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Improvements to the SMO Algorithm for SVM Regression
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy

Abstract—This paper points out an important source of ineffi-
ciency in Smola and Schölkopf’s sequential minimal optimization
(SMO) algorithm for support vector machine (SVM) regression
that is caused by the use of a single threshold value. Using clues
from the KKT conditions for the dual problem, two threshold pa-
rameters are employed to derive modifications of SMO for regres-
sion. These modified algorithms perform significantly faster than
the original SMO on the datasets tried.

Index Terms—Quadratic programming, regression, sequential
minimal optimization (SMO) algorithm, support vector machine
(SVM).

I. INTRODUCTION

SUPPORT vector machine (SVM) is an elegant tool for
solving pattern recognition and regression problems. Over

the past few years, it has attracted a lot of researchers from the
neural network and mathematical programming community;
the main reason for this being its ability to provide excellent
generalization performance. SVMs have also been demon-
strated to be valuable for several real-world applications.

In this paper, we address the SVM regression problem.
Recently, Smola and Schölkopf [9], [10] proposed an iterative
algorithm, called sequential minimal optimization (SMO), for
solving the regression problem using SVM. This algorithm is
an extension of the SMO algorithm proposed by Platt [7] for
SVM classifier design. Computational speed and ease of im-
plementation are some of the noteworthy features of the SMO
algorithm. In a recent paper [6], some improvements to Platt’s
SMO algorithm for SVM classifier design were suggested. In
this paper, we extend those ideas to Smola and Schölkopf’s
SMO algorithm for regression. The improvements suggested
in this paper enhance the value of SMO for regression even
further. In particular, we point out an important source of ineffi-
ciency caused by the way SMO maintains and updates a single
threshold value. Getting clues from optimality criteria associ-
ated with the Karush–Kuhn–Tucker (KKT) conditions for the
dual problem, we suggest the use of two threshold parameters
and devise two modified versions of SMO for regression that
are much more efficient than the original SMO. Computational
comparison on datasets show that the modifications perform
significantly better than the original SMO.

This paper is organized as follows. In Section II we briefly
discuss the SVM regression problem formulation, the dual
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problem and the associated KKT optimality conditions. We
also point out how these conditions lead to proper criteria
for terminating algorithms for designing SVM for regression.
Section III gives a brief overview of the SMO algorithm
for regression. In Section IV we point out the inefficiency
associated with the way SMO uses a single threshold value and
describe the modified algorithms in Section V. Computational
comparison is done in Section VI. Pseudocodes that are needed
for implementing the modified algorithms are given in [8].

II. THE SVM REGRESSIONPROBLEM AND OPTIMALITY

CONDITIONS

The basic problem addressed in this paper is the regression
problem. The tutorial by Smola and Schölkopf [9] gives a
good overview of the solution of this problem using SVM’s.
Throughout the paper we will useto denote the input vector
of the SVM and to denote the feature space vector which is
related to by a transformation, . Let the training
set, , consist of data points where is the -th input
pattern and is the corresponding target value, . The
goal of SVM regression is to estimate a function that is as
“close” as possible to the target valuesfor every and at
the same time, is as “flat” as possible for good generalization.
The function is represented using a linear function in the
feature space

where denotes the bias. As in all SVM designs, we define
the kernel function , where “” denotes
inner product in the space. Thus, all computations will be
done using only the kernel function. This inner-product kernel
helps in taking the dot product of two vectors in the feature
space without having to construct the feature space explicitly.
Mercer’s theorem [2] tells the conditions under which this
kernel operator is useful for SVM designs.

For SVM regression purposes, Vapnik [11] suggested the use
of -insensitive loss function where the error is not penalized
as long as it is less than. It is assumed here thatis known
a priori. Using this error function together with a regularizing
term, and letting , the optimization problem solved
by the support vector machine can be formulated as

s.t.

(P)

The above problem is referred to as theprimal problem. The
constant determines the tradeoff between the smoothness
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of and the amount up to which deviations larger thanare
tolerated.

Let us define . We will refer to
the as Lagrange multipliers. Using Wolfe duality theory, it
can be shown that the are obtained by solving the following
Dual problem:

s.t.

(D)

Once the and are obtained, the primal variables,
and can be easily determined by using the KKT conditions
for the primal problem.

The feature space (and hence) can be infinite di-
mensional. This makes it computationally difficult to
solve the primal problem (P). The numerical approach
in SVM design is to solve the dual problem since it
is a finite-dimensional optimization problem. (Note that

.) To
derive proper stopping conditions for algorithms which solve
the dual, it is important to write down the optimality conditions
for the dual. The Lagrangian for the dual is

Let

The KKT conditions for the dual problem are

These conditions are both necessary and sufficient for opti-
mality. Hereafter, we will refer to them asoptimality conditions.
These optimality conditions can be simplified by considering
the following five cases. It is easy to check that at optimality,
for every and cannot be nonzero at the same time.
Hence cases corresponding to have been left out.
(It is worth noting here that in the SMO regression algorithm
and its modifications discussed in this paper, the condition,

is maintained throughout.)

Case 1)

(1a)

Case 2)

(1b)

Case 3)

(1c)

Case 4)

(1d)

Case 5)

(1e)

Define the following index sets at a given:

. Also,
let . Let us also define and as

if

if

and

if

if

Using these definitions we can rewrite the necessary conditions
mentioned in (1a)–(1e) as

(2)

It is easily seen that the optimality conditions will hold iff
there exists a satisfying (2).

Let us define

(3)

Then the optimality conditions will hold at someiff

(4)

There exists a close relationship between the threshold pa-
rameter in the primal problem and the multiplier,. The KKT
conditions of the primal (P) and dual (D) problem imply that,
at optimality, and are identical. This can be seen from the
following: 1) setting the derivative of the Lagrangian of (P) with
respect to to zero gives the equality constraint in (D) and 2) in

, is the Lagrangian multiplier of that equality constraint;
and hence, at optimalityand coincide. Therefore, in the rest
of the paper, and will denote one and the same quantity.

We will say that an index pair defines aviolation at
if one of the following two sets of conditions holds:

and (5a)

and (5b)
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Note that optimality condition will hold at iff there does not
exist any index pair that defines a violation.

Since, in numerical solution, it is usually not possible to
achieve optimality exactly, there is a need to define approximate
optimality conditions. The condition (4) can be replaced by

(6)

where is a positive tolerance parameter. (In the pseudocodes
given in [8], [10], this parameter is referred to astol ). Cor-
respondingly, the definition of violation can be altered by re-
placing (5a) and (5b), respectively, by

and

(7a)

and

(7b)

Hereafter in the paper, when optimality is mentioned it will
mean approximate optimality.

Let

Using (1) it is easy to check that optimality holds iff there exists
a such that the following hold for every:

(8a)

(8b)

(8c)

(8d)

These conditions are used in [9], [10] together with a special
choice of to check if an example violates the KKT conditions.
However, unless the choice ofturns out to be right, using the
above conditions for checking optimality can be incorrect. We
will say more about this in Section IV after a brief discussion of
Smola and Schölkopf’s SMO algorithm in the next section.

It is also possible to give an alternate approximate optimality
condition based on the closeness of the dual objective function
to the optimal value, estimated using duality gap ideas. This is
fine, but care is needed in choosing the tolerance used; see [5]
for a related discussion. This criterion has the disadvantage that
it is a single global condition involving all. On the other hand,
(7) consists of an individual condition for each pair of indexes
and hence is much better suited for the methods discussed in
this paper. In particular, when satisfies (7) then a strict
improvement in the dual objective function can be achieved by
optimizing only the Lagrange multipliers corresponding to the
examples and . (This is true even if .)

III. SMOLA AND SCHÖLKOPF’S SMO ALGORITHM FOR

REGRESSION

A number of algorithms have been suggested for solving the
dual problem. Smola and Schölkopf [9], [10] give a detailed
view of these algorithms and their implementations. Traditional
quadratic programming algorithms such as interior point algo-
rithms are not suitable for large size problems because of the

following reasons. First, they require that the kernel matrix be
computed and stored in memory. This requires extremely large
memory. Second, these methods involve expensive matrix oper-
ations such as Cholesky decomposition of a large submatrix of
the kernel matrix. Third, coding of these algorithms is difficult.

Attempts have been made to develop methods that overcome
some or all of these problems. One such method is chunking.
The idea here is to operate on a fixed size subset of the training
set at a time. This subset is called the working set and the op-
timization subproblem is solved with respect to the variables
corresponding to the examples in the working set and a set of
support vectors for the current working set is found. These cur-
rent support vectors are then used to determine the new working
set. This new set is nothing but a set of worst input data points
which violate the optimality conditions for the current estimator.
The new optimization subproblem is solved and this process is
repeated until the optimality conditions are satisfied for all the
examples.

Platt [7] proposed an algorithm, called SMO for the SVM
classifier design. This algorithm puts chunking to the extreme
by iteratively selecting working sets of size two and optimizing
the target function with respect to them. One advantage of using
working sets of size two is that the optimization subproblem can
be solved analytically. The chunking process is repeated till all
the training examples satisfy the optimality conditions. Smola
and Schölkopf [9], [10] extended these ideas for solving the re-
gression problem using SVM’s. We describe this algorithm very
briefly below. The details, together with a pseudocode can be
found in [9], [10]. We assume that the reader is familiar with
them. To convey our ideas compactly we employ the notations
used in [9], [10].

The basic step in the SMO algorithm consists of choosing a
pair of indexes, and optimizing the dual objective func-
tion in (D) by varying the Lagrange multipliers corresponding
to and only. We make one important comment here on the
role of the threshold parameter,. As in [9], [10] and in Sec-
tion II, let denote the output error on theth pattern. Let us
call the indices of the two multipliers chosen for joint optimiza-
tion in one step as and . To take a step by varying the La-
grange multipliers of examples and , we only need to know

. Therefore a knowledge of the value of
is not needed to take a step.
The method followed to choose and at each step is cru-

cial for finding the solution of the problem efficiently. The SMO
algorithm employs a two loop approach: the outer loop chooses

; and, for a chosen the inner loop chooses. The outer loop
iterates over all patterns violating the optimality conditions,
first only over those with Lagrange multipliers neither on the
upper nor on the lower boundary (in Smola and Schölkopf’s
pseudocode this looping is indicated by ),
and once all of them are satisfied, over all patterns violating the
optimality conditions to ensure that the
problem has indeed been solved. For efficient implementation
a cache for is maintained and updated for those indices

corresponding to nonboundary Lagrange multipliers. The
remaining are computed as and when needed.

Let us now see how the SMO algorithm chooses. The aim
is to make a large increase in the objective function. Since it is
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expensive to try out all possible choices ofand choose the
one that gives the best increase in the objective function, the
index is chosen to maximize or
depending on the multipliers of and . Since is available
in cache for nonboundary multiplier indexes, only such indexes
are initially used in the above choice of. If such a choice of

does not yield sufficient progress, then the following steps
are taken. Starting from a randomly chosen index, all indexes
corresponding to nonbound multipliers are tried as a choice for

, one by one. If still sufficient progress is not possible, all
indexes are tried as choices for, one by one, again starting
from a randomly chosen index. Thus the choice of random seed
affects the running time of SMO.

Although a value of is not needed to take a step, it is needed
if (8a)–(8d) are employed for checking optimality. In the SMO
algorithm is updated after each step. A value ofis chosen so
as to satisfy (1) for . If, after a step involving ,
one of (or both) takes a nonboundary value then (1d) or
(1e) is exploited to update the value of. In the rare case that this
does not happen, there exists a whole interval, say, ,
of admissible thresholds. In this situation SMO simply chooses

to be the midpoint of this interval.

IV. I NEFFICIENCY OF THESMO ALGORITHM

The SMO algorithm for regression, discussed above, is
very simple and easy to implement. However it can become
inefficient because of its way of computing and maintaining a
single threshold value. At any instant, the SMO algorithm fixes

based on the current two indexes used for joint optimization.
However, while checking whether the remaining examples
violate optimality or not, it is quite possible that a different,
shifted choice of may do a better job. So, in the SMO
algorithm it is quite possible that, even though has
reached a value where optimality is satisfied (i.e., (6)), SMO
has not detected this because it has not identified the correct
choice of . It is also quite possible that, a particular index
may appear to violate the optimality conditions because (8) is
employed using an “incorrect” value of although this index
may not be able to pair with another to make progress in the
objective function. In such a situation the SMO algorithm does
an expensiveand wasteful search looking for a second index
so as to take a step. We believe that this is a major source of
inefficiency in the SMO algorithm.

There is one simple alternate way of choosingthat involves
all indices. By duality theory, the objective function value in
(P) of a primal feasible solution is greater than or equal to the
objective function value in (D) of a dual feasible solution. The
difference between these two values is referred to as theduality
gap. The duality gap is zero only at optimality. Suppose
is given and . For each, the term can be chosen
optimally (as a function of ). The result is that the duality gap
is expressed as a function ofonly. One possible way of im-
proving the SMO algorithm is to always chooseso as to min-
imize the duality gap. This corresponds to the subproblem

The solution of this subproblem is easy. Let denote the
number of examples. In an increasing order arrangement of

and let and be the th and -th
values. The function optimized in the above minimization
problem is a convex function of . The slope of this convex
function is negative at all values smaller than , it is
positive at all values bigger than and it is zero for

. Therefore any in the interval, is
a minimizer. The determination of and can be done
efficiently using a “median-finding” technique. Since all
are not typically available at a given stage of the algorithm,
it is appropriate to apply the above idea to that subset of
indexces for which are available. This set contains.
We implemented this idea and tested it on some benchmark
problems. The idea led to a reasonable improvement over the
original SMO. However the modifications that we suggest in
the next section gave much greater improvements. See Section
VI for performances on some examples.

V. MODIFICATIONS OF THESMO ALGORITHM

In this section, we suggest two modified versions of the SMO
algorithm for regression, each of which overcomes the problems
mentioned in the last section. As we will see in the computa-
tional evaluation of Section VI, these modifications are always
better than the original SMO algorithm for regression and in
most situations, they also give quite a remarkable improvement
in efficiency.

In short, the modifications avoid the use of a single threshold
value and the use of (8) for checking optimality. Instead, two
threshold parameters, and are maintained and (6) (or
(7)) is employed for checking optimality. Assuming that the
reader is familiar with [9] and the pseudocodes for SMO given
there, we only give a set of pointers that describe the changes
that are made to Smola and Schölkopf’s SMO algorithm for re-
gression. Pseudocodes that fully describe these can be found in
[8].

1) Suppose, at any instant, is available for all . Let
and be indices such that

(9a)

and

(9b)

Then checking a particularfor optimality is easy. For example,
suppose . We only have to check if . If this
condition holds, then there is a violation and in that case SMO’s
takeStep procedure can be applied to the index pair .
Similar steps can be given for indexes in other sets. Thus, in
our approach, the checking of optimality of the first index,
and the choice of second index,, go hand in hand, unlike the
original SMO algorithm. As we will see below, we compute and
use and via an efficient updating process.

2) To be efficient, we would, like in the SMO algorithm,
spend much of the effort altering ; cache for
are maintained and updated to do this efficiently. And, when op-
timality holds for all , only then all indices are examined
for optimality.
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3) The proceduretakeStep is modified. After a successful
step using a pair of indices, , let . We
compute,partially, and using only (i.e.,
use only in (9)). Note that these extra steps are inexpen-
sive because cache for is available and updates of

are easily done. A careful look shows that, sinceand
have been just involved in a successful step, each of the two

sets, and , is nonempty; hence
the partially computed and will not be null
elements. Since and could take values from and
they are used as choices forin the subsequent step (see item
1 above), we keep the values of and also in cache.

4) When working with only , i.e., a loop with
, one should note that, if (6) holds at some

point then it implies that optimality holds as far as is con-
cerned. (This is because, as mentioned in item 3 above, the
choice of and are influenced by all indexes in .) This
gives an easy way of exiting this loop.

5) There are two ways of implementing the loop involving
indexes in only .

Method 1: This is similar to what is done in SMO. Loop
through all . For each , check optimality and if violated,
choose appropriately. For example, if then
there is a violation and in that case choose .

Method 2: Always work with the worst violating pair, i.e.,
choose and .

Depending on which one of these methods is used, we call
the resulting overall modification of SMO as SMO-Modifica-
tion 1 and SMO-Modification 2. SMO and SMO-Modification
1 are identical except in the way optimality is tested. On the
other hand, SMO-Modification 2 can be thought of as a further
improvement of SMO-Modification 1 where the cache is effec-
tively used to choose the violating pair when .

6) When optimality on holds, as already said we come
back to check optimality on all indexes .
Here we loop through all indexes, one by one. Since
and have been partially computed usingonly, we
update these quantities as eachis examined. For a given
is computed first and optimality is checked using the current

and ; if there is no violation, are used
to update these quantities. For example, if and

, then there is a violation, in which case we take a step
using . On the other hand, if there is no violation, then

is modified using , i.e., if then we do:
and .

7) Suppose we do as described above. What happens if there
is no violation for any in a loop having ? Can
we conclude that optimality holds for all? The answer to this
question is affirmative. This is easy to see from the following
argument. Suppose, by contradiction, there does exist one
pair such that they define a violation, i.e., they satisfy (7). Let
us say, . Then would not have satisfied the optimality
check in the above described implementation because either
or would have, earlier than is seen, affected either the cal-
culation of and/or settings. In other words, even if
is mistakenly taken as having satisfied optimality earlier in the
loop, will be detected as violating optimality when it is ana-
lyzed. Only when (6) holds it is possible for all indices to satisfy

Fig. 1. Toy data: CPU time (in seconds) shown as a function ofC .

the optimality checks. Furthermore, when (6) holds and the loop
over all indices has been completed, the true values ofand

, as defined in (3) would have been computed since all in-
dices have been encountered. As a final choice of(for later use
in doing inference) it is appropriate to set: .

VI. COMPUTATIONAL COMPARISON

In this section we compare the performance of our modifi-
cations against Smola and Schölkopf’s SMO algorithm for re-
gression and the SMO algorithm based on duality gap ideas for
threshold (see Section IV), on three datasets. We implemented
all these methods in C and ran them usinggcc on a P3 450
MHz Linux machine. The value, was used for all ex-
periments. For every dataset used in the experiments, we added
an independent Gaussian noise of mean zero and some standard
deviation. For every dataset, the value ofwas manually set in
a random way depending upon the amount of noise added to the
data. Similar experimental approaches include [4]. The input as
well as the output are then normalized so as to have zero mean
and a unit variance.

The first dataset is a toy dataset where the function to be ap-
proximated is a cubic polynomial, . The do-
main of this function was fixed to [10, 10]. The value,

was used. One hundred training samples were chosen ran-
domly. The performance of the four algorithms for the polyno-
mial kernel

where was chosen to be three (the degree of the polynomial
from which the data is generated), is shown in Fig. 1.

The second dataset is the Boston housing dataset which is
a standard benchmark for testing regression algorithms. This
dataset is available at UCI Repository [1]. The dimension of the
input is 13. We used a training set of size 406. The value,
was used. Fig. 2 shows the performance of the four algorithms
on this dataset. For this as well as the third dataset the Gaussian
kernel
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Fig. 2. Boston housing data: CPU time (in seconds) shown as a function ofC .

Fig. 3. Comp-Activ data: CPU time (in seconds) shown as a function ofC .

was used and the value employed was 2.5. The value of
was chosen randomly. The SVM is rather insensitive to different
choices of .

The third dataset, Comp-Activ, is available at the Delve web-
site [3]. This dataset contains 8192 data points of which we
used 5764. We implemented the “cpuSmall” prototask, which
involves using 12 attributes to predict the fraction of time (in
percentage) the CPU runs in user mode. We used for this
dataset. The performance of the four algorithms on this dataset
is shown in Fig. 3.

It is very clear that both modifications outperform the original
SMO algorithm. In many situations the improvement in ef-fi-

ciency is remarkable. In particular, at large values ofthe im-
provement is by an order of magnitude. Between the two mod-
ifications, it is difficult to say which one is better.

The primary purpose of these experiments is to examine dif-
ferences in training times of all the four methods. However,
studying the generalization abilities of these methods is an im-
portant task and we are currently investigating it. The results of
this comparison will be reported elsewhere.

VII. CONCLUSION

In this paper, we have pointed out an important source of
inefficiency in Smola and Schölkopf’s SMO algorithm that is
caused by the operation with a single threshold value. We have
suggested two modifications of the SMO algorithm that over-
come the problem by efficiently maintaining and updating two
threshold parameters. Our computational experiments show that
these modifications speed up the SMO algorithm significantly
in most situations. The modifications can be easily implemented
using the pseudocodes given in [8].
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