two loop approach: the outer loop chooses
and hence is much better suited for the methods discusse %bnd,forachose@ the inner loop chooses. The outer loop

this paper. In particular, whet, j) satisfies (7) then a strict iterates over all patterns violating the optimality conditions,

improvement in the dual objective function can be achieved tﬁ}{st only over those with Lagrange multipliers neither on the

optimizing only the Lagrange multipliers corresponding to th&pper nor on the lower boundary (in Smola and Schélkopf's
exampleg andj. (This is true even if = 0.)

pseudocode this looping is indicated byamineAll = 0),

and once all of them are satisfied, over all patterns violating the

optimality conditions(examineALL = 1) to ensure that the

problem has indeed been solved. For efficient implementation
A number of algorithms have been suggested for solving thecache forE; is maintained and updated for those indices

dual problem. Smola and Schélkopf [9], [10] give a detailed corresponding to nonboundary Lagrange multipliers. The

view of these algorithms and their implementations. Traditione#gmainingE; are computed as and when needed.

quadratic programming algorithms such as interior point algo- Let us now see how the SMO algorithm choogesThe aim

rithms are not suitable for large size problems because of fkdo make a large increase in the objective function. Since it is

Ill. SMOLA AND SCHOLKOPF'SSMO ALGORITHM FOR
REGRESSION
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expensive to try out all possible choicesigfand choose the The solution of this subproblem is easy. Let denote the

one that gives the best increase in the objective function, thember of examples. In an increasing order arrangement of

indexi; is chosen to maximizgs,, — E; | or |E;, — E;, £2¢| {F; — ¢} and{F; + ¢} let f; and f; 41 be thejth and(j + 1)-th

depending on the multipliers @f andi,. SinceF; is available values. The function optimized in the above minimization

in cache for nonboundary multiplier indexes, only such indexgsoblem is a convex function gf. The slope of this convex

are initially used in the above choice @f If such a choice of function is negative at alj3 values smaller thary,,, it is

1 does not yield sufficient progress, then the following stegmositive at all3 values bigger thary,,,+1 and it is zero for

are taken. Starting from a randomly chosen index, all indexgsc (f.., fm+1)- Therefore anys in the interval|[ f.., fi+1] iS

corresponding to nonbound multipliers are tried as a choice ®minimizer. The determination gf,, and f,,+1 can be done

i1, one by one. If still sufficient progress is not possible, akfficiently using a “median-finding” technique. Since di}

indexes are tried as choices fgr, one by one, again startingare not typically available at a given stage of the algorithm,

from a randomly chosen index. Thus the choice of random seéds appropriate to apply the above idea to that subset of

affects the running time of SMO. indexces for whichZ; are available. This set containfg.
Although a value ofs is not needed to take a step, itis needed/e implemented this idea and tested it on some benchmark

if (8a)—(8d) are employed for checking optimality. In the SM@roblems. The idea led to a reasonable improvement over the

algorithmg is updated after each step. A valugxit chosen so original SMO. However the modifications that we suggest in

asto satisfy (1) fof € {i1,2}. If, after astep involvingiy, i2), the next section gave much greater improvements. See Section

one ofey;, , «;, (Or both) takes a nonboundary value then (1d) ol for performances on some examples.

(1e) is exploited to update the value®fin the rare case that this

does not happen, there exists a whole interval, 88y, Sup), V. MODIFICATIONS OF THESMO ALGORITHM

of admissible thresholds. In this situation SMO simply chooses

5 to be the midpoint of this interval In this section, we suggest two modified versions of the SMO

algorithm for regression, each of which overcomes the problems
mentioned in the last section. As we will see in the computa-
IV. INEFFICIENCY OF THESMO ALGORITHM tional evaluation of Section VI, these modifications are always

The SMO algorithm for regression, discussed above, ketter than the original SMO algorithm for regression and in
very simple and easy to implement. However it can beconqéost_s_ituations, they also give quite a remarkable improvement
inefficient because of its way of computing and maintaining '8 €fficiency. - _ _
single threshold value. At any instant, the SMO algorithm fixes In short, the modifications avoid t_he use.of a.smgle threshold
3 based on the current two indexes used for joint optimizatiof@!u®/ and the use of (8) for checking optimality. Instead, two
However, while checking whether the remaining exampldgreshold parameters,,, andbi.., are maintained and (6) (or
violate optimality or not, it is quite possible that a different(’)) i émployed for checking optimality. Assuming that the
shifted choice of3 may do a better job. So, in the gmoreader is fam|I|ar_ with [9] and the pseudocodes_for SMO given
algorithm it is quite possible that, even though, o) has there, we only give a set of pom.t.ers that describe t_he changes
reached a value where optimality is satisfied (i.e., (6)), SMEatare made to Smola and Schélkopf's SMO algorithm for re-
has not detected this because it has not identified the corrBE&Ssion. Pseudocodes that fully describe these can be found in
choice of 5. It is also quite possible that, a particular indef8l- _ ) ) ) )
may appear to violate the optimality conditions because (8) is1) SUPPOSe, at any instartt; is available for alk. Let iy
employed using an “incorrect” value @ although this index @Ndéup be indices such that
may not be able to pair with another to make progress in the .

objective function. In such a situation the SMO algorithm does By = biow =max{l; ;1€ LUL UL}  (9)
an expensiveand wasteful search looking for a second indeand
S0 as to take a step. We believe that this is a major source of By, = b =min{F i€ [yl UL} (9b)

inefficiency in the SMO algorithm.

There is one simple alternate way of choosthifpat involves  Then checking a particulafor optimality is easy. For example,
all indices. By duality theory, the objective function value irgupposg € I5. We only have to check if; < biow — 27. If this
(P) of a primal feasible solution is greater than or equal to th@ndition holds, then there is a violation and in that case SMO’s
objective function value in (D) of a dual feasible solution. ThﬁakeStep procedure can be applied to the index [§&jk oy ).
difference between these two values is referred to adugty  simjlar steps can be given for indexes in other sets. Thus, in
gap The duality gap is zero only at optimality. Suppése«’)  our approach, the checking of optimality of the first index,
is given andv = w(a, o). For each;, the term¢; can be chosen and the choice of second index, go hand in hand, unlike the
optimally (as a function op). The result is that the duality gapgriginal SMO algorithm. As we will see below, we compute and
is expressed as a function gfonly. One possible way of im- USE(i1ow, biow ) ANd(iyp, bup) Via an efficient updating process.
proving the SMO algorithm is to always chogsso as to min- 2) To be efficient, we would, like in the SMO algorithm,
imize the duality gap. This corresponds to the subproblem spend much of the effort altering , i € I,; cache fotF}, i € I
are maintained and updated to do this efficiently. And, when op-
minz max(0, F; — B — e, —F; + 3 —¢). timality holds for alli € Io, only then all indices are examined
8 = for optimality.
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3) The procedureakeStep is modified. After a successful 10
step using a pair of indice$iz, 1), let{ = Iop U {z;l,iQ}. We o "smo"
computepartiqlly, (410w Dlow) @Nd(%yp, byp) USINGI only _(i.e., <l x "smo duality gap"” __>
use only: € I in (9)). Note that these extra steps are inexpen- * "smo mod 1"

sive because cache foF;, i € Iy} is available and updates of + "smo mod 2"
L, , F,, are easily done. A careful look shows that, sificand %10‘ L
11 have been just involved in a successful step, each of the tw: £
sets,/ N (IoUI; Uly) andiN (I, UI; UIs), is nonempty; hence
the partially compute@iow , biow) and(ivup, bup) Will Not be null o'y
elements. Sinc&.., ands,;, could take values fronf,, ¢, } and

they are used as choices farin the subsequent step (see item

UT

1 above), we keep the values Bf, andF;, also in cache. P _*,__._*-"’; -7

3,
¢

4) When working with onlye;, o), i € Io, i.e., aloopwith |
examineAll = 0, one should note that, if (6) holds at some 1=
point then it implies that optimality holds as far &gis con- C
cerned. (This is because, as mentioned in item 3 above, the
choice ofboy andbup are influenced by all indexes %) This Fig. 1. Toy data: CPU time (in seconds) shown as a functia@.of
gives an easy way of exiting this loop.

5) There are two ways of implementing the loop involvinghe optimality checks. Furthermore, when (6) holds and the loop
indexes inly only (examineAll = 0). over all indices has been completed, the true valuégnand

Method 1: This is similar to what is done in SMO. Loopb,.,,, as defined in (3) would have been computed since all in-
through alk; € I,. Foreach, check optimality and if violated, dices have been encountered. As a final choide(fufr later use
choosei; appropriately. For example, if;, < b, — 27 then in doing inference) it is appropriate to sét= 0.5(byy, + biow)-
there is a violation and in that case choose= 4o

Method 2: Always work with the worst violating pair, i.e., VI. COMPUTATIONAL COMPARISON
chooseiy = ijoy aNdi; = iyp. . . -

. . . In this section we compare the performance of our modifi-
Depending on which one of these methods is used, we call.. . N , .
. s ... __cations against Smola and Schélkopf’'s SMO algorithm for re-
the resulting overall modification of SMO as SMO-Modifica- : . : .
. . .. gression and the SMO algorithm based on duality gap ideas for
tion 1 and SMO-Modification 2. SMO and SMO-Maodification . X
) . . T threshold (see Section 1V), on three datasets. We implemented
1 are identical except in the way optimality is tested. On thaqI these methods in C and ran them usi on a P3 450
other hand, SMO-Madification 2 can be thought of as a furth I

improvement of SMO-Modification 1 where the cache is effec- H.Z Linux machine. The valuer, = .0'01 was US.Gd for all ex-
tively used to choose the violating pair w ineAll = O, periments. For every dataset used in the experiments, we added

N . an independent Gaussian noise of mean zero and some standard
6) When optimality onl; holds, as already said we come, . .. .

- . X deviation. For every dataset, the valuecafas manually set in
back to check optimality on all indexdgexamineAll = 1).

. . . a random way depending upon the amount of noise added to the
Here we Ipop through all mde_xes, one by one. S.I@QQV, tlow) data. Similar experimental approaches include [4]. The input as
and(byy,, i,p,) have been partially computed usifdgonly, we

Undate these quantities as edds examined. Eor a qiven F: well as the output are then normalized so as to have zero mean
b q ' given L apd a unit variance.

1S computed first anq oppmahty 1S chec_:ked_ using the curren The first dataset is a toy dataset where the function to be ap-
(blow, tlow) @Nd (byy,, 4 ); If there is no violation,F; are used . . . . 3 . 2
to undate these ! anlt't'es For examplei i€ I. and F: proximated is a cubic polynomial)2z° 4 .052* — x. The do-

up quantities. xample, 3 © < main of this function was fixed tof10, 10]. The value¢ =

biow — 27, then there is a violation, in which case we take a St%t.)% was used. One hundred training samples were chosen ran-

using (¥ é1ow). ON the other hand, if there is no violation, therlomly. The performance of the four algorithms for the polyno-
(iup, bup) is modified usingZ3, i.e., if F; < by, then we do: o

tup = % andby, = Fj.

_ 7) S_upp_ose we dq as descnbec_i abovei What happens if there k(i z;) = (1+z;  2;)

is no violation for any in aloop havingexamineAll = 1? Can

we conclude that optimality holds for aff The answer to this wherep was chosen to be three (the degree of the polynomial
question is affirmative. This is easy to see from the followingom which the data is generated), is shown in Fig. 1.
argument. Suppose, by contradiction, there does existiofle  The second dataset is the Boston housing dataset which is
pair such that they define a violation, i.e., they satisfy (7). Lef standard benchmark for testing regression algorithms. This
us sayi: < j. Thenj would not have satisfied the optimalitydataset is available at UCI Repository [1]. The dimension of the
check in the above described implementation because éithefinputis 13. We used a training set of size 406. The value, 56

or F; would have, earlier thapis seen, affected either the calwas used. Fig. 2 shows the performance of the four algorithms

culation ofb,;, and/orbi. settings. In other words, evenif on this dataset. For this as well as the third dataset the Gaussian
is mistakenly taken as having satisfied optimality earlier in thernel

loop, 7 will be detected as violating optimality when it is ana-
lyzed. Only when (6) holds it is possible for all indices to satisfy k(z;,z;) = exp(—0.5||z; — z;]]?/o?)
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10° ' . . ciency is remarkable. In particular, at large value€'dhe im-
X provement is by an order of magnitude. Between the two mod-

CPU Time(s)

0 1 1 L

10

Fig. 2. Boston housing data: CPU time (in seconds) shown as a funct©n of

o "smo
X "smo duality gap"
0 * "smo mod 1"
"smo mod 2" -3

oot %
- T - *.,’
e P e _
""'.._._:,—_ __________ * -
1OI .
107 ~ |
C

CPU Time(s)

Fig. 3. Comp-Activ data: CPU time (in seconds) shown as a functidri. of

was used and the? value employed was 2.5. The value ®f

o "smo" . . . . - . . .

X "smo duality gap" ifications, it is difficult to say which one is better.

* "smo mod 1" The primary purpose of these experiments is to examine dif-
+ "smo mod 2 ferences in training times of all the four methods. However,

studying the generalization abilities of these methods is an im-
portant task and we are currently investigating it. The results of
this comparison will be reported elsewhere.

was chosen randomly. The SVM is rather insensitive to different

choices ofs.

VII. CONCLUSION

In this paper, we have pointed out an important source of
inefficiency in Smola and Schélkopf’'s SMO algorithm that is
caused by the operation with a single threshold value. We have
suggested two modifications of the SMO algorithm that over-
come the problem by efficiently maintaining and updating two
threshold parameters. Our computational experiments show that
these modifications speed up the SMO algorithm significantly
in most situations. The modifications can be easily implemented
using the pseudocodes given in [8].
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