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The causes of major and rapid transitions observed in biological
macroevolution as well as in the evolution of social systems are a
subject of much debate. Here we identify the proximate causes of
crashes and recoveries that arise dynamically in a model system in
which populations of (molecular) species coevolve with their net-
work of chemical interactions. Crashes are events that involve the
rapid extinction of many species, and recoveries the assimilation of
new ones. These are analyzed and classified in terms of the
structural properties of the network. We find that in the absence
of large external perturbation, ‘‘innovation’’ is a major cause of
large extinctions and the prime cause of recoveries. Another major
cause of crashes is the extinction of a ‘‘keystone species.’’ Different
classes of causes produce crashes of different characteristic sizes.

Major transitions in biological and social systems are attrib-
uted primarily to some combination of external perturba-

tion, selection, novelty, and a complex internal dynamics and
structure of the system (1–8). Although empirical studies at-
tempt to identify proximate causes for individual events, most
modeling efforts have tended to focus on the statistics of the
events taken as a whole (see, e.g., refs. 9 and 10 for reviews of
models in macroevolution and finance, respectively). Here we
discuss an evolutionary model that permits a precise dissection
of the (often multiple) causes of individual events. Although the
model is abstract, highly simplified and motivated by chemical
evolution, the structures and processes that arise in it seem to
have the flavor of phenomena in biological and social evolution.
These include the appearance of a ‘‘core’’ and ‘‘periphery’’ in the
network structure of the system, a shifting balance between
cooperative and competitive processes as structures evolve,
‘‘core-shifts,’’ history dependence, ‘‘keystone species,’’ ‘‘innova-
tions’’ that are ‘‘core-transforming’’ or ‘‘dormant,’’ and others.
Their precise mathematical formulation and analysis of their role
in major transitions in this simplified context may help in
constructing and analyzing more realistic models.

The Model
The system is an idealized prebiotic pond containing a set of s
chemical species. A given species j can be a catalyst for the
production of another species i with some small a priori prob-
ability p. Then the presence of j in the pond causes the
population of i to increase according to the rate equation for
catalyzed chemical reactions. The catalytic relationship is rep-
resented graphically by an arrow from node j to node i in a
directed graph representing the chemical network. The graph is
completely specified by its adjacency matrix C � (cij), i, j �
{1, . . . , s}. cij is unity if there is a link from node j to node i, i.e.,
if species j catalyzes the production of species i, and zero
otherwise. Each species has a population yi in the pond. xi �
yi�¥jyj is its relative population; by definition 0 � xi � 1, ¥i�1

s

xi � 1. On a certain time scale T the relative populations of the
species reach a steady state denoted X � (X1, . . . , Xs) that
depends on the catalytic network. We imagine the pond to be
subject to periodic external perturbations on a time scale greater
than T in the form of tides, storms, or floods. Such a perturbation
can flush out existing molecular species from the pond (the ones

with the least Xi being the most likely to be eliminated) and bring
in new chemical species from the environment whose catalytic
relationships with existing species in the pond are quite different
from the eliminated ones. Then, after the perturbation, the
populations in the pond will evolve to a new steady state, be
subject to another perturbation, and so on.

The precise rules are as follows: Initialization: Start with a
random graph with s nodes and ‘‘catalytic probability’’ p. That is,
for every ordered pair (i, j) with i � j, cij is unity with probability
p and zero with probability 1 � p. cii � 0 for all i (to forbid
self-replicating species). Fig. 1a is an example. Assign each xi a
random number between 0 and 1 and uniformly rescale all xi so
that ¥i�1

s xi � 1. Dynamics: First, keeping C fixed, evolve x from
its initial condition according to

ẋ i � �
j � 1

s

cijxj � xi �
k � 1

s �
j � 1

s

ckjxj [1]

for a time T large enough to reach its attractor. Denote xi(T) �
Xi. Eq. 1 follows from the rate equation ẏi � ¥j cijyj � �yi for
the populations, which in turn is an idealization of rate equations
in a well-stirred chemical reactor.¶ Find the set of nodes with the
least Xi. Second, pick a node (denoted k) from this set at random
and remove this node from the graph along with all its links. Add
a new node (also denoted k) to the graph, which is connected
randomly to the existing nodes according to the same catalytic
probability p. Mathematically, this means that for every i � k,
cki and cik are reassigned to unity with probability p and zero with
probability 1 � p, irrespective of the value they had earlier, and
ckk � 0. Set xk � x0 (a small constant), perturb all other xi about
their existing value Xi by a small amount, and uniformly rescale
all xi to preserve the normalization ¥i�1

s xi � 1. This procedure
provides a new graph and a new initial condition for x. Now
return to the first step of the dynamics and iterate the procedure
several times.�

This model, introduced in ref. 11, was inspired by the work in
refs. 4, 5, and 12–15. The removal of the least populated species
implements selection (5), and its replacement by another ran-

Abbreviation: ACS, autocatalytic set.
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¶The rate equation ẏi � k(1 � vyj)nAnB � �yi follows from the reaction scheme A �

B
j

3 i, where A and B are reactants with populations nA and nB, j and i are catalyst and
product with populations yj and yi respectively, and � is a death rate or dilution flux
in the reactor (k is the rate constant for the spontaneous reaction and v is the catalytic
efficiency). We assume the reactants are buffered (nA, nB are large and fixed), and the
spontaneous reaction is much slower then the catalyzed reaction. Then the growth
rate depends only on the catalyst population: ẏi � cyj � �yi, where c is a constant.
A generalization of the latter equation is ẏi � ¥j � 1

s cijyj � �yi for the case where
species i has multiple catalysts. Eq. 1 follows from this by taking the time derivative of
xi � yi�¥j � 1

s yj. In the present model, we make the idealization that all catalytic
strengths are equal. The second (quadratic) term in Eq. 1 is needed to preserve the
normalization of the xi under time evolution. Note that it follows automatically from
the nonlinear relationship between xi and yi when the time derivative of xi is taken.

�The attractor configuration X is determined in this article by its algebraic properties discussed
later, not by numerically integrating Eq. 1. Hence we are effectively taking T � �.
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Fig. 1. (Legend appears at the bottom of the opposite page.)
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domly connected species implements the introduction of novelty
into the system.

Three Regimes of Behavior and Transitions Between Them. The
system exhibits three regimes or phases of behavior. This is
illustrated in Fig. 2, which shows the number of populated
species in the attractor, s1, (those species for which Xi � 0) vs.
time (n, the number of graph updates) for a run with s � 100
and p � 0.0025. In the ‘‘random phase,’’ s1 stays low with small
f luctuations. In the ‘‘growth phase,’’ s1 typically rises exponen-
tially with occasional drops. Finally, in the ‘‘organized phase,’’ s1
stays close to s, the maximum value it can take. The random and
growth phases were discussed in refs. 11, 16, and 17. As is evident
from Fig. 2, the organized and growth phases exhibit occasional
discontinuous transitions or ‘‘crashes’’ in which a number of
species suddenly go extinct (their Xi become zero in a single time
step). At the end of a crash the system is in the random or growth
phase. This is followed by a recovery in which the system moves
again toward the organized phase. In ref. 18 it is shown that
crashes are primarily ‘‘core-shifts,’’ a specific kind of change in

the structure of the graphs (discussed below) and recoveries are
the result of the growth of ‘‘autocatalytic sets.’’ The main
purpose of this paper is to elucidate the mechanisms which cause
core-shifts.

Definitions and Notation
Autocatalytic set (ACS). An ACS is a subgraph, each of whose
nodes has at least one incoming link from a node of the same
subgraph. (By a subgraph we mean a subset of nodes together
with all their mutual links.) Thus, an ACS contains a catalyst for
each of its members (19–21). In Fig. 1 b–k, the subgraphs formed
by the set of all black nodes or all the black and grey nodes are
ACSs. Fig. 1 a and l do not have an ACS. For any subgraph A,
let �1(A) be the largest eigenvalue of the adjacency matrix of A.
We denote �1(C) � �1. It can be shown (16) that if the graph
does not have an ACS, then �1 � 0, and if it does, then �1 � 1.
�1 therefore represents a topological property of the network.

Dominant ACS. It can be shown that if �1 � 1 the subgraph
comprising the populated species (Xi � 0) must be an ACS (11,
16), which will be referred to as the dominant ACS. The
dominant ACS is uniquely determined by the graph and does not
depend on the initial condition for x (except for special initial
conditions forming a set of measure zero, which we ignore). The
subgraph formed by the set of all black and grey nodes in Fig. 1
b–k is the dominant ACS for that graph. In addition to its
topological significance, �1 also has a dynamical interpretation as
being the ‘‘population growth rate’’ of the dominant ACS.**

Core and periphery of the dominant ACS. The core of the
dominant ACS of a graph C (sometimes also referred to as the
‘‘core of C’’) is the maximal subgraph, Q, from each of whose
nodes all nodes of the dominant ACS can be reached along some
directed path. The rest of the dominant ACS is its periphery. The
subgraph of all black nodes in Fig. 1 b–k constitutes the core of
the dominant ACS in the graph.†† Every periphery node has an
incoming path that originates from the core, but no outgoing
path that leads to the core. The periphery can contain loops
within itself (e.g., the 2-cycle between nodes 36 and 74 in Fig. 1e).
One can prove that �1(Q) � �1(C) � �1.

An irreducible subgraph is one that contains two or more
nodes, each of which has a directed path to every other node in
the subgraph (22). An irreducible subgraph is always an ACS but
the converse is not true. However, the core (of each component
of a dominant ACS) is an irreducible subgraph. Because �1(A) �
1 for any irreducible subgraph A, it follows that the latter is a
‘‘self-sustaining’’ structure in the sense that if no other links were
present in the graph, the nodes of A would still have nonzero Xi
by virtue of their mutual links. �1 measures the ‘‘strength’’ of the

**This follows from the fact that the attractor configuration X is always an eigenvector of
C with eigenvalue �1, i.e., ¥j cijXj � �1Xi [11]. Thus, when � � 0, substituting yi � Xi in the
population dynamics equation ẏ � Cy, one gets ẏ � �1y.

††Sometimes the dominant ACS consists of two or more disjoint subgraphs, as in Fig. 1i.
Then the definition applies to each component separately. There exist other ACS struc-
tures for which this definition is not adequate, e.g., two disjoint 2-cycles pointing to a
single downstream node. Such structures arise rarely and can be treated by a more
general definition of core and periphery without altering the main conclusions presented
here.

Fig. 1. (On the opposite page.) The structure of the evolving graph at various time instants for a run with s � 100, p � 0.0025. Node numbers i from 1 to 100
are shown in the circles representing the nodes. Nodes with zero relative population in the attractor configuration for the graph (Xi � 0) are shown as white
circles; the rest (s1 in number) have nonzero Xi. In the graphs where an ACS exists, black circles correspond to nodes in the ‘‘core’’ of the ACS, and grey to the
‘‘periphery,’’ defined in the text. (a) n � 1, the initial random graph. (b) n � 2,854, where the first ACS, a 2-cycle between nodes 26 and 90, appeared. (c) n �
3,880, the beginning of the organized phase when the ACS first spanned the entire graph. (d) n � 4,448, when the core reached a peak in the number of loops
it contained. (e) n � 5,041, just before a ‘‘core-shift.’’ ( f ) n � 5,042, just after the core-shift caused by a ‘‘keystone’’ extinction in the presence of a ‘‘dormant
innovation.’’ (g) n � 6,061, just before another core-shift. (h) n � 6,062, just after the core-shift caused by a ‘‘core-transforming innovation.’’ (i) n � 6,070, when
the old core stages a come-back as a disconnected component after node 32 becomes a singleton. (j) n � 6,212, when the new core strengthens itself and
depopulates the recently resurgent old core. (k) n � 8,232, just before the first ‘‘complete crash.’’ (l) n � 10,000, between the first complete crash and the
subsequent ‘‘recovery.’’

Fig. 2. The number of populated species, s1 (continuous line), and the largest
eigenvalue of C (whose significance is discussed later in the text), �1 (dotted
line), vs. time, n for a run with s � 100 and p � 0.0025. The �1 values shown
are 100 times the actual �1 value. The first 10,000 time steps are enlarged
(Inset). The run is the same for which the graph snapshots are shown in Fig. 1.
The impact of the events described in Fig. 1 is clearly visible in this curve. At n �
2,854, �1 jumps from 0 to 1 and s1 exhibits the first sustained upward move-
ment. At n � 3,880, s1 hits its maximum value, 100, and then fluctuates mainly
between 99 and 100; and at n � 4,448, �1 reaches a local maximum. s1 drops
from 100 to 3 as a result of the ‘‘core shift’’ at n � 5,042, and from 89 to 32 in
the core-shift at 6,062. At n � 6,070, a large recovery event is seen as the old
core and the still intact part of its periphery get repopulated, only to be
trounced again at n � 6,212 when the new core strengthens itself to a �1 value
greater than 1. At n � 8,233, s1 crashes from 100 to 2 when the ACS is
completely destroyed and �1 drops from 1 to 0.
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core in two ways: one, its intrinsic population growth rate, and
two, its multiplicity of internal pathways. To see the latter,
compare the increasing and decreasing pattern of �1 between
n � 2,854 and 5,042 in Fig. 2 Inset with the sequence of Fig. 1
b–f. When the core (of every disjoint component of the dominant
ACS) has exactly one cycle (Fig. 1 b, f–i, k), then �1 � 1, and vice
versa. Such a core is fragile because of the absence of any
redundancy in its internal pathways; the removal of any link from
such a core will cause the ACS property (of that component) to
disappear.

Crash. A crash is a graph update event, n, in which a significant
number (say � s�2) of the species go extinct, i.e., �s1(n) �
s1(n) � s1 (n � 1) 	 � s/2.

Core overlap. Given any two graphs C and C
 whose nodes are
labeled, the core overlap between them, denoted Ov(C,C
), is
the number of common links in the cores of C and C
. If any one
of them does not have an ACS, Ov(C,C
) � 0.

Core-shift. A core-shift is a graph update event in which
Ov(Cn�1, Cn) � 0, i.e., there is no overlap between the cores of
the dominant ACS before and after the event (Cn is the graph
at time step n).

Keystone Species. One can consider the impact of the hypothetical
removal of any species i from the graph, irrespective of whether
i is the least populated or not. For example one can ask for the
core of the graph C � i that would result if species i (along with
all its links) were removed from C. A species i will be referred
to as a keystone species if Ov(C,C � i) � 0. Thus, a keystone
species is one whose removal modifies the organizational struc-
ture of the graph (as represented by its core) drastically. In the
ecological literature a keystone species is regarded as one whose
elimination from the ecosystem would cause a significant frac-
tion of species in the ecosystem to go extinct (23–26). We will see
that likewise in the present model the removal of keystone
species causes large crashes. [Indices of keystoneness based on
Ov(C,C � i) or on the change in s1 caused by the removal of a
species can also be defined.] Note that if �1 � 1 and the ACS has
a single connected component (e.g., Fig. 1 b, f–h, k), every core
node is necessarily a keystone species because its removal would
destroy the cycle that constitutes the core.

Innovations. In the present model the new species k at each time
step together with its set of new links may be regarded as a
‘‘novelty’’ introduced into the system. In the new attractor the
new species may go extinct, i.e., Xk may be zero, or it may survive,
i.e., Xk is nonzero. Let us define an innovation as a novelty in
which the relative population of the new species in the new
attractor just after the novelty occurs is nonzero. This definition
has the feature that an innovation always involves new connec-
tions. It does not use any exogenously defined notion of fitness.
The only performance criterion it requires is that the new links
should enable the new node to survive until the next graph
update. Even this minimal requirement has nontrivial conse-
quences. For instance when the new species receives an incoming
link from an existing dominant ACS, it typically has a nonzero
population in the new attractor. Each recovery process, which
occurs because of the expansion of the dominant ACS during the
growth phase (18), is an accumulation of just such innovations.

We will be interested in a special class of innovations in which
the novelty creates a new populated irreducible subgraph. Such
innovations create or add to a ‘‘self-sustaining structure’’ in the
graph, in the sense discussed earlier. For instance the appear-
ance of the first ACS at n � 2,854 (see Fig. 1b) is such an
innovation. There, species 90, which was a singleton before the
event, went extinct and was replaced by a new species 90 that had
an incoming and outgoing link to node 26. The two formed an
irreducible subgraph whose �1 value was 1. This innovation in
fact triggered the self organization of the network around this

ACS. By n � 3,880 (see Fig. 1c), the core had grown to 18 nodes
as a result of several events in which the new species was an
addition to the core. Every event in which the core is strength-
ened by the addition of a new node is also an innovation in which
a new populated irreducible subgraph is formed. When such an
innovation arises, denote the new irreducible subgraph which
includes the new species as N (or Nn at time step n.) N or Nn will
stand for the maximal irreducible subgraph of which the new
species k is a member. It follows from the Perron–Frobenius
theorem (22) that such an innovation necessarily increases the �1
value of some substructure in the graph, i.e., �1(N) � �1(N �
k). Nn becomes the new core of the graph if it is ‘‘stronger’’ than
the old core. More precisely, one can show that Nn will become
the new core of the graph, replacing the old core Qn�1, whenever
any one of the following two conditions hold:

(i) �1(Nn) � �1(Q
n) or
(ii) �1(Nn) � �1(Q
n) and Nn is ‘‘downstream’’ of Q
n.‡‡

Such an innovation may be referred to as a core-transforming
innovation. If Qn�1 � Nn, such an innovation enlarges the
existing core. However, if Qn�1 and Nn are disjoint, we get a
core-shift.

In the present model, the generation of novelty does not
depend on existing structure because the links of a new node are
chosen randomly from a fixed probability distribution: novelty is
‘‘noise’’ in this model. (Variants of the model that depart from
this are easily constructed.) However, whether the novelty
constitutes an innovation is ‘‘context-dependent’’ (i.e., depen-
dent on the structure of the existing network). Also, the short-
and long-term impact of an innovation depends on the (historical
evolution of the) ‘‘context,’’ as will be seen below.

Classification of Core-Shifts
In a set of runs with s � 100, p � 0.0025 totaling 1.55 million
iterations we observed 701 crashes. Of these, 612 were core-
shifts (18). Fig. 3 differentiates between the 612 core-shifts we
observed. They fall into three categories: (i) complete crashes
(136 events), (ii) takeovers by core-transforming innovations
(241 events), and (iii) takeovers by dormant innovations (235
events).

Complete Crashes. A complete crash is an event in which an ACS
exists before but not after the graph update. Therefore for a
complete crash at time step n, �1(Cn�1) � 0 and �1(Cn) � 0.
These events take the system back to the random phase. For
example at n � 8,232, in Fig. 1k, node 54 is one of the species
with the least Xi and is hit at n � 8,233. It is replaced by a new
species that has a single outgoing link to node 50 and no
incoming link, resulting in the complete disruption of the ACS.
It is evident that complete crashes must always be caused by the
elimination of a keystone species. Furthermore, Fig. 3 shows that
�1(Cn�1) � 1 for every complete crash observed in the runs.
Hence the core of the ACS is a single cycle when the event occurs
and the species removed is a member of that cycle.

Takeovers by Core-Transforming Innovations. An example of a
takeover by a core-transforming innovation is given in Fig. 1 g
and h. At n � 6,061 the core was a single loop comprising nodes
36 and 74. Node 60 was replaced by a new species at n � 6,062.
The new node 60 created an innovation at n � 6,062, with N6062
being the cycle comprising nodes 60, 21, 41, 19, and 73, down-
stream from the old core. The graph at n � 6,062 has one cycle
feeding into a second cycle that is downstream from it. [This is

‡‡We use the notation C
n � Cn � 1 � k for the graph of s � 1 nodes just before the novelty
at time step n is brought in (and just after the least populated species k is removed from
Cn � 1). Q
n stands for the core of C
n. A subgraph A is ‘‘downstream’’ of another subgraph
B if there exists a directed path from some node of B to a node of A but none from any
node of A to a node of B.
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an example of condition (b) for a core-transforming innovation.]
The population attractor of such a graph has the property that
the Xi of the nodes in the upstream cycle are all zero and only
the nodes of the second cycle (as well as nodes further down-
stream from it) have nonzero Xi. Thus, when the above inno-
vation arises, the new cycle becomes the new core and all nodes
that are not downstream from it get Xi � 0, resulting in a large
drop in s1 from 89 to 32. For all such events in Fig. 3, �1(Q
n) �
�1(Cn�1) because k happened not to be a core node of Cn�1.
Thus, these core-shifts satisfy �1(Cn) � �1(Nn) � �1(Q
n) �
�1(Cn�1) � 1 in Fig. 3.

Takeovers by Dormant Innovations. Fig. 1 e and f show an example
of a takeover by a dormant innovation. At n � 5,041, the core
has �1 � 1.24 and there is a cycle comprising nodes 36 and 74 in
its periphery. Node 85 is hit, which results in a cycle (26 and 90)
feeding into another cycle (36 and 74) at n � 5,042. Thus, at n �
5,042, for the same reason as in the previous paragraph, 36 and
74 form the new core with only one other downstream node, 11,
being populated. All other nodes become depopulated, resulting
in a drop in s1 by 97. Such a core-shift is the result of an
innovation that arose earlier (the cycle between 36 and 74 arose
at n � 4,695) but lay dormant downstream of the existing core
until one of the keystone species of the latter (node 85) was hit
and made it weak (i.e., reduced its �1 to a value less than or equal
to the �1 of the downstream innovation). In general, a takeover
by a dormant innovation is a core-shift in which the new core
existed as a subgraph before the present graph update. One can
prove that a takeover by a dormant innovation can occur only
after a keystone extinction, which weakens the old core. In such
an event the new core necessarily has a lower (but nonzero) �1
than the old core, i.e., �1(Cn�1) � �1(Cn) � 1. Note that at n �
5,041 if the downstream cycle between 36 and 74 were absent, 85
would not be a keystone species by our definition, because its
removal would still leave part of the core intact (nodes 26 and
90). Node 85 becomes keystone, and the core of which it is a part
becomes fragile and susceptible to a core-shift, because a self-
sustaining innovation has occurred in the distant periphery. It is
not difficult to see, given the definitions above, that this is an
exhaustive classification of core-shifts.

If we consider the set of all drops in s1, large or small, where
an ACS exists before the event (there are 126,454 such events in
the above-mentioned runs), we find that the number of complete
crashes remains the same, 136 (the mean size of the drop in such
events is ��s1� � 98.2 with an SD � � 1.2), whereas core-shifts
caused by dormant innovations go up to 359 (with ��s1� � 62.2,
� � 25.9) and those caused by core-transforming innovations to
524 (��s1� � 48.2, � � 25.6). The rest of the events consist of
9,851 ‘‘partial core-shifts’’ (in which the core changes, but
Ov(Cn�1, Cn) � 0; in this category ��s1� � 2.18, � � 7.42), and
115,584 events where there was no change in the core but the
periphery is affected (��s1� � 1.05, � � 0.99). Thus, different
classes of proximate causes of drops arise dynamically with
different frequencies and typically produce events in different
size ranges. The ranges, however, overlap and some distributions
have fat tails (e.g., of the 701 crashes with ��s1� � 50, there are
79 and 10 events, respectively, in the last two categories).
Detailed distributions and their dependence on s, p are open
questions (but see ref. 18).

Variants of the Model
Relaxing various idealizations of the model does not change the
qualitative behavior. In particular simulations show this is true
for variants of the model where, respectively: (i) cij can take
values in the interval [0, 1], (ii) negative links are allowed (17),
(iii) Eq. 1 is numerically integrated for a finite time T, and (iv)
all species with Xi below a fixed threshold are removed at each
graph update (thus more than one species can get deleted and
the number of species is not constant). The virtue of the present
idealized model is its analytical tractability.

A variant where the qualitative behavior does change drasti-
cally is one where Eq. 1 is replaced by the replicator equation,
making it an evolving version of the hypercycle model (27). In
this case it is found (28) that small (hyper)cycles do form but
quickly get destroyed when a graph update creates a parasite.
Thus, large complex networks cannot form in the first place. This
is consistent with existing work on well-stirred hypercycles and
replicator networks (29, 30). Unlike the hypercycle model, the
ACSs that arise in the present model do not get destroyed by
parasites (nodes belonging to the periphery). This robustness
allows them to evolve into complex networks that are then
subject to the more interesting kind of instabilities discussed
above.

Discussion
The present model exhibits mechanisms by which innovations
can play a major role in crashes and recoveries in a complex
system.§§ It provides a mathematical example of ‘‘creative de-
struction’’ (31) at work in causing large upheavals. It distin-
guishes two processes involving innovations, both having ana-
logues in the real world. One is exemplified by the appearance
of the automobile, which made the horse-drawn carriage and its
ancillary industries obsolete. This is like the example of the
core-transforming innovation shown in Fig. 1 g and h where the
graph update produced a self-sustaining structure that was more
vibrant than the existing core within the context of the present
organization. This structure became the new core, rendering
many nodes drawing sustenance from the old core dysfunctional.
The subsequent development of other industries that depended
on the automobile mirrors the growth of the ACS around the
new core. The second process is exemplified by the emergence
of the body plans of several phyla that are dominant today. It is
believed that while these body plans originated in the Cambrian
era more than 520 million years ago (33), the organisms with

§§Analogues of innovations and core-shifts seem to be playing an important role in another
related but quite different model (32) where rapid transitions are observed.

Fig. 3. Frequency, f, of the 612 core-shifts observed in a set of runs with s �

100 and p � 0.0025 vs. the �1 values before, �1(Cn � 1), and after, �1(Cn), the
core-shift. Complete crashes [black; �1(Cn � 1) � 1, �1(Cn) � 0], takeovers by
core-transforming innovations [blue; �1(Cn) � �1(Cn � 1) � 1], and takeovers
by dormant innovations [red; �1(Cn � 1) 	 �1(Cn) � 1] are distinguished.
Numbers alongside vertical lines represent the corresponding f value.
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these body plans played no major role until about 250 million
years ago. They started flourishing only when the Permian
extinction depleted the other species that were dominant until
that time (34). This is similar to the events shown in Fig. 1 e and
f where an earlier innovation had lain dormant for a while
without disturbing the existing core, but when the latter became
sufficiently weak, took over as the new core and flourished.

Recently there has been substantial progress in graph theo-
retic analyses of complex systems and in particular, ‘‘small-
world’’ (35) and ‘‘scale-free’’ (36) properties have been found for
several real networks (for reviews and references see refs. 37 and
38). It may be interesting to study whether certain classes of real

networks also have some kind of a ‘‘core-periphery’’ structure.
The citric acid cycle in the metabolic network of organisms might
be an example of a core, and one that may be central to the origin
of life (39).
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