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1. INTRODUCTION

THE object of this note is to point out the place of the following formula (2’")
due to S. Ramanujan?® (p. 135) in prime number theory. (Though our final
results are not new there are some new lemmas which may be of independent
interest in themselves). Ramanujan noticed that the innocent identity

SU+Z+Z2 4+ 2 (1 +Zo4+ Z2+ ...+ Z)g"
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valid under obvious conditions could be used to establish
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where ¢ and b are complex numbers Res > max (1, 1 4 Rea, | 4+ Re b,

1 —Re(a—+b), and o4 (1) = X' d% and a similar definition for op (1). It
dn

was A.E. Ingham?® who first noticed that £ (/ -+ ir) £ 0 is a simple conse.
quence of (2). He also generalised (2) to L series by using (1). This is a
very simple matter but its consequence L (/ + if, X) £ 0 pointed out by
Ingham is really very striking. In the traditional notation these imply
already = (x) ~ x/log x and for fixed k, I with (k, )= 1, =(x, k, 1) ~
Xid (k)log x. However, Ingham’s method of deduction of resulis like
¢(1 +1i1)#* 0 depended upon Landau’s theorem on the singularity of
Dirichlet series with positive coefficients and was not theretore capable of
giving results like | ¢ (1 — ir) | > (log (] 7| - 3))= (This is clezr from his
rerpa.rks on lines 4-10 from the top on page 109 in his paper [2]). We are
going to prove results of this kind by some now lemmas. In fact without
using 1deas like 3 — 4 cos 6 4+ cos 26 > 0 we are going to prove
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THEOREM 1.  Uniformly for 1 < k < eA (log x1/12 (A > O arbitrary positive
constant) and for (I, k) =1 there lzolds

-&\(A k, ) = § logp—u-;f)(k)( X(f))

P (@Od k)

D\~:.n

+ 0 (xe~CA™ (log x)'/*?) (3)

where C is a positive constant independent of A and B is the maximum of the
real zeros of all L functions to the modulus k. If B = O we just omit this term.
Also

#(x) = Z log p = x 4 0 (xe—Ctlog <" @

P
In (3) x is the character corresponding to the L series of which B is a zero.
Remark.—From this we can pass on to = (x, k, /) and = (x) and we leave
these to the reader. ’
2. RAMANUJAN'S FORMULA FOR L-SERIES

Lu aand b be complex numbers, k a posmve integer, and Re s> max
(I, 1 -+ Re a, 1+ Re b, 1 -+ Re(a+ b)). Further for any character

X mod k leto q,(n)=2 x(d)d* and a similar meaning for op,, (#). Then

din

we have by a trivial application of (1),

THEOREM 2. If Xy and x, are two characters mod K, then,

o

S n)
Oq xl Ub,xz
8

n= h

L_,(S)L(6-a, x) L (s — b, Xv)L(S"a‘b X1X2)
L(2v~~a b, Xix2)

In -particular when x, = x =% and b =134 we have
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Thus if the real numbers a, are defined by

oo

F(s) = 'g(s)i(s——a-—(i)L(s~a,x)L(s——d,;‘g)zS

e
=1

‘a
ZS

‘]:

S

then

an 2 |og,y (1) |, where og, (n) = 5 x (d) d®
ain

Also if ayp' are defined by {(s) F (s) = 3 a,’ nS then an’ =1 for all n.

=1

3. PROOF FOR L (I +it, X) % 0.

A quick proof that L(1+1it, x)# 0. From now on we aASSUie
0<a-+a< 1l One can prove that the right hand side of

U L g | ’ ) o ,-
ZH;%T =i f Fa+a-+2W—2)xw-—2] (W)dw(s)
n=1 Re W=a

is the sum of the residues of the integrand on the right at its poles with an
error 0 (e " ™) provided that N = (X1 101) £ (|« | -+ 30). This can be
done by moving the line of integration to the line Re W — — N — L and
using the estimate?® (p. 340).

] Zik. 3-RC Z
™|

(
Lz 0=0(|5 ) (®)
valid uniformly for Re Z < — 10. |

[Note that I" function is not essential for our main purposes but we use it only
for convenience. Also error terms like 0 (e ") are given only for curiosity
and that functional equations, etc., are dispensible]. The possible poles
of the integrand are W = 32 (W=3—u—a)2, W= (3 —a)/2 and
W=(3— a)2 and W=@3 ~a)2 W = B2 W=3— al2. The
last two poles do not exist when X 1s non-principal. The sum of the
residues is (assuming o = ia, o real)

14 ) h

211'21‘ (L@ +2W—2, ) L(a+2W—2, 5 xwer F)) wesre
+yL(I+4d,x) L(1 + GX)xLGR)+8xCU+a) 0 —a)

Ld+a—a XTI (3-a2) + 1 +a)l(l—a

.. L +a—a, ;‘()Xl“dF(B—fd/Z)) )

where 8, = 1if x is principal and =ero otherwise. (when 8 y =1 it is assumed
that a 5 0). Here y is the Euler’s constant.
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From these remarks it follows immediately that
LA+ x)#0 ®)

for all real # and all characters y. It is apparent now that in order to obtain
lower bounds for L (1 + it, x) we should have ‘good’ lower bounds for

Y apor (what is roughly the same) for
X<n<e X

S=8(@ x )= 3 |1l+x@pe] (9)

K92
and this we propose to solve in a somewhat satisfactory way.
Before leaving this section we note down two curlosities as a

Remark.~-Let | — p beazeroof L (s, x). Thenfor X > (k(Ja |+ 30))10
we have by putting ¢ = p (Note that 0 < p+p5 < 1)

1 (e o)
2=p—p g, @M%
— I ane
Xzz
n=1

=1{(1+p+p|LA+7A x)|[PT(312)X+ 0(exp (— Xl:m))
(10)

and
. . _, -
S nPPay, e™*

n=1

— 3L +p+A LA +5 0 [PTH X +0(exp. (— X))

(11)
4. SOME REMARKS
Starting with

oo TTTLTTY 2

, 5(17* z a’y, nzej'( E)
— L [t Few - T W dna=ie, axeal) -
g (12)
(|« | >]in case y is principal) and proceeding as before we can prove thag

either | L (1 +ia, x) [>(Iog k(|| —5—3)])*3 or |L'(1+1ia, x)| >.1 (the
implied constants being absolute). To prove this we have only 16 note

A6—April 76




160 R. BALASUBRAMANIAN AND K. RAMACHANDRA
that @, > 1 for all n. Since always L' (1 -+ ia, X) = Q({log [K(a]+ 3)]}2)
we have, in case the first alternative holds, a zero free region of the type

o G
721 Qg (T [N

(C,> 0 is an absolute constant) fo;' L(s, ). To meet the second case
we prove

LeMMa l.—Let |L'(1 +ia, x)] = C,> 0 (where C, > O is an absolute
constant) and let s, =1+ ia. Then in |s—s,| <d where d> (log [k
( ‘a’ =+ 3)])° there is at most one zero of L (s, x) and if it exists it must be
a simple zero.

Proof.—Let L(s. x)=bo+ by(s— 59) + b (s —s59)2+ ... be the

Taylor expansion about s =g, where for n >0,
L
b 1 (s) s

n = Yari (s — So)+L

(the integration path being the circle | s — s, | = ({log [k (| & | + 3)];*) and
so bp=0({log[k(Ja |+ 3™ uniformly in 21l the parameters. Let 5,
and s, be two zeros of L (s, x) in|s— s, | <dy. If 5=, (ie., 55 is a
double zero then we differenticte the Taylor expansion and then puts = s,.

in the other case we put s=s;, and s=s, and subtract the resulting
equalities. We then cancel out the factor s, — s, from each term and get

- _On= bl, +~ 2 O (bn (’ld1 ’&1))

n=2 .

= b~ 0(flog [k (& | + Ij*dy £ n {d; log [k (| « | + 32

This proves the rewuired result.

5. SOME LEMMAS OF BALASUBRAMANIAN

Levva 2—Letk = land|a | > 1, X = (Ja | + C)2(C, > O an absolute
constant). Let S;= X |1+p |2 (¢ special case of (9)).

XSr2X

Then -

X
S1 > log X

B REMARKS.—In 0< ' a 1 <€ 1itis true that YN @ éy 7y and this is, best

—
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possible. As a corollary to Lemma 2 we can deduce easily [using (5) and
(M) that [ (1 +if) |> (og (|1 |+ 3)

Proof—Let a > 0. The angle « log p changes in the interval of sum-
mation by at most « log 2 so that the complex number p'® ‘makes

<R, = [“ lgf 2] 4+ 1 revolutions on the unit circle. In each revolution

let us agree to omit N; primes corresponding to which a log p is close to
= (mod 2n) on either side of it by an angle at most equal to 6 radians where

0<0<%. Plainly when o log p doss not lie in this angle
, . )2 _ 462 . .
|[14p™|2>2|sin5| >~ . Consider now the number M, of integers n

for which o log n lies in this angle (during one revolution). It consists of at.
most M," + 1 consecutive integers where M’ is the smallest p051t1ve

integer with

alty
2X

>0ie, Mi<2M,'+2=2 [22(0] + 4,

Assuming now that (0 < < min (% ,%) and using the theorem = (x + /)

_ h+3 : . : .
7(x)=0 (Iog G 3)) valid uniformly (n x> 1, >0 (p.44) or a
more convenient reference is the recent book of Halberstam and Richerts
Actually in the latter book we find a sharpening of Brun-Titchmarsh

Theorem (p. 107) in the form

a(x k, )—m(x—y k D<-

4
(k)log\/y( log,\/%)

valid in 1<k <y <x, (k,])=1. This can be proved by the Sieve method
of Selberg we have

N1=O{(}—O(Lg+l)[lo (‘3‘3(9+10)_| J

These remarks in combination with the well known inequality = 2X) — = (X)>

“BA:"“E (X > 10000) ~due to Chebyshev: (p. 209) lead to the lemma .
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by a proper choice of 4.

LEMMA 3. Leta# 0,0 < 8<mm ') X = 10000 (k| « | + k)z.

Then the sum S defined by (9) satisfies
. C4(6X+ +k(a] 1))
PN JP Y S N R
Z 400 SIOgX lo (_9/‘1 “I—B)
E\kTa|
where C, is an absolute positive constant.

COROLLARY. For |1|> k=% we have
L1 +it, %) | > min (1, ) {log [k (| 7 | + 31>

Proof.—The number of revolutions R< « + 1 (we have assumed « > 0
without loss of generality). We now consider one revolution » and denote
the total number of primes in this revolution by = (X). Letus now fix an
arithmetic progression /(mod k), (I, k) = 1, IS I< k. Letw (X, k,I) denote
the total number of primes of this arithmetic progression. We estimate the
number N* of these primes which lie in an angle 26 (6 on either side of a
certain angle corresponding to (— ¥ (/)). Very roughly the integers A4, and
M, corresponding to M; and Ml’ have to satisfy

kaM,'

> 6 M2 (M + 1)<2[2X9] + 4.

ka

Imposing 0 < § < mm( ) and using the estimete for = (x, %, /)

8’8
—7(x—y, k, 1) quoted above we find that

v =of (F+)[pwro(+2) .

and so
o 2 1

1 i< 8
> | +X(p)pal>20

i&”@kﬂm& 1) (106 (2 +3) T}

SIJEX ¢’(k)—C4(a—]—1)( +k)[ (Q§+3)]—1

and this proves the lemma.

{
v";

Ty 4 o
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LemMA 4. Let now a =ia, 0< | |< | and y a character which takes
at least one value which is not real. Let S, denote this special case of the
sum (9). Then if X exceeds a certain large (but fixed) power of 2k, we have

X
S2>logX'

COROLLARY. If x is a character which takes at least one value which is not
real then

| LA +it, i) | >{loglk(| ]+ 3

Proof—We can assume that « is positive and bounded above by any
small positive constant. The values y(p) for various p > kform a cyclig
group of order d for some djk. That is, its values are e27™/¢, The angle o
log p varies by at most ¢ = alog 2 radians which is small if a is small. We
now consider 1 + e?m™d pie  We ayoid those m for which e2im«ad pia jg
approximately-1, the approximation error being not more than 6. The number

m, My

of m’s to be avoided is given by l 7" 7 <20+ ¢ and so not more

than (26 + 6)d 4 1. The number of arithmetic progressions corresponding
to this many m’s is at most ((20 + ¢)d + 1) ¢ (k) & and so

s> e -~ (r+4 ) SEA LI

for all k >k, (k, depending only on €). This proves the lemma since 6
and ¢ are arbitrary and 4> 3.
6. APPLICATION TO PRIME NUMBER THEORY
The results of sections 3, 4 and 5 can be summarized as:
LEMMA 5. Let k=1 be a positive integer. Then the region

Cs

°2 1= (og 7| T30 11121

is free from the zeros of L (s, x) for all characters y mod k, where Cs is an
absolute positive constant. The region

Gs

° 21~ (g (et | T 3wy |1 <!
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nay contain zeros py of L (s, X). But whenever this happens yx is a real
may z
chaj;acfer mod k and p, are all simple zeros of L(s. x). Also in the region

G
0> 1= (og (e le| + 30y

we have

L’ (s, Xo) L k 4+ 3k)]50
_L(S XO) S—l (lOg( If! )])

where . is the principal character and for each real nonm-principal character X

L) . + Y = 0(llog (k | ] + 30F).
- L(S X) §— Px ([g( l )
Px
Proof—We have only to prove the O-estimates. These follow by
applying first maximum modulus principle and then ' Borel-Caratheodory
theorem (see pages 174-175 of Titchmarsh’s book?).

From Lemma 5 follows (fbr the usual method of deduction see pages
53-54 of Titchmarsh’s book®, Prachar’s book* pages 60-62).

LEMMa 6. We have uniformly for 1< k< er (g DG (K 1) = ],
—~CA™" (log X)1/6
90k, 1) = C£(k)( Zx(z)z %) +0(xe ),

where the sum over x is over all the real characters and the sum over Py is OVer.
the possible simple zeros of the corresponding L-series in the region

Cs

GZIf(Iog(k]t(-}— 3k))5’l

t|< 1.

7. FINAL DEDUCTION OF THEOREM |1

The second part of the theorem follows eas1ly from Lemma 6. In® it
was proved that if 3<k;<k, and y, and y, are two non-prmmpal real
characters mod &, and k, such that the character x1x2 mod k,k, is again non-
principal and L (1, x,) < Ce (logk,)!, then

Crlogk, log k2
L(la X2)> (10 k)z ( CSlngl
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(Cs> Cy, Cg are some effective positive constants). From this and corollary
to Lemma 3 it follows that the region

Gy
021-—(1‘&;(,‘:[”+3k))11,ftl<1

contains at most one zero of IT L (s, x) (the product being over all characterg
x mod k) and this zero if it exists lies on the real axis and is a simple zero of
this function. From this remark follows Theorem 1. (It must be mentioned
that all the O-constants and C, C;, ...,C, are effective positive
constants). Finally we remark that by the usual sophistications it is possible
to get the most up to date zero free regions by Ramanujan’s identities.
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