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Centre de recherches mathématiques proceedings | Includes bibliographical references.

Identifiers: LCCN 2019040121 | ISBN 9781470446925 (paperback) | ISBN 9781470454531 (ebook)
Subjects: LCSH: Ransford, Thomas, honoree. | Functions of complex variables–Congresses. | Analytic
functions–Congresses. | Spectral theory (Mathematics)–Congresses. | Festschriften. | AMS: Functions
of a complex variable {For analysis on manifolds, see 58-XX} – Geometric function theory. | Functions
of a complex variable {For analysis on manifolds, see 58-XX} – Miscellaneous topics of analysis in the
complex domain. | Functions of a complex variable {For analysis on manifolds, see 58-XX} – Spaces and
algebras of analytic functions. | Functions of a complex variable {For analysis on manifolds, see 58-XX}
– Entire and meromorphic functions, and related topics. | Integral transforms, operational calculus
{For fractional derivatives and integrals, see 26A33. For Fourier transforms, see 42A38, 42B10. For
integral transforms in distribution spaces, see 46F12. For | Functional analysis {For manifolds modeled
on topological linear spaces, see 57Nxx, 58Bxx} – Distributions, generalized functions, distribution
spaces [See also 46T30]. | Functional analysis {For manifolds modeled on topological linear spaces, see
57Nxx, 58Bxx} – Commutative Banach algebras and commutative topological algebras [See also 46E25].
| Operator theory – General theory of linear operators. | Operator theory – Special classes of linear
operators. | Operator theory – Groups and semigroups of linear operators, their generalizations and
applications.
Classification: LCC QA331.7 .C67178 2020 | DDC 515/.98–dc23
LC record available at https://lccn.loc.gov/2019040121

Contemporary Mathematics ISSN: 0271-4132 (print); ISSN: 1098-3627 (online)

DOI: https://doi.org/10.1090/conm/743

Color graphic policy. Any graphics created in color will be rendered in grayscale for the printed
version unless color printing is authorized by the Publisher. In general, color graphics will appear in
color in the online version.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for
them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or
research. Permission is granted to quote brief passages from this publication in reviews, provided the
customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is
permitted only under license from the American Mathematical Society. Requests for permission to
reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more
information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.

c© 2020 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at https://www.ams.org/

10 9 8 7 6 5 4 3 2 1 25 24 23 22 21 20
Licensed to AMS.

https://doi.org/10.1090/conm/743
www.ams.org/publications/pubpermissions
reprint-permission@ams.org
https://www.ams.org/


Contents

Preface vii

List of Invited Speakers xi

Additive maps preserving matrices of inner local spectral radius zero at some
fixed vector

Constantin Costara 1

A global domination principle for P -pluripotential theory
Norm Levenberg and Menuja Perera 11

A holomorphic functional calculus for finite families of commuting semigroups
Jean Esterle 21

An integral Hankel operator on H1(D)
Miron B. Bekker and Joseph A. Cima 101

A panorama of positivity. II: Fixed dimension
Alexander Belton, Dominique Guillot, Apoorva Khare,

and Mihai Putinar 109

Boundary values of holomorphic distributions in negative Lipschitz classes
Anthony G. O’Farrell 151

Cyclicity in Dirichlet type spaces
K. Kellay, F. Le Manach, and M. Zarrabi 181

Inner vectors for Toeplitz operators
Raymond Cheng, Javad Mashreghi, and William T. Ross 195

Jack and Julia
Richard Fournier and Oliver Roth 213

Spectrum and local spectrum preservers of skew Lie products of matrices
Z. Abdelali, A. Bourhim, and M. Mabrouk 217

Numerical range and compressions of the shift
Kelly Bickel and Pamela Gorkin 241

On the asymptotics of n-times integrated semigroups
José E. Galé, Maria M. Mart́ınez, and Pedro J. Miana 263

Powers of operators: convergence and decomposition
W. Arendt and I. Chalendar 273

v

Licensed to AMS.



Licensed to AMS.



Preface

Spectral theory is the branch of mathematics devoted to the study of matrices
and their eigenvalues, as well as their infinite-dimensional counterparts, linear op-
erators and their spectra. Spectral theory is ubiquitous in science and engineering
because so many physical phenomena, being essentially linear in nature, can be
modelled using linear operators. It draws upon techniques from a variety of other
areas of mathematics and leads to problems in these areas that are of interest in
their own right. Complex analysis is the calculus of functions of a complex vari-
able. The roots of the subject go back to the early 19th century and are associated
with the names of Euler, Gauss, Cauchy, Riemann, and Weierstrass. Of particular
importance are the differentiable functions, usually called analytic or holomorphic
functions. They are widely used in mathematics (for example, in Fourier analy-
sis, analytic number theory, and complex dynamics), in physics (potential theory,
string theory) and in engineering (fluid dynamics, control theory and the theory of
communication).

Both topics are related to numerous other domains in mathematics as well as
other branches of science and engineering. For example, analytic function spaces
arise in various different branches of mathematics and science. The list includes,
but is not restricted to, analytical mechanics, physics, astronomy (celestial mechan-
ics), geology (weather modeling), chemistry (reaction rates), biology, population
modeling, economics (stock trends, interest rates and the market equilibrium price
changes). As a matter of fact, it is hard to find a branch of analysis or applied sci-
ences in which function spaces do not appear. Many mathematicians have studied
this domain and contributed to the field and it is rather impossible to provide a
list.

As another manifestation, functional analysis is the branch of mathematics
concerned with the study of vector spaces and linear mappings acting upon them.
The word “functional” refers to an operation whose argument is a function, integra-
tion, for example. Two of the most important names are Hilbert and Banach, and
the central notions of the subject are named in their honor: Banach spaces (com-
plete normed vector spaces) and Hilbert spaces (Banach spaces where the norm
arises from an inner product). Hilbert spaces, which generalize the notion of Eu-
clidean space to infinite dimensions, are of fundamental importance in many areas,
including partial differential equations, quantum mechanics and signal processing.
From the earliest days, researchers in functional analysis recognized the importance
of studying spaces of functions, as opposed to considering just one function at a
time. Together with the development of the Lebesgue integral, this led to new
techniques, for example, for analyzing the behavior of analytic functions at the
boundary of their domain and for proving the existence of analytic functions with

vii
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viii PREFACE

certain properties, hitherto difficult or impossible to construct. In turn, complex
analysis repaid its debt to functional analysis by providing methods for defining
functions of operators, for example, the square root or the logarithm of an operator
or a matrix.

There are many other connections, and in the century that has followed this
has become a vast domain of research. In recent years, there has been a tremendous
amount of work on reproducing kernel Hilbert spaces of analytic functions, on the
operators acting on them, as well as on applications in physics and engineering
which arise from pure topics like interpolation and sampling.

In this conference, more than thirty analysts, some up-and-coming, others well-
established, and from Europe and North America, were invited. Many different
topics in complex analysis—operator theory, matrix analysis, spectral theory, func-
tional analysis, and approximation theory—were discussed during the invited talks.
This lively meeting certainly strengthened our understanding of the subjects, how
far the applications range, how much is known, and how much is still unknown.
The goal of our gathering was to discuss a number of fundamental open problems
on Hilbert and Banach spaces of analytic functions and the new ideas that have
been developed as well as the recent progress that has been made. We believe this
event was worthwhile, since the ideas involved were of widespread interest in the
mathematical analysis community.

In this conference, we also celebrated the 60th birthday of Thomas Ransford.
Thomas Ransford is Professor in the Département de mathématiques et de statis-
tique of Université Laval and Canada Research Chair in Spectral Theory and Com-
plex Analysis. He obtained his Ph.D. at Cambridge in 1984, as a student of the late
Graham Allan, and was awarded an Sc.D. by Cambridge in 1999. Before coming to
Québec in 1993, he held teaching positions at Leeds and Cambridge. He has also
held visiting positions at Ann Arbor, Bordeaux, Brown, Lille, Marseille, Oxford,
and UCLA.

Ransford’s research is primarily in complex analysis and spectral theory, though
he has also worked in potential theory, dynamical systems and probability. He has
over a hundred research publications to his name, many written in collaboration
with researchers from around the world (over sixty at last count). He is also the
author of two books, both published by Cambridge University Press: Potential
Theory in the Complex Plane (written sole) and A Primer on the Dirichlet Space
(co-authored with O. El-Fallah, K. Kellay, and J. Mashreghi). Ransford has pre-
sented over eighty invited talks at national and international conferences. Ransford
is or has been a member of the editorial boards of ten different journals, including
the CMS and LMS journals. He has also served on numerous selection committees
for grants, fellowships, and prizes, including grant selection committees of NSERC
and FRQNT.

A major aspect of Ransford’s research career has been the direction of students
at all levels. He has supervised 10 doctoral students, 25 master’s students, and 14
postdoctoral fellows, in addition to co-directing 10 other graduate students. Many
of these students have continued in academia: 22 of them now hold permanent
positions at universities, and five have postdoctoral positions. Of the others, eight
are now college instructors, eight others work in the financial sector, and four are
computer programmers. In addition to graduate direction, Ransford has also su-
pervised 24 summer undergraduate research projects, eight of which have given
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rise to publications. In the course of his career, Ransford has taught undergrad-
uate and graduate courses in over twenty different subjects. He has received the
teaching award “professeur étoile” from the Faculté des sciences et de génie of Uni-
versité Laval ten times and was voted “professeur méritant en mathématiques et
statistique” at the Gala du Mérite Étudiant four times.

Mathematics runs in the family. Ransford’s wife, Line Baribeau, is a mathe-
matician, and they have published six papers together. His eldest son, Julian, is
also a mathematician.

H. Garth Dales
Dmitry Khavinson
Javad Mashreghi
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(33) M. C. White, Newcastle University, UK
(34) M. Younsi, University of Hawaii at Manoa, USA
(35) N. Zorboska, University of Manitoba, Canada
(36) W. Zwonek, Jagiellonian University, Poland

xi

Licensed to AMS.



Licensed to AMS.



Contemporary Mathematics
Volume 743, 2020
https://doi.org/10.1090/conm/743/14954

Additive maps preserving matrices of inner local
spectral radius zero at some fixed vector

Constantin Costara

Abstract. We characterize surjective additive maps on the space of complex
n × n matrices which preserve matrices of inner local spectral radius zero at
some fixed nonzero vector.

1. Introduction and statement of results

For a Banach space X over the complex field C, let us denote by L (X) the
algebra of all linear bounded operators on it. Fix then a point x0 ∈ X. Given
T ∈ L (X), its local resolvent set ρT (x0) at x0 is defined as the union of all open
subsets U ⊆ C for which there exists an analytic function f : U → X such that
(T −λ)f (λ) = x0 for every λ ∈ U . The local spectrum σT (x0) of T at x0 is defined
as σT (x0) = C\ρT (x0), and is always a closed subset of the classical spectrum
σ (T ) of T . Unlike the classical spectrum, which is always non-empty, we may have
σT (x0) = ∅. If, for example, T has the single-valued extension property (SVEP)
then x0 �= 0 implies σT (x0) �= ∅.

For a closed subset F ⊆ C and an operator T ∈ L (X), the glocal spectral
subspace of T associated with F is defined as

χT (F ) = {x ∈ X : (T − λ)f (λ) = x has an analytic solution on C\F}.
Then the inner local spectral radius of T at x0 is defined by

iT (x0) = sup{r ≥ 0 : x0 ∈ χT ({|z| ≥ r})},
and coincides with the minimum modulus of σT (x0), provided that T has SVEP.
Even if T does not have SVEP, we still have that iT (x0) = 0 if and only if 0 ∈
σT (x0); see, for example, [19].

We refer to the books [1] and [18] for more background information on general
local spectra theory. In this paper, we shall mainly work in the particular case
when X is of finite dimension. So fix a natural number n ≥ 1, and denote by Mn

the algebra of all n × n matrices over C. Then for T ∈ Mn we have that σ (T )
is the set of all its eigenvalues without taking into account multiplicities. Fixing
a nonzero vector x0 ∈ Cn, in this case we have the following nice characterization
of the local spectrum σT (x0) of the matrix T at x0; see, for example, the articles

2010 Mathematics Subject Classification. Primary 47B49; Secondary 47A10, 47A11.
Key words and phrases. Additive map; Preserver; Local spectrum; Inner local spectral radius.
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2 CONSTANTIN COSTARA

[6] and [20]. Let λ1, ..., λk be the distinct eigenvalues of T ∈ Mn and denote by
N1, ..., Nk the corresponding root spaces. Then

(1.1) σT (x0) = {λj : 1 ≤ j ≤ k, Pj(x0) �= 0},

where for j = 1, ..., k, the maps Pj : Cn → Nj ⊆ Cn are the associated canonical
projections. Let us observe that in the case of matrices, σT (x0) ⊆ σ (T ) is always
a non-empty subset: this comes from the fact that P1 + · · ·+ Pk = I, the identity
of Cn, so that Pj(x0), j = 1, ..., k, cannot all be zero at the same time. In fact,
any operator whose point spectrum has empty interior has SVEP, and in particular
any finite rank operator has SVEP. Thus any matrix has SVEP, and therefore the
inner local spectral radius of the matrix T at x0 is

iT (x0) = min{|λ| : λ ∈ σT (x0)}.

Then (1.1) shows that

(1.2) iT (x0) = min{|λj | : 1 ≤ j ≤ k, Pj(x0) �= 0}.

Therefore, for a non-invertible matrix T ∈Mn, we have that iT (x0) equals 0 if and
only if P (x0) �= 0, where N ⊆ Cn is the root space corresponding to the eigenvalue
0 and P : Cn → N ⊆ Cn is the associated canonical projection.

Over the last years, the study of linear/additive/nonlinear local spectra pre-
server problems on matrix/operator spaces has been a very active field of research.
The first ones to consider this type of problems were Bourhim and Ransford in
2006. They proved in [5] that for a complex Banach space X, if ϕ : L (X)→ L (X)
is an additive map such that

σϕ(T ) (x) = σT (x)

for each T ∈ L (X) and each x ∈ X, then ϕ is the identity of L (X). Afterwards,
many different preserver problems stated in terms of the local spectrum/local spec-
tral radius/inner local spectral radius have been considered; see, for example, the
last section of the survey article [8] and the references therein.

Linear surjective maps on L (X) preserving operators of local spectral radius
zero at vectors x ∈ X have been characterized by the author in [10]. This has
been generalized by Bourhim and Mashreghi in [7] and further by Elhodaibi and
Jaatit in [13]. In the case when X is of finite dimension, Bourhim and the author
characterized in [9] linear maps which preserve matrices of local spectral radius
zero at some fixed nonzero vector. It was left as an open question what happens in
the case when we work with the inner local spectral radius [9, Problem 5].

Bendaoud, Jabbar and Sarih in [4, Theorem 1.6] and El Kettani and Ben-
bouziane in [15, Corollary 3.2] proved that if ϕ : L (X) → L (X) is a surjective
additive map such that

iϕ(T ) (x) = 0⇐⇒ iT (x) = 0

for every T ∈ L (X) and every x ∈ X, then there exists a nonzero complex number
c such that ϕ (T ) = cT for every T ∈ L (X). This was further generalized by Jari in
[17, Theorem 3.1] (keeping the surjectivity assumption on the map ϕ), and then by
Elhodaibi and Jaatit in [14, Theorem 3.7], who proved that if ϕ : L (X) → L (X)
is a map such that

iϕ(T1)−ϕ(T2) (x) = 0⇐⇒ iT1−T2
(x) = 0

Licensed to AMS.



ADDITIVE MAPS PRESERVING MATRICES 3

for every T1, T2 ∈ L (X) and every x ∈ X, then there exists a nonzero complex
number c such that ϕ (T ) = cT + ϕ (0) for every T ∈ L (X). They also proved
[14, Corollary 4.2] that if ϕ : L (X) → L (X) is a linear surjective map such that
ϕ (I) is invertible and either

iT (x) = 0 =⇒ iϕ(T ) (x) = 0

for every T ∈ L (X) and every x ∈ X, or

iϕ(T ) (x) = 0 =⇒ iT (x) = 0

for every T ∈ L (X) and every x ∈ X, then there exists a nonzero complex number
c such that ϕ (T ) = cT for every T ∈ L (X).

All the above stated results for maps preserving operators of inner local spectral
radius zero have been obtained in the finite or the infinite-dimensional setting, with
a preserving property supposed true for every x ∈ X. In this paper, we shall
consider the corresponding problems for additive maps in the finite-dimensional
setting, with the preserving property stated at some fixed nonzero vector of Cn.
This type of preserver problem, in the linear case, has also been considered in
[3, Theorem 3.1].

Before stating the main result of this paper, let us make some notations. If
η : C→ C is a field automorphism, then for a matrix T ∈Mn or a vector x ∈ Cn, by
T η (respectively, xη) we shall denote the matrix (respectively, the vector) obtained
by applying to each entry the map η : C→ C. Also, by T t (respectively, xt) we shall
denote the transpose of the matrix (respectively, the vector). Let us also observe
that for f ∈ Cn, we have that x0f

t ∈ Mn is the rank one matrix sending x ∈ Cn

into (f tx)x0 ∈ Cn; throughout this paper, the elements of Cn are considered as
column vectors.

Theorem 1.1. Let n ≥ 2 be a natural number. Let x0 ∈ Cn be a fixed nonzero
vector and let ϕ :Mn →Mn be a surjective additive map. Then

(1.3) iT (x0) = 0 =⇒ iϕ(T ) (x0) = 0, (T ∈Mn)

if and only if there exist a nonzero complex number c, a field automorphism η :
C → C, an invertible matrix A ∈ Mn satisfying A(xη

0) = x0 and a vector f ∈ Cn

satisfying f tx0 �= 1 such that

(1.4) ϕ (T ) = cA(T − x0f
tT )ηA−1, (T ∈Mn).

We arrive at the same conclusion by supposing

(1.5) iϕ(T ) (x0) = 0 =⇒ iT (x0) = 0, (T ∈Mn)

instead of ( 1.3).

The surjectivity assumption cannot be removed from the statement of Theorem
1.1, even in the case when ϕ is supposed to be linear. For example, consider a linear
map γ :M2 → C, fix x0 = (1, 0)t ∈ C2 and define ϕ :M2 →M2 by putting

ϕ (T ) =

[
0 γ (T )
0 0

]
, (T ∈M2).

Then ϕ is a linear non-surjective map such that ϕ (T ) is nilpotent for each T , and
in particular iϕ(T ) (x0) = 0 for every T . Thus (1.3) holds and ϕ is not of the form
(1.4).

Licensed to AMS.



4 CONSTANTIN COSTARA

For the same x0 ∈ C2, consider now ϕ :M2 →M2 given by

ϕ

([
a b
c d

])
=

[
a c
c 0

]
.

Once more, the map ϕ is linear and non-surjective. If iϕ(T ) (x0) = 0, then ϕ(T ) is
non-invertible, and therefore c must be zero. Thus

ϕ (T ) =

[
a 0
0 0

]
,

and since ϕ(T )x0 = ax0 then σϕ(T )(x0) = {a}. Then iϕ(T ) (x0) = 0 implies a = 0.
Thus iϕ(T ) (x0) = 0 implies

T =

[
0 b
0 d

]
.

In particular, Tx0 = 0, which gives σT (x0) = {0}. Thus (1.5) holds. Still, the map
ϕ is not of the form (1.4).

Let us also observe that for n = 1 in the statement of Theorem 1.1, any
surjective additive map ϕ : C → C satisfies (1.3), while surjective additive maps
ϕ : C→ C satisfying (1.5) are exactly those which are additive and bijective.

2. Preliminary results

It is well-known the fact that the spectrum function is continuous on matrices;
see, for example, [2, Corollary 3.4.5]. In particular, if (Tj)j ⊆Mn is a sequence such

that Tj → T ∈Mn and λj ∈ σ (Tj) for each j, then λj → λ ∈ C implies λ ∈ σ (T ).
The local spectrum is not continuous on Mn, being only lower semi-continuous;
see, for example, [12, Corollary 2.3]. For x0 = (1, 0)t ∈ C2 and

Tj =

[
1 0
1/j 0

]
∈M2, (j ≥ 1),

one can easily check that 0 ∈ σTj
(x0) for each j, while

Tj → T =

[
1 0
0 0

]
∈M2

and 0 /∈ σT (x0) .
Of course, if (Tj)j ⊆Mn converges to T ∈Mn and 0 ∈ σTj

(x0) for each j, we

have 0 ∈ σ (Tj) for each j and then necessarily 0 ∈ σ (T ). The next result gives a
converse to this observation.

Theorem 2.1. Let x0 ∈ Cn be a fixed nonzero vector, and let T ∈ Mn be a
non-invertible matrix. There exist then A,B ∈Mn such that

(2.1) 0 ∈ σT+A/j+B/j2 (x0) , (j ≥ 1).

Proof. If σ (T ) = {0}, then σT (x0) = {0} and one may take A = B = 0.
So suppose for the remaining of this proof that k ≥ 2, 0 = λ1, λ2, ..., λk are the
distinct eigenvalues of T and N1, ..., Nk the corresponding root spaces, and denote
once more by P1, ..., Pk the corresponding canonical projections. If PN1

(x0) �= 0
then 0 ∈ σT (x0) and we may take once again A = B = 0.

Suppose now that PN1
(x0) = 0. Then x0 ∈ N , where

N :=
⊕k

j=2
Nj ,

Licensed to AMS.



ADDITIVE MAPS PRESERVING MATRICES 5

the direct sum being an algebraic one. Let 1 ≤ s < n and {y1, ..., ys} an algebraic
basis of N1 and {ys+1, ..., yn} an algebraic basis of N such that ys+1 = x0. Then
{y1, ..., yn} is an algebraic basis of Cn, and consider f ∈ Cn such that f tys+1 = 1
while f tyj = 0 for j �= s+ 1. Put

R = y1f
t ∈Mn,

that is R : Cn → Cn sends x ∈ Cn into (f tx) y1 ∈ Cn. By construction, R is a rank
one matrix satisfying R2 = 0. Let

Uj = I +R/j, (j ≥ 1).

Then U−1
j = I − R/j for j ≥ 1, and by our construction U−1

j sends yt to yt for

t �= s+ 1, and ys+1 + y1/j to ys+1. For each j, put

Tj = UjTU
−1
j = (I +R/j)T (I −R/j)

= T + (RT − TR)/j −RTR/j2,

and denote
A = RT − TR ∈Mn

and
B = −RTR ∈Mn.

For each j we have

U−1
j (x0) = U−1

j (ys+1) = U−1
j ((ys+1 + y1/j)− y1/j) = ys+1 − y1/j

= x0 − y1/j.

Then
σTj

(x0) = σUjTU−1
j

(x0) = σT (U
−1
j x0) = σT (x0 − y1/j),

and since PN1
(x0 − y1/j) = −y1/j �= 0, by (1.1) we have that 0 ∈ σT (x0 − y1/j),

and therefere 0 ∈ σTj
(x0). Thus

0 ∈ σT+A/j+B/j2 (x0) , (j ≥ 1),

that is (2.1) holds. �
By a result of Bračič and Müller from [11], given any T ∈ Mn and λ ∈ σ (T ),

there exists a sequence (Tj)j ⊆ Mn such that Tj → T and λ ∈ σTj
(x0) for

each j. (In fact, the result holds even in the infinite-dimensional setting if λ is
taken from the surjectivity spectrum of T !) Since no continuity assumption is
made of the map ϕ in the statement of Theorem 1.1, we cannot use this result
in order to obtain spectrum-preserving properties for the map ϕ. The sequence
Tj = T + A/j + B/j2 which appears in (2.1), besides the fact that it converges to
T , has the supplementary property that it allows us to use the additivity of the
map ϕ to see that

ϕ (Tj) = ϕ (T ) + ϕ (A) /j + ϕ (B) /j2 → ϕ (T ) .

This will allow us to obtain invertibility/singularity preserving properties on the
additive map ϕ, so that we may use the following results of Fošner and Šemrl [16].

Theorem 2.2. ([16, Theorem 1.2 and Corollary 1.3]) Let n ≥ 2 be a natural
number. Let ϕ : Mn → Mn be a surjective additive map which preserve singu-
larity. There exist then a field automorphism η : C → C and invertible matrices
A,B ∈Mn such that either

(2.2) ϕ (T ) = AT ηB, (T ∈Mn),
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or

(2.3) ϕ (T ) = A(T η)tB, (T ∈Mn).

We arrive at the same conclusion by supposing that ϕ is additive, surjective
and preserves invertibility.

Before proving our main result, let us also make the following observation. For
an automorphism η : C→ C, a nonzero vector x0 ∈ Cn and a matrix T ∈ Mn, we
have that

(2.4) σTη (xη
0) = η(σT (x0)).

Indeed, let λ1, ..., λk be the distinct eigenvalues of T ∈ Mn and let once more
N1, ..., Nk denote the corresponding root spaces. For j = 1, ..., k, we have x ∈ Nj if
and only if (T−λjI)

nx = 0, which is equivalent to (T η−η(λj)I)
nxη = 0. Therefore,

the matrix T η has the distinct eigenvalues η(λ1), ..., η(λk), with corresponding root
spaces η(N1), ..., η(Nk). Now (2.4) follows from (1.1).

3. Proof of the main result

We are now ready for the proof of Theorem 1.1.
Step 1. Let us start by showing that any map ϕ of the form (1.4) satisfies

(1.3) and (1.5). Denoting S = I − x0f
t ∈Mn, then S is invertible,

ϕ (T ) = cA(ST )ηA−1, (T ∈Mn)

and

iϕ(T )(x0) = 0 ⇐⇒ i(ST )η (A
−1x0) = 0

⇐⇒ i(ST )η (x
η
0) = 0

⇐⇒ iST (x0) = 0.

So suppose, for a contradiction, that iT (x0) = 0 and iST (x0) �= 0 for some matrix
T . Then T is not invertible, and therefore ST is not invertible. Since iST (x0) is
supposed to be nonzero, the matrix ST is not nilpotent. So let 0 = λ1, λ2, ..., λk be
the distinct eigenvalues of ST ∈ Mn and let N1, ..., Nk denote the corresponding

root spaces. Put N =
⊕k

j=2 Nj . Then ST sends N into N , and (ST )|N : N → N

is invertible. That iST (x0) �= 0 gives PN1
(x0) = 0, and therefore x0 ∈ N . Then

Tx − (f tTx)x0 = STx ∈ N for each x ∈ N implies that T also sends N into N .
That (ST )|N : N → N is invertible implies that T |N : N → N is also invertible.
So let U be an open disc centered at 0 ∈ C disjoint from the spectrum of T |N , and
define the analytic function h : U → N ⊆ Cn by putting

h (λ) = (T |N − λI|N )−1x0, (λ ∈ U).

Then (T − λI)h (λ) = ((T − λI)|N )h (λ) = x0 for every λ ∈ U , and therefore
0 /∈ σT (x0), arriving to a contradiction. Thus (1.3) holds.

Since (x0f
t)2 = (f tx0)(x0f

t) and f tx0 �= 1, then S−1 = I − x0g
t ∈Mn where

g = f/(f tx0 − 1) ∈ Cn satisfies gtx0 �= 1. With the same argument as above we
obtain that iT (x0) = 0 implies iS−1T (x0) = 0. Thus iST (x0) = 0 implies iT (x0) = 0,
that is (1.5) holds.

Step 2. Suppose first that (1.3) holds. Let T ∈ Mn be an arbitrary singular
matrix. By Theorem 2.1, there exist A,B ∈ Mn such that iT+A/j+B/j2 (x0) = 0
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for j ≥ 1, and then (1.3) together with the fact that ϕ is additive imply that
iϕ(T )+ϕ(A)/j+ϕ(B)/j2 (x0) = 0 for j ≥ 1. In particular ϕ(T ) + ϕ(A)/j + ϕ(B)/j2 ∈
Mn is not invertible for j ≥ 1. Letting j → +∞, we obtain that ϕ(T ) is singular.
Thus the surjective additive map ϕ sends singular matrices into singular ones. By
Theorem 2.2, there exist a field automorphism η : C → C and invertible matrices
A,B ∈Mn such that ϕ is either of the form (2.2) or (2.3).

Suppose first that ϕ (T ) = AT ηB for every T ∈Mn. If {xη
0 , Bx0} were linearly

independent, then {x0, (Bx0)
η−1} will also be linearly independent, and consider

then T ∈ Mn such that Tx0 = 0 and T ((Bx0)
η−1

) = (A−1x0)
η−1

. That Tx0 = 0
gives iT (x0) = 0. Also, that T η(Bx0) = A−1x0 gives ϕ (T )x0 = x0, and therefore
iϕ(T )(x0) = 1, contradicting (1.3). Thus Bx0 = δxη

0 for some nonzero complex
number δ. This gives

iϕ(T ) (x0) = iB−1(BATη)B(x0) = iBATη (Bx0)

= iBATη (xη
0)

for every T ∈ Mn. Thus iT (x0) = 0 implies iBATη(xη
0) = 0, which, by (2.4), gives

i(BA)η−1T (x0) = 0. Denoting S = (BA)η
−1 ∈Mn, then S is invertible and

(3.1) iT (x0) = 0 =⇒ iST (x0) = 0, (T ∈Mn).

Suppose, for a contradiction, that {x0, Sx0} is linearly independent. Then
{x0, S

−1x0} ⊆ Cn is also a linearly independent system, and consider a T ∈ Mn

sending x0 to S−1x0 and S−1x0 into 0 ∈ Cn. That T 2x0 = 0 gives σT (x0) = {0},
and that ST (x0) = x0 gives σST (x0) = {1}, contradicting (3.1). Thus, there exists
a nonzero complex constant α such that Sx0 = αx0.

Suppose, for a contradiction, that for some x ∈ Cn we have that {x0, x, Sx} ⊆
Cn is linearly independent. Consider then T ∈Mn sending x0 to x, the vector x into
0 ∈ Cn and Sx to S−1x0 = x0/α. Once more, that T 2x0 = 0 gives σT (x0) = {0}.
Also, by our construction, (ST )2 (x0) = x0. Then σ(ST )2(x0) = {1} and, directly

from the definition of the local spectrum, we also have (σST (x0))
2 = σ(ST )2(x0).

Therefore σST (x0) ⊆ {±1}, contradicting (3.1). Thus, x0, x and Sx are always
linearly dependent.

Let Y ⊆ Cn be a subspace such that Cn = Y
⊕

(Cx0), an algebraic direct
sum. Let P : Cn → Y be the corresponding projection. For each y ∈ Y we
have that {x0, y, Sy} ⊆ Cn is linearly dependent, and by applying P we see that
{y, PSy} ⊆ Y is linearly dependent. For I|Y and PS|Y in L (Y ) this implies the
existence of β ∈ C such that PS|Y = βI|Y in L (Y ); see, for example, [2, Theorem
4.2.7]. Thus (S − βI)(Y ) ⊆ (Cx0), and since we also know that Sx0 ∈ (Cx0),
then (S − βI)(Cn) ⊆ (Cx0). This implies the existence of g ∈ Cn such that
S = βI + x0g

t. That S is invertible implies β �= 0, and putting f = −g/β ∈ Cn

we have S = β(I − x0f
t). That S is invertible also implies f tx0 �= 1. Therefore

BA = η(β)(I − x0f
t)η, and therefore ϕ is indeed of the form (1.4).

Step 3. Let us prove now that (2.3) cannot occur. Indeed, if ϕ (T ) = A(T η)tB

for each T , then iϕ(T ) (x0) = iBA(Tη)t(Bx0) for each T . Denoting S = (BA)η
−1∈Mn

and y0 = (Bx0)
η−1 ∈ Cn, then S is invertible, y0 is a nonzero vector and

(3.2) iT (x0) = 0 =⇒ iST t(y0) = 0, (T ∈Mn).
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Let g ∈ Cn such that {g, x0} ⊆ Cn is a linearly independent system and gty0 �= 0.
Put

T =
g(S−1y0)

t

gty0
∈Mn.

Then T ty0 = S−1y0, thus ST ty0 = y0, which gives σST t(y0) = {1}. Observe
also that T is a rank one matrix, its image in Cn being generated by g ∈ Cn. If
0 /∈ σT (x0), then necessarily g and x0 are linearly dependent, and (S−1y0)

tg �= 0.
Thus by our choice of g we have iT (x0) = 0, and we contradict (3.2).

Step 4. Suppose that (1.5) holds. Using the fact that ϕ is surjective exactly
as in the first part of Step 2 we obtain that if ϕ (T ) is singular, then T is singular.
Thus T invertible implies ϕ(T ) invertible, and using once more Theorem 2.2 we see
that ϕ is either of the form (2.2) or (2.3). In particular, ϕ :Mn →Mn is bijective,
and ϕ−1 : Mn → Mn has the property that iT (x0) = 0 implies iϕ−1(T )(x0) = 0.

Thus ϕ−1 is of the form (1.4), and let us prove now that ϕ must be of the same
form. Indeed, denote S = I − x0f

t and let τ = η−1 : C→ C. Then

ϕ (T ) =
1

τ (c)
S−1(Aτ )−1T τAτ , (T ∈Mn).

Denoting d = 1/τ (c) ∈ C, B = (Aτ )−1 ∈Mn and R = A(Sη)−1A−1 ∈Mn, then

ϕ (T ) = dB(RT )τB−1, (T ∈Mn),

where the invertible matrix B satisfies

Bxτ
0 = (A−1x0)

τ = (xη
0)

τ = x0

and

R = A

(
I − x0f

t

f tx0 − 1

)η

A−1 = I − (Axη
0)((A

−1)tfη)t

η(f tx0)− 1

= I − x0g
t,

where g := (A−1)tfη/(η(f tx0)− 1) ∈ Cn satisfies

gtx0 =
(fη)txη

0

η(f tx0)− 1
=

η(f tx0)

η(f tx0)− 1
�= 1.
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A global domination principle for P−pluripotential theory

Norm Levenberg and Menuja Perera

In honor of 60 years of Tom Ransford

Abstract. We prove a global domination principle in the setting of P−pluri-
potential theory. This has many applications including a general product
property for P−extremal functions. The key ingredient is the proof of the
existence of a strictly plurisubharmonic P−potential.

1. Introduction

Following [1], in [2] and [4] a pluripotential theory associated to plurisubhar-
monic (psh) functions on Cd having growth at infinity specified by
HP (z) := φP (log |z1|, ..., log |zd|) where

φP (x1, ..., xd) := sup
(y1,...,yd)∈P

(x1y1 + · · ·+ xdyd)

is the indicator function of a convex body P ⊂ (R+)d was developed. Given P , the
classes

LP = LP (C
d) := {u ∈ PSH(Cd) : u(z)−HP (z) = 0(1), |z| → ∞}

and
L+
P = L+

P (C
d) := {u ∈ LP : u(z) ≥ HP (z) + cu}

are of fundamental importance. These are generalizations of the standard Le-
long classes L(Cd), the set of all plurisubharmonic (psh) functions u on Cd with
u(z)−max[log |z1|, ..., log |zd|] = 0(1), |z| → ∞, and

L+(Cd) = {u ∈ L(Cd) : u(z) ≥ max[0, log |z1|, ..., log |zd|] + Cu}
which correspond to P = Σ where

Σ := {(x1, ..., xd) ∈ Rd : x1, ..., xd ≥ 0, x1 + · · ·+ xd ≤ 1}.
For more on standard pluripotential theory, cf., [7].

Given E ⊂ Cd, the P−extremal function of E is defined as

V ∗
P,E(z) := lim sup

ζ→z
VP,E(ζ)

where
VP,E(z) := sup{u(z) : u ∈ LP (C

d), u ≤ 0 on E}.
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12 NORM LEVENBERG AND MENUJA PERERA

For P = Σ, we write VE := VΣ,E . For E bounded and nonpluripolar, V ∗
E ∈ L+(Cd);

V ∗
E = 0 q.e. on E (i.e., on all of E except perhaps a pluripolar set); and (ddcV ∗

E)
d = 0

outside of Ē where (ddcV ∗
E)

d is the complex Monge-Ampère measure of V ∗
E (see sec-

tion 2). A key ingredient in verifying a candidate function v ∈ L+(Cd) is equal to
V ∗
E is the following global domination principle of Bedford and Taylor:

Proposition 1. [3] Let u ∈ L(Cd) and v ∈ L+(Cd) and suppose u ≤ v a.e.-
(ddcv)d. Then u ≤ v on Cd.

Thus if one finds v ∈ L+(Cd) with v = 0 a.e.-(ddcv)d on Ē and (ddcv)d = 0 out-
side of Ē then v = V ∗

E . For the proof of Proposition 1 in [3] the fact that in the def-
inition of the Lelong classes max[log |z1|, ..., log |zd|] and max[0, log |z1|, ..., log |zd|]
can be replaced by the Kähler potential

u0(z) :=
1

2
log (1 + |z|2) := 1

2
log(1 +

d∑
j=1

|zj |2)

is crucial; this latter function is strictly psh and (ddcu0)
d > 0 on Cd.

We prove a version of the global domination principle for very general LP and
L+
P classes. We consider convex bodies P ⊂ (R+)d satisfying

(1.1) Σ ⊂ kP for some k ∈ Z+.

Proposition 2. For P ⊂ (R+)d satisfying ( 1.1), let u ∈ LP and v ∈ L+
P with

u ≤ v a.e.-(ddcv)d. Then u ≤ v in Cd.

As a corollary, we obtain a generalization of Proposition 2.4 of [4] on P−extremal
functions:

Proposition 3. Given P ⊂ (R+)d satisfying ( 1.1), let E1, ..., Ed ⊂ C be
compact and nonpolar. Then

(1.2) V ∗
P,E1×···×Ed

(z1, ..., zd) = φP (V
∗
E1

(z1), ..., V
∗
Ed

(zd)).

The main issue in proving our version of the global domination principle (re-
stated as Proposition 4 below) is the construction of a strictly psh P−potential
uP which can replace the logarithmic indicator function HP (z) used to define LP

and L+
P . To do this, we utilize a classical result on subharmonic functions in the

complex plane which we learned in Tom Ransford’s beautiful book [8]; thus it is
fitting that this article is written in his honor.

2. The global P−domination principle

Following [2] and [4], we fix a convex body P ⊂ (R+)d; i.e., a compact, con-
vex set in (R+)d with non-empty interior P o. The most important example is
the case where P is the convex hull of a finite subset of (Z+)d in (R+)d with
P o �= ∅ (P is a non-degenerate convex polytope). Another interesting class con-
sists of the (R+)d portion of an �q ball for 1 ≤ q ≤ ∞; see (4.2). Recall that
HP (z) := φP (log |z1|, ..., log |zd|) where φP is the indicator function of P .

A C2−function u on D ⊂ Cd is strictly psh on D if the complex Hessian

H(u) := [ ∂2u
∂zj∂z̄k

]j,k=1,...,d is positive definite on D. We define

ddcu := 2i

d∑
j,k=1

∂2u

∂zj∂z̄k
dzj ∧ dz̄k
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and

(ddcu)d = ddcu ∧ · · · ∧ ddcu = cd detH(u)dV

where dV = ( i
2 )

d
∑d

j=1 dzj ∧ dz̄j is the volume form on Cd and cd is a dimensional

constant. Thus u strictly psh on D implies that (ddcu)d = fdV on D where f > 0.
We remark that if u is a locally bounded psh function then (ddcu)d is well-defined
as a positive measure, the complex Monge-Ampère measure of u; this is the case,
e.g., for functions u ∈ L+

P .

Definition 2.1. We say that uP is a strictly psh P−potential if
(1) uP ∈ L+

P is strictly psh on Cd and
(2) there exists a constant C such that |uP (z)−HP (z)| ≤ C for all z ∈ Cd.

This property implies that uP can replace HP in defining the LP and L+
P

classes:

LP = {u ∈ PSH(Cd) : u(z)− uP (z) = 0(1), |z| → ∞}
and

L+
P = {u ∈ LP : u(z) ≥ uP (z) + cu}.

Given the existence of a strictly psh P−potential, we can follow the proof of Propo-
sition 1 in [3] to prove:

Proposition 4. For P ⊂ (R+)d satisfying ( 1.1), let u ∈ LP and v ∈ L+
P with

u ≤ v a.e. (ddcv)d. Then u ≤ v in Cd.

Proof. Suppose the result is false; i.e., there exists z0 ∈ Cd with u(z0) > v(z0).
Since v ∈ L+

P , by adding a constant to v we may assume v(z) ≥ uP (z) in Cd. Note
that (ddcuP )

d > 0 on Cd. Fix δ, ε > 0 with δ < ε/2 in such a way that the set

S := {z ∈ C : u(z) + δuP (z) > (1 + ε)v(z)}

contains z0. Then S has positive Lebesgue measure. Moreover, since δ < ε and
v ≥ uP , S is bounded. By the comparison principle (cf., Theorem 3.7.1 [7]), we
conclude that ∫

S

(ddc[u+ δuP ])
d ≤

∫
S

(ddc(1 + ε)v)d.

But
∫
S
(ddcδuP )

d > 0 since S has positive Lebesgue measure, so

(1 + ε)d
∫
S

(ddcv)d > 0.

By hypothesis, for a.e.-(ddcv)d points in supp(ddcv)d ∩S (which is not empty since∫
S
(ddcv)d > 0), we have

(1 + ε)v(z) < u(z) + δuP (z) ≤ v(z) + δuP (z),

i.e., v(z) < 1
2uP (z) since δ < ε/2. This contradicts the normalization v(z) ≥ uP (z)

in Cd. �

In the next section, we show how to construct uP in Definition 2.1 for a convex
body in (R+)d satisfying (1.1).
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14 NORM LEVENBERG AND MENUJA PERERA

3. Existence of strictly psh P−potential
For the P we consider, φP ≥ 0 on (R+)d with φP (0) = 0. We write

zJ = zj11 · · · z
jd
d where J = (j1, ..., jd) ∈ P (the components jk need not be in-

tegers) so that

HP (z) := sup
J∈P

log |zJ | := φP (log
+ |z1|, ..., log+ |zd|)

with |zJ | := |z1|j1 · · · |zd|jd . To construct a strictly psh P−potential uP , we first
assume P is a convex polytope in (R+)d satisfying (1.1). Thus

(a1, 0, ..., 0), . . . , (0, ..., 0, ad) ∈ ∂P

for some a1, ..., ad > 0. A calculation shows that

log(1 + |z1|2a1 + · · ·+ |zd|2ad)

is strictly psh in Cd.
We claim then that

(3.1) uP (z) :=
1

2
log(1 +

∑
J∈Extr(P )

|zJ |2)

is strictly psh in Cd and the LP , L
+
P classes can be defined using uP instead of HP ;

i.e., uP satisfies (1) and (2) of Definition 2.1. Here, Extr(P ) denotes the extreme
points of P but we omit the origin 0. Note that (a1, 0, ..., 0), ..., (0, ..., 0, ad) ∈ Extr(P ).

Indeed, in this case,

HP (z) = sup
J∈P

log |zJ | = max[0, max
J∈Extr(P )

log |zJ |]

so clearly for |z| large, |uP (z)−HP (z)| = 0(1) while on any compact set K,

sup
z∈K

|uP (z)−HP (z)| ≤ C = C(K)

which gives (2) (and therefore that uP ∈ L+
P ).

It remains to verify the strict psh of uP in (3.1). We use reasoning based
on a classical univariate result which is exercise 4 in section 2.6 of [8]: if u, v are
nonnegative with log u and log v subharmonic (shm) – hence u, v are shm – then
log(u+ v) is shm. The usual proof is to show (u+ v)a is shm for any a > 0 – which
is exercise 3 in section 2.6 of [8] – which trivially follows since u, v are shm and
a > 0. However, assume u, v are smooth and compute the Laplacian Δ log(u + v)
on {u, v > 0}:(

log(u+ v)
)
zz̄

=
(u+ v)(uzz̄ + vzz̄)− (uz + vz)(uz̄ + vz̄)

(u+ v)2

=
[uuzz̄ − |uz|2 + vvzz̄ − |vz|2] + [uvzz̄ + vuzz̄ − 2�(uzvz̄)]

(u+ v)2
.

Now log u, log v shm implies uuzz̄ − |uz|2 ≥ 0 and vvzz̄ − |vz|2 ≥ 0 with strict
inequality in case of strict shm. Since log(u + v) is shm, the entire numerator is
nonnegative:

[uuzz̄ − |uz|2 + vvzz̄ − |vz|2] + [uvzz̄ + vuzz̄ − 2�(uzvz̄)] ≥ 0

so that the “extra term”

uvzz̄ + vuzz̄ − 2�(uzvz̄)
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GLOBAL DOMINATION PRINCIPLE 15

is nonnegative whenever

(log u)zz̄ + (log v)zz̄ = uuzz̄ − |uz|2 + vvzz̄ − |vz|2 = 0.

We show Δ log(u + v) is strictly positive on {u, v > 0} if one of log u or log v is
strictly shm.

Proposition 5. Let u, v ≥ 0 with log u and log v shm. If one of log u or log v
is strictly shm, e.g., Δ log u > 0, then Δ log(u+ v) > 0 on {u, v > 0}.

Proof. We have u, v ≥ 0, uzz̄, vzz̄ ≥ 0, vvzz̄ − |vz|2 ≥ 0 and uuzz̄ − |uz|2 > 0
if u > 0. We want to show that

uvzz̄ + vuzz̄ − 2�(uzvz̄) = uvzz̄ + vuzz̄ − (uzvz̄ + vzuz̄) > 0

on {u, v > 0}. We start with the identity

(3.2) (uvz − vuz)(uvz̄ − vuz̄) = u2vzvz̄ + v2uzuz̄ − uv(uzvz̄ + vzuz̄) ≥ 0.

Since uuzz̄ − |uz|2 > 0 and vvzz̄ − |vz |2 ≥ 0,

uuzz̄ > uzuz̄, vvzz̄ ≥ vzvz̄.

Thus
uvzz̄ + vuzz̄ =

u

v
vvzz̄ +

v

u
uuzz̄ >

u

v
vzvz̄ +

v

u
uzuz̄.

Thus it suffices to show
u

v
vzvz̄ +

v

u
uzuz̄ ≥ uzvz̄ + uz̄vz.

Multiplying both sides by uv, this becomes

u2vzvz̄ + v2uzuz̄ ≥ uv(uzvz̄ + uz̄vz).

This is (3.2).
�

This proof actually shows that

uvzz̄ + vuzz̄ − 2�(uzvz̄) > 0

under the hypotheses of the proposition.

Remark 3.1. To be precise, this shows strict shm only on {u, v > 0}. In the
multivariate case, this shows the restriction of log(u + v) to the intersection of a
complex line and {u, v > 0} is strictly shm if one of log u, log v is strictly psh so
that log(u+ v) is strictly psh on {u, v > 0}.

Now with uP in (3.1) we may write

uP (z) = log(u+ v)

where

(3.3) u(z) = 1 + |z1|2a1 + · · ·+ |zd|2ad

– so that log u is strictly psh in Cd – and

v(z) =
∑

J∈Extr(P )

|zJ |2 − |z1|2a1 − · · · − |zd|2ad .

If v ≡ 0 (e.g., if P = Σ) we are done. Otherwise v ≥ 0 (being a sum of non-
negative terms) and log v is psh (being the logarithm of a sum of moduli squared
of holomorphic functions) showing that uP (z) := 1

2 log(1 +
∑

J∈Extr(P ) |zJ |2) is
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16 NORM LEVENBERG AND MENUJA PERERA

strictly psh where v > 0. There remains an issue at points where v = 0 (coordinate
axes). However, if we simply replace the decomposition uP (z) = log(u + v) by
uP (z) = log(uε + vε) where

uε := 1 + (1− ε)(|za1 |2 + ....+ |zad |2) and

vε :=
∑

J∈ExtrP

|zJ |2 − (1− ε)(|za1 |2 + ....+ |zad |2)

for ε > 0 sufficiently small, then the result holds everywhere. We thank F. Piazzon
for this last observation.

If P ⊂ (R+)d is a convex body satisfying (1.1), we can approximate P by a
monotone decreasing sequence of convex polytopes Pn satisfying the same property.
Since Pn+1 ⊂ Pn and ∩nPn = P , the sequence {uPn

} decreases to the function
uP ∈ L+

P . Since each uPn
is of the form

uPn
(z) = log(un + vn)

where un(z) = 1+ |z1|2an1 + · · ·+ |zd|2and and anj ≥ aj for all n and each j = 1, ..., d
in (3.3), it follows that uP is strictly psh and hence satisfies Definition 2.1. This
concludes the proof of Proposition 4.

Remark 3.2. Another construction of a strictly psh P−potential as in Def-
inition 2.1 which is based on solving a real Monge-Ampère equation and which
works in more general situations was recently given by C. H. Lu [5]. Indeed, his
construction, combined with Corollary 3.10 of [6], yields a new proof of the global
domination principle, Proposition 4.

4. The product property

In this section, we prove the product property stated in the introduction:

Proposition 6. For P ⊂ (R+)d satisfying ( 1.1), let E1, ..., Ed ⊂ C be compact
and nonpolar. Then

(4.1) V ∗
P,E1×···×Ed

(z1, ..., zd) = φP (V
∗
E1

(z1), ..., V
∗
Ed

(zd)).

Remark 4.1. One can verify the formula

VP,Td(z) = HP (z) = sup
J∈P

log |zJ |

for the P−extremal function of the torus

T d := {(z1, ..., zd) : |zj | = 1, j = 1, ..., d}
for a general convex body by modifying the argument in [7] for the standard ex-
tremal function of a ball in a complex norm. Indeed, let u ∈ LP with u ≤ 0 on T d.
For w = (w1, ..., wd) �∈ T d and wj �= 0, we consider

v(ζ1, ..., ζd) := u(w1/ζ1, ..., wd/ζd)−HP (w1/ζ1, ..., wd/ζd).

This is psh on 0 < |ζj | < |wj |, j = 1, ..., d. Since u ∈ LP , v is bounded above
near the pluripolar set given by the union of the coordinate planes in this polydisk
and hence extends to the full polydisk. On the boundary |ζj | = |wj |, v ≤ 0 so at
(1, 1, ..., 1) we get u(w1, ..., wd) ≤ HP (w1, ..., wd). Note

HP (z) = sup
J∈P

log |zJ | = φP (log
+ |z1|, ..., log+ |zd|)

and VT 1(ζ) = log+ |ζ| so this is a special case of Proposition 6.
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GLOBAL DOMINATION PRINCIPLE 17

Proof. For simplicity we consider the case d = 2 with variables (z, w) on C2.
As in [4], we may assume VE and VF are continuous. Also, by approximation we
may assume φP is smooth. We write

v(z, w) := φP (VE(z), VF (w)).

An important remark is that, since P ⊂ (R+)2, P is convex, and P contains kΣ for
some k > 0, the function φP on (R+)2 satisfies

(1) φP ≥ 0 and φP (x, y) = 0 only for x = y = 0;
(2) φP is nondecreasing in each variable; i.e., (φP )x, (φP )y ≥ 0;
(3) φP is convex; i.e., the real Hessian HR(φP ) of φP is positive semidefinite;

and, more precisely, by the homogenity of φP ; i.e., φP (tx, ty) = tφP (x, y),

detHR(φP ) = 0 away from the origin.

As in [4], to see that

v(z, w) ≤ VP,E×F (z, w),

since φP (0, 0) = 0, it suffices to show that φP (VE(z), VF (w)) ∈ LP (C2). From the
definition of φP ,

φP (VE(z), VF (w)) = sup
(x,y)∈P

[xVE(z) + yVF (w)]

which is a locally bounded above upper envelope of plurisubharmonic functions.
As φP is convex and VE , VF are continuous, φP (VE(z), VF (w)) is continuous. Since
VE(z) = log |z|+0(1) as |z| → ∞ and VF (w) = log |w|+0(1) as |w| → ∞, it follows
that φP (VE(z), VF (w)) ∈ LP (C2).

By Proposition 4, it remains to show (ddcv)2 = 0 outside of E × F . Since we
can approximate v from above uniformly by a decreasing sequence of smooth psh
functions by convolving v with a smooth bump function, we assume v is smooth
and compute the following derivatives:

vz = (φP )x(VE)z,

vw = (φP )y(VF )w;

vzz̄ = (φP )xx|(VE)z|2 + (φP )x(VE)zz̄;

vzw̄ = (φP )xy(VE)z(VF )w̄;

vww̄ = (φP )yy|(VF )w|2 + (φP )y(VF )ww̄.

It follows from (2) that vzz̄, vww̄ ≥ 0. Next, we compute the determinant of the
complex Hessian of v on (C \ E)× (C \ F ) (so (VE)zz̄ = (VF )ww̄ = 0):

vzz̄vww̄ − |vzw̄|2 = (φP )xx|(VE)z|2(φP )yy|(VF )w|2 − [(φP )xy]
2|(VE)z|2|(VF )w|2

= |(VE)z|2|(VF )w|2[(φP )xx(φP )yy − (φP )xy]
2].

This is nonnegative by the convexity of φP and, indeed, it vanishes on
(C \ E) × (C \ F ) by (3). The general formula for the determinant of the com-
plex Hessian of v is

vzz̄vww̄ − |vzw̄|2

= |(VE)z|2|(VF )w|2[(φP )xx(φP )yy − (φP )xy]
2] + (φP )xx|(VE)z|2(φP )y(VF )ww̄

+ (φP )yy|(VF )w|2(φP )x(VE)zz̄ + (φP )x(VE)zz̄(φP )y(VF )ww̄.
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18 NORM LEVENBERG AND MENUJA PERERA

If, e.g., z ∈ E and w ∈ (C \ F ),

|(VE)z|2|(VF )w|2[(φP )xx(φP )yy − (φP )xy]
2] = 0

by (3) (since (VE(z), VF (w)) = (0, a) �= (0, 0)) and (VF )ww̄ = 0 so

vzz̄vww̄ − |vzw̄|2 = (φP )yy|(VF )w|2(φP )x(VE)zz̄.

However, we claim that

(φP )yy(0, a) = 0 if a > 0

since we have φP (0, ty) = tφP (0, y). Hence

vzz̄vww̄ − |vzw̄|2 = 0

if z ∈ E and w ∈ (C \ F ). Similarly,

(φP )xx(a, 0) = 0 if a > 0

so that

vzz̄vww̄ − |vzw̄|2 = 0

if z ∈ (C \ E) and w ∈ F .
�

Remark 4.2. In [4], a (much different) proof of Proposition 6 was given under
the additional hypothesis that P ⊂ (R+)d be a lower set: for each
n = 1, 2, ..., whenever (j1, ..., jd) ∈ nP ∩ (Z+)d we have (k1, ..., kd) ∈ nP ∩ (Z+)d

for all kl ≤ jl, l = 1, ..., d.

Finally, although computation of the P−extremal function of a product set is
now rather straightforward, even qualitative properties of the corresponding Monge-
Ampère measure are less clear. To be concrete, for q ≥ 1, let

(4.2) Pq := {(x1, ..., xd) : x1, ..., xd ≥ 0, xq
1 + · · ·+ xq

d ≤ 1}
be the (R+)d portion of an �q ball. Then for 1/q′+1/q = 1 we have φPq

(x) = ||x||�q′
(for q =∞ we take q′ = 1 and vice-versa). Hence if E1, ..., Ed ⊂ C,

V ∗
Pq,E1×···×Ed

(z1, ..., zd) = ‖[V ∗
E1

(z1), V
∗
E2

(z2), . . . , V
∗
Ed

(zd)]‖�q′

= [V ∗
E1

(z1)
q′ + · · ·+ V ∗

Ed
(zd)

q′ ]1/q
′
.

In the standard case q = 1, P1 = Σ and we have the well-known result that

V ∗
E1×···×Ed

(z1, ..., zd) = max[V ∗
E1

(z1), V
∗
E2

(z2), . . . , V
∗
Ed

(zd)].

Then if none of the sets Ej are polar,

(ddcV ∗
E1×···×Ed

)d = μE1
× · · · × μEd

where μEj
= ΔV ∗

Ej
is the classical equilibrium measure of Ej .

Question 7. What can one say about supp(ddcV ∗
Pq,E1×···×Ed

)d in the case

when q > 1?

As examples, for T d = {(z1, ..., zd) : |zj | = 1, j = 1, ..., d} we have

VT (zj) = log+ |zj | and hence for q ≥ 1

VPq,Td(z) = φPq
(log+ |z1|, ..., log+ |zd|) = [

d∑
j=1

(log+ |zj |)q
′
]1/q

′
.
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The measure (ddcVPq,Td)d is easily seen to be invariant under the torus action

and hence is a positive constant times Haar measure on T d. Thus in this case
supp(ddcVPq,Td)d = T d for q ≥ 1.

For the set [−1, 1]d we have V[−1,1](zj) = log |zj +
√
z2j − 1| and hence for q ≥ 1

VPq,[−1,1]d(z1, ..., zd) =

⎧⎨⎩
d∑

j=1

(
log

∣∣∣zj +√
z2j − 1

∣∣∣)q′
⎫⎬⎭

1/q′

.

In this case, it is not clear for q > 1 whether supp (ddcVPq,[−1,1]d)
d = [−1, 1]d.
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A holomorphic functional calculus for finite
families of commuting semigroups

Jean Esterle

Abstract. Let A be a commutative Banach algebra such that uA �= {0}
for u ∈ A \ {0} which possesses dense principal ideals. The purpose of
the paper is to give a general framework to define F (−λ1ΔT1 , . . . ,−λkΔTk

)
where F belongs to a natural class of holomorphic functions defined on suit-
able open subsets of Ck containing the "Arveson spectrum" of the family
(−λjΔTj

)1≤j≤k, where ΔT1 , . . . ,ΔTk
are the infinitesimal generators of com-

muting one-parameter semigroups of multipliers on A belonging to one of the
following classes:

(1) The class of strongly continuous semigroups T = (T (teia))t>0 such
that ∪t>0T (teia)A is dense in A, where a ∈ R.

(2) The class of semigroups T = (T (ζ))ζ∈Sa,b
holomorphic on an open

sector Sa,b such that T (ζ)A is dense in A for some, or equivalently for all,
ζ ∈ Sa,b.

We use the notion of quasimultiplier, introduced in 1981 by the author
at the Long Beach Conference on Banach algebras: the generators of the
semigroups under consideration will be defined as quasimultipliers on A, and
for ζ in the Arveson resolvent set of ΔT the resolvent (ΔT − ζI)−1 will be
defined as a regular quasimultiplier on A, i.e. a quasimultiplier S on A such
that supn≥1 λ

n‖Snu‖ < +∞ for some λ > 0 and some u generating a dense
ideal of A and belonging to the intersection of the domains of Sn, n ≥ 1.
The algebra of quasimultipliers (resp. regular quasimultipliers) on A will be
denoted QM(A) (resp. QMr(A)).

The first step consists in "normalizing" the Banach algebra A, i.e. con-
tinuously embedding A in a Banach algebra B having the same quasimultiplier
algebra as A but for which lim supt→0+ ‖T (teia)‖M(B) < +∞ if T belongs to
the class (1), and for which lim sup ζ→0

ζ∈Sα,β

‖T (ζ)‖ < +∞ for all pairs (α, β)

such that a < α < β < b if T belongs to the class (2). Iterating this pro-
cedure this allows to consider (λjΔTj

+ ζI)−1 as an element of M(B) for
ζ ∈ Resar(−λjΔTj

), the "Arveson resolvent set " of −λjΔTj
, and to use

the standard integral ’resolvent formula’ even if the given semigroups are not
bounded near the origin.

A first approach to the functional calculus involves the dual of an algebra
of fast decreasing functions, described in Appendix 2. The action of elements
of this dual, which is an algebra with respect to convolution can also be im-
plemented via representing measures, Cauchy transforms and Fourier–Borel
transforms introduced in Appendix 1.

The second approach to the functional calculus is based on Cauchy’s
formula. We introduce a family Ma,b of products of singletons and/or pair
of real numbers associated to the semigroups (Tj)1≤j≤k. For (α, β) ∈ Ma,b,

c©2020 American Mathematical Society
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we introduce the family of open subsets U of Ck which are "admissible" with
respect to (α, β), which implies in particular that U + ε ⊂ U for every ε ∈
S
∗
α,β , where S∗

α,β = Π1≤j≤kS−π/2−αj ,π/2+βj
. Standard properties of the

class H(1)(U) of all holomorphic functions F on U such that

‖F‖H(1)(U) := sup
ε∈S∗

α,β

∫
ε+∂̃U

‖F (σ||dσ| < +∞

are given in Appendix 3.
The results of Appendix 3 allow, when an open set U ⊂ Ck admissi-

ble with respect to (α, β) ∈ Ma,b satisfies some more suitable admissibility
conditions with respect to T = (T1, . . . , Tk) and λ = (λ1, . . . , λk), to define
F (−λ1ΔT1 , . . . ,−λkΔTk

) for F ∈ H(1)(U) by using the formula

F (−λ1ΔT1 , . . . ,−λkΔTk
)

=
1

(2πi)k

∫
ε+∂U

F (ζ1, . . . , ζk)
k∏

j=1

(λjΔTj
+ ζjI)

−1dζ1 . . . dζk,

where ∂̃U denotes the "distinguished boundary" of U and where ε ∈ S∗
α,β

is chosen so that ε + U still satisfies the required admissibility conditions
with respect to T and λ. Given T and λ, this gives a family WT,λ of open
sets stable under finite intersections and an algebra homomorphism F →
F (−λ1ΔT1 , . . . ,−λkΔTk

) from ∪U∈WT,λ
H(1)(U) into the multiplier algebra

M(B) ⊂ QMr(A). This homomorphism extends in a natural way to a bounded
algebra homomorphism from ∪U∈WT,λ

H∞(U) into QMr(B) = QMr(A),

and to a bounded algebra homomorphism from ∪U∈WT,λ
S(U) into QM(B) =

QM(A), where S(U) denotes the class of those functions F holomorphic on U
such that FG ∈ H∞(U) for some "strongly outer" function G ∈ H∞(U). If Fj :
ζ → ζj is the j-th coordinate projection, then of course Fj(−λ1ΔT1 , . . . ,−λkΔTk

)

= −λjΔTj
.

Keywords: analytic semigroup, infinitesimal generator, resolvent, Cauchy trans-
form, Fourier–Borel transform, Laplace transform, holomorphic functional calculus,
Cauchy theorem, Cauchy formula.
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1. Introduction

The author observed in [15] that if a Banach algebra A does not possess any
nonzero idempotent then inf{‖x2−x‖ : x ∈ A, ‖x‖ ≥ 1/2} ≥ 1/4. If x is quasinilpo-
tent, and if ‖x‖ ≥ 1/2, then ‖x‖ > 1/4. Concerning (nonzero) strongly continuous
semigroups T = (T (t))t>0 of bounded operators on a Banach space X, these ele-
mentary considerations lead to the following results, obtained in 1987 by Mokhtari
[26].

(1) If lim supt→0+ ‖T (t)− T (2t)‖ < 1/4, then the generator of the semigroup
is bounded, and so lim supt→0+ ‖T (t)− T (2t)‖ = 0.

(2) If the semigroup is quasinilpotent, then ‖T (t) − T (2t)‖ > 1/4 when t is
sufficiently small.

If the semigroup is norm continuous, and if there exists a sequence (tn)n≥1 of
positive real numbers such that limn→+∞ tn = 0 and ‖T (tn)−T (2tn)‖ < 1/4, then
the closed subalgebra AT of B(X) generated by the semigroup possesses an exhaus-
tive sequence of idempotents, i.e. there exists a sequence (Pn)n≥1 of idempotents
of AT such that for every compact subset K of the character space of AT there
exists nK > 0 satisfying χ(Pn) = 1 for χ ∈ K, n ≥ nK .
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More sophisticated arguments allowed A. Mokhtari and the author to obtain
later in [19] more general results valid for every integer p ≥ 1.

These results led the author to consider in [16] the behaviour of the distance
‖T (s)− T (t)‖ for s > t near 0. The following results were obtained in [16].

(1) If there exist for some δ > 0 two continuous functions r → t(r) and
r → s(r) on [0, δ], such that s(0) = 0 and such that 0 < t(r) < s(r)
and ‖T (t(r))−T (s(r))‖ < (s(r)−t(r))s(r)s(r)/(s(r)−t(r))t(r)−t(r)/(s(r)−t(r))

for r ∈ (0, δ], then the generator of the semigroup is bounded, and so
‖T (t)− T (s)‖ → 0 as 0 < t < s, s→ 0+.

(2) If the semigroup is quasinilpotent, there exists δ > 0 such that

‖T (t)− T (s)‖ > (s− t)s
s

s−t t−
t

s−t

for 0 < t < s ≤ δ.
(3) If the semigroup is norm continuous, and if there exists two sequences

of positive real numbers such that 0 < tn < sn, limn→+∞ sn = 0, and
such that ‖T (tn) − T (sn)‖ < (sn − tn)s

sn/(sn−tn)
n t

−tn/(sn−tn)
n , then the

closed subalgebra AT of B(X) generated by the semigroup possesses an
exhaustive sequence of idempotents.

The quantities appearing in these statements are not mysterious: consider the
Hilbert space L2([0, 1]), and for t > 0 define T0(t) : L2([0, 1] → L2([0, 1] by the
formula T0(t)(f)(x) = xtf(x) (0 < x ≤ 1). Then

‖T0(t)− T0(s)‖ = (s− t)ss/(s−t)t−t/(s−t).

This remark also shows that assertions (1) and (3) in these statements are sharp,
and examples show that assertion (2) is also sharp.

One can consider T (t) as defined by the formula
∫ +∞
0

T (x)dδt(x), where δt
denotes the Dirac measure at t. Heuristically, T (t) = etΔT , where ΔT denotes the
generator of the semigroup, and since the Laplace transform of δt is defined by the
formula L(δt)(z) =

∫ +∞
0

e−zxdδt(x) = e−zt, it is natural to write L(δt)(−ΔT ) =
T (t). More generally, if an entire function F has the form F = L(μ), where μ is a
measure supported by [a, b], with 0 < a < b < +∞, we can set

F (−ΔT ) =

∫ +∞

0

T (x)dμ(x),

and consider the behaviour of the semigroup near 0 in this context.
I. Chalendar, J.R. Partington and the author used this point of view in [9].

Denote by Mc(0,+∞) the set of all measures μ supported by some interval [a, b],
where 0 < a < b < +∞. For the sake of simplicity we restrict attention to state-
ments analogous to assertion 2. The following result is proved in [9].

Theorem: Let μ ∈ Mc(0,+∞) be a real measure such that
∫ +∞
0

dμ(t) = 0 and
let T = (T (t))t>0 be a quasinilpotent semigroup of bounded operators.If μ �= 0, then
there exists δ > 0 such that ‖F (−sΔT )‖ > maxx≥0 |F (x)| for 0 < s ≤ δ.

When μ = δ1 − δ2 this gives assertion 3 of Mokhtari’s result, and when μ =
δ1 − δp+1 this gives assertion 3 of the extension of Mokhtari’s result given in [19]
(but several variables extensions of this functional calculus would be needed in order
to obtain extensions of the results of [16]).

This theory applies, for example, to ‖T (t)−2T (2t)+T (3t)‖, or to the Bochner
integrals ‖

∫ 2

1
T (tx)dx −

∫ 3

2
T (tx)dx‖, which are not accessible by the methods of
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[26] or [19]. Preliminary results concerning semigroups holomorphic in a sector
were obtained by I. Chalendar, J.R. Partington and the author in [10].

More generally it would be interesting to obtain lower estimates for quantities
of the form F (−λ1ΔT , . . . ,−λkΔT ) as (λ1, . . . , λk)→ (0, . . . , 0) when the generator
ΔT of the semigroup is unbounded, and when F is an analytic function of several
complex variables defined and satisfying natural growth conditions on a suitable
neighbourhood of σar(ΔT ), where σar(ΔT ) denotes the "Arveson spectrum" of the
infinitesimal generator ΔT of T. The purpose of the present paper is to pave the
way to such a program by defining more generally F (−λ1ΔT1

, . . . ,−λkΔTk
) when

F belongs to a suitable class of holomorphic functions on some element of a family
WT1,...,Tk,λ of open sets, and where (T1, . . . , Tk) denotes a finite family of commuting
semigroups.

More precisely consider a = (a1, . . . , ak) ∈ Rk, b = (b1, . . . , bk) ∈ Rk satisfying
aj ≤ bj ≤ aj +π for 1 ≤ j ≤ k, and consider a commutative Banach algebra A such
that uA is dense in A for some u ∈ A and such that uA �= {0} for u ∈ A\{0}. This
allows to consider the algebra QM(A) of all quasimultipliers on A and the algebra
QMr(A) of all regular quasimultipliers on A introduced by the author in [15], see
Section 2, and the usual algebra M(A) of all multipliers on A can be identified
to the algebra of all quasimultipliers on A of domain equal to the whole of A. We
will be interested here in finite families (T1, . . . , Tk) of commuting semigroups of
multipliers on A satisfying the following conditions.

• the semigroup Tj is strongly continuous on eiaj .(0,+∞), and
∪t>0Tj(e

iaj t)A is dense in A if aj = bj ,
• the semigroup Tj is holomorphic on Saj ,bj and Tj(ζ)A is dense in A for

some (or, equivalently, for all) ζ ∈ Saj ,bj if aj < bj , where Saj ,bj denotes
the open sector {z ∈ C \ {0} | aj < arg(z) < bj}.

The first step of the construction of the functional calculus consists in ob-
taining a "normalization" AT of the Banach algebra A with respect to a strongly
continuous one-parameter semigroup (T (t))t>0 of multipliers on A. The idea behind
this normalization process goes back to Feller [21], and we use for this the notion
of "QM-homomorphism" between commutative Banach algebras introduced in Sec-
tion 2, which seems more appropriate than the related notion of "s-homomorphism"
introduced by the author in [15]. Set ωT = ‖T (t)‖ for t > 0. A slight improvement
of a result proved by P. Koosis and the author in Section 6 of [14] shows that the
weighted convolution algebra L1(R+, ωT ) possesses dense principal ideals, which
allows to construct in Section 3 a commutative Banach algebra AT ⊂ QMr(A)
which contains A as a dense subalgebra and has dense principal ideals such that
the injection j̃ : QM(A) → QM(AT ) associated to the norm-decreasing inclu-
sion map j : A → AT is onto and such that j̃(M(A)) ⊂ M(AT ) for which
lim supt→0+ ‖T (t)‖M(AT ) < +∞.

Set ΦT (f) =
∫ +∞
0

f(t)T (t)dt for f ∈ L1(R+, ωT ), where the Bochner integral is
computed with respect to the strong operator topology onM(A), and denote by IT
the closed subalgebra of M(A) generated by ΦT (L

1(R+, ωT )). In Section 5 we give
an interpretation of the generator ΔT of the semigroup T as a quasimultiplier on IT ,
and we define the "Arveson spectrum" σar(ΔT ) to be the set {χ̃(ΔT )}χ∈Spec(IT ),
where Spec(IT ) denotes the character space if IT and where χ̃ denotes the unique
extension to QM(IT ) of a character χ ∈ Spec(IT ), with the convention σar(ΔT ) =
∅ if the "Arveson ideal" IT is radical.
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If λ ∈ C \σar(ΔT ), then the quasimultiplier ΔT −λI is invertible in QMr(IT )
and (ΔT − λI)−1 ∈ M(AT ) ⊂ QMr(A) if λ ∈ C \ σar(ΔT ), and we observe in
Section 6 that we have, for ζ > lim supt→+∞

log ‖T (t)‖
t ,

(ΔT − ζI)−1 = −
∫ +∞

0

e−ζtT (t)dt ∈ M(AT ) ⊂ QMr(A),

which is the usual "resolvent formula" extended to strongly continuous semi-
groups not necessarily bounded near the origin.

In Section 4 we construct a more sophisticated normalization of the Banach
algebra A with respect to a semigroup T = (T (ζ))ζ∈Sa,b

which is holomorphic on
an open sector Sa,b, where a < b ≤ a + π. In this case the normalization AT of A
with respect to the semigroup T satisfies two more conditions.

• T (ζ)uAT is dense in AT for ζ ∈ Sa,b if uA is dense in A,
• lim sup ζ→0

α≤arg(ζ)≤β
‖T (ζ)‖M(AT ) < +∞ for a < α < β < b.

The generator of the holomorphic semigroup T is interpreted as in [8] as a
quasimultiplier on the closed subalgebra of A generated by the semigroup, which is
equal to the Arveson ideal IT0

where T0 denotes the restriction of T to the half-line
(0, ei

a+b
2 .∞), and the resolvent ζ → (ΔT −ζI)−1, which is defined and holomorphic

outside a closed sector of the form z + S−ieia,ieib is studied in Section 7.
Consider again (a1, . . . , ak), (b1, . . . , bk) satisfying aj ≤ bj ≤ aj + π for j ≤ k

and a finite family T = (T1, . . . , Tk) of commuting semigroups of multipliers on A
satisfying the conditions given above.

By iterating the normalization process of A with respect to T1, . . . , Tk given in
Sections 3 and 4, we obtain a "normalization" of A with respect to the family T,
see Definition 8.1, which is a commutative Banach algebra B contained in QMr(A)
for which the injection j : A → B is norm-decreasing, has dense range and extends
to a norm-decreasing homomorphism fromM(A) intoM(B), for which the natural
embedding j̃ : QM(A)→ QM(B) is onto, and for which{

lim supt→0+ ‖T (teiaj‖M(B) < +∞ if aj = bj ,
lim sup ζ→0

αj≤arg(ζ)≤βj

‖T (ζ)‖ < +∞ for aj < αj ≤ βj < bj if aj < bj .

Set ez(ζ) = ez1ζ1+···+zkζk for z = (z1, . . . , zk), ζ = (ζ1, . . . , ζk) ∈ Ck. Denote by
Ma,b the set of all pairs (α, β) ∈ Rk×Rk such that αj = βj = aj if aj = bj and such
that aj < αj ≤ βj < bj if aj < bj , and set Sα,β := Πj≤kSαj ,βj

for (α, β) ∈Ma,b.
Let Wa,b be the algebra of continuous functions f on ∪(α,β)∈Ma,b

Sα,β such
that ez(ζ)f(ζ) → 0 as |ζ| → 0 in Πj≤kSαj ,βj

for every z = (z1, . . . , zk) ∈ Ck and
every (α, β) ∈ Ma,b, and such that the maps ζ → f(ζ1, . . . , ζj−1, ζ, ζj+1, . . . ζk) are
holomorphic on Saj ,bj if aj < bj . For every element φ of the dual space Ga,b = W ′

a,b

there exists (α, β) ∈Ma,b, z ∈ Ck and a measure ν of bounded variation on Sα,β :=

Πj≤kSαj ,βj
such that

〈f, φ〉 =
∫
Sα,β

ezζf(ζ)dν(ζ) (f ∈ Wa,b).

This formula allows to extend the action of φ to e−zVα,β(X) ⊃ e−zUα,β(X),
where X denotes a separable Banach space and where Uα,β(X) (resp. Vα,β(X))
denotes the algebra of continuous functions f : Sα,β → X which converge to 0 as
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|ζ| → +∞ (resp. bounded continuous functions f : Sα,β → X) such that the maps
ζ → f(ζ1, . . . , ζj−1, ζ, ζj+1, . . . , ζk) are holomorphic on Sαj ,βj

when αj < βj .
Set Uα,β := Uα,β(C). We describe in Appendix 1 some certainly well-known

ways to implement the action of U ′
α,β on Vα,β(X) when (α, β) ∈ Ma,b by using

Cauchy transforms and Fourier–Borel transforms, and these formulae are extended
to the action of elements of (e−zUα,β)′ to spaces e−zVα,β(X) in Appendix 2.

If φ ∈ (∩z∈Cke−zUα,β)′, define the domain Dom(FB(φ)) of the Fourier–Borel
transform FB(φ) of φ to be the set of all z ∈ Ck such that φ ∈ (e−zUα,β)′, and set
FB(φ)(z) = 〈e−z, φ〉 for z ∈ Dom(FB(φ)). One can also define in a natural way
the Fourier–Borel transform of f ∈ e−zVα,β(X).

For λ ∈ ∪(γ,δ)∈Ma−α,b−β
Sγ,δ, set T(λ)(ζ) = T (λ1ζ1, . . . , λkζk) (ζ ∈ Sα,β). If

lim sup |ζ|→+∞
ζ∈∂̃Sα,β

|e−zζ |‖T (λ)(ζ)‖ < +∞, where ∂̃Sα,β denotes the "distinguished

boundary" of Sα,β , then

sup
ζ∈Sα,β

∥∥∥ezζT1(λ1ζ1) . . . Tk(λkζk)
∥∥∥
M(B)

< +∞,

and one can define the action of φ on T(λ) by using the formula

〈T(λ), φ〉u = 〈T(λ)u, φ〉 =
∫
Sα,β

ezζT(λ)(ζ)udν(ζ) (u ∈ B),

where ν is a representing measure for φe−z : f → 〈e−zf, φ〉 (f ∈ Uα,β).
Then 〈T, φ〉 ∈ M(B) ⊂ QMr(A).
The Fourier–Borel transform of ezT(λ) takes values in M(B) and extends ana-

lytically to −Resar(ΔT(λ)
) := Π1≤j≤k(C \ σar(−λjΔTj

)), which gives the formula

FB(ezT(λ))(ζ) = (−1)k
∏

1≤j≤k

(λjΔj + (zj + ζj)I)
−1.

Set S∗
α,β = Πj≤kS−π

2 −αj ,
π
2 −βj

, and set

Wn(ζ) =
∏

1≤j≤k

n2(
n+ ζjei

αj+βj
2

)2

for n ≥ 1, ζ = (ζ1, . . . , ζn) ∈ S
∗
α,β . The results of Section 2 give for u ∈ B, if

z ∈ Dom(φ), and if lim sup |ζ|→+∞
ζ∈∂̃Sα,β

|e−zζ |‖T (λ)(ζ)‖ < +∞, where ∂̃Sα,β denotes

the "distinguished boundary" of Sα,β ,

〈T(λ), φ〉u

= lim
ε→0

ε∈S∗
α,β

⎛⎝ lim
n→+∞

(−1)k
(2πi)k

∫
z+∂̃S∗

α,β

Wn(σ − z)FB(φ)(σ)
k∏

j=1

((σj − εj)I + λjΔTj
)−1udσ

⎞⎠ ,

where ∂̃S∗
α,β := Π1≤j≤k∂Sαj ,βj

denotes the "distinguished boundary" of S
∗
α,β ,

and where ∂S∗
αj ,βj

is oriented from −ie−iαj .∞ to ie−iβj .∞.

If, further,
∫
z+∂̃S∗

α,β
‖FB(φ)(σ)‖|dσ| < +∞, then we have, for u ∈ B,
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〈Tλ), φ〉u = lim
ε→(0,...,0)
ε∈S∗

α,β

〈e−εT(λ), φ〉u

= lim
ε→(0,...,0)
ε∈S∗

α,β

(−1)k
(2πi)k

∫
z+∂̃S∗

α,β

FB(φ)(σ)
k∏

j=1

((σj − εj)I + λjΔTj
)−1udσ.

Finally, if z ∈ Dom(φ), if
∫
z+∂̃S∗

α,β
‖FB(φ)(σ)‖|dσ| < +∞, and if

lim sup
|ζ|→+∞
ζ∈∂̃Sα,β

|e−zζ |‖T (λ)(ζ)‖ = 0,

then we have, for u ∈ B,

〈T(λ), φ〉u =
(−1)k

(2πi)k

∫
z+∂̃S∗

α,β

FB(φ)(σ)
k∏

j=1

(σjI + λjΔTj )
−1udσ.

The convolution product of two elements of (e−zUα,β)′ may be defined in a
natural way, and if λ, φ1, φ2 satisfies the conditions above we have

〈T(λ), φ1 ∗ φ2〉 = 〈T(λ), φ1〉〈T(λ), φ2〉,

but there is no direct extension of this formula to the convolution product of
two arbitrary elements of Ga,b, see the comments at the end of Section 8.

In Section 9 of the paper we introduce a class U of "admissible open sets" U ,
with piecewise C1-boundary, of the form (z + S∗

α,β) \K, where K is bounded and
where (α, β) ∈Ma,b.

These open sets U have the property that U + ε ⊂ U for ε ∈ S
∗
α,β and that

U + ε ⊂ Resar(−λΔT ) for some ε ∈ S
∗
α,β . Also Πk

j=1(−λΔTj
− .I)1 is bounded on

the distinguished boundary of U + ε for ε ∈ S∗
α,β when |ε| is sufficiently small.

Standard properties of the class H(1)(U) of all holomorphic functions F on
U such that ‖F‖H(1)(U) := supε∈S∗

α,β

∫
ε+∂̃U

‖F (σ||dσ| < +∞ are given in Appen-
dix 3 (when aj = bj for j ≤ k, this space is the usual Hardy space H1 on a
product of open half-planes). When an open set U ⊂ Ck is admissible with re-
spect to (α, β) ∈ Ma,b and satisfies some more suitable admissibility conditions
with respect to T = (T1, . . . , Tk) and λ ∈ ∪(γ,δ)∈Ma−α,b−β

Sγ,δ, a quasimultiplier
F (−λ1ΔT1

, . . . ,−λkΔTk
) ∈ M(B) ⊂ QMr(A) is defined for F ∈ H(1)(U) in Sec-

tion 9 by using the formula

F (−λ1ΔT1
, . . . ,−λkΔTk

)

=
1

(2πi)k

∫
ε+∂U

F (ζ1, . . . , ζk)
k∏

j=1

(λjΔTj
+ ζjI)

−1dζ1 . . . dζk,

where ∂̃U denotes the distinguished boundary of U, and where ε ∈ S∗
α,β is

chosen so that ε+U still satisfies the required admissibility conditions with respect
to T and λ.

Given T and λ ∈ ∪(α,β)∈Ma,b
Sa−α,b−β , denote by WT,λ the family of all open

sets U ⊂ Ck satisfying these admissibility conditions with respect T and λ. Then
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WT,λ is stable under finite intersections, ∪U∈WT,λ
H(1)(U) is stable under products

and we have

(F1F2)(−λ1ΔT1 , . . . ,−λkΔTk ) = F1(−λ1ΔT1 , . . . ,−λkΔTk )F2(−λ1ΔT1 , . . . ,−λkΔTk ).

This homomorphism extends in a natural way to a bounded algebra homomor-
phism from ∪U∈WT,λ

H∞(U) into QMr(B) = QMr(A), and we have, if φ ∈ Fα,β

for some (α, β) ∈ Ma,b such that λ ∈ Sγ,δ for some (γ, δ) ∈ Ma−α,b−β , and if
lim |ζ|→+∞

ζ∈∂̃Sα,β

‖e−zζT1(λ1ζ1) . . . Tk(λkζk)‖ = 0 for some z ∈ Dom(FB(φ)),

FB(φ)(−λ1ΔT1
, . . . ,−λkΔTk

) = 〈T(λ), φ〉,
so that F (−λ1ΔT1

, . . . ,−λkΔTk
) = T (νλj) if F (ζ) = e−νζj , where νλj is in the

domain of definition of Tj .
A function F ∈ H∞(U) will be said to be strongly outer if there exists a

sequence (Fn)n≥1 of invertible elements of H(∞)(U) such that |F (ζ)| ≤ |Fn(ζ)| and
limn→+∞ F (ζ)F−1

n (ζ) = 1 for ζ ∈ U.
If U is admissible with respect to some (α, β) ∈Ma,b then there is a conformal

map θ from Dk onto U and the map F → F ◦θ is a bijection from the set of strongly
outer bounded functions on U onto the set of strongly outer bounded functions on
Dk. Every bounded outer function on the open unit disc D is strongly outer, but
the class of strongly outer bounded functions on Dk is smaller than the usual class
of bounded outer functions on Dk if k ≥ 2.

We then define the Smirnov class S(U) to be the class of holomorphic functions
F on U such that there exists a strongly outer function G ∈ H∞(U) for which
FG ∈ H∞(U).

The bounded algebra homomorphism F → F (−λ1ΔT1
, . . . ,−λkΔTk

) from
∪U∈WT,λ

H∞(U) into QMr(B) = QMr(A) extends to a bounded homomorphism
from ∪U∈WT,λ

S(U) into QM(B) = QM(A). If F : ζ → ζj , is the j-th coordinate
projection then of course F (−λ1ΔT1

, . . . ,−λkΔTk
) = −λjΔTj

.
The author wishes to thank Isabelle Chalendar and Jonathan Partington for

valuable discussions during the preparation of this paper. He also wishes to thank
the referees, whose comments and corrections helped to clarify some proofs and to
considerably improve the presentation of the paper.

2. Quasimultipliers on weakly cancellative commutative Banach
algebras with dense principal ideals

We will say that a Banach algebraA is weakly cancellative if uA �= {0} for every
u ∈ A \ {0}. In the whole paper we will consider weakly cancellative commutative
Banach algebras with dense principal ideals, i.e. weakly cancellative commutative
Banach algebras such that the set Ω(A) := {u ∈ A | [uA]− = A} is not empty.

A quasimultiplier on such an algebra A �= {0} is a closed operator
S = Su/v : DS → A,

where u ∈ A, v ∈ Ω(A), where DS := {x ∈ A | ux ∈ vA}, and where Sx is
the unique y ∈ A such that vy = ux for x ∈ DS . Let QM(A) be the algebra
of all quasimultipliers on A. A set U ⊂ QM(A) is said to be pseudobounded
if supS∈U ‖Su‖ < +∞ for some u ∈ Ω(A) ∩ (∩S∈UD(S)), and a quasimultiplier
S ∈ QM(A) is said to be regular if the family {λnSn}n≥1 is pseudobounded for
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some λ > 0. The algebra of all regular quasimultipliers on A will be denoted
by QMr(A). A multiplier on A is a bounded linear operator S on A such that
S(uv) = (Su)v for u ∈ A, v ∈ A, and the multiplier algebraM(A) of all multipliers
on A, which is a closed subalgebra of the Banach algebra of bounded operators
on A, is also the algebra of all quasimultipliers on A such that DS = A, and
M(A) ⊂ QMr(A). Also if S = Su/v ∈ QM(A), w ∈ D(S), R ∈M(A), then

u(Rw) = R(v(Sw)) = v(R(Sw)),

so Rw ∈ D(S), and we have

(1) R(Sw) = S(Rw).

If A is unital then Ω(A) = G(A), where G(A) denotes the group of invertible
elements of A, and QM(A) =M(A) = A.

We will denote by Spec(A) the space of all characters on a commutative Banach
algebra A, equipped with the Gelfand topology. Recall that A is said to be radical
when Spec(A) = ∅.

Definition 2.1. : Let A be a weakly cancellative commutative Banach algebra
with dense principal ideals.

For χ ∈ Spec(A), S = Su/v ∈ QM(A), set χ̃(S) = χ(u)
χ(v) , and set

σA(S) := {χ̃(S)}χ∈Spec(A), (S ∈ QM(A)),

with the convention σA(S) = ∅ if A is radical.

Clearly, χ̃ is a character on QM(A) for χ ∈ Spec(A), and the map χ → χ̃(S)
is continuous on Spec(A) for S ∈ QM(A).

The following notion seems slightly more flexible than the notion of s-homomor-
phism introduced by the author in [15].

Definition 2.2. : Let A be a weakly cancellative commutative Banach algebra
with dense principal ideals, and let B be a weakly cancellative Banach algebra. A
homomorphism Φ : A → B is said to be a QM-homomorphism if the following
conditions are satisfied

(i) Φ is one-to-one, and Φ(A) is dense in B.
(ii) Φ(u)B ⊂ Φ(A) for some u ∈ Ω(A).

If the conditions of Definition 2.2 are satisfied, we will say that Φ is a
QM-homomorphism with respect to u. Notice that Φ(u) ∈ Ω(B), and so the exis-
tence of such an homomorphism implies that B is a weakly cancellative commutative
Banach algebra with dense principal ideals. Notice also that condition (ii) shows
that B may be identified to a subalgebra of QM(Φ(A)) ≈ QM(A).

Proposition 2.3. Let Φ : A → B be a homomorphism between weakly can-
cellative commutative Banach algebras with dense principal ideals, and assume that
Φ is a QM-homomorphism with respect to some u0 ∈ Ω(A).

(i) There exists M > 0 such that ‖Φ−1(Φ(u0)v)‖ ≤M‖v‖ for v ∈ B.
(ii) Φ−1(Φ(u0)v) ∈ Ω(A) for v ∈ Ω(B).
(iii) Set Φ̃(Su/v) = SΦ(u)/Φ(v) for Su/v ∈ QM(A).
Then Φ̃ : QM(A)→ QM(B) is a pseudobounded isomorphism, and

Φ̃−1(Su/v) = SΦ−1(Φ(u0)u)/Φ−1(Φ(u0)v)
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for Su/v ∈ QM(B).

Proof. (i) Set Ψ(v) = Φ−1(Φ(u0)v) for v ∈ B. If limn→+∞ vn = v ∈ B, and if
limn→+∞ Ψ(vn) = w ∈ A, then Φ(u0)v = Φ(w), so that w = Ψ(v) and (i) follows
from the closed graph theorem.

(ii) Let v ∈ Ω(B), and let (wn)n≥1 be a sequence of elements of A such that
limn→+∞ vΦ(wn) = Φ(u0). Then limn→+∞ Φ−1(Φ(u0)v)wn = u2

0 ∈ Ω(A), and so
Φ−1(Φ(u0)v) ∈ Ω(A).

(iii) Let U ⊂ QM(A) be a pseudobounded set, and let w ∈ Ω(A)∩(∩S∈UD(S))
be such that supS∈U ‖Sw‖ < +∞. Then Φ(w) ∈ Ω(B), and Φ(w) ∈ ∩S∈UD(φ̃(S)).
Since supS∈U ‖Φ̃(S)Φ(w)‖ ≤ ‖Φ‖ supS∈U ‖Sw‖ < +∞, this shows that the homo-
morphism Φ̃ : QM(A)→ QM(B) is pseudobounded.

Now set θ(Su/v) = SΦ−1(Φ(u0)u)/Φ−1(Φ(u0)v) = SΨ(u)/Ψ(v) for Su/v ∈ QM(B).
It follows from (ii) that θ : QM(B) → QM(A) is well-defined. Let U ⊂ QM(B)
be pseudobounded, and let w ∈ Ω(B) ∩ (∩S∈UD(S)) be such that

sup
S∈U

‖Sw‖ < +∞.

We have, for S = Su/v ∈ U,

v(Su/vw) = uw,

vΦ(u0)(Su/vwΦ(u0)) = uΦ(u0)wΦ(u0),

Φ−1
(
vΦ(u0))

(
Φ−1(Su/vwΦ(u0)

))
= Φ−1(vΦ(u0))Φ

−1(wΦ(u0)).

So Φ−1(wΦ(u0)) ∈ D(θ(S)), and θ(S)Φ−1(wΦ(u0)) = Φ−1
(
Su/vwΦ(u0)

)
. Since

sup
S∈U

‖ (SwΦ(u0)) ‖ ≤ M sup
S∈U

‖Sw‖ < +∞,

this shows that θ : QM(B) → QM(A) is pseudobounded. We have, for
S = Su/v ∈ QM(A),

(θ ◦ Φ̃)(S) = SΦ−1(Φ(u)Φ(u0))/Φ−1(Φ(v)Φ(u0)) = Suu0/vu0
= Su/v = S.

We also have, for S = Su/v ∈ QM(A),

(Φ̃ ◦ θ)(Su/v) = SΦ(Φ−1(uΦ(u0))/Φ(Φ−1(vΦ(u0)) = SuΦ(u0)/vΦ(u0) = Su/v = S.

Hence Φ̃ = QM(A) → QM(B) is bijective, and Φ̃−1 : QM(B) → QM(A) is
pseudobounded, since Φ̃−1 = θ. �

The following result is a simplified version of Theorem 7.11 of [15], which will
be used in the next two sections.

Proposition 2.4. Let A be a weakly cancellative commutative Banach alge-
bra with dense principal ideals, and let U ⊂ QM(A) be a pesudobounded set sta-
ble under products. Set L := {u ∈ ∩S∈UD(S) | supS∈U ‖Su‖ < +∞}, and set
‖u‖L := supS∈U∪{I} ‖Su‖ for u ∈ L.

Then (L, ‖.‖L) is a Banach algebra, Ru ∈ L and ‖Ru‖L ≤ ‖R‖M(A)‖u‖L for
R ∈M(A), u ∈ L, and if we denote by B the closure of A in (M(L), ‖.‖M(L)), the
following properties hold

(i) B is a weakly cancellative commutative Banach algebra, and the inclusion
map j : A → B is a QM-homomorphism with respect to w for w ∈ Ω(A) ∩ L.
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(ii) j̃(M(A)) ⊂ M(B), and ‖j̃(R)‖M(B) ≤ ‖R‖M(A) for R ∈ M(A), where
j̃ : QM(A)→ QM(B) is the pseudobounded isomorphism associated to j in Propo-
sition 2.3(iii).

(iii) S ∈M(B), and ‖S‖M(B) ≤ ‖S‖M(L) ≤ 1 for every S ∈ U.

Proof. The fact that (L, ‖.‖L) is a Banach space follows from a standard
argument given in the proof of Theorem 7.11 of [15]. Clearly, L is an ideal of A,
and it follows from the definition of ‖.‖L that ‖u‖ ≤ ‖u‖L for u ∈ L. We have, for
u ∈ L, v ∈ L,

‖uv‖L ≤ ‖u‖L‖v‖ ≤ ‖u‖L‖v‖L,
and so (L, ‖.‖L) is a Banach algebra. If R ∈M(A), u ∈ L, then it follows from the
definition of L that Ru ∈ ∩S∈UD(S), and that we have

sup
S∈U∪{I}

‖S(Ru)‖ = sup
S∈U∪{I}

‖R(Su)‖ ≤ ‖R‖M(A)‖u‖L.

Hence Ru ∈ L, and ‖Ru‖L ≤ ‖R‖M(A)‖u‖L.
Now denote by B the closure of A in (M(L), ‖.‖M(L)), and let w ∈ Ω(A) ∩ L.

Since L ⊂ B, B is weakly cancellative, and B is commutative and has dense principal
ideals since j(A) is dense in B. Since wB ⊂ L ⊂ A, we see that the inclusion map
j : A → B is a QM-homomorphism with respect to w, which proves (i).

Let R ∈M(A), and denote by R1 the restriction of R to L.
Then R1 ∈ M(L), and ‖R1‖M(L) ≤ ‖R‖M(A). Set R2u = R1u for u ∈ B.

Then R2u ∈ B, and ‖R2u‖M(B) ≤ ‖R1‖M(L)‖u‖M(L) ≤ ‖R‖M(A)‖‖u‖M(L). Hence
R2 ∈M(B), and ‖R2‖M(B) ≤ ‖R‖M(A).

Now let S0 ∈ U. we have, for u ∈ L, since U is stable under products,

‖S0u‖L = sup
S∈U

‖S0Su‖ ≤ sup
S∈U

‖Su‖ = ‖u‖L,

and so S0u ∈ L, and ‖S0‖M(L) ≤ 1. This implies that S0(B) ⊂ B, so that S0 ∈
M(B), and ‖S‖M(B) ≤ ‖S0‖M(L) ≤ 1, which proves (iii). �

We have the following very easy observation.

Proposition 2.5. : Let A0,A1 and A2 be weakly cancellative commutative
Banach algebras, and assume that Φ0 : A0 → A1 is a QM-homomorphism with
respect to u0 ∈ Ω(A0) and that Φ1 : A1 → A2 is a QM-homomorphism with respect
to u1 ∈ Ω(A1). Then Φ1 ◦ Φ0 : A0 → A2 is a QM-homomorphism with respect to
Φ−1

0 (Φ0(u0)u1).

Proof. The homomorphism Φ1 ◦ Φ0 is one-to-one and has dense range, and
it follows from Proposition 2.4 (ii) that Φ−1

0 (Φ0(u0)u1) ∈ Ω(A0). Let u ∈ A2, let
v ∈ A2 be such that Φ1(v) = Φ1(u1)u, and let w ∈ A0 be such that
Φ0(w) = Φ0(u0)v. Then

(Φ1 ◦ Φ0)
(
Φ−1

0 (Φ0(u0)u1)
)
u = (Φ1 ◦ Φ0)(u0)Φ1(u1)u = Φ1(Φ0(u0)v)

= (Φ1 ◦ Φ0)(w) ⊂ (Φ1 ◦ Φ0)(A0),

and so Φ1 ◦ Φ0 is a QM-homomorphism with respect to Φ−1
0 (Φ0(u0)u1). �

We will use the following result in the study of the resolvent of semigroups.
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Proposition 2.6. Let A be a weakly cancellative commutative Banach algebra
with dense principal ideals, and let S ∈ QM(A). If λ0−S has an inverse (λ0I−S)−1

in QM(A) which belongs to A for some λ0 ∈ C, where I denotes the unit element
of M(A), then σA(S) is closed, λI−S has an inverse (λI−S)−1 in QM(A) which
belongs to A for every λ ∈ C \ σA(S), and the A-valued map λ → (λI − S)−1 is
holomorphic on C \ σA(S).

Proof. If A is unital, then QM(A) = A, and there is nothing to prove. So
assume that A is not unital, and set Ã := A⊕ CI. Then

Spec(Ã) = {χ0} ∪ {χ̃
|Ã
}χ∈Spec(A),

where χ0(a+ λI) = λ for a ∈ A, λ ∈ C.
Set a = (λ0I − S)−1 ∈ A. Then χ(a) = χ̃(a) = 1

λ0−χ̃(S) , so that
χ̃(S) = λ0 − 1

χ(a) for χ ∈ Spec(A). Since σA(a) ∪ {0} = σÃ is a compact sub-
set of C, this shows that σA(S) is closed. We have, for λ ∈ C,

specÃ(I + (λ− λ0)a) = {1} ∪
{

λ− χ̃(S)

λ0I − χ̃(S)

}
χ∈Spec(A)

.

So I + (λ − λ0)a is invertible in Ã for λ ∈ C \ σA(S), and the A-valued map
λ→ a(I + (λ− λ0)a)

−1 is holomorphic on C \ σA(S). We have, for λ ∈ C \ σA(S),

(λI − S)a(I + (λ− λ0)a)
−1 = ((λ− λ0)I + (λ0I − S))a(I + (λ− λ0)a)

−1

= (I + (λ− λ0)a)(I + (λ− λ0)a)
−1 = I.

Hence λI − S has an inverse (λI − S)−1 ∈ A for λ ∈ C \ σA(S), and the map
λ→ (λI − S)−1 = a(I + (λ− λ0)a)

−1 is holomorphic on C \ σA(S). �

3. Normalization of a commutative Banach algebra with respect to a
strongly continuous semigroup of multipliers

A semigroup T = (T (t))t>0 of multipliers on a commutative Banach algebra A
is said to be strongly continuous if the map t→ T (t)u is continuous on (0,+∞) for
every u ∈ A. This implies that supα≤t≤β ‖T (t)‖ < +∞ for 0 < α ≤ β < +∞, and so
‖T (t)‖ 1

t has a limit ρT as t→ +∞. In the remainder of the section T = (T (t))t>0

will denote a strongly continuous group of multipliers on a weakly cancellative
commutative Banach algebra A such that ∪t>0T (t)A is dense in A. Hence if u ∈
∩t>0 ker(T (t)), then uv = 0 for every v ∈ ∪t>0T (t)A, so uA = {0} and u = 0.

Notice that in this situation if A has a unit element 1 then if we set
T̃ (t) := (T (t).1)t>0,

then T̃ is a norm-continuous semigroup of elements of A.
Since ∪t>0T (t)A is dense in A, T (t0).1 is invertible in A for some t0 > 0, and

so limt→0+ ‖T (t).1− 1‖ = 0, which implies that the generator of T̃ is bounded. So
there exist R ∈M(A) ≈ A such that T (t) = etR for t > 0 if A is unital.

Let ω be a positive measurable weight on (0,+∞), and denote by L1
ω(R

+) the
space of all (classes of) measurable functions on [0,+∞) satisfying the condition
‖f‖ω :=

∫ +∞
0

‖f(t)|ω(t)dt < +∞, so that (L1
ω(R

+), ‖.‖ω) is a Banach space. Recall
that if ω(s+ t) ≤ ω(s)ω(t) for s > 0, t > 0, then L1

ω(R
+) is a Banach algebra with

respect to convolution.
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Set ωT (t) = ‖T (t)‖ for t > 0. For f ∈ L1
ωT

(R+), define ΦT (f) ∈ M(A) by the
formula

(2) ΦT (f)u =

∫ +∞

0

f(t)T (t)udt (u ∈ A).

Denote by IT the closure of ΦT (L
1
ωT

(R+)) in M(A). Let (fn)n≥1 be a Dirac
sequence, i.e. a sequence (fn) of nonnegative integrable functions on R+ such that∫ +∞
0

fn(t)dt = 1 and such that fn(t) = 0 a.e. on (αn,+∞) with limn→+∞ αn = 0.
Since the semigroup T is strongly continuous on A, a standard argument shows
that limn→+∞ ‖ΦT (fn ∗ δt)u − T (t)u‖ = 0 for every t > 0 and every u ∈ A. This
shows that if v ∈ Ω(IT ), and if w ∈ Ω(A), then vw ∈ Ω(A).

The following result is then a consequence of Theorem 6.8 of [14] and of Propo-
sition 5.4 of [17].

Lemma 3.1. There exists w ∈ Ω(A) such that lim supt→0+ ‖T (t)w‖ < +∞.

Proof. Let λ > log (ρT ), and set ωλ(t) = eλt sups≥t e
−λs‖T (s)‖ for t > 0. An

extension to lower semicontinuous weights of Theorem 6.8 of [14] given in [17]
shows that Ω(L1

ωλ
(R+)) �= ∅. It follows also from Proposition 5.4 of [17] that

‖ΦT (g)T (t)‖ ≤ eλt‖g‖L1
ωλ

for every g ∈ L1
ωλ

(R+) and every t > 0, and that
ΦT (g) ∈ Ω(IT ) for every g ∈ Ω

(
L1
ωλ

(R+)
)
. Hence if g ∈ Ω

(
L1
ωλ

(R+)
)

and if
v ∈ Ω(A), then ΦT (g)v ∈ Ω(A), and lim supt→0+ ‖T (t)ΦT (g)v‖ < +∞. �

The following result is a version specific to one-parameter semigroups of Propo-
sition 2.4.

Proposition 3.2. Let T := (T (t))t>0 be a strongly continuous of multipliers
on a weakly cancellative commutative Banach algebra A with dense principal ideals
such that ∪t>0T (t)A is dense in A.

Let LT := {u ∈ A | lim supt→0+ ‖T (t)u‖ < +∞} ⊃ ∪t>0T (t)A, choose
λ > log(ρT ), set ‖u‖λ := sups≥0e

−λs‖T (s)u‖ for u ∈ LT , with the convention
T (0) = I, and set ‖R‖λ,op := sup{‖Ru‖λ | u ∈ LT , ‖u‖λ ≤ 1} = ‖R‖M(LT ) for
R ∈M(LT ). Denote by AT the closure of A in (M(LT ), ‖.‖λ,op).

Then (LT , ‖.‖λ) is a Banach algebra, the norm topology on LT does not depend
on the choice of λ, and the following properties hold

(i) The inclusion map j : A → AT is a QM-homomorphism with respect to w
for every ω ∈ Ω(A) ∩ LT , the tautological map j̃ : Su/v → Su/v is a pseudobounded
isomorphism from QM(A) onto QM(AT ) and if w ∈ Ω(A) ∩ LT , then j̃−1(S) =
Suw/vw for S = Su/v ∈ QM(AT ).

(ii) j̃(M(A)) ⊂M(AT ), and ‖R‖M(AT ) ≤ ‖R‖M(A) for R ∈M(A).
(iii) ‖T (t)‖M(AT ) ≤ ‖T (t)‖λ,op ≤ eλt for t > 0, and we have, for u ∈ AT ,

lim sup
t→0+

‖T (t)u− u‖λ,op = 0.

Proof. It follows from Lemma 3.1 that the family U = {e−λtT (t)}t>0 is pseu-
dobounded for λ > log(ρT ). The fact that (LT , ‖.‖λ) is a Banach algebra, and
assertions (i) and (ii) follow from Proposition 2.4 and Proposition 2.5 applied to U ,
and an elementary argument given in the proof of Theorem 7.1 of [17] shows that
there exists k > 0 and K > 0 such that k‖u‖λ ≤ sup0≤t≤1 ‖T (t)u‖ ≤ K‖u‖λ for
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u ∈ LT , which shows that the norm topology on LT does not depend on the choice
of λ.

It follows also from Proposition 2.4 applied to U that

‖T (t)‖M(AT ) ≤ ‖T (t)‖λ,op ≤ eλt

for t > 0, and limt→0+ ‖T (t)u− u‖λ,op = 0 for every u ∈ ∪t>0T (t)A.
Since ∪t>0T (t)AT is dense in AT , a standard density argument shows that

limt→0+ ‖T (t)u− u‖λ,op = 0 for every u ∈ AT . �

This suggests the following definition.

Definition 3.3. Let A be a weakly cancellative commutative Banach algebra
with dense principal ideals, let T = ((T (t))t>0 be a strongly continuous semigroup
of multipliers on A such that ∪t>0T (t)A is dense in A for t > 0. A normalization
B of A with respect to T is a subalgebra B of QM(A) which is a Banach algebra
with respect to a norm ‖.‖B and satisfies the following conditions.

(i) We have ‖j(u)‖B ≤ ‖u‖A for u ∈ A, and the inclusion map j : A → B is a
QM-homomorphism.

(ii) j̃(R) ⊂ M(B), and ‖j̃(R)‖M(B) ≤ ‖R‖M(A) for R ∈ M(A), where
j̃ : QM(A) → QM(B) is the pseudobounded isomorphism associated to j intro-
duced in Proposition 2.3 (ii).

(iii) lim supt→0+ ‖j̃(T (t))‖M(B) < +∞.

For example the algebra AT constructed in Proposition 3.2 is a normalization
of the given Banach algebra A with respect to the semigroup T. Notice that if B is
a normalization of A with respect to T, the same density argument as above shows
that limt→0+ ‖T (t)u− u‖B = 0 for every u ∈ B.

4. Normalization of a commutative Banach algebra with respect to a
holomorphic semigroup of multipliers

For a < b ≤ a+π, denote by Sa,b the open sector {z ∈ C\{0} | a < arg(z) < b},
with the convention Sa,a = {reia | r ≥ 0}. In this section we consider again a weakly
cancellative commutative Banach algebra A with dense principal ideals and we
consider a semigroup T = (T (ζ))ζ∈Sa,b

of multipliers on A such that ∪ζ∈Sa,b
T (ζ)A

is dense in A which is holomorphic on Sa,b, which implies that T (ζ)A is dense in
A for every ζ ∈ Sa,b. So T (ζ)u ∈ Ω(A) for every ζ ∈ Sa,b and every u ∈ Ω(A). We
state as a lemma the following easy observations.

Lemma 4.1. Let α, β ∈ R such that a < α ≤ β < b, set γ := β−α
2 , and let

u ∈ A such that lim sup ζ→0

ζ∈Sa,b

‖T (ζ)‖ < +∞.

(i) If λ > 1
cos(γ) limr→+∞ r−1log(max(‖T (reiα), ‖T (reiβ‖)) then

sup
ζ∈Sα,β

‖e−λζe−i
α+β

2 T (ζ)u‖ < +∞.

(ii) lim sup
λ→+∞

[
sup

ζ∈Sα,β

‖e−λζe−i
α+β

2 T (ζ)u‖
]
= lim sup

ζ→0

ζ∈Sα,β

‖T (ζ)u‖.
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Proof. We have, for r1 ≥ 0, r2 ≥ 0,∥∥∥∥e−λe−i
α+β

2 (r1e
iα+r2e

iβ)T (r1e
iα + r2e

iβ)u

∥∥∥∥
≤ inf

[
e−λ cos(γ)r1‖T (r1eiα)u‖e−λ cos(γ)r2‖T (r2eiβ)‖,

e−λ cos(γ)r1‖T (r1eiα)‖e−λ cos(γ)r2‖T (r2eiβ)u‖
]
.

Set m := lim sup ζ→0

ζ∈Sα,β

‖T (t)u‖, and let ε > 0. There exists δ > 0 such that

‖T (ζ)u‖ ≤ m+ ε for 0 ≤ |ζ| ≤ δ, ζ ∈ Sα,β .
We obtain, considering the cases

sup(r1, r2) ≤ δ/2, inf(r1, r2) ≤ δ/2 and sup(r1, r2) ≥
δ

2
,

and the case where inf(r1, r2) ≥ δ
2 ,

sup
ζ∈Sα,β

‖e−λζei
α+β

2 T (ζ)u‖

≤ max

⎡⎢⎣(m+ ε) sup
|ζ|≤δ

ζ∈Sα,β

|e−λζ |
(
1 + sup

r≥δ/2

e−λr cos(γ) max(‖T (reiα)‖, ‖T (reiβ)‖
)
,

‖u‖
(

sup
r≥δ/2

e−λr cos(γ)‖T (reiα)‖
)(

sup
r≥δ/2

e−λr cos(γ)‖T (reiβ)‖
)]

,

and (i) and (ii) follow from this inequality. �

We now follow a method used in Proposition 3.6 of [8] to construct a QM-
homomorphism from A into a weakly cancellative commutative Banach algebra B
such that supt∈Sα,β

|t|≤1

‖T (t)‖ < +∞ for every α, β satisfying a < α ≤ β < b. The

following result is more precise than Proposition 3.6 of [8].

Proposition 4.2. Let A be a weakly cancellative commutative Banach algebra
with dense principal ideals, and let T = ((T (ζ))ζ∈Sa,b

be a holomorphic semigroup
of multipliers on A such that T (ζ)A is dense in A for ζ ∈ Sa,b. Set αn = a+ b−a

2(n+1) ,
βn := b − b−a

2(n+1) for n ≥ 0, and let μ = (μn)n≥0 be a nondecreasing sequence of
positive real numbers satisfying the following conditions

(3) μn >
1

cos
(

βn−αn

2

) lim
r→+∞

log(max(‖T (reiαn)‖, ‖(T (reiβn)‖))
r

(n ≥ 0),

and

(4) sup
ζ∈Sαn,βn

‖e−μnζe
−i a+b

2 T (ζ + 2−nei
a+b
2 )‖μ0,op ≤ e2

−n(μ0+1) (n ≥ 1),

where ‖.‖μ0,op is the norm on the normalization AT0
of A with respect to the

semigroup T0 := (T (tei
(a+b)

2 ))t>0 associated to μ0 in Theorem 2.2.
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For n ≥ 1 set Vn := {e−μnζe
−i

(αn+βn)
2 T (ζ)}ζ∈Sαn,βn

, set Wn := V1 . . . Vn and
set W = ∪n≥1Wn, so that W is stable under products.

Set

Lμ := {u ∈ AT0
| sup

w∈W
‖wu‖μ0,op < +∞, ‖u‖μ = sup

w∈W∪{I}
‖wu‖μ0,op(u ∈ Lμ).

Denote by Aμ,T the closure of AT0
in M(Lμ).

Then T (ζ)u ∈ Lμ for ζ ∈ Sa,b, u ∈ AT0
, (Lμ, ‖.‖μ) is a Banach algebra, the

inclusion map j : A → Aμ,T is a QM-homomorphism with respect to T (ζ)w2 for
w ∈ Ω(A), and we have the following properties

(i) The tautological map j̃ : Su/v → Su/v is a pseudobounded isomorphism
from QM(A) onto QM(Aμ,T ) and if ζ ∈ Sa,b then j̃−1(S) = ST (ζ)w2u/T (ζ)w2v for
S = Su/v ∈ QM(Aμ,T ), w ∈ Ω(A).

(ii) j̃(M(A)) ⊂M(Aμ,T ) and ‖R‖M(Aμ,T ) ≤ ‖R‖M(A) for R ∈M(A).
(iii)‖T (ζ)‖M(Aμ,T ) ≤ ‖T (ζ)‖M(Lμ) ≤ eμnRe(ζe−i a+b

2 ) for ζ ∈ Sαn,βn
, n ≥ 1,

(iv) If a < α < β < b, then we have, for v ∈ Aμ,T ,

lim sup
ζ→0

ζ∈Sα,β

‖T (ζ)v − v‖M(Aμ,T ) ≤ lim sup
ζ→0

ζ∈Sα,β

‖T (ζ)v − v‖M(Lμ) = 0.

Proof. Since ‖T0(2
−n)‖μ0,op ≤ e2

−nμ0 , the existence of a sequence (μn)n≥1

satisfying the required conditions follows from the lemma.
Let t > 0, let n0 ≥ 2 be such that 2−n0+1 < t, and let v ∈ W. Since 1 ∈ Vn

for n ≥ 1, we can assume that v = v1 . . . vn, where n ≥ n0 and where vj ∈ Vj for
1 ≤ j ≤ n. Then ‖T0(2

−j)vj‖μ0,op ≤ e2
−j(μ0+1) for j ≥ n0, and so ‖T0(2

−n0+1 −
2−n)vn0

. . . vn‖μ0,op ≤ e(2
−n0+1−2−n)(μ0+1). We obtain

‖T0(2
−n0+1)vn0

. . . vn‖μ0,op

≤ ‖T0(2
−n)‖μ0,op‖T ((2−n0+1 − 2−n))vn0

. . . vn‖μ0,op

≤ e2
−n0+1(μ0+1)−2−n ≤ e2

−n0+1(μ0+1).

Set r = t−2−n0+1

n0−1 . It follows from Lemma 4.1(i) that for every j ≤ n0 − 1 there
exists kj > 0 such that supv∈Vj

‖T (r)v‖μ0,op ≤ kj . This gives

‖T0(t)v‖μ0,op ≤ ‖T0(r)v1‖μ0,op . . . ‖T0(r)vn0−1‖μ0,op‖T0(2
−n0+1)vn0

. . . vn‖μ0,op

≤ k1 . . . kn0−1e
2−n0+1(μ0+1),

and so T0(t)AT0
⊂ Lμ. Now let ζ ∈ Sa,b. Then ζ − tei

a+b
2 ∈ Sa,b for some t > 0,

and so T (ζ)AT0
= T (ζ − tei

a+b
2 )T0(t)AT0

⊂ T (ζ − tei
a+b
2 )Lμ ⊂ Lμ.

Since W is stable under products, the fact that Lμ is a Banach algebra follows
from Proposition 2.4, which also implies (ii) and (iii). Let ζ0 ∈ Sa,b. Since (iv) holds
for u ∈ T (ζ0)Aμ,T , and since T (ζ0)Aμ,T is dense in (Aμ,T , ‖.‖Lμ

), (iv) follows from
(iii) by a standard density argument.

Let ζ ∈ Sa,b, and let w ∈ Ω(A) ⊂ Ω(AT0
). Since T (ζ/2)w ∈ Ω(A), and since

lim supt→0+ ‖T0(t)T (ζ)w‖ < +∞, it follows from Proposition 2.5 that the inclu-
sion map j0 : A → AT0

is a QM-homomorphism with respect to T (ζ/2)w. Since
T (ζ/2)w ⊂M(Lμ)∩Ω(AT0

), it follows also from Proposition 2.5 that the inclusion
map j1 : AT0

→ Aμ,T is a QM-homomorphism with respect to T (ζ/2)w.
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It follows from Proposition 2.5 that the inclusion map j = j1 ◦ j0 : A → Aμ,T

is a QM-homomorphism with respect to T (ζ/2)wT (ζ/2)w = T (ζ)w2.

It follows from Proposition 2.3 that the tautological map j̃ : Su/v → Su/v is a
pseudobounded homomorphism from QM(A) onto QM(Aμ,T ) and that j̃−1(Su/v)
= ST (ζ)uw2/T (ζ)vw2 for S = Su/v ∈ QM(Aμ,T ).

Since T (ζ)Aμ,T ⊂ T (ζ/2) [T (ζ/2)Aμ,T ] ⊂ T (ζ/2)AT0
⊂ A, and since T (ζ)vA

contains T (ζ)vw2A which is dense in A for v ∈ Ω(Aμ,T ), we have T (ζ)v ∈ Ω(A) for
ζ ∈ Sa,b, v ∈ Ω(Aμ,T ), which shows that j̃−1(S) = ST (ζ)uw2/T (ζ)vw2 for S = Su/v ∈
QM(Aμ,T ). �

We will use the following notion.

Definition 4.3. Let A be a weakly commutative Banach algebra with dense
principal ideals, and let T := (T (ζ))ζ∈Sa,b

be an analytic semigroup of multipliers
on A such that T (ζ)A is dense in A for ζ ∈ Sa,b. A normalization of the algebra
A with respect to the semigroup T is a subalgebra B of QM(A) which is a Banach
algebra with respect to a norm ‖.‖B and satisfies the following conditions.

(i) There exists u ∈ Ω(A) such that the inclusion map j : A → B is a
QM-homomorphism with respect to T (ζ)u for every ζ ∈ Sa,b, and
‖j(u)‖B ≤ ‖u‖A for u ∈ A.

(ii) j̃(R) ⊂ M(B), and ‖j̃(R)‖M(B) ≤ ‖R‖M(A) for R ∈ M(A), where j̃ :
QM(A) → QM(B) is the pseudobounded isomorphism associated to j introduced
in Proposition 2.3 (ii).

(iii) lim sup t→0
ζ∈Sα,β

‖j̃(T (t))‖M(B) < +∞ for a < α < β < b.

If B is a normalization of A with respect to the holomorphic semigroup T =
(T (ζ))ζ∈Sa,b

, a standard density argument shows that if a < α < β < b then
lim sup ζ→0

ζinSα,β

‖T (ζ)u− u‖B = 0 for every u ∈ B
Notice that the algebra A0,T = Aμ0,T and its norm topology associated to the

norm ‖.‖μ0,op discussed above do not depend on the choice of μ0. This is no longer
the case for the Banach algebra Aμ,T and its norm topology, which may depend on
the choice of the sequence μ.

In order to get a more intrinsic renormalization one could consider the Fréchet
algebra L := ∩n≥1{u ∈ AT | sup ζ∈Sαn,βn

‖u‖μ0,op≤1

‖T (ζ)u‖μ0,op < +∞}, then consider the

closed subalgebra U of L generated by the semigroup and introduce an intrinsic
normalization of AT to be the closure of U in M(U) with respect to the Mackey-
convergence associated to a suitable notion of boundedness on subsets of M(U),
but it seems more convenient to adopt the point of view used in Proposition 4.2.

5. Generator of a strongly continuous semigroup of multipliers
and Arveson spectrum

In this section we consider a weakly cancellative commutative Banach algebra
A with dense principal ideals and a strongly continuous semigroup T = (T (t))t>0 of
multipliers on A such that ∪t>0T (t)A is dense in A. We set again ωT (t) = ‖T (t)‖
for t > 0. Denote by MωT

the space of all measures ν on (0,+∞) such that∫ +∞
0

ωT (t)d|ν|(t) < +∞, and for ν ∈ MωT
define ΦT : MωT

→ M(A) by the
formula
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ΦT (ν)u :=

∫ +∞

0

T (t)u dν(t) (u ∈ A). (2
′
)

The Bochner integral is well-defined since the semigroup is strongly continuous,
MωT

is a Banach algebra with respect to convolution of measures on the half-line,
and we will identify again the space L1

ωT
of (classes of) measurable functions on

[0,+∞) satisfying
∫ +∞
0

|f(t)|‖T (t)‖dt < +∞ to the ideal of all ν ∈MωT
which are

absolutely continuous with respect to Lebesgue measure. Denote by BT the closure
of φT (Mω) in M(A), and denote again by IT the closure of ΦT (L

1
ωT

) in M(A), so
that the "Arveson ideal" IT is a closed ideal of BT .

The idea of considering the generator of a semigroup as a quasimultiplier on
some suitable Banach algebra goes back to [22] and [23] for groups of bounded
operators and, more generally, for groups of regular quasimultipliers. An obvious
such interpretation was given by I. Chalendar, J. R. Partington and the author in [8]
for analytic semigroups, and the author interpreted in Section 8 of [17] the generator
of a semigroup of bounded operators which is weakly continuous in the sense of
Arveson [2] as a quasimultiplier on the corresponding Arveson ideal IT . Since in
the present context ΦT

(
Ω(L1

ωT
)
)
⊂ Ω(IT ) and uv ∈ Ω(A) for u ∈ Ω(IT ), v ∈ Ω(A),

the map jT : Su/v → Suw/vw is a pseudobounded homomorphism from QM(IT )
into QM(A) for every w ∈ Ω(A), and the definition of jT does not depend on the
choice of w.

The generator ΔT,IT
of T considered as a strongly continuous semigroup of

multipliers on IT has been defined in [17], def. 8.1 by the formula

(5) ΔT,IT = S−ΦT (f ′
0)/ΦT (f0),

where f0 ∈ C1([0,+∞)) ∩ Ω
(
L1
ωT

)
satisfies f0(0) = 0, f ′

0 ∈ L1
ωT

,
and an easy verification given in [17] shows that this definition does not depend

on the choice of f0. This suggests the following definition.

Definition 5.1. : The infinitesimal generator ΔT,A of T is the quasimultiplier
on A defined by the formula

ΔT,A = jT (ΔT,IT
) = S−ΦT (f ′

0)u0/ΦT (f0)u0
,

where f0 ∈ C1([0,+∞)) ∩ Ω
(
L1
ωT

)
satisfies f0(0) = 0, f ′

0 ∈ L1
ωT

, and where u0 ∈
Ω(A).

Assume that f1 and u1 also satisfy the conditions of the definition, and set
f2 = f0 ∗ f1, u2 = u0u1 Since Ω

(
L1
ωT

)
is stable under convolution, f2 ∈ Ω

(
L1
ωT

)
,

and f ′
2 = f ′

0 ∗ f1 = f0 ∗ f ′
1 ∈ L1

ωT
is continuous. Also f2(0) = 0, and we have

ΦT (f
′
2)u2ΦT (f0)u0 = ΦT (f

′
0)ΦT (f1)u2ΦT (f0)u0 = ΦT (f

′
0)u0ΦT (f2)u2

and similarly ΦT (f
′
2)u2ΦT (f1)u1 = ΦT (f

′
1)u1ΦT (f2)u2, which shows that the

definition of ΔT,A does not depend on the choice of f0 and u0.
We now give a link between the quasimultiplier approach and the classical

approach based on the study of T (t)u−u
t as t→ 0+. A proof of the following folklore

result is given for example in [17], Lemma 8.4.
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Lemma 5.2. Let ω be a lower semicontinuous submultiplicative weight on (0,+∞),
and let f ∈ C1([0,+∞))∩L1

ω. If f(0) = 0, and if f ′ ∈ L1
ω, then the Bochner integral∫ +∞

t
(f ′ ∗ δs)ds is well-defined in L1

ω for t ≥ 0, and we have

f ∗ δt − f = −
∫ t

0

(f ′ ∗ δs)ds, and lim
t→0+

∥∥∥∥f ∗ δt − f

t
+ f ′

∥∥∥∥
L1

ω

= 0.

It follows from the lemma that we have if f ∈ C1([0,+∞)) ∩ L1
ωT

, and if
f(0) = 0, f ′ ∈ L1

ωT
,

(6) T (t)ΦT (f)− ΦT (f) = −
∫ t

0

T (s)ΦT (f
′)ds (t ≥ 0).

Proposition 5.3. (i) Let u ∈ A. If limt→0+ ‖T (t)u−u
t −v‖ = 0 for some v ∈ A,

then u ∈ DΔT,A , and ΔT,Au = v.
(ii) Conversely if u ∈ DΔT,A , and if limt→0+ ‖T (t)ΔT,Au −ΔT,Au‖ = 0, then

lim supt→0+ ‖
T (t)u−u

t −ΔT,Au‖ = 0.

Proof. (i) If u ∈ A, and if limt→0+ ‖T (t)u−u
t − v‖ = 0 for some v ∈ A, let

f0 ∈ C1([0,+∞)) ∩ Ω
(
L1
ωT

)
satisfying f0(0) = 0, f ′

0 ∈ L1
ωT

, and let u0 ∈ Ω(A). It
follows from the lemma that we have, with respect to the norm topology on A,

−ΦT (f
′
0)u0u =

[
lim
t→0+

T (t)ΦT (f0)− ΦT (f0)

t

]
u0u

= ΦT (f0)u0

[
lim
t→0+

T (t)u− u

t

]
= ΦT (f0)u0v,

and so u ∈ DΔT,A , and ΔT,Au = v.

(ii) Conversely let u ∈ DΔT,A , let f0 ∈ C1([0,+∞))∩Ω
(
L1
ωT

)
such that f0(0) =

0, f ′
0 ∈ L1

ωT
, and let u0 ∈ Ω(A). Set v = ΔT,Au, and assume that limt→0+ ‖T (t)v−

v‖ = 0. It follows from (6) that we have, for t ≥ 0,

ΦT (f0)u0

∫ t

0

T (s)vds =

∫ t

0

T (s)ΦT (f0)vu0ds

= −
∫ t

0

T (s)ΦT (f
′
0)uu0ds

= −
[∫ t

0

T (s)ΦT (f
′
0)ds

]
u0u

= [T (t)ΦT (f0)u0 − ΦT (f0)u0]u

= ΦT (f0)u0(T (t)u− u).

Since ΦT (f0)u0 ∈ Ω(A), this shows that T (t)u − u =
∫ t

0
T (s)vds, and so

limt→0+

∥∥∥T (t)u−u
t − v

∥∥∥ = 0. �

Let T1 = (T1(t))t>0 and T2 = (T2(t))t>0 be two strongly continuous semi-
groups of multipliers on A such that ∪t>0T1(t)A and ∪t>0T2(t)A are dense in A.
We will say that T1 and T2 commute if T1(t)T2(t) = T2(t)T1(t) for t > 0. Then
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T1(t)T2(nt) = T1(t)T2(t)
n = T2(t)

nT1(t) = T2(nt)T1(t) for n ≥ 1, t > 0. This im-
plies that T1(t)T2(

m
n t) = T2(

m
n t)T1(t) for m ≥ 1, n ≥ 1. Let s > 0, and let (rp)p≥1

be a sequence of positive rational numbers such that limp→+∞ rp = s. It follows
from the strong continuity of T2 that we have, for u ∈ A,

T2(s)T1(t)u = lim
p→+∞

T2(rp)T1(t)u = lim
p→+∞

T1(t)T2(rp)u = T1(t)T2(s)u.

So T2(s)T1(t) = T1(t)T2(s) for s > 0, t > 0, and T1T2 := (T1(t)T2(t))t>0 is itself
a semigroup of multipliers, a folklore observation.

Since supx≤t≤y ‖T1(t)‖ < +∞ for 0 < x < y < +∞, a standard argument
shows that T1T2 is strongly continuous. Let ε > 0, and let u ∈ A. There exists
s > 0 and u1 ∈ A such that ‖T1(s)u1 − u‖ < ε/2, and there exists t ∈ (0, s) and
u2 ∈ A such that ‖T1(t)T2(s)u2 − u‖ < ε. Since T1(t)T2(s)u2 ∈ T1(t)T2(t)A, this
shows that ∪t>0(T1T2)(t)A is dense in A. The following folklore result shows that
the generator of T1T2 is the sum of the generators of T1 and T2.

Corollary 5.4. Let T1 and T2 be two strongly continuous semigroups of mul-
tipliers on A such that ∪t>0T1(t)A and ∪t>0T2(t)A are dense in A. If T1 and T2

commute, then then ΔT1T2,A = ΔT1,A +ΔT2,A.

Proof. Let u1 ∈ A, u2 ∈ A, and v1 ∈ Ω(A), v2 ∈ Ω(A) be such that ΔT1,A =
Su1/v1 ,ΔT2,A = Su2/v2 , let s > 0 and set ws = T1(s)T2(s)v1v2.

Then ws ∈ Dom(ΔT1,A)∩Dom(ΔT2,A),ΔT1,Aws = T1(s)T2(s)u1v2 and ΔT2,Aws

= T1(s)T2(s)v1u2, and so limt→0+ ‖Tj(t)ΔTj ,Aws −ΔTj ,Aws‖ = 0 for j = 1, 2.
It follows then from Proposition 5.3 (ii) that we have, for j = 1, 2,

lim
t→0+

∥∥∥∥Tj(t)ws − ws

t
−ΔTj ,Aws

∥∥∥∥ = 0.

So we have, for u ∈ A,

lim
t→0+

∥∥∥∥ (T1T2)(t)uws − uws

t
−ΔT1,Auws −ΔT2,Auws

∥∥∥∥
= lim

t→0+

∥∥∥∥uT1(t)ws − ws

t
− uΔT1,A + T1(t)u

T2(t)ws − ws

t
− uΔT2ws

∥∥∥∥ = 0,

and so it follows from Proposition 5.3 (i) that uws ∈ ΔT1T2,A, and
ΔT1T2,Auws = ΔT1,Auws +ΔT2,Auws = T1(s)T2(s)u(v1u2 + v2u1).

Now write ΔT1T2,A = Su3/v3 , where u3 ∈ A, v3 ∈ Ω(A). We obtain

T1(s)T2(s)uv1v2u3 = T1(s)T2(s)uv3(v1u2 + v2u1).

Since ∪s>0T1(s)T2(s)(A) is dense in A, and since A is weakly cancellative, we
have v1v2u3 = v3(v1u2 + v2u1), which gives

ΔT1T2,A = Sv1v2u3/v1v2v3 = S(v1u2+v2u1)/v1v2 = Su1/v1+u2/v2 = ΔT1,A +ΔT2,A

�

We now consider a normalization A with respect to T , see Definition 3.3.

Licensed to AMS.



A HOLOMORPHIC FUNCTIONAL CALCULUS FOR FINITE FAMILIES 41

Proposition 5.5. Let B be a normalization of A with respect to T.
Set vλ(t) = te−λt for λ ∈ R, t ≥ 0, and let λ > log(ρT ).
(i) If u ∈ Ω(B), then

ΔT,B = −S∫ +
0

v′
λ(t)T (t)udt/

∫ +∞
0

vλ(t)T (t)udt.

(ii) Let j̃ : QM(A)→ QM(B) be the pseudobounded isomorphism given in Proposi-
tion 3.2 (i). Then j̃−1(ΔT,B) = ΔT,A. So if u ∈ Ω(A), and if lim supt→0+ ‖T (t)u‖ <
+∞, then

ΔT,A = −S∫ +∞
0

v′
λ(t)T (t)udt/

∫ +∞
0

vλ(t)T (t)udt.

Proof. (i) Set eλ(t) = eλt for λ ∈ R, t ≥ 0. If λ > μ > log(ρT ), then vλ ∈
L1
eμ ⊂ L1

ω̃T
, where ω̃T (t) = ‖T (t)‖M(AT ), and L1

eμ is dense in L1
ω̃T

since it contains
the characteristic function of [α, β] for 0 < α < β < +∞. It follows for example
from Nyman’s theorem [28] about closed ideals of L1(R+) that vλeμ ∈ Ω(L1(R+))
and so vλ ∈ Ω(L1

eμ) ⊂ Ω(L1
ω̃T

). So vλ and u satisfy the conditions of Definition 5.1
with respect to T and B, and (i) holds.

(ii) The map j̃ is the tautological map Su/v → Su/v, where u ∈ A ⊂ B and v ∈
Ω(A) ⊂ Ω(B). Now let f0 ∈ L1

ωT
∩C1([0,+∞)) satisfying Definition 5.1 with respect

to T and A and let u0 ∈ Ω(A). Since Ω(L1
ωT

) ⊂ Ω(L1
ω̃T

), and since Ω(A) ⊂ Ω(B),
it follows from Definition 5.1 that j̃(ΔT,A) = ΔT,B, and so j̃−1(ΔT,B) = ΔT,A.

Let u ∈ Ω(A) ⊂ Ω(B), and assume that lim supt→0+ ‖T (t)u‖ < +∞. Let
w ∈ Ω(A) be such that wB ⊂ A. Since vλ ∈ Ω(L1

ωλ
), we see as in the proof of

Lemma 3.1 that
∫ +∞
0

vλ(t)T (t)udt ∈ Ω(B), and it follows from Proposition 2.4 that
w
∫ +∞
0

vλ(t)T (t)udt ∈ Ω(A). Using the characterization of j̃−1 given in Proposi-
tion 2.3, we obtain

ΔT,B = −S∫ +∞
0

v′
λ(t)T (t)udt/

∫ +∞
0

vλ(t)T (t)udt,

and

ΔT,A = j̃−1(ΔT,B)

= −Sw
∫ +∞
0

v′
λ(t)T (t)udt/w

∫ +∞
0

vλ(t)T (t)udt

= −S∫ +∞
0

v′
λ(t)T (t)udt/

∫ +∞
0

vλ(t)T (t)udt.

�
We will denote by Spec(IT ) the space of characters of IT , equipped with the

usual Gelfand topology. Notice that if χ ∈ Spec(IT ) then there exists a unique
character χ̃ on QM(IT ) such that χ̃|IT

= χ, which is defined by the formula
χ̃(Su/v) =

χ(u)
χ(v) for u ∈ IT , v ∈ Ω(IT ).

Definition 5.6. Assume that IT is not radical, and let S ∈ QM(IT ). The
Arveson spectrum σar(S) is defined by the formula

σar(S) = {λ = χ̃(S) : χ ∈ Spec(IT )}.
If ν is a measure on [0,+∞), the Laplace transform of ν is defined by the usual

formula L(ν)(z) =
∫ +∞
0

e−ztdν(t) when
∫ +∞
0

e−Re(z)td|ν|(t) < +∞.
We have the following easy observation.
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Proposition 5.7. Let ν ∈MωT
. Then we have, for χ ∈ Spec(IT ),

(7) χ̃

(∫ +∞

0

T (t)dν(t)

)
= L(ν)(−χ̃(ΔT,IT )).

Similarly we have, for ν ∈Mω̃T
, χ ∈ Spec(IT ),

(8) χ̃(ΦT (ν)) = χ̃

(∫ +∞

0

T (t)dν(t)

)
= L(ν)(−χ̃(ΔT,IT )) = L(ν)(−χ̃(ΔT,IT,B)).

In particular χ̃(T (t)) = eχ̃(ΔT,IT
)t for t > 0.

Proof. If χ ∈ Spec(IT ), then χ̃|AT
is a character on AT , the map t→ χ̃(T (t))

is continuous on (0,+∞) and so there exists λ ∈ C such that χ̃(T (t)) = e−λt for
t > 0, and |e−λt| ≤ ‖T (t)‖, which shows that Re(λ) ≥ − log(ρT ).

Let u ∈ Ω(IT ), and let ν ∈MωT
. We have

χ(u)χ̃

(∫ +∞

0

T (t)dν(t)

)
= χ

(
u

∫ +∞

0

T (t)dν(t)

)
= χ

(∫ +∞

0

T (t)udν(t)

)
=

∫ +∞

0

χ(T (t)u)dν(t)

= χ(u)

∫ +∞

0

e−λtdν(t)

= χ(u)L(ν)(λ),
and so χ̃(ΦT (ν)) = L(ν)(λ).
Let f0 ∈ C1((0,+∞)) ∩ Ω(IT ) such that f0(0) = 0, f ′

0 ∈ L1
ωT

. We have

λL(f0)(λ) = L(f ′
0)(λ)

= χ(ΦT (f
′
0))

= −χ̃ (ΔT,IT
ΦT (f0))

= −χ̃(ΔT,IT
)χ(φT (f0))

= −χ̃(ΔT,IT
)L(f0)(λ),

and so λ = −χ̃(ΔT,IT
), which proves (7), and formula (8) follows from a similar

argument. In particular χ(T (t)) = L(δt)(−χ̃(ΔT,IT
)) = eχ̃(ΔT,IT

)t for t > 0. �

The following consequence of Proposition 5.7 pertains to folklore.

Corollary 5.8. Assume that IT is not radical. Then the map χ→ χ̃(ΔT,IT
)

is a homeomorphism from Spec(IT ) onto σar(ΔT,IT
), and if we set set

Λt := {λ ∈ σar(ΔT,IT ) | Re(λ) ≤ t},
then Λt is compact for every t ∈ R, so that σar(ΔT,IT

) is closed.

Proof. Let f0 ∈ C1((0,+∞)) ∩ Ω(IT ) such that f0(0) = 0, f ′
0 ∈ L1

ωT
. We

have χ(Φ(f0)) �= 0 and χ̃(ΔT,IT
) = −χ(ΦT (f ′

0))
χ(ΦT (f0))

for χ ∈ Spec(IT ), and so the map
χ→ χ̃(ΔT ) is continuous with respect to the Gelfand topology on Spec(IT ).
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Conversely let f ∈ L1
ωT

. It follows from Proposition 5.6 that we have, for
χ ∈ Spec(IT ),

χ(ΦT (f)) = L(f)(−χ̃(ΔT,IT
)).

Since the set {u = ΦT (f) : f ∈ L1
ωT
} is dense in IT , this shows that the map

χ→ χ̃(ΔT,IT
) is one-to-one on Spec(IT ), and that the inverse map σar(ΔT,IT

)→
Spec(IT ) is continuous with respect to the Gelfand topology.

Now let t ∈ R, and set Ut := {χ ∈ Spec(IT ) : Re(χ(ΔT,IT
)) ≤ t}. Then

|χ̃(T (1))| ≥ e−t for χ ∈ Ut, and so 0 does not belong to the closure of Ut with respect
to the weak∗ topology on the unit ball of the dual of IT . Since Spec(IT ) ∪ {0} is
compact with respect to this topology, Ut is a compact subset of Spec(IT ), and so
the set Λt is compact, which implies that σar(ΔT,IT

) = ∪n≥1Λn is closed. �

6. The resolvent

We now wish to discuss the resolvent of the generator of a strongly continuous
semigroup T = (T (t))t>0 of multipliers on A, where A is a weakly cancellative
commutative Banach algebra with dense principal ideals, and where ∪t>0T (t)A is
dense in A. From now on we will write ΔT = ΔT,A and we will denote by DΔT ,A
the domain of ΔT considered as a quasimultiplier on A. The Arveson ideal IT is
as above the closed subalgebra of M(A) generated by ΦT (L

1
ωT

).
The Arveson resolvent set is defined by the formula

Resar(ΔT,IT ) = C \ σar(ΔT,IT ),

with the convention σar(ΔT,IT
) = ∅ if IT is radical.

The usual "resolvent formula," interpreted in terms of quasimultipliers, shows
that λI − ΔT,IT

∈ QM(IT ) is invertible in QM(IT ) and that its inverse (λI −
ΔT,IT

)−1 belongs to the Banach algebra IT,B ⊂ QMr(IT ) obtained by applying
Theorem 2.2 to IT with respect to the semigroup T, and that we have, for Re(λ) >
log(ρT ),

(λI −ΔT,IT
)−1 =

∫ +∞

0

e−λsT (s)ds ∈ IT,B,

where the Bochner integral is computed with respect to the strong operator topology
on M(IT,B). Also the IT,B-valued map λ → (λI − ΔT,IT

)−1 is holomorphic on
Resar(T, IT ). The details of the adaptation to the context of quasimultipliers of
this classical part of semigroup theory are given in [17], Proposition 10.2.

We now give a slightly more general version of this result, which applies in
particular to the case where B is the normalization AT of A with respect to the
semigroup T introduced in Proposition 3.2.

In the following we will identify the algebras QM(A) and QM(B) using the
isomorphism j̃ intoduced in Proposition 2.3 (iii) if B is a normalization of A with
respect to T. We set ΦT,B(ν)u =

∫ +∞
0

T (t)udν(t) for u ∈ B, ν ∈ MωT,B , where
ωT,B(t) = ‖T (t)‖M(B) for t > 0, and we denote by IT,B the closure of ΦT,B(L

1
ωT,B)

in M(B).

Proposition 6.1. Let A be a weakly cancellative commutative Banach algebra
with dense principal ideals, let T = ((T (t))t>0 be a strongly continuous semigroup
of multipliers on A such that T (t)A is dense in A for t > 0, and let B be a
normalization of A with respect to T.
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Set Resar(ΔT ) = Resar(ΔT,IT
) = C \ σar(ΔT,IT

). Then the quasimultiplier
λI − ΔT ∈ QM(A) admits an inverse (λI − ΔT )

−1 ∈ IT,B ⊂ M(B) ⊂ QMr(A)
for λ ∈ Resar(ΔT ), and the map λ → (λI − ΔT )

−1 is an holomorphic map from
Resar(ΔT ) into IT,B. Moreover we have, for Re(λ) > log(ρT ),

(λI −ΔT )
−1 =

∫ +∞

0

e−λsT (s)ds ∈ IT,B,

where the Bochner integral is computed with respect to the strong operator topology
on M(B), and ‖(λI −ΔT )

−1‖M(B) ≤
∫ +∞
0

e−Re(λ)t‖T (t)‖M(B)dt.

Proof. We could deduce this version of the resolvent formula from Proposition
10.2 of [17], but we give a proof for the sake of completeness. Set again eλ(t) = eλt

for t ≥ 0, λ ∈ C. Assume that

Re(λ) > log(ρT ) ≥ lim
t→+∞

log ‖T (t)‖M(B)

t
,

let v ∈ IT,B, and set a = ΦT,B(e−λ). We have

av =

∫ +∞

0

e−λsT (s)vds, T (t)av − av

=

∫ +∞

0

e−λsT (s+ t)vds−
∫ +∞

0

e−λsT (s)vds

= eλt
∫ +∞

t

e−λsT (s)vds−
∫ +∞

0

e−λsT (s)vds

= (eλt − 1)av − eλt
∫ t

0

e−λsT (s)vds.

Since limt→0+ ‖T (t)v − v‖IT,B = 0, we obtain

lim
t→0+

∥∥∥∥T (t)av − av

t
− λav + v

∥∥∥∥
IT,B

= 0,

and so av ∈ DΔT ,IT,B , and ΔT,IT,B(av) = λav − v.
This shows that aIT,B ⊂ DΔT,IT,B

, and that (λI − ΔT,IT,B)av = v for every
v ∈ IT,B. We have λI − ΔT,IT,B = Su/v, where u ∈ IT,B, v ∈ Ω(IT,B), and we
see that ua = v. Hence u ∈ Ω(IT,B), λI −ΔT,IT,B is invertible in QM(IT,B), and
(λI − ΔT,B)

−1 = a = ΦT,B(e−λ) =
∫ +∞
0

e−λtT (t)dt ∈ IT,B, where the Bochner
integral is computed with respect to the strong operator topology on M(IT,B).

Let χ ∈ Spec(IT,B). Then χ ◦ j̃ ∈ Spec(IT ), and σar(ΔT,IT,B) ⊂ σar(ΔT,IT
).

It follows then from Proposition 2.6 that λI −ΔT,B has in QMr(IT,B) an inverse
(λI − ΔT,B)

−1 ∈ IT,B for λ ∈ Resar(ΔT,IT
) and that the IT,B-valued map λ →

(λI −ΔT,B)
−1 is holomorphic on Resar(ΔT,B).

Fix u0 ∈ Ω(A) ⊂ Ω(B), and set jT (S) = Suu0/vu0
for S = Su/v ∈ QM(IT,B).

Then jT : QM(IT,B) → QM(B) is a pseudobounded homomorphism, and
jT (ΔT,IT,B) = ΔT,B.

Identifying IT,B to a subset of QM(IT,B) as above in the obvious way, we see
that the restriction of jT to IT,B is the identity map, and so λI −ΔT is invertible
in QM(B) for λ ∈ Resar(ΔT ), we have (λI −ΔT )

−1 = (λI −ΔT,IT,B)
−1 ∈ IT,B,

and the IT,B-valued map λ→ (λI −ΔT,B)
−1 is holomorphic on Resar(ΔT ).
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If Re(λ) > log(ρT ) ≥ limt→+∞
log ‖T (t)‖M(B)

t , then if u ∈ IT,B, v ∈ B, we have

(λI −ΔT )
−1uv = ((λI −ΔT,B)

−1u)v =

∫ +∞

0

e−λtT (t)uvdt.

Since uv ∈ Ω(B) for u ∈ Ω(IT,B), v ∈ Ω(B), uB is dense in B for u ∈ Ω(IT,B), and
we obtain (λI − ΔT )

−1 =
∫ +∞
0

e−λtT (t)dt ∈ IT,B, where the Bochner integral is
computed with respect to the strong operator topology on M(B), so that

‖(λI −ΔT )
−1‖M(B) ≤

∫ +∞

0

e−Re(λ)t‖T (t)‖M(B)dt. �

If we consider ΔT as a quasimultiplier on B, the fact that the multiplier (λI −
ΔT )

−1 ∈ M(B) is the inverse of λI − ΔT for λ ∈ Res(ΔT ) means that (λI −
ΔT )

−1v ∈ DΔT,B and that (λI−ΔT )
(
(λI −ΔT )

−1v
)
= v for every v ∈ B, and that

if w ∈ DΔT,B , then (λI −ΔT )
−1 ((λI −ΔT )w) = w. The situation is slightly more

complicated if we consider ΔT as a quasimultiplier on A when lim supt→0+ ‖T (t)‖ =
+∞. In this case the domain D(λI−ΔT )−1,A of (λI −ΔT )

−1 ∈ QM(A) is a proper
subspace of A containing LT ⊃ ∪t>0T (t)A, and we have (λI − ΔT )

−1v ∈ DΔT,A

and (λI−ΔT )
(
(λI −ΔT )

−1v
)
= v for every v ∈ D(λI−ΔT )−1,A. Also if w ∈ DΔT,A ,

then (λI −ΔT )w ∈ D(λI−ΔT )−1,A, and we have (λI −ΔT )
−1 ((λI −ΔT )w) = w.

In order to interpret (λI − ΔT )
−1 as a partially defined operator on A for

Re(λ) > log(ρT ), we can use the formula

(9) (λI −ΔT )
−1v =

∫ +∞

0

e−λtT (t)vdt (v ∈ LT ),

which defines a quasimultiplier on A if we apply it to some v ∈ Ω(A) such
that lim supt→0+ ‖T (t)v‖ < +∞. The fact that this quasimultiplier is regular is not
completely obvious but follows from the previous discussion since (λI −ΔT )

−1 ∈
M(B) ⊂ QMr(A). Notice that since ∪t>0T (t)A is dense in (UT , ‖.‖UT

), (λI−ΔT )
−1

is characterized by the simpler formula

(10) (λI −ΔT )
−1T (s)v = eλs

∫ +∞

s

e−λtT (t)vdt (s > 0, v ∈ A).

7. The generator of a holomorphic semigroup and its resolvent

Assume that a < b ≤ a + π. In this section we consider a holomorphic semi-
group T = (T (ζ))ζ∈Sa,b

of multipliers on a weakly cancellative commutative Banach
algebra A having dense principal ideals such that T (ζ)A is dense in A for some, or,
equivalently, for every ζ ∈ Sa,b.

Denote by IT the closed span of {T (ζ)}ζ∈Sa,b
in M(A), which is equal to the

closed span of {T (tζ)}t>0 for ζ ∈ Sa,b. For ζ ∈ Sa,b, set Tζ = (T (tζ))t>0, let
ΦTζ

:MωTζ
→M(A) be the homomorphism defined by (2’).

Set ωT (ζ) = ‖T (ζ)‖ for ζ ∈ Sa,b, denote byMωT
(Sa,b) the space of all measures

μ on Sa,b such that ‖μ‖ωT
:=

∫
Sa,b

ωT (ζ)d|μ|(ζ) < +∞, which is a Banach algebra
with respect to convolution on the additive semigroup Sa,b, see [27] for convolution
of measures on semigroups. The convolution algebra L1

ωT
(Sa,b) is defined in a
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similar way and will be identified to the closed ideal ofMωT
consisting of measures

which are absolutely continuous with respect to Lebesgue measure in Sa,b.
Define the Banach algebra homomorphism ΦT : MωT

→ IT ⊂ M(A) by the
formula

ΦT (μ) =

∫
Sa,b

T (ζ)dμ(ζ),

which is well-defined since the map ζ → T (ζ) is continuous with respect to the
norm topology on M(A) and since IT is separable.

Let ζ ∈ Sa,b. Since the semigroup Tζ is continuous with respect to the norm
topology on M(A), a standard argument shows that we have, for every Dirac
sequence (fn)n≥1,

lim sup
n→+∞

∥∥∥∥∫ +∞

0

(fn ∗ δs)(t)T (tζ)dt− T (sζ)

∥∥∥∥ = 0,

and so T (sζ) ∈ ITζ
for every s > 0, which implies that ITζ

= IT .
A similar argument shows that IT is the closure in (M(A), ‖.‖M(A)) of

ΦT (MωT
(Sa,b)), as well as the closure of ΦT (L

1
ωT

(Sa,b)) and the closure of ΦTζ
(L1

ωTζ
)

in (M(A), ‖.‖M(A)), and the notation IT is consistent with the notation used to de-
note the Arveson ideal associated to a strongly continuous semigroup of multipliers
on the half-line.

The following interpretation of the generator of a holomorphic semigroup as a
quasimultiplier follows the interpretation given in [8] in the case where A = IT .

Proposition 7.1. Set

ΔT,A := ST ′(ζ0)u0/T (ζ0)u0
∈ QM(A),

where ζ0 ∈ Sa,b, u0 ∈ Ω(A).
Then this definition does not depend on the choice of ζ0 and u0, and we have,

for ζ ∈ Sa,b,

(11) ΔTζ ,A = ζΔT,A,

where the generator ΔTζ ,A of the semigroup Tζ is the quasimultiplier on A
introduced in Definition 4.1.

Moreover if T1 = (T1(ζ))ζ∈Sa,b
and T2 = (T2(ζ))ζ∈Sa,b

are two holomorphic
semigroups of multipliers on A such that T1(ζ)A and T2(ζ)A are dense in A and
such that T1(ζ)T2(ζ) = T2(ζ)T1(ζ) for ζ ∈ Sα,β , then T1T2 := (T1(ζ)T2(ζ)ζ∈Sa,b

is
a semigroup holomorphic on Sa,b, (T1T2)(ζ)A is dense in A for ζ ∈ Sa,b, and we
have

ΔT1T2,A = ΔT1,A +ΔT2,A.

Proof. We have, for ζ ∈ Sa,b,

T ′(ζ0)T (ζ) = T ′(ζ0 + ζ) = T ′(ζ)T (ζ0),
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and so the definition of ΔT,A does not depend on the choice of ζ0, and an easy
argument given in the comments following Definition 4.1 shows that this definition
does not depend on the choice of u0 ∈ Ω(A) either.

Now let ζ0 ∈ Sa,b, and let f ∈ C1([0,+∞)) ∩ Ω(L1
ωTζ0

) such that f(0) = 0 and

f ′ ∈ L1
ωTζ0

. We have, integrating by parts, since limp→+∞ |f(np)|‖T (npζ0)‖ = 0 for
some strictly increasing sequence (np)p≥1 of integers,

T (ζ0)

∫ +∞

0

f ′(t)T (tζ0)dt

= lim
p→+∞

∫ np

0

f ′(t)T (ζ0 + tζ0)dt

= lim
p→+∞

(
[f(t)T (ζ0 + tζ0)]

np

0 − ζ0

∫ np

0

f(t)T ′(ζ0 + tζ0)dt

)
= − ζ0T

′(ζ0)

∫ +∞

0

f(t)T (tζ0)dt,

and formula (11) follows since
(∫ +∞

0
f(t)T (tζ0)dt

)
u = φTζ0

(f)u ∈ Ω(A) for
u ∈ Ω(A).

Now let T1 = (T1(ζ))ζ∈Sa,b
and T2 = (T2(ζ))ζ∈Sa,b

be two holomorphic semi-
groups of multipliers on A such that T1(ζ)A and T2(ζ)A are dense in A and such
that T1(ζ)T2(ζ) = T2(ζ)T1(ζ) for ζ ∈ Sα,β . As in section 5 we see that if ζ ∈ Sa,b

then T1(ζ)T2(tζ) = T2(tζ)T1(ζ) for t > 0, and it follows from the analyticity of T2

that T1(ζ)T2(ζ
′) = T2(ζ

′)T1(ζ) for ζ ′,∈ Sa,b. This shows that T1T2 is a semigroup
on Sa,b, which is obviously holomorphic. Since T1(ζ)A and T2(A) are dense in A,
(T1T2)(ζ)A = T1(ζ)T2(ζ)A is dense in A for ζ ∈ Sa,b.

The last assertion of the corollary follows then immediately from the Leibniz
rule. �

The following corollary follows then from Proposition 5.3.

Corollary 7.2. (i) Let u ∈ A, and let ζ ∈ Sa,b. If limt→0+

∥∥∥T (tζ)u−u
t − v

∥∥∥ = 0

for some v ∈ A, then u ∈ DΔT,A , and ζΔT,Au = v.

(ii) Conversely if ζ ∈ Sa,b, then limt→0+

∥∥∥T (t)u−u
t − ζΔT,Au

∥∥∥ = 0 for every
u ∈ DΔT,A satisfying the condition limt→0+ ‖T (tζ)u− u‖ = 0.

In the remainder of the section we will denote by B a normalization of A
with respect to the semigroup T, see Definition 4.3. Since QM(A) is isomorphic
to QM(B), we can consider the generator ΔT,A as a quasimultiplier on B, and
it follows immediately from Definition 7.1 that this quasimultiplier on B is the
generator of the semigroup T considered as a semigroup of multipliers on B. From
now on we will thus set ΔT = ΔT,A = ΔT,B. Applying Corollary 7.2 to T and B,
we obtain the following result.

Corollary 7.3. (i) Let u ∈ B Then the following conditions imply each other
(i) There exists ζ0 ∈ Sa,b and v ∈ B such that limt→0+

∥∥∥T (ζ0t)u−u
t − v

∥∥∥
B
= 0,

(ii) u ∈ DΔT ,B, and in this situation limt→0+

∥∥∥T (ζt)u−u
t − ζΔTu

∥∥∥
B

= 0 for
every ζ ∈ Sa,b.
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Denote by Spec(IT ) the space of characters on IT , equipped with the usual
Gelfand topology. If χ ∈ Spec(IT ), the map ζ → χ(T (ζ)) is holomorphic on Sa,b,
and so there exists a unique complex number cχ such that χ(T (ζ)) = eζcχ for
ζ ∈ Sa,b. We see as in Section 5 that there exists a unique character χ̃ on QM(IT )
such that χ̃|IT

= χ, and since ΔTζ ,IT
= ζΔT,IT

it follows from Proposition 5.7 and
Proposition 7.1 that χ(T (tζ)) = etχ̃(ΔTζ,IT

) = etζχ̃(ΔT,IT
) for ζ ∈ Sa,b, t > 0, and

so cχ = χ̃(ΔT,IT
).

Since ΔTζ ,IT
= ζΔT,IT

for ζ ∈ Sa,b, we deduce from Corollary 5.8 and Propo-
sition 6.1 the following result.

Proposition 7.4. Let T = (T (ζ)ζ∈Sa,b
⊂M(A) be a holomorphic semigroup.

Set σar(ΔT,IT
) = {χ̃(ΔT,IT

)}χ∈Spec(IT ), with the convention σar(ΔT,IT
) = ∅ if the

semigroup is quasinilpotent.
Set Resar(ΔT ) = Resar(ΔT,IT

) = C \σar(ΔT,IT
). Let B be a normalization of

A with respect to the holomorphic semigroup T, and let IT,B be the closed subalgebra
of M(B) generated by the semigroup.

(i) The set Λt,ζ := {λ ∈ σar(ΔT , IT ) | Re(λζ) ≤ t} is compact for
ζ ∈ Sa,b, t ∈ R.

(ii) If λ ∈ Resar(ΔT ), then the quasimultiplier λI − ΔT has an inverse in
QM(A), (λI − ΔT )

−1 ∈ IT,B ⊂ M(B) ⊂ QMr(A), and the IT,B-valued map
λ→ (λI −ΔT )

−1 is holomorphic on Resar(ΔT ).

(iii) If ζ ∈ Sa,b, then λ ∈ Resar(ΔT ) for Re(λζ) > limt→+∞
log(‖T (tζ)‖)

t , and
we have

(12) (λI −ΔT )
−1 =

∫ ζ.∞

0

e−sλT (s)ds,

so that

(13) ‖(λI −ΔT )
−1‖M(B) ≤ |ζ|

∫ +∞

0

e−tRe(λζ)‖T (tζ)‖M(B)dt.

Proof. (i) Let ζ ∈ Sa,b, t > 0, and set

V = {λ ∈ ζσar(ΔT,BT ) | Re(λ) ≤ t} = {λ ∈ σar(ΔTζ ,IT ) | Re(λ) ≤ t}.

It follows from Corollary 4.7 that V is compact, and so Λt,ζ = ζ−1V is compact.
(ii) Fix ζ0 ∈ Sa,b. We have λI −ΔT = λI − ζ−1

0 ΔTζ0
= ζ−1

0

(
λζ0I −ΔTζ0

)
. If

λ ∈ Resar(ΔT ), then λI −ΔT is invertible in QM(A), and we have

(λI − T )−1 = ζ−1
0 (λζ0I −ΔTζ0

)−1 ∈ IT,B ⊂ M(B) ⊂ QMr(A),

since in this situation λζ0 ∈ Res(ΔTζ0
), and it follows also from Proposition 6.1

that the IT,B-valued map λ → (λI − T )−1 = ζ−1
0 (λζ0I − ΔTζ0

)−1 is holomorphic
on Resar(ΔT ).

(iii) This follows from Proposition 6.1 applied to λζ and Tζ . �

8. Multivariable functional calculus associated to linear functionals

In the following definition, we write by convention Tj(0) = I for 1 ≤ j ≤ k. Set
σζ = σ1ζ1 + · · ·+ σkζk for σ = (σ1, . . . , σk), ζ = (ζ1, . . . , ζk) ∈ Ck.
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Let a = (a1, . . . , ak) ∈ Rk, b = (b1, . . . , bk) ∈ Rk such that aj ≤ bj ≤ aj + π for
1 ≤ j ≤ k. As in Appendix 2 we set

Ma,b = {(α, β) ∈ Rk × Rk | aj < αj ≤ βj < bj if aj < bj , αj = βj = aj if aj = bj}.

We will say that a family T = (T1, . . . , Tk) of semigroups satisfying the conditions
below is commuting if Tj(ζ)T

′
j(ζ

′) = T ′
j(ζ

′)Tj(ζ) for j′ �= j whenever ζ is in the
domain of definition of Tj and ζ ′ is in the domain of definition of T ′

j .

Definition 8.1. : Let a = (a1, . . . , ak) ∈ Rk, b = (b1, . . . , bk) ∈ Rk such that
aj ≤ bj ≤ aj + π for j ≤ k, let A be a weakly cancellative commutative Banach
algebra with dense principal ideals, and let T = (T1, . . . , Tk) be a commuting family
of semigroups of multipliers on A which possesses the following properties

⎧⎪⎪⎨⎪⎪⎩
Tj = (Tj(ζ))ζ∈(0,eaj .∞) is strongly continuous on (0, eiaj .∞), and
∪t>0T (te

iaj )A is dense in A if aj = bj ,
Tj = (T (ζ))ζ∈Saj,bj

is holomorphic on Saj ,bj , and T (ζ)A is dense in A
for every ζ ∈ Saj ,bj if aj < bj .

For ζ = (ζ1, . . . , ζk) ∈ ∪(α,β)∈Ma,b
Sα,β set

T (ζ) = T1(ζ1) . . . Tk(ζk).

A subalgebra B of QM(A) is said to be a normalization of A with respect to T if
the following conditions are satisfied

(a) (B, ‖.‖B) is a Banach algebra with respect to a norm ‖.‖B satisfying ‖u‖B ≤
‖u‖A for u ∈ A, and there exists a family (w1, . . . , wk) of elements of Ω(A)
such that the inclusion map j : A → B is a QM-homomorphism with respect
to T1(ζ1) . . . Tk(ζk)w1 . . . wk for every family (ζ1, . . . , ζk) of complex numbers such
that ζj ∈ Saj ,bj if aj < bj and such that ζj = 0, if aj = bj .

(b) j̃(M(A)) ⊂ M(B)), and ‖j̃(R)‖M(B) ≤ ‖R‖M(A) for every R ∈ M(A),
where j̃ : QM(A)→ QM(B) is the pseudobounded isomorphism associated to j in
Proposition 2.3 (ii).

(c) lim sup ζ→0
ζ∈Sγ,δ

‖T (ζ)‖M(B) < +∞ for aj < γ < δ < bj if aj < bj , and

lim supt→0+ ‖T (teiaj )‖M(B) < +∞ if aj = bj .

It follows from Proposition 3.2 and Proposition 4.2 that there exists a normal-
ization B1 of A with respect to T1. Also if Bm is a normalization of A with respect to
(T1, . . . , Tm) and if Bm+1 is a normalization of Bm with respect to Tm+1, it follows
from Proposition 2.5 and Definitions 3.3 and 4.3 that Bm+1 is a normalization of A
with respect to (T1, . . . , Tm+1). It is thus immediate to construct a normalization of
A with respect to T by a finite induction. Notice that if B is a normalization of A
with respect to T, then B is a normalization of A with respect to Tσ := (T (tσ))t>0

for every σ ∈ ∪(α,β)∈Ma,b
Sα,β .

Since ∪t>0T (te
iaj )B is dense in B, when aj = bj , and since T (ζ)A is dense

in A for ζ ∈ Saj ,bj if aj < bj , it follows from Definition 10.1 that the map
ζ → T (ζ)u1 . . . uk is continuous on Sα,β for (α, β) ∈ Ma,b, u1, . . . , uk ∈ B. Since
u1 . . . uk ∈ Ω(B) for u1, . . . , uk ∈ Ω(B), it follows again from Definition 10.1 that
the map ζ → T (ζ)u is continuous on Sα,β for (α, β) ∈ Ma,b for every u ∈ B. Let
(α, β) ∈ Ma,b and assume that aj < bj . Since the semigroup Tj is holomorphic
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on Saj ,bj the map η → T (ζ1, ζ2, . . . , ζj−1, η, ζj+1, ζk)u is holomorphic on Sαj ,βj
for

every (ζ1, . . . , ζj−1, ζj+1, ζk) ∈ Π1≤s≤k
s 	=j

Sαs,βs
.

Notice that if u ∈ B, where B is a normalization of A with respect to T, then
the closed subspace BT,u spanned by the set {T (ζ)u | ζ ∈ Sa,b} is separable, and
so the function ζ → T (ζ)u takes its values in a closed separable subspace of B.

With the convention Tj(0) = I for 1 ≤ j ≤ k, we see that if (α, β) ∈ Ma,b

and if λ ∈ ∪(γ,δ)∈Ma−α,b−β
Sγ,δ then T(λ) : ζ → T (λζ) = (T1(λ1ζ1), . . . , Tk(λkζk)) is

well-defined for ζ ∈ Sα,β .

Proposition 8.2. Let (α, β) ∈ Ma,b. For λ ∈ ∪(γ,δ)∈Ma−α,b−β
Sγ,δ, denote by

N(T, λ, α, β) the set of all z ∈ Ck such that

lim sup
t→+∞

|etzje
iω

|‖Tj(tλje
iω)‖ < +∞ for αj ≤ ω ≤ βj , 1 ≤ j ≤ k

,
and denote by N0(T, λ, α, β) the set of all z ∈ Ck such that

lim
t→+∞

|etzjeiω |‖Tj(tλje
iω)‖ = 0 for αj ≤ ω ≤ βj , 1 ≤ j ≤ k.

Then z ∈ N(T, λ, α, β) if, and only if, we have, for 1 ≤ j ≤ k,

lim sup
t→+∞

|etzje
iαj |‖Tj(tλje

iαj )‖ < +∞

and
lim sup
t→+∞

|etzje
iβj |‖Tj(tλje

iβj )‖ < +∞.

Also z ∈ N0(T, λ, α, β) if and only if Re(zje
iαj ) < − limt→+∞

log ‖T (tλje
iαj )‖

t

and Re(zje
iβj ) < − limt→+∞

log ‖T (tλje
iβj )‖

t for 1 ≤ j ≤ k.

Proof. Let j ≤ k such that αj < βj . If αj ≤ ω ≤ βj , there exists r0 > 0 and
s0 > 0 such that eiω = r0e

iαj + s0e
iβj , and we have, for zj ∈ C,

(14) |etzje
iω

|‖Tj(tλje
iω‖ ≤ |er0tzje

iαj

|‖Tj(r0tλje
iαj ‖|es0tzje

iβj

|‖Tj(s0tλje
iβj‖,

and we see that z ∈ N(T, λ, α, β) if and only if we have, for 1 ≤ j ≤ k,

lim sup
t→+∞

|etzje
iαj |‖Tj(tλje

iαj )‖ < +∞ and lim sup
t→+∞

|etzje
iβj |‖Tj(tλje

iβj )‖ < +∞,

which implies that we have

Re(zje
iαj ) ≤ − lim

t→+∞

log ‖T (tλje
iαj‖

t
and Re(zje

iβj ) ≤ − lim
t→+∞

log ‖T (tλje
iβj‖

t
.

A similar argument shows that z ∈ N0(T, λ, α, β) if and only if

Re(zje
iαj ) < − lim

t→+∞

log ‖T (tλje
iαj‖

t
and Re(zje

iβj ) < − lim
t→+∞

log ‖T (tλje
iβj‖

t
,

so that Re(zje
iω) < − limt→+∞

log ‖T (tλje
iω‖

t for αj ≤ ω ≤ βj , 1 ≤ j ≤ k. �

Notice that it follows from equations (16) and (17) in Section 10 that we have
the inclusions

N(T, λ, α, β)− S
∗
α,β ⊂ N(T, λ, α, β) and N(T, λ, α, β)− S∗

α,β ⊂ N0(T, λ, α, β).
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Set again ez(ζ) = ezζ for z ∈ Ck, ζ ∈ Ck. If B is a normalization of A with
respect to T, then sup |ζ|≤1

ζ∈Sα,β

‖T (ζ)‖M(B) < +∞ for (α, β) ∈Ma,b.

It follows then from (14) that if λ ∈ ∪(γ,δ)∈Ma−α,b−δ
Sγ,δ, we have

sup
ζ∈Sα,β

|ez(ζ)|‖T (λζ)‖M(B) < +∞ for z ∈ N(T,α, β, λ),

lim
|ζ|→+∞
ζ∈Sα,β

|ez(ζ)|‖T (λζ)‖M(B) = 0 for z ∈ N0(T, λ, α, β).

With the notations of Sections 10 and 11, we obtain the following result, which
involves the Fourier–Borel transform introduced in Section 10.

Proposition 8.3. Let (α, β) ∈Ma,b, and let λ ∈ ∪(γ,δ)∈Ma−α,b−β
Sγ,δ.

(i) If z ∈ N(T, λ, α, β), then ezT (λ.)u|Sα,β
∈ Vα,β(B), ζj − zj ∈ Resar(λjΔTj

)

for ζ ∈ S∗
a,b, u ∈ B, 1 ≤ j ≤ k, and we have

FB(ezT (λ.)u|Sα,β
)(ζ) = (−1)k

∏
1≤j≤k

((zj − ζj)I + λjΔTj
)−1u.

(ii)If z ∈ N0(T, λ, α, β) then ezT (λ.)u|Sα,β
∈ Uα,β(B), FB(ezT (λ.)u|Sα,β

has a

continuous extension to S
∗
α,β , −zj + ζj ∈ Resar(λjΔj) for 1 ≤ j ≤ k, and we have,

for ζ ∈ S
∗
a,b, u ∈ B,

FB(ezT (λ.)u|Sα,β
)(ζ) = (−1)k

∏
1≤j≤k

((zj − ζj)I + λjΔTj
)−1u.

Proof. It follows from the discussion above that ezT (λ.)u|Sα,β
∈ Vα,β(B) if

z ∈ N(T, λ, α, β), and that ezT (λ.)u|Sα,β
∈ Uα,β(B) if z ∈ N0(T, λ, α, β). Let

z ∈ N(T, λ, α, β), and let u ∈ B. It follows from Definition 10.3 (iii) that we have,
for ζ ∈ S∗

a,b,

FB(ezT (λ.)u|Sα,β
)(ζ)

=

∫ eiω1 .∞

0

· · ·
∫ eiωk .∞

0

∏
1≤j≤k

e(zj−ζj)σjTj(λjσj)udσ1 . . . dσk,

where αj ≤ ωj ≤ βj and where Re(ζje
iωj ) > 0 for 1 ≤ j ≤ k.

Since

Re((ζj − zj)e
iωj ) > lim

t→+∞

log(‖T (tλjωj‖
t

by Proposition 8.2, it follows from Proposition 6.1 and Proposition 7.4 that ζj−zj ∈
Resar(λjΔTj

) for j ≤ k, and that we have, for v ∈ B,

∫ eiωj .∞

0

e(zj−ζj)σjT (λjσj)vdσj = −((zj − ζj)I + λjΔTj
)−1v.

Using Fubini’s theorem, we obtain
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FB(ezT (λ.)u|Sα,β
)(ζ)

= (−1)k((z1 − ζ1)I + λ1ΔT1
)−1 . . . ((zk − ζk)I + λkΔTk

)−1u.

Since N0(T, λ, α, β) ⊂ N(T, λ, α, β)− S∗
α,β , (ii) follows then from (i). �

We now consider the space Fα,β = (∩z∈Cke−zUα,β)′ = ∪z∈Ck(e−zUα,β)′ intro-
duced in Section 11, Definition 11.3. If φ ∈ Fα,β , then Dom(FB(φ)) is the set of all
z ∈ Ck such that φ ∈ (e−zUα,β)′, and the z-Cauchy transform Cz(φ) is defined ac-
cording to Definition 11.3 (iv) for z ∈ Dom(FB(φ)). In the following definition the
action of φ ∈ Fα,β on an element f of e−zVα,β(X) taking values in a closed separa-
ble subspace of B, where z ∈ Dom(FB(φ)), is defined according to Definition 11.3.
by the formula

〈f, φ〉 = 〈ezf, φe−z〉,
where 〈g, φe−z〉 = 〈e−zg, φ〉 for g ∈ Uα,β . It follows from the remarks following
Definition 11.3 that the above definition does not depend on the choice of z.

Definition 8.4. Let (α, β) ∈ Ma,b, let λ ∈ ∪(γ,δ)∈Ma−α,b−β
Sγ,δ, let φ ∈ Fα,β ,

and let B be a normalization of A with respect to T.
For ζ ∈ Sα,β , set T(λ)(ζ) = T (λ1ζ1, . . . , λkζk) = T1(λ1ζ1) . . . Tk(λkζk)}, with

the convention Tj(0) = I.
If N(T, λ, α, β) ∩Dom(FB(φ)) �= ∅, set, for u ∈ B,

〈T(λ), φ〉u = 〈T (λ.)u|Sα,β
, φ〉.

For (α, β) ∈Ma,b, z(1) ∈ Ck, z(2) ∈ Ck, we set as in Definition 11.1

sup(z(1), z(2)) := {z ∈ Ck | z + S
∗
α,β = (z(1) + S

∗
α,β) ∩ (z(2) + S

∗
α,β),

so that sup(z(1), z(2)) is a singleton if aj < bj for j ≤ k.

Lemma 8.5. Let φ1, φ2 ∈ Fα,β , and assume that we have

N(T, λ, α, β) ∩Dom(FB(φ1)) �= ∅, N(T, λ, α, β) ∩Dom(FB(φ2)) �= ∅.
Then if z(1) ∈ N(T, λ, α, β)∩Dom(FB(φ1)), z

(2) ∈ N(T, λ, α, β)∩Dom(FB(φ2)),
we have

sup(z(1), (z(2)) ⊂ N(T, λ, α, β) ∩Dom(FB(φ1)) ∩Dom(FB(φ2))

⊂ N(T, λ, α, β) ∩Dom(FB(φ1 ∗ φ2)),

and the same property holds for N0(T, λ, α, β).

Proof. Assume that z(j) ∈ N(T, λ, α, β) ∩ Dom(FB(φj)), for j = 1, 2, set
z ∈ sup(z(1), z(2)), and let j ≤ k. There exists s1 ∈ {1, 2} and s2 ∈ {1, 2} such that
zj ∈

(
z
(s1)
j + [0, e(−

π
2 −αj)i.∞)

)
∩
(
[z

(s2)
j + [0, e(

π
2 −βj)i.∞)

)
, and it follows from (17)

and from Proposition 8.2 that z ∈ N(T, λ, α, β). The fact that z ∈ Dom(φ1 ∗ φ2)
follows from Proposition 11.6. A similar argument shows that the same property
holds for N0(T, λ, α, β). �

The following theorem involves the notion of z-representative measures and the
notion of z-Cauchy transform, which are introduced in Section 11.
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Theorem 8.6. Let A be a weakly cancellative commutative Banach algebra with
dense principal ideals, let a, b ∈ Rk, let T = (T1, . . . , Tk) be a family of semigroups of
multipliers on A satisfying the conditions of Definition 8.1, let B be a normalization
of A with respect to T. Also let (α, β) ∈Ma,b and let λ ∈ ∪(γ,δ)∈Ma−α,b−β

Sγ,δ.
If N(T, λ, α, β) ∩ Dom(FB(φ)) �= ∅ for some φ ∈ Fα,β , then the following

properties hold
(i) 〈T(λ), φ〉 ∈ M(B) ⊂ QMr(A), and we have, if ν is a z-representative mea-

sure for φ,

〈T(λ), φ〉 =
∫
Sα,β

ezζT (λζ)dν(ζ) (z ∈ N(T, λ, α, β) ∩Dom(FB(φ))),

where the Bochner integral is computed with respect to the strong operator topol-
ogy on M(B). Also, if χ is a character on A, then we have

χ̃
(
〈T(λ), φ〉

)
= FB(φ)(−λ1χ̃(ΔT1

), . . . ,−λkχ̃(ΔTk
)),

where χ̃ denotes the unique character on QM(A) such that χ̃|A = χ.
(ii)

lim
η→(0,...,0),η∈Sα,β

ε→(0,...,0),ε∈S∗
α,β

‖〈e−εT(λ), φ ∗ δη〉u − 〈T(λ), φ〉u‖B = 0 for u ∈ B.

(iii) If αj < βj < αj + π for 1 ≤ j ≤ k, then we have, for η ∈ Sα,β , ε ∈ S∗
α,β ,

z ∈ N(T, λ, α, β) ∩Dom(FB(φ)),

〈e−εT(λ), φ ∗ δη〉 = e−zη

∫
∂̃Sα,β

e(z−ε)σCz(φ)(σ − η)T (λσ)dσ

where the Bochner integral is computed with respect to the strong operator topol-
ogy on M(B).

(iv) In the general case, set

Wn(ζ) =
∏

1≤j≤k

n2(
n+ ζje

i
αj+βj

2

)2 (n ≥ 1, ζ ∈ S
∗
αβ).

Then we have, for z ∈ N(T, λ, α, β) ∩Dom(FB(φ)),
〈T(λ), φ〉

= lim
ε→0

ε∈S∗
α,β

⎛
⎝ lim

n→+∞

(−1)k

(2πi)k

∫
z+∂̃S∗

α,β

Wn(σ − z)FB(φ)(σ)
∏

1≤j≤k

((σj − εj)I + λjΔTj )
−1dσ

⎞
⎠

where the Bochner integral is computed with respect to the norm topology onM(B).
(v) Assume, further, that

∫
z+∂̃S∗

α,β
|FB(φ)(σ)||dσ)| < +∞. Then we have, for

z ∈ N(T, λ, α, β) ∩Dom(FB(φ)),

〈T(λ), φ〉
= lim

ε→0
ε∈S∗

α,β

〈e−εT(λ), φ〉

= lim
ε→0

ε∈S∗
α,β

(−1)k
(2πi)k

∫
z+∂̃S∗

α,β

FB(φ)(σ)
∏

1≤j≤k

((σj − εj)I + λjΔTj
)−1dσ,
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where the Bochner integral is computed with respect to the norm topology on M(B).
(vi) If the condition of (v) is satisfied by z ∈ N0(T, λ, α, β) ∩ Dom(FB(φ)),

then we have

〈T(λ), φ〉 =
(−1)k

(2πi)k

∫
z+∂̃S∗

α,β

FB(φ)(σ)
∏

1≤j≤k

((σjI + λjΔTj )
−1dσ.

(vii) If φ1 ∈ Fα,β , φ2 ∈ Fα,β , and if N(T, λ, α, β) ∩ Dom(FB(φ1)) �= ∅ and
N(T, λ, α, β)∩Dom(FB(φ2)) �= ∅, then N(T, λ, α, β)∩Dom(FB(φ1 ∗φ2)) �= ∅, and

〈T(λ), φ1 ∗ φ2〉 = 〈T(λ), φ1〉〈T(λ), φ2〉.

Proof. (i) Let z ∈ N(T, λ, α, β) ∩Dom(FB(φ)), and set

m := sup
ζ∈Sα,β

|ezζ |‖Tλ(ζ)‖M(B) < +∞.

We have

‖〈Tλ, φ〉u‖B ≤ m‖φez‖U′
α,β

‖u‖B,

and so 〈Tλ, φ〉 ∈ M(B). The integral formula in (i) follows then immediately
from the definition given in Proposition 10.2 and from Definition 11.3.

Assume that A is not radical, let χ be a character on A, and let χ̃ be the
unique character on QM(A) such that χ̃(u) = χ(u) for every u ∈ A. Set fn(t) = 0
if 0 ≤ t < 1

n+1 or if t > 1
n , and fn(t) = n(n + 1) if 1

n+1 ≤ t ≤ 1
n , and let ζ

be an element of the domain of definition of Tj . Set Tj,ζ := (Tj(tζ))t>0. Then
(fn)n≥1 ⊂ L1

ωTj,ζ
(R+) is a Dirac sequence, and since the map t → Tj(tζ)u is

continuous on (0,+∞), a standard argument shows that we have, for s > 0, u ∈ A,

lim sup
n→+∞

∥∥ΦTj,ζ
(fn)Tj(sζ)u− Tj(sζ)u

∥∥
= lim sup

n→+∞

∥∥∥∥∫ +∞

0

(fn ∗ δs)(t)Tj(tζ)udt− Tj(sζ)u

∥∥∥∥ = 0.

Since ∪t>0Tj(tζ)(A) is dense in A, t χ̃(ΦTj,ζ
(fn)) �= 0, for some n ≥ 1, and

the restriction of χ̃ to the Arveson ideal ITj,ζ
is a character on ITj,ζ

. It follows
then from Propositions 5.7 and 7.1 that χ̃(Tj(tζ)) = etχ̃(ΔTj,ζ

) = etζχ̃(ΔTj
) for

t > 0, and so χ̃(Tj(ζ)) = eζχ̃(ΔTj
) for every ζ in the domain of definition of Tj .

Let u ∈ M(B). By continuity, we see that χ̃(Tj(ζ)u) = eζχ̃(ΔTj
)χ̃(u) for every

ζ ∈ Sαj ,βj
. Set λζχ̃(ΔT ) = λ1ζ1χ̃(ΔT1

) + · · · + λkζkχ̃(ΔTk
). Consider again z ∈

N(T, λ, α, β) ∩Dom(FB(φ)). Since

FB(φe−z)(ζ) = 〈e−ζ , φe−z〉 = 〈e−z−ζ , φ〉 = FB(φ)(ζ + z)

for ζ ∈ S
∗
α,β , we obtain
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χ̃(〈T(λ), φ〉)χ̃(u) = χ̃

(∫
Sα,β

ezζT (λζ)udν(ζ)

)

=

∫
Sα,β

ezζ χ̃(T (λζ))χ̃(u)dν(ζ)

=

(∫
Sα,β

ezζeλζχ̃(ΔT )dν(ζ)

)
χ̃(u)

= FB(φe−z)(−λχ(ΔT )− z)χ̃(u)

= FB(φ)(−λχ(ΔT ))χ̃(u),

which concludes the proof of (i), since χ̃(u) �= 0.
(ii) Let u ∈ B, and set f(ζ) = T (λζ)u for ζ ∈ Sα,β . Using Definition 11.3, we

see that (ii) follows from (34) applied to f.
(iii) Define f as above. We have, for ε ∈ S∗

α,β , η ∈ Sα,β , u ∈ B,

〈e−εT(λ), φ ∗ δη〉u = 〈e−εf, φ ∗ δη〉 = 〈(e−ε)ηfη, φ〉 = e−εη〈e−εfη, φ〉,

so (iii) follows from (37).

(iv) The result follows from Proposition 11.9 (i) applied to T(λ)u|Sα,β
, z and φ

for u ∈ B.
(v) The result follows from Proposition 11.9 (ii) applied to T(λ)u|Sα,β

, z and φ

for u ∈ B.
(vi) Now assume that z ∈ N0(T, λ, α, β) ∩Dom(FB(φ)) satisfies the condition

of (v).
There exists ε ∈ S∗

α,β such that z + ε ∈ N0(T, λ, α, β) ∩ Dom(FB(φeε)). We
have

∫
∂Sα,β

eRe(zσ)‖T(λ)(σ)‖M(B)|dσ|

≤
(

sup
ζ∈Sα,β

eRe((z+ε)ζ)‖T(λ)(ζ)‖M(B)

)∫
∂Sα,β

e−Re(εσ)|dσ| < +∞,

and (vi) follows from Proposition 11.9 (iii) applied to T(λ)u|Sα,β
z and φ for

u ∈ B.
(vii) Now assume that φ1 ∈ Fα,β , φ2 ∈ Fα,β satisfy the hypothesis of (vi)

with respect to T and λ, and let z(1) ∈ N(T, λ, α, β) ∩ Dom(FB(φ1)) and z(2) ∈
N(T, λ, α, β) ∩Dom(FB(φ2)). Set z = sup(z(1), z(2)).

It follows from Lemma 8.5 that

z ∈ N(T, λ, α, β) ∩Dom(FB(φ1)) ∩Dom(FB(φ2)) ⊂ N(T, λ, α, β) ∩Dom(FB(φ1 ∗ φ2)).

Let ν1 be a z-representative measure for φ1 and let ν2 be a z-representative measure
for φ2. Then ν1∗ν2 is a z-representative measure for φ1∗φ2, and we have, for u ∈ B,
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〈T(λ), φ1 ∗ φ2〉u

=

∫
Sα,β

ezζT (λζ)ud(ν1 ∗ ν2)(ζ)

=

∫
Sα,β×Sα,β

ez(ζ1+ζ2)T (z(ζ1 + ζ2))udν1(ζ1)dν2(ζ2)[∫
Sα,β

ezζ1T (λζ1)dν1(ζ1)

][∫
Sα,β

ezζ2T (λζ2)udν2(ζ2)

]
= 〈T(λ), φ1〉

(
〈T(λ), φ2〉u

)
,

which proves (vii). �

Let Ga,b = ∪(α,β)∈Ma,b
Fα,β be the dual space introduced in Definition 11.2,

which is an algebra with respect to convolution according to Proposition 11.13. If
φ1 ∈ Fα(1),β(1) , and if φ1 ∈ Fα(2),β(2) , where (α(j), β(j)) ∈ Ma,b for j = 1, 2, then
φ1 ∗ φ2 is well-defined.

But in general the fact that N(T, λ, α(j), β(j))∩Dom(φj) �= ∅ for j = 1, 2 does
not seem to imply that N(T, λ, inf(α(1), α(2)), sup(β(1), β(2)))∩Dom(φ1 ∗φ2) is not
empty, which prevents from obtaining a direct extension of (vi) to the case where
φ1 ∈ Ga,b, φ2 ∈ Ga,b. This difficulty will be circumvented in the next section by
using Fourier–Borel transforms.

9. Multivariable functional calculus associated to holomorphic
functions of several complex variables

In the following definition, the generator ΔTj
of the strongly continuous semi-

group Tj and its Arveson spectrum σar(ΔTj
) are defined according to Section 5 if

aj = bj , and the generator ΔTj
of the holomorphic semigroup Tj and its Arveson

spectrum σar(ΔTj
) are defined according to Section 7 if aj < bj .

Definition 9.1. Let a = (a1, . . . , ak) ∈ Rk, b = (b1, . . . , bk) ∈ Rk such that
aj ≤ bj ≤ aj + π for j ≤ k, let A be a weakly cancellative commutative Ba-
nach algebra having dense principal ideals, and let T = (T1, . . . , Tk) be a family
of semigroups of multipliers on A satisfying the conditions of Definition 8.1. Let
(α, β) ∈Ma,b and let λ ∈ ∪(γ,δ)∈Ma−α,b−β

Sγ,δ.

An open set U ⊂ Ck is said to be admissible with respect to (T, λ, α, β) if
U = Π1≤j≤kUj where the open sets Uj ⊂ C satisfy the following conditions for
some z = (z1, . . . , zk) ∈ N0(T, α, β, λ)

(i) Uj + S
∗
αj ,βj

⊂ Uj

(ii) Uj ⊂ zj + S∗
αj ,βj

, and

∂Uj

= (zj + e(−
π
2 −αj)i.∞, zj + e(−αj−π

2 )is0,j) ∪ γ([0, 1])

∪ (zj + e(
π
2 −βj)is1,j , zj + e(

π
2 −βj)i.∞),

where s0,j ≥ 0, s1,j ≥ 0, and where

γ : [0, 1] → zj + S
∗
αj ,βj

\
(
e(−

π
2
−αj)i.∞, e(−αj−π

2
)is0,j) ∪ (e(

π
2
−βj)is1,j , e

(π
2
−βj)i.∞)

)
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is a one-to-one piecewise-C1 curve such that

γ(0) = e(−αj−π
2
)is0,j and{γ(1) = e(

π
2
−βj)is1,j .

(iii) λjσar(−ΔTj
) = σar(−ΔTj(λj .)) ⊂ Uj .

Conditions (i) and (ii) mean that U is admissible with respect to (α, β) in the
sense of Definition 12.1 and that some, hence all elements z ∈ Ck with respect to
which U satisfies condition (ii) of Definition 12.1 belong to N0(T, α, β, λ). Hence Uj

is a open half-plane if αj = βj , and the geometric considerations about ∂Uj made
in Section 12 when αj < βj apply.

For α = (α1, . . . , αk) ∈ Rk, β = (β1, . . . , βk) ∈ Rk, we will use as in Appendix
3 the obvious conventions

inf(α, β) = (inf(α1, β1), . . . , inf(αk, βk)), sup(α, β) = (sup(α1, β1), . . . , sup(αk, βk)).

Proposition 9.2. If U (1) is admissible with respect to (T, λ, α(1), β(1)) and if
U (2) is admissible with respect to (T, λ, α(2), β(2)), then U (1) ∩ U (2) is admissible
with respect to (T, λ, inf(α(1), α(2)), sup(β(1), β(2))).

Proof. Set
α(3) = inf(α(1), α(2)), β(3) = sup(β(1), β(2)), U (3) = U (1) ∩ U (2).

Then[
∪(γ,δ)∈M

a−α(1),b−β(1)
Sγ,δ

]
∩

[
∪(γ,δ)∈M

a−α(2),b−β(2)
Sγ,δ

]
⊂

[
∪(γ,δ)∈M

a−α(3),b−β(3)
Sγ,δ

]
,

so it makes sense to check whether U (1) ∩ U (2) is admissible with respect to
(T, λ, α(3), β(3)). The fact that U (3) satisfies (i) and (ii) follows from Proposi-
tion 12.2, and the fact that U (3) satisfies (iii) is obvious. �

If an open set U ⊂ Ck is admissible with respect to (T, λ, α, β), we denote as
in Section 12 by H(1)(U) the set of all holomorphic functions F on U satisfying the
condition

‖F‖H(1)(U) := sup
ε∈S∗

α,β

∫
σ∈∂̃U+ε

|F (σ)||dσ| < +∞.

Notice that ∪(α,β)∈Ma,b

(
∪(γ,δ)∈Ma−α,b−β

Sβ,γ

)
= ∪(α,β)∈Ma,b

Sa−α,b−β . The inclu-
sion ∪(γ,δ)∈Ma−α,b−β

Sβ,γ ⊂ Sa−α,b−β for (α, β) ∈ Ma,b is obvious. Conversely as-
sume that λ ∈ Sa−α,b−β for some (α, β) ∈Ma,b. If aj = bj then aj = αj = βj = bj ,
and so λj is a nonnegative real number. In this situation set α′

j = β′
j = aj , γj =

δj = 0. If aj < bj , then aj < αj ≤ βj < bj , and aj − αj ≤ arg(λj) ≤ bj − βj if
λj �= 0.

In this situation set α′
j =

aj+αj

2 , γj = aj − αj , δj = bj − βj and β′
j =

bj+βj

2 .

Then (α′, β′) ∈Ma,b, (γ, δ) ∈Ma−α′,b−β′ , and λ ∈ Sγ,δ, which concludes the proof
of the reverse inclusion.

Definition 9.3. For λ ∈ ∪(α,β)∈Ma,b
Sa−α,b−β = ∪α,β∈Ma,b

(
∪(γ,δ)∈Ma−α,b−β

Sγ,δ

)
,

denote by Nλ the set of all (α, β) ∈ Ma,b such that λ ∈ ∪(γ,δ)∈Ma−α,b−β
Sγ,δ, and

denote by WT,λ the set of all open sets U ⊂ Ck which are admissible with respect
to (T, λ, α, β) for some (α, β) ∈ Nλ.
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Corollary 9.4. Let

λ ∈ ∪(α,β)∈Ma,b
Sa−α,b−β = ∪α,β∈Ma,b

(
∪(γ,δ)∈Ma−α,b−β

Sγ,δ

)
.

The family WT,λ is stable under finite intersections, and ∪U∈WT,λ
H(1)(U) is stable

under products.

Proof. The first assertion follows from the proposition and the second asser-
tion follows from the fact that the restriction of F ∈ H(1)(U) is bounded on U +ε if
U is admissible with respect to (α, β) ∈Ma,b and if ε ∈ S∗

α,β , see Corollary 12.4. �

A set E ⊂ ∪U∈WT,λ
H(1)(U) will be said to be bounded if there exists U ∈ WT,λ

such that E ⊂ H(1)(U) and such that supF∈E ‖F‖H(1)(U) < +∞, and bounded
subsets of ∪U∈WT,λ

H∞(U) are defined in a similar way. A homomorphism φ :

∪U∈WT,λ
H(1)(U)→M(B) will be said to be bounded if φ(E) is bounded for every

bounded subset E of ∪U∈WT,λ
H(1)(U). Also a homomorphism φ : ∪U∈WT,λ

H∞(U)→
QMr(B) = QMr(A) will be said to be bounded if φ(E) is pseudobounded for every
bounded subset E of ∪U∈WT,λ

H∞(U).
Similarly let S(U) be the Smirnov class on U ∈ WT,λ introduced in Defini-

tion 12.6.
A set E ⊂ ∪U∈WT,λ

S(U) will be said to be bounded if there exists U ∈ WT,λ

such that E ⊂ S(U) and such that supF∈E ‖FG‖H∞(U) < +∞ for some strongly
outer function G ∈ H∞(U).

Also a homomorphism φ : ∪U∈WT,λ
S(U)→ QM(B) = QM(A) will be said to

be bounded if φ(E) is pseudobounded for every bounded subset E of ∪U∈WT,λ
S(U).

Let U = Πj≤kUj ∈ WT,λ, and let (α, β) ∈ Nλ such that U is admissible with
respect to (T, λ, α, β). Let ∂Uj be oriented from e−

π
2 −αj .∞ to e

π
2 −βj .∞. This gives

an orientation on the distinguished boundary ∂̃U = Πj≤k∂Uj of U, to be used in
the following theorem.

Theorem 9.5. Let a = (a1, . . . , ak) ∈ Rk, let b = (b1, . . . , bk) ∈ Rk such that
aj ≤ bj ≤ aj + π for j ≤ k, let A be a weakly cancellative commutative Banach
algebra with dense principal ideals, let T = (T1, . . . , Tk) be a family of semigroups
of multipliers on A satisfying the conditions of Definition 8.1 with respect to (a, b)
and A and let B be a normalization of A with respect to T.

(i) For λ ∈ ∪(α,β)∈Ma,b
Sα,β , U ∈ WT,λ, F ∈ H(1)(U), set

F (−λ1ΔT1
, . . . ,−λkΔTk

)

=
1

(2πi)k

∫
∂̃U+ε

F (ζ1, . . . , ζk)(λ1ΔT1
+ ζ1I)

−1 . . . (λ1ΔTk
+ ζkI)

−1dζ1 . . . dζk,

where U is admissible to respect to (T, λ, α, β), with (α, β) ∈ Nλ, and where ε ∈ S∗
α,β

is such that U + ε ∈ WT,λ. Then this definition does not depend on the choice of U
and ε, and the map F → F (−λ1ΔT1

, . . . ,−λkΔTk
) is a bounded algebra homomor-

phism from ∪U∈WT,λ
H(1)(U) into M(B) ⊂ QMr(A).

(ii) For every U ∈ WT,λ there exists G ∈ H(1)(U) ∩H∞(U) such that

G(−λ1ΔT1
, . . . ,−λkΔTk

)(B)
is dense in B, and for every F ∈ H∞(U) there exists a unique RF ∈ QMr(B) =
QMr(A) satisfying

RFG(−λ1T1, . . . ,−λkTk) = (FG)(−λ1T1, . . . ,−λkTk) (G ∈ H(1)(U)).

Licensed to AMS.



A HOLOMORPHIC FUNCTIONAL CALCULUS FOR FINITE FAMILIES 59

The definition of RF does not depend on the choice of U, and if we set
F (−λ1T1, . . . ,−λkTk) = RF ,

the definition of F (−λ1ΔT1
, . . . ,−λkΔTk

) agrees with the definition given in (i)
if F ∈ ∪U∈WT,λ

H(1)(U), and the map F → F (−λ1T1, . . . ,−λkTk) is a bounded
homomorphism from ∪U∈WT,λ

H∞(U) into QMr(B) = QMr(A).
(iii) If (α, β) ∈ Nλ, if φ ∈ Fα,β , and if N0(T, λ, α, β)∩Dom(FB(φ)) �= ∅, then

FB(φ)(−λ1ΔT1
, . . . ,−λkΔTk

) = 〈T(λ), φ〉.
In particular if F (ζ) = e−νζj , where ν ∈ C satisfies νλj ∈ ∪(γj ,δj)∈Maj,bj

Sγj ,δj then
F (−λ1ΔT1

, . . . ,−λkΔTk
) = Tj(νλj).

(iv) If (α, β) ∈ Nλ, if φ ∈ Fα,β , and if N(T, λ, α, β) ∩Dom(FB(φ)) �= ∅, then

〈T(λ), φ〉u = lim
ε→(0,...,0)
ε∈S∗

α,β

FB(φ)(−λ1ΔT1
+ ε1I, . . . ,−λkΔTk

+ εkI)u (u ∈ B).

(v) If U ∈ WT,λ, and if F ∈ H∞(U) is strongly outer on U, then there exists
u ∈ Ω(B) ∩Dom(F (−λ1ΔT1

, . . . ,−λkΔTk
)) such that

F (−λ1ΔT1 , . . . ,−λkΔTk)u ∈ Ω(B).

(vi) For every U ∈ WT,λ and every F ∈ S(U) there exists a unique quasimul-
tiplier RF ∈ QM(B) = QM(A) satisfying

RFG(−λ1T1, . . . ,−λkTk) = (FG)(−λ1T1, . . . ,−λkTk)

for every G ∈ H∞(U) such that FG ∈ H∞(U). The definition of RF does not
depend on the choice of U, and if we set

F (−λ1T1, . . . ,−λkTk) = RF ,

the definition of F (−λ1ΔT1
, . . . ,−λkΔTk

) agrees with the definition given in (ii) if
F ∈ ∪U∈WT,λ

H∞(U), the map F → F (−λ1T1, . . . ,−λkTk) is a bounded homomor-
phism from ∪U∈WT,λ

S(U) into QM(B) = QM(A), and we have, for χ ∈ Spec(A),

χ̃(F (−λ1T1, . . . ,−λkTk)) = F (−λ1χ̃(ΔT1), . . . ,−λkχ̃(ΔTk )) (F ∈ ∪U∈WT,λS(U)),

where χ̃ is the character on QM(A) such that χ̃|A = χ.
(vii) If F (ζ1, . . . , ζk) = −ζj then F (−λ1Δ1, . . . ,−λkΔk) = λjΔTj

.

Proof. In the following we will use the notations
dζ = dζ1 . . . dζk, λΔT = (λ1ΔT1 , . . . , λkΔTk ),

R(−λΔT , ζ) = (−1)k(λ1ΔT1 + ζ1I)
−1 . . . (λkΔTk + ζkI)

−1)

for ζ = (ζ1, . . . , ζk) ∈ −Resar(λΔT ) := −Πk
j=1Resar(ΔTj(λj .)) With these nota-

tions, the formula given in (i) takes the form

F (−λΔT ) =
(−1)k

(2πi)k

∫
∂̃U+ε

F (ζ)R(−λΔT , ζ)dζ.

Clearly, F (−λΔT ) ∈ M(B) ⊂ QMr(A). Let U,U ′ ∈ WT,λ, let (α, β) and (α′, β′)
be the elements of Ma,b associated to U and U ′ and let ε ∈ S∗

α,β and ε′ ∈ S∗
α′,β′

such that U + ε ∈ WT,λ and U ′ + ε′ ∈ WT,λ. Set

V = U + ε, V ′ = U ′ + ε′, V ′′ = V ∩ V ′.
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Then the function G : ζ → F (ζ)R(−λΔT , ζ) is holomorphic on a neighborhood
of V \ V ′′, and it follows from (41) that there exists M > 0 such that |G(ζ)| ≤ M
for ζ ∈ V \ V ′′. The open sets V = Πj≤kVj and V ′′ = Πj≤kV

′′
j have the form

(z+S∗
α,β) \K and (z′′ +S∗

α′′,β′′) \K ′′ where K and K ′′ are compact subsets of Ck,

and where α′′ = inf(α, α′) and β′′ = sup(β, β′). Choose ε′′ ∈ S∗
α′′,β′′ , and denote

by VL,k the intersection of Vk \ V
′′
k with the strip having for boundaries the lines

D1
L = Lei(−

π
2 −αk) + Rε′′k and D2

L = Lei(
π
2 +βk) + Rε′′k . Set

Wn,j(ζj) =
n2(

n+ 1 + (ζj − zj)ei
αj+βj

2

)2 ,

and set Wn(ζ) = Wn,1(ζ1) . . .Wn,k(ζk). Then |Wn(ζ)| < 1 and limn→+∞ Wn(ζ) = 1

for ζ ∈ V .
It follows from Cauchy’s theorem that we have, when L is sufficiently large

0 =

∫
Πj≤k−1∂Vj

[∫
∂VL,k

Wn(ζ)G(ζ)dζk

]
dζ1 . . . dζk−1.

We have, for s = 1, 2,∥∥∥∥∥
∫
(Πj≤k−1∂Vj)×(∂Vk∩Ds

L)

Wn(ζ)G(ζ)dζ

∥∥∥∥∥
≤ M

[
Πj≤k−1

∫
∂Vj

|Wn,j(ζj)||dζj |
]∫

∂Vk∩Ds
L

|Wn,k||dζk|,

and so limL→+∞
∫
(Πj≤k−1∂Vj)×(∂Vk∩Ds

L)
Wn(ζ)G(ζ)dζ = 0. We obtain

∫
∂̃V

Wn(ζ)G(ζ)dζ =

∫
Πj≤k−1∂Vj×∂V ′′

k

Wn(ζ)G(ζ)dζ.

It follows then from the Lebesgue dominated convergence theorem that we have
∫
∂̃V

G(ζ)dζ =

∫
Πj≤k−1∂Vj×∂V ′′

k

G(ζ)dζ.

Using the same argument and a finite induction, we obtain
∫
∂̃V

G(ζ)dζ =

∫
∂̃V ′′

G(ζ)dζ.

Similarly
∫
∂̃V ′ G(ζ)dζ =

∫
∂̃V ′′ G(ζ)dζ, which shows that the definition of

F (−λ1ΔT1
, . . . ,−λkΔTk

)

does not depend on the choice of U and ε.
Now let F ∈ ∪U∈WT,λ

H(1)(U), let G ∈ ∪U∈WT,λ
H(1)(U). There exists an open

set U ∈ WT,λ such that F|U ∈ H(1)(U) and G|U ∈ H(1)(U).
Choose ε ∈ S∗

α,β , where (α, β) is the element of Ma,b associated to U, such that
U + ε ∈ WT,λ, and set V = U + ε

2 , V
′ = U + ε. For M ⊂ {1, . . . , k}, denote by |M |

the cardinal of M, and set M∗ := {1, . . . , k} \M. Then |M∗| = k − |M |. Since
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(λjΔTj
+ ζjI)

−1(λjΔTj
+ σjI)

−1

=
1

σj − ζj

(
(λjΔTj

+ ζjI)
−1 − (λjΔTj

+ σjI)
−1
)
,

we have

F (−λΔT )G(−λΔT ) =
1

(2πi)2k

∫
∂̃V×∂̃V ′

F (ζ)G(σ)R(−λΔT , ζ)R(−λΔT , σ)dζdσ

=
1

(2πi)2k

∑
M⊂{1,...,k}

LM ,

where

(−1)|M |LM :=∫
∂̃V ×∂̃V ′

∏
1≤j≤k

1

σj − ζj
F (ζ)G(σ)

∏
j∈M

(λjΔTj + ζjI)
−1

∏
j′∈CM

(λj′ΔTj′ + σj′I)
−1dζdσ.

Assume that M �= ∅, and for σM = (σj)j∈M , set

Wn,M (σM ) =
∏
j∈M

n2(
n+ 1 + (σj − zj)e

i
αj+βj

2

)2 ,

where z ∈ Ck is choosen so that z + S∗
α,β ⊃ U. It follows from Corollary 12.4 that

G is bounded on V , and so the function

σM → Wn,M (σM )
∏
j∈M

1

σj − ζj
G(σ)

belongs to H(1)(
∏

j∈M

Vj + 1
4 (εj)j∈M ) for σM∗ = (σj)j∈M∗ ∈

∏
j∈M∗

∂V ′
j and ζ ∈

∂̃V. Here we associate to σM = (σj)j∈M and σM∗ = (σj)j∈M∗ the k-uplet σ =
(σj)1≤j≤k.

The open set Πj∈MVj is admissible with respect to the family {(αj , βj)}j∈M ,
and it follows from Theorem 12.5 that we have, for every σM∗ ∈ Πj∈M∗∂V ′

j and
every ζ ∈ ∂̃V ∫

Πj∈M∂V ′
j

Wn,M (σM )
∏
j∈M

1

σj − ζj
G(σ)dσM = 0,

where dσM := Πj∈Mdσj . We then deduce from the Lebesgue dominated conver-
gence theorem that we have

PM (ζ, σM∗)) = 0,

(
σM∗ ∈

∏
j∈M∗

∂V ′
j , ζ ∈ ∂̃V

)
,

where
P (ζ, σM∗) :=

∫
Πj∈M∂Vj

∏
j∈M

1

σj − ζj
G(σ)dσM ,

Define ζM , dζM and dσM∗ as above and set

QM (ζM , σM∗) :=
∏
j∈M

(λjΔTj + ζjI)
−1

∏
j′∈M∗

(λj′ΔTj′ + σj′I)
−1.
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We obtain

(−1)|M |LM

=

∫
∂̃V×(

∏
j′∈M∗

∂V ′
j′ )

∏
j′∈M∗

1

σj′ − ζj′
F (ζ)PM (ζ, σM∗)QM (ζM , σM∗)dζMdσM∗

= 0.

We obtain
F (−λΔT )G(−λΔT )

=
1

(2πi)2k
L∅

=
1

(2πi)2k

∫
∂̃V ′

[∫
∂̃V

F (ζ)

(σ1 − ζ1) . . . (σk − ζk)
dζ

]
G(σ)(λ1Δ1 + σ1I)

−1(λkΔk + σkI)
−1dσ

=
1

(2πi)k

∫
∂̃V ′

F (σ)G(σ)(λ1Δ1 + σ1I)
−1(λkΔk + σkI)

−1dσ

= (FG)(−λΔT ).

So the map F → F (−λΔT ) is an algebra homomorphism from ∪U∈WT,λ
H(1)(U)

into M(B).
Let E be a bounded subset of ∪U∈WT,λ

H(1)(U), let U ∈ WT,λ such that E is a
bounded subset of H(1)(U), let (α, β) be the element of Ma,b associated to U, and
let ε ∈ S∗

α,β be such that U + ε ∈ WT,λ. Set K = supζ∈∂̃U+ε ‖R(−λΔT , ζ)‖M(B).
We have

sup
F∈E

‖F (−λΔT )‖M(B) ≤
K

(2π)k
sup
F∈E

‖F‖H(1)(U) < +∞,

which shows that the map F → F (−λΔT ) is a bounded homomorphism from
∪U∈WT,λ

H(1)(U) into M(B) ⊂ QMr(A).
(ii) Let U ∈ WT,λ, and let (α, β) ∈Ma,b and z ∈ Ck be such that U ⊂ z+S∗

α,β

and (z + S∗
α,β) \ U is bounded. For j ≤ k, set

sj = 1 + sup

⎛
⎜⎜⎝ lim

t→+∞

log

(∥∥∥∥T
(
tλje

i
αj+βj

2

)∥∥∥∥
)

t
,−Re

(
zje

i
αj+βj

2

)⎞
⎟⎟⎠ .

Set T̃j(t) = T (tλje
i
αj+βj

2 ) for t > 0, with the convention T̃j(0) = I, and set, for
f ∈ ∩ζ∈Cke−ζUα,β ,

〈f, φ〉 =
∫
(R+)k

f(t1e
i
α1+β1

2 , . . . , tke
i
αk+βk

2 )e−s1t1−···−sktkdt1 . . . dtk.

Then z ∈ Dom(FB(φ)), and we have, for ζ ∈ Dom(FB(φ)),

FB(φ)(ζ) =
∫
(R+)k

e−t1ζ1e
i
α1+β1

2 ···−tkζke
i
αk+βk

2 e−s1t1+···−sktkdt1 . . . dtk

=
1

(ζ1ei
α1+β1

2 + s1) . . . (ζkei
αk+βk

2 + sk)
,
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〈T(λ), φ〉

=

∫
(R+)k

T1(t1λ1e
i
α1+β1

2 ) . . . Tk(t1λke
i
αk+βk

2 )e−s1t1−···−sktkdt1 . . . dtk

=

[∫ +∞

0

T̃1(t1)e
−s1t1dt1

]
. . .

[∫ +∞

0

T̃k(t1)e
−sktkdtk

]
,

where the Bochner integrals are computed with respect to the strong operator
topology on M(B).

It follows from the observations in Section 5 that
(∫ +∞

0
T̃j(t)e

−sjtdt
)
(B) is

dense in B for 1 ≤ j ≤ k, and so < T(λ), φ > (B) is dense in B. Now set φ1 = φ ∗ φ.
It follows from Theorem 8.6 (vii) that we have

〈T(λ), φ1〉 = 〈Tλ, φ〉2,
and so 〈T(λ), φ1〉(B) is dense in B.

Set F = FB(φ1) = FB(φ)2. Then F ∈ H(1)(U − ε) ∩ H∞(U − ε) for some
ε ∈ S∗

α,β , and we have, using assertion (vi) of Theorem 8.6

F (−λΔT ) =
(−1)k
(2πi)k

∫
z+∂̃S∗

α,β

F (ζ)(λ1ΔT1
+ σ1)

−1 . . . (λkΔTk
+ σk)

−1dσ1 . . . dσk

= 〈T(λ), φ1〉,

which shows that F (−λΔT )(B) is dense in B.
Now consider again U ∈ WT,λ, and let F ∈ H∞(U). Let G0 ∈ H(1)(U) be such

that G0(−λΔT )(B) is dense in B, and let u ∈ Ω(B).
Then G0(−λΔT )u ∈ Ω(B), FG0 ∈ H(1)(U), and so there exists a unique RF ∈

QMr(B) = QMr(A) such that

RFG0(−λΔT )u = (FG0)(−λΔT )u ∈ M(B),

and RF = F (−λΔT ) if F ∈ H(1)(U).
Let U ′ ∈ WT,λ, and let G ∈ H(1)(U ′). We have

RFG(−λΔT )G0(−λΔT ) = RFG0(−λΔT )G(−λΔT )

= (FG0)(−λΔT )G(−λΔT )

= (FG0G)(−λΔT )

= (FG)(−λΔT )G0(−λΔT ),

and so RFG(−λΔT ) = (FG)(−λΔT ), which shows that the definition of RF does
not depend on the choice of U. The map F → RF is clearly linear. Now let
F1 ∈ ∪U∈WT,λ

H∞(U), let F2 ∈ ∪U∈WT,λ
H∞(U), and let G ∈ ∪U∈WT,λ

H(1)(U)
such that G(−λΔT )(B) is dense in B. We have

RF1F2
G2(−λΔT ) = (F1F2G

2)(−λΔT )

= (F1G)(−λΔT )(F2G)(−λΔT )

= RF1
RF2

G2(−λΔT ),

and so RF1F2
= RF1

RF2
since G2(−λΔT )B is dense in B.
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Now let E be a bounded family of elements of ∪U∈WT,λ
H∞(U). There exists

U ∈ WT,λ and M > 0 such that F ∈ H(∞)(U) and ‖F‖H∞(U) ≤ M for every
F ∈ E . Let G ∈ H(1)(U) such that G(−λΔT )(B) is dense in B. Then the family
{FG}F∈E is bounded in H(1)(U), and it follows from (i) that there exists u ∈ Ω(B)
such that supF∈E ‖(FG)(−λΔT )u‖B < +∞.

We obtain

sup
F∈E

‖RFG(−λΔT )u‖B = sup
F∈E

‖(FG)(−λΔT )u‖B < +∞,

and so the family {RF }F∈E is pseudobounded in QM(B) = QM(A) since
G(−λΔT )u ∈ Ω(B). Since the family {λ−nFn}n≥1 is bounded in H∞(U) for
F ∈ H∞(U), λ > (1 + ‖F‖H∞(U))

−1, this shows that RF ∈ QMr(B) = QMr(A)
for F ∈ ∪U∈FH

∞(U), and that the map F → RF is a bounded algebra homomor-
phism from ∪U∈FH

∞(U) into QMr(B) = QMr(A), which concludes the proof of
(ii).

(iii) Let (α, β) ∈ Nλ, let φ ∈ Fα,β , with N0(T, λ, α, β)∩Dom(FB(φ)) �= ∅, and
let z ∈ N0(T, λ, α, β) ∩Dom(FB(φ)). Then z + S∗

α,β is admissible with respect to
(T, λ, α, β). As in the proof of (ii) we can construct φ1 ∈ Fα,β having the following
properties

• z ∈ N0(T, λ, α, β) ∩Dom(FB(φ1)),
• G := FB(φ1) ∈ H(1)(z + S∗

α,β) ∩H∞(z + S∗
α,β),

• 〈T(λ), φ1〉 = G(−λΔT ), and G(−λΔT )(B) is dense in B.
Let ε ∈ S∗

α,β be such that z+ ε+S∗
α,β is admissible with respect to (T, λ, α, β).

It follows from assertions (v) and (vi) of Theorem 8.6 and from (i) and (ii) that we
have

〈T(λ), φ〉FB(φ1)(−λΔT )

= 〈T(λ), φ〉〈T(λ), φ1〉
= 〈T(λ), φ ∗ φ1〉

=
1

(2πi)k

∫
z+ε+S∗

α,β

FB(φ)(σ)FB(φ1)(σ)
∏

1≤j≤k

(λjΔTj
+ σjI)

−1dσ1 . . . dσk

= (FB(φ)FB(φ1))(−λΔT ) = FB(φ)(−λΔT )FB(φ1)(−λΔT ),

and so 〈T(λ), φ〉 = FB(φ)(−λΔT ) since FB(φ1)(−λΔT )(B) is dense in B.
Now let ν ∈ C such that νλj ∈ ∪(γj ,δj)∈Maj,bj

Sγj ,δj ; let νj = (νj,1, . . . , νj,k)

be the k-tuple defined by the conditions νj,s = 0 if s �= j, νj,j = ν. There exists
(γj , δj) ∈ Nλj

such that ν ∈ Sγj ,δj , and there exists (α, β) ∈ Nλ such that αj =

γj and βj = δj . Set F (ζ) = e−νζj for ζ ∈ Ck, and set 〈f, φ〉 = f(νj) for f ∈
∩z∈Cke−zUα,β . Then Dom(FB(φ)) = Ck, and we have, for ζ ∈ Ck,

FB(φ)(ζ) = 〈e−ζ , φ〉 = e−νjζ = e−νζj ,

and so F = FB(φ). Let z ∈ N0(T, λ, α, β) = N0(T, λ, α, β) ∩ Dom(FB(φ)). Let
δνj

be the Dirac measure at νj . Since e−zδνj
is a representing measure for φe−z we

have

F (−λΔT ) = 〈T(λ), φ〉 = Tj(νλj),

which concludes the proof of (iii).
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(iv) Let (α, β) ∈ Nλ, let φ ∈ Fα,β , with N(T, λ, α, β) ∩Dom(FB(φ)) �= ∅. Set
e−εT = (e−ε1T1, . . . , e−εkTk). Then N(T, λ, α, β) ⊂ N0(e−εT, λ, α, β) for ε ∈ S∗

α,β ,

and it follows from Theorem 8.6 (ii) and from (iii) that we have, for u ∈ B,

〈T(λ), φ〉u = lim
ε→(0,...,0)
ε∈S∗

α,β

〈e−εTλ, φ〉u

= lim
ε→(0,...,0)
ε∈S∗

α,β

FB(φ)(e−εT(λ))u

= lim
ε→(0,...,0)
ε∈S∗

α,β

FB(φ)(−λ1T1 + ε1I, . . . ,−λkTk + εkI)u,

which concludes the proof of (iv).
(v) Let U ∈ WT,λ, let F ∈ H∞(U) be strongly outer, and let (Fn)n≥1 be a

sequence of invertible elements of H∞(U) satisfying the conditions of Definition 12.6
with respect to F. It follows from (ii) that there exists G ∈ H(1)(U)∩H∞(U) such
that G(−λΔT )(B) is dense in B. Let (α, β) ∈Ma,b and z ∈ N0(T, λ, α, β) such that
U ⊂ z + S∗

α,β and such that (z + S∗
α,β) \ U is bounded. There exists ε ∈ Ck such

that U + ε ⊂ U is admissible with respect to (T, λ, α, β) and we have

F (−λΔT )F
−1
n (−λΔT )G

2(−λΔT )

=
(−1)k
(2πi)k

∫
ε+∂̃U

F (σ)F−1
n (σ)G2(σ)

∏
1≤j≤k

(λjΔTj
+ σjI)

−1dσ1 . . . dσk,

and it follows from the Lebesgue dominated convergence theorem that

lim
n→+∞

‖F (−λΔT )F
−1
n (−λΔT )G

2(−λΔT )−G2(−λΔT )‖M(B) = 0.

Let u ∈ Ω(B). Then G(−λΔT )u ∈ Dom(F (−λΔT )) ∩ Ω(B). Set

un = F−1
n (−λΔT )G(−λΔT )u ∈ B.

We have
G(−λΔT )

2u2 = lim
n→+∞

F (−λΔT )G(−λΔT )uun.

Since G(−λΔ)2u2 ∈ Ω(B), we have F (−λΔT )G(−λΔT )u ∈ Ω(B), which proves
(v).

(vi) Let U ∈ WT,λ, let F ∈ S(U), let G0 ∈ H∞(U) be a strongly outer function
such that FG0 ∈ H∞(U), and let u ∈ Dom(G0(−λΔT )) such that G0(−λΔT )u ∈
Ω(B). Let v ∈ Ω(B) ∩Dom(FG0(−λΔT )). There exists a unique RF ∈ QM(B) =
QM(A) satisfying the equation

(FG0)(−λΔT )uv = RFG0(−λΔT )uv,

and we have
(FG0)(−λΔT ) = RFG0(−λΔT ),

so that RF = F (−λΔT ) if F ∈ H∞(U).
Let G ∈ ∪V ∈WT,λ

H∞(V ) such that FG ∈ H∞(W ) for some W ∈ WT,λ, and
let w ∈ Ω(B) ∩Dom(G(−λΔT )). We have
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((FG)(−λΔT )vw)G0(−λΔT )u = (FG0)(−λΔT )G(−λΔT )uvw

= RFG0(−λΔT )G(−λΔT )uvw

= (RFG(−λΔT )vw)G0(−λΔT )u.

Since vw (G0(−λΔT )u) ∈ Ω(B), we have (FG)(−λΔT ) = RFG(−λΔT ). So
if we set F (−λΔT ) = RF , we obtain F (−λΔT )G(−λΔT ) = (FG)(−λΔT ) for
every F ∈ ∪U∈WT,λ

S(U) and for every G ∈ ∪U∈WT,λ
H∞(U) such that FG ∈

∪U∈WT,λ
H∞(U). The map F → F (−λΔT ) is clearly linear.

Now let F1 ∈ ∪U∈WT,λ
S(U), F2 ∈ ∪U∈WT,λ

S(U). There exist strongly outer
functions G1 ∈ ∪U∈WT,λ

H∞(U) and G2 ∈ ∪U∈WT,λ
H∞(U) for which we have

F1G1 ∈ ∪U∈WT,λ
H∞(U) and F2G2 ∈ ∪U∈WT,λ

H∞(U). Then

(F1F2)(−λΔT )G1(−λΔT )G2(−λΔT )

= (F1F2G1G2)(−λΔT )

= (F1G1)(−λΔT )(F2G2)(−λΔT )

= F1(−λΔT )F2(−λΔT )G1(−λΔT )G2(−λΔT ).

Since Dom(G1(−λΔT )) ∩ Ω(B) �= ∅ and Dom(G2(−λΔT )) ∩ Ω(B) �= ∅, this
shows that (F1F2)(−λΔT ) = F1(−λΔT )F2(−λΔT ).

So the map F → F (−λΔT ) is an algebra homomorphism from ∪U∈WT,λ
S(U)

into QM(B) = QM(A).
Now let E be a bounded family of elements of ∪U∈WT,λ

S(U). There exists
U ∈ WT,λ and a strongly outer function G ∈ H∞(U) such that FG ∈ H∞(U) for
every F ∈ E and such that supF∈E ‖FG‖H∞(U) < +∞.

So the family {(FG)(−λΔT )}F∈E is a pseudobounded family of elements of
QMr(B) = QMr(A), and there exists u ∈ Ω(B) ∩ (∩F∈EDom((FG)(−λΔT )))
such that supF∈E ‖(FG)(−λΔT )u‖B < +∞. Let v ∈ Dom(G(−λΔT )) ∩Ω(B), and
set w = G(−λΔT )uv. Then w ∈ Ω(B) ∩ (∩F∈EDom(F (−λΔT ))) and

sup
F∈E

‖F (−λΔT )w‖B = sup
F∈E

‖(F (−λΔT )G(−λΔT )uv‖B

≤ sup
F∈E

‖(FG)(−λΔT )u‖B‖v‖B < +∞,

and so the family {F (−λΔT }F∈E is pseudobounded in QM(B) = QM(A), and the
map F → F (−λΔT ) is a bounded algebra homomorphism from ∪U∈WT,λ

S(U) into
QMB) = QM(A), which concludes the proof of (vi).

Now assume that A is not radical, let χ ∈ Spec(A), and let χ̃ be the unique
character on QM(A) such that χ̃(u) = χ(u) for every u ∈ A.

Let F ∈ H(1)(U), where U ∈ WT,λ, let (α, β) be the element of Ma,b associated
to U, and let ε ∈ S∗

α,β be such that U + ε is admissible with respect to (T, λ, α, β).
Since Bochner integrals commute with linear functionals, we have

χ̃ (F (−λ1ΔT1
, . . . ,−λkΔTk

))

=
(−1)k
(2πi)k

∫
∂̃U+ε

F (ζ1, . . . , ζk)
∏

1≤j≤k

(λjχ̃(ΔTj
) + ζjI)

−1dζ1 . . . dζk.

Since U + ε is admissible with respect to (T, λ, α, β), we have
(−λ1χ̃(ΔT1), . . . ,−λkχ̃(ΔTk )) ∈ U + ε,
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and it follows from Theorem 12.5 that we have

χ̃ (F (−λ1ΔT1 , . . . ,−λkΔTk)) = F (−λ1χ̃(ΔT1), . . . ,−λkχ̃(ΔTk )).

Now let F ∈ H∞(U), where U ∈ WT,λ, and let G ∈ H(1)(U) such that
G(−λΔT )(B) is dense in B. Then χ̃(G(−λΔT )) �= 0, and we have

χ̃(F (−λΔT )) =
χ̃((FG)(−λΔT ))

χ̃(G(−λΔT ))
=

(FG)(−λχ̃(ΔT ))

G(−λχ̃(ΔT ))
= F (−λχ̃(ΔT )).

Finally let F ∈ S(U), where U ∈ WT,λ, and let G ∈ H∞(U) be a strongly
outer function such that FG ∈ H∞(U). It follows from (v) that there exists some
u ∈ B such that G(−λΔT )u ∈ Ω(B), and so χ̃(G(−λΔT )) �= 0. The same argument
as above shows then that χ̃(F (−λΔT )) = F (−λχ̃(ΔT )), which concludes the proof
of (vi).

(vii) Set F (ζ1, . . . , ζk) = −ζj , choose ν0 > ν1 > limt→+∞
log ‖Tj(tλj)‖

t , and set
again vν0

(t) = te−ν0t. It follows from Proposition 12.8(ii) that F ∈ S(U) for every
U ∈ WT,λ, and it follows from Proposition 5.5(i) that we have

λjΔTj

∫ +∞

0

vν0(t)Tj(tλj)dt = −
∫ +∞

0

v′ν0(t)Tj(tλj)dt,

where the Bochner integrals are computed with respect to the strong operator
topology on M(B).

Now choose (α, β) ∈ Nλ, and set, for f ∈ ∩z∈Cke−zUα,β ,

〈f, φ0〉 =
∫
[0,+∞)k

f(0, . . . , 0, tj , 0, . . . , 0)vν0(tj)dtj ,

〈f, φ1〉 =
∫
[0,+∞)k

f(0, . . . , 0, tj , 0, . . . , 0)v
′
ν0(tj)dtj .

Then φ0 ∈ Fα,β , φ1 ∈ Fα,β .
Also −ν1λj + S∗

α,β ∈ N0(T, λ, α, β) ∩ Dom(FB(φ0)) ∩ Dom(FB(φ1)), and it
follows from (iii) that we have

∫ +∞

0

vν0(t)Tj(tλj)dt = 〈T(λ), φ0〉 = FB(φ0)(−λΔT ),

∫ +∞

0

v′ν0(t)Tj(tλj)dt = 〈T(λ), φ1〉 = FB(φ1)(−λΔT ).

But FB(φ0)(ζ) = 1
(ν0+ζj)2

,FB(φ1)(ζ) =
ζj

(ν0+ζj)2
= −F (ζ)FB(φ0)(ζ), which

gives

λjΔTj

∫ +∞

0

vν0(t)Tj(tλj)dt = F (−λΔT )

∫ +∞

0

vν0(t)Tj(tλj)dt,

and so F (−λΔT ) = λjΔTj
, since (

∫
[0,∞)n

vν0
(t)Tj(tλj)dt)(B) is dense in B, as

observed in Section 5. �
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10. Appendix 1: Fourier–Borel and Cauchy transforms

In this section we present some certainly well-known results about Fourier–
Borel and Cauchy transforms of linear functionals on some spaces of holomorphic
functions on sectors. The notion of Fourier–Borel transform is classical for elements
θ of the dual of H(Ck), [3], [25], and the Cauchy transform of
θ ∈ H(Ck)′ can be interpreted as the "indicatrice" of its Fourier–Borel transform
FB(θ), see [25], Lemme 3, p.85.

For α < β ≤ α+π denote as usual by Sα,β the closure of the open sector Sα,β ,
and set by convention Sα,α := {teiα}t≥0.

We set

(15) S∗
α,β = S−π/2−α,π/2−β, S

∗
α,β = S−π/2−α,π/2−β.

Notice that S∗
α,α+π = ∅, while S

∗
α,α+π = S−π/2−α,−π/2−α = {−tie−iα}t≥0.

Now asssume that α ≤ β < α + π. Let λ = |λ|eiω ∈ S
∗
α,β and let

ζ = |ζ|eiθ ∈ Sα,β , with −π
2 −α ≤ ω ≤ π

2 −β, α ≤ θ ≤ β. We have −π
2 ≤ ω+ θ ≤ π

2 ,

|e−λζ | = e−|λ||ζ| cos(ω+θ), and we obtain

(16) |e−λζ | < 1 (λ ∈ S∗
α,β, ζ ∈ Sα,β \ {0}).

(17) |e−λζ | ≤ 1 (λ ∈ S
∗
α,β , ζ ∈ Sα,β).

Definition 10.1. Let α, β ∈ Rk such that αj ≤ βj < αj +π for 1 ≤ j ≤ k. Set

Sα,β :=
k∏

j=1

Sαj ,βj
, S∗

α,β :=
k∏

j=1

S∗
αj ,βj

, S
∗
α,β :=

k∏
j=1

S
∗
αj ,βj

. If, further, αj < βj for

1 ≤ j ≤ k, set Sα,β :=
k∏

j=1

Sαj ,βj
.

Let X be a Banach space. We denote by Uα,β(X) the set of all continu-
ous X-valued functions f on Sα,β satisfying lim|z|→+∞

z∈Sα,β

‖f(z)‖X = 0 such that

the map ζ → f(ζ1, ζ2, . . . , ζj−1, ζ, ζj+1, . . . , ζk) is holomorphic on Sαj ,βj
for every

(ζ1, . . . , ζj−1, ζj+1, . . . , ζk) ∈
∏

1≤s≤k
s 	=j

Sαs,βs
when αj < βj .

Similarly we denote by Vα,β(X) the set of all continuous bounded X-valued
functions f on Sα,β such that the map ζ → f(ζ1, ζ2, . . . , ζj−1, ζ, ζj+1, . . . , ζk) is holo-
morphic on Sαj ,βj

for every (ζ1, . . . , ζj−1, ζj+1, . . . , ζk) ∈
∏

1≤s≤k
s 	=j

Sαs,βs
when αj < βj .

The spaces Uα,β(X) and Vα,β(X) are equipped with the norm
‖f‖∞ = supz∈Sα,β

‖f(z)‖X , and we will write Uα,β := Uα,β(C),Vα,β := Vα,β(C).
A representing measure for φ ∈ U ′

α,β is a measure of bounded variation νon
Sα,β satisfying

(18) 〈f, φ〉 =
∫
Sα,β

f(ζ)dν(ζ) (f ∈ Uα,β).

.
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Set I := {j ≤ k | αj = βj}, J := {j ≤ k | αj < βj}. Since separate holomorphy
with respect to each of the variables zj , j ∈ J implies holomorphy with respect
to zJ = (zj)j∈J , the map zJ → f(zI , zJ ) is holomorphic on Πj∈JSαj ,βj

for every
zI ∈ Πj∈ISαj ,αj

.

For z = (z1, . . . , zk), ζ = (ζ1, . . . , ζk) ∈ Ck, set again ez(ζ) = ez1ζ1···+zkζk . Also
set, if X is a separable Banach space, and if α, β ∈ Rk satisfy the conditions above

(19) U∗
α,β(X) = U(−π/2−α1,...,−π/2−αk),(π/2−β1,...,π/2−βk)(X),

(20) V∗
α,β(X) = V(−π/2−α1,...,−π/2−αk),(π/2−β1,...,π/2−βk)(X),

with the conventions U∗
α,β = U∗

α,β(C), V∗
α,β = V∗

α,β(C).

Proposition 10.2. Let φ ∈ U ′
α,β , and let X be a separable Banach space. Set,

for f ∈ Vα,β(X),

〈f, φ〉 =
∫
Sα,β

f(ζ)dν(ζ),

where ν is a representing measure for φ. Then this definition does not depend
on the choice of ν, and we have

(21) 〈f, φ〉 = lim
ε→0

ε∈S
∗
α,β

〈e−εf , φ〉.

Proof. It follows from (16) and (17) that if f ∈ Vα,β(X), ε ∈ S∗
α,β , then

e−εf ∈ Uα,β(X). If f ∈ Uα,β(X), then we have, for l ∈ Uα,β(X)′,〈∫
Sα,β

f(ζ)dν(ζ), l

〉
=

∫
Sα,β

〈f(ζ), l〉dν(ζ) = 〈〈f(ζ), l〉, φ〉,

which shows that the definition of 〈f, φ〉 does not depend on the choice of ν.
Now if f ∈ Vα,β(X), it follows from the Lebesgue dominated convergence theorem
that we have∫

Sα,β

f(ζ)dν(ζ) = lim
ε→0

ε∈S∗
α,β

∫
Sα,β

e−ε(ζ)f(ζ)dν(ζ) = lim
ε→0

ε∈S∗
α,β

〈e−εf, φ〉,

and we see again that the definition of 〈f, φ〉 does not depend on the choice of
the measure ν. �

We now introduce the classical notions of Cauchy transforms and Fourier–Borel
transforms.

Definition 10.3. Let φ ∈ U ′
α,β , and let f ∈ Vα,β(X).

(i) The Fourier–Borel transform of φ is defined on S
∗
α,β by the formula

FB(φ)(λ) = 〈e−λ, φ〉 (λ ∈ S
∗
α,β).

(ii) The Cauchy transform of φ is defined on Π1≤j≤k(C\Sαj ,βj
) by the formula

Licensed to AMS.



70 JEAN ESTERLE

C(φ)(λ) = 1

(2πi)k
〈 1

(ζ − λ)
, φζ〉

:=
1

(2πi)k
〈 1

ζ1 − λ1
. . .

1

ζk − λk
, φζ1,...,ζk 〉

(λ = (λ1, . . . , λk) ∈
∏

1≤j≤k

(C \ Sαj ,βj )).

(iii) The Fourier–Borel transform of f is defined on Π1≤j≤k(C \ −S
∗
αj ,βj

) by
the formula

FB(f)(λ) =
∫ eiω.∞

0

e−λζf(ζ)dζ

:=

∫ eiω1 .∞

0

· · ·
∫ eiωk .∞

0

e−λ1ζ1−···−λkζkf(ζ1, . . . , ζk)dζ1 . . . dζk

(λ = (λ1, . . . , λk) ∈
∏

1≤j≤k

(C \ −S
∗
αj ,βj

)),

where αj ≤ ωj ≤ βj and where Re(λje
iωj ) > 0 for 1 ≤ j ≤ k.

It follows from these definitions that C(φ) is holomorphic on
Π1≤j≤k(C \ Sαj ,βj

) for φ ∈ U ′
α,β , and that FB(f) is holomorphic on

Π1≤j≤k(C \ −S
∗
αj ,βj

) for f ∈ Vα,β(X). Also using Proposition 10.2 we see that
FB(φ) ∈ V∗

α,β := V−π
2 −α,π2 −β for φ ∈ U ′

α,β .

Proposition 10.4. Let φ ∈ U ′
α,β . For 1 ≤ j ≤ k, set Iη,j = (π2 − η, π

2 − βj ]

for η ∈ (βj , αj + π], Iη,j = (−π
2 − αj ,

π
2 − βj) for η ∈ (αj + π, βj + π], and set

Iη,j := (−π
2 − αj ,

3π
2 − η) for η ∈ (βj + π, αj + 2π). Then Iη,j ⊂ [−π

2 − αj ,
π
2 − βj ],

cos(η+ s) < 0 for s ∈ Iη,j , and if λ = (λ1, . . . , λk) ∈
∏

1≤j≤k

(C \Sαj ,βj
), we have for

ω = (ω1, . . . , ωk) ∈
∏

1≤j≤k

Iarg(λj),j ,

C(φ)(λ) = 1

(2πi)k

∫ eiω.∞

0

eλσFB(φ)(σ)dσ

:=
1

(2πi)k

∫ eiω1 .∞

0

· · ·
∫ eiωk .∞

0

eλ1σ1+···+λkσkFB(φ)(σ1, . . . , σk)dσ1 . . . dσk.

Proof. It follows from the definition of Iη,j that Iη,j ⊂ [−π
2 − αj ,

π
2 − βj ]. In

the second case we have obviously π
2 < η + s < 3π

2 for s ∈ Iηj
. In the first case we

have π
2 < η + s < π

2 + η − βj ≤ 3π
2 + αj − βj < 3π

2 for ω ∈ Iη,j and in the third
case we have 3π

2 > η + s > π + βj − π
2 − αj > π

2 for ω ∈ Iη,j . We thus see that
cos(η + s) < 0 for η ∈ (βj , 2π + αj), ω ∈ Iη,j .

Now assume that λ ∈ Π1≤j≤k(C \ Sαj ,βj
), let ηj ∈ (βj , 2π + αj) be a deter-

mination of arg(λj), let ν be a representing measure for φ and let ω ∈ Π1≤j≤kIηj
.

Then FB(φ) is bounded on S−π
2 −α,π2 −β, and since cos(ηj + ωj) < 0 for j ≤ k, we

have
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1

(2πi)k

∫ eiω.∞

0

eλσFB(φ)(σ)dσ =
1

(2πi)k

∫ eiω.∞

0

eλσ

[∫
Sα,β

e−σζdν(ζ)

]
dσ

=
1

(2πi)k

∫
Sα,β

[∫ eiω.∞

0

eσ(λ−ζ)dσ

]
dν(ζ)

=

∫
Sα,β

1

ζ − λ
dν(ζ)

= C(φ)(λ).

�

Now identify the space M(Sα,β) of all measures of bounded variation on Sα,β

to the dual space of the space C0(Sα,β) of continuous functions on Sα,β vanishing
at infinity via the Riesz representation theorem.The convolution product of two
elements of M(Sα,β) is defined by the usual formula

∫
Sα,β

f(ζ)d(ν1 ∗ ν2)(ζ) :=
∫
Sα,β×Sα,β

f(ζ + ζ′)dν1(ζ)dν2(ζ
′) (f ∈ C0(Sα,β)).

Proposition 10.5. Let X be a separable Banach space.
(i) For f ∈ Vα,β(X), λ ∈ Sα,β , set fλ(ζ) = f(ζ + λ). Then fλ ∈ Vα,β(X) for

f ∈ Vα,β(X), fλ ∈ Uα,β(X) and the map λ → fλ belongs to Uα,β(Uα,β(X)) for
f ∈ Uα,β(X). Moreover if we set, for φ ∈ U ′

α,β ,

fφ(λ) = 〈fλ, φ〉,

then fφ ∈ Vα,β(X) for f ∈ Vα,β(X), and fφ ∈ Uα,β(X) for f ∈ Uα,β(X).
(ii) For φ1 ∈ U ′

α,β , φ2 ∈ U ′
α,β , set

〈f, φ1 ∗ φ2〉 = 〈fφ1 , φ2〉 (f ∈ Uα,β).

Then φ1 ∗ φ2 ∈ U ′
α,β , ν1 ∗ ν2 is a representing measure for φ1 ∗ φ2 if ν1 is a

representing measure for φ1 and if ν2 is a representing measure for φ2, and we have

〈f, φ1 ∗ φ2〉 = 〈fφ1 , φ2〉 (f ∈ Vα,β(X)),

FB(φ1 ∗ φ2) = FB(φ1)FB(φ2).

Proof. These results follow from standard easy verifications which are left to
the reader. We will just prove the last formula. Let φ1 ∈ U ′

α,β , φ2 ∈ U ′
α,β . We have,

for z ∈ S
∗
α,β , λ ∈ Sα,β , ζ ∈ Sα,β ,

(e−z)λ(ζ) = e−z1(λ1+ζ1)···−zk(λk+ζk) = e−z(λ)e−z(ζ),

so (e−z)λ = e−z(λ)e−z, (e−z)φ1
(λ) = 〈(e−z)λ, φ1〉 = e−z(λ)FB(φ1)(z), (e−z)φ1

=
FB(φ1)(z)e−z, and
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FB(φ1 ∗ φ2)(z) = 〈(e−z)φ1 , φ2〉 = FB(φ1)(z)〈e−z, φ2〉 = FB(φ1)(z)FB(φ2)(z).

�

For η ∈ Sα,β , denote by δη the Dirac measure at η. We identify δη to the linear
functional f → f(η) on Uα,β . With the above notations, we have, for f ∈ Vα,β(X),
φ ∈ U ′

α,β ,

fδη = fη, 〈f, φ ∗ δη〉 = 〈fη, φ〉.

If f ∈ Uα,β(X), we have lim ε→0
ε∈S∗

α,β

‖e−εf − f‖∞ = 0 = lim η→0

η∈Sα,β

‖fη − f‖∞. We

obtain, since ‖e−εf‖∞ ≤ ‖f‖∞ for f ∈ Uα,β , ε ∈ S
∗
α,β ,

(22) lim
ε→0,ε∈S∗

α,β

η→0,η∈Sα,β

‖e−εfη − f‖∞ = 0 (f ∈ Uα,β(X).

Now let f ∈ Vα,β(X), let φ ∈ U ′
α,β , and let ν be a representative measure for

φ. Since

〈e−ε, fη〉 =
∫
Sα,β

e−εζf(ζ + η)dν(ζ),

and since 〈e−εf, φ ∗ δη〉 = e−εη〈e−εfη, φ〉, it follows from the Lebesgue dominated
convergence theorem that we have

(23) 〈f, φ〉 = lim
ε→0,ε∈S∗

α,β

η→0,η∈Sα,β

〈e−εfη, φ〉 = lim
ε→0,ε∈S∗

α,β

η→0,η∈Sα,β

〈e−εf, φ ∗ δη〉 (f ∈ Vα,β(X), φ ∈ U ′
α,β).

In the following we will denote by ∂̃Sα,β = Π1≤j≤k∂Sαj ,βj
the distinguished bound-

ary of Sα,β , where ∂Sαj ,βj
= (eiαj .∞, 0] ∪ [0, eiβj .∞) is oriented from eiαj .∞ to-

wards eiβj .∞.
The following standard computations allow to compute in some cases 〈f, φ〉 by

using the Cauchy transform when αj < βj for j ≤ k.

Proposition 10.6. Assume that αj < βj < αj + π for 1 ≤ j ≤ k, and let
φ ∈ U ′

α,β . If f ∈ Vα,β(X), and if∫
∂̃Sα,β

‖f(σ)‖X |dσ| < +∞,

then we have, for η ∈ Sα,β ,

(24) 〈fη, φ〉 = 〈f, φ ∗ δη〉 =
∫
∂̃Sα,β

C(φ)(σ − η)f(σ)dσ.

In particular we have, for f ∈ Vα,β(X), ε ∈ S∗
α,β , η ∈ Sα,β ,

(25) e−εη〈e−εfη, φ〉 = 〈e−εf, φ ∗ δη〉 =
∫
∂̃Sα,β

e−εσC(φ)(σ − η)f(σ)dσ
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Proof. Let f ∈ Vα,β(X) such that supσ∈Sα,β
(1+ |σ|)2k‖f(σ)‖ < +∞, and let

ν ∈M(Sα,β) be a representing measure for φ. For R > 0, j ≤ k, we denote by ΓR,j

the Jordan curve {Reiω}αj≤ω≤βj
∪ [Reiβj , 0]∪ [0, Reiαj ], oriented counterclockwise.

We have, for η ∈ Sα,β , σ ∈ Π1≤j≤k∂Sαj ,βj
,

|C(φ)(σ − η)| ≤ 1

(2π)k
‖φ‖U′

α,β

∏
1≤j≤k

dist(∂Sαj,βj − ηj , ∂Sαj ,βj )
−1.

It follows then from Fubini’s theorem and Cauchy’s formula that we have∫
∂̃Sα,β

C(φ)(σ − η)f(σ)dσ

=

∫
Sα,β

[
1

2πi)k

∫
∂̃Sα,β

f(σ)

ζ − σ + η
dσ

]
dν(ζ)

=

∫
Sα,β

lim
R→+∞

1

(2πi)k

[∫
ΓR,1

· · ·
∫
ΓR,k

f(σ)

(σ1 − ζ1 − η1) . . . (σk − ζk − ηk)
dσ

]
dν(ζ)

=

∫
Sα,β

f(ζ + η)dν(ζ) = 〈f, φ ∗ δη〉.

Formula (26) follows from this equality applied to e−εf. Taking the limit as ε →
0, ε ∈ S∗

α,β in formula (26), we deduce formula (25) from the Lebesgue dominated
convergence theorem. �

The following result is indeed standard, but we give a proof for the convenience
of the reader.

Proposition 10.7. Set Eα,β := {f = e−σ : σ ∈ Πj≤k(0, e
−i

αj+βj
2 .∞)}. Then

the linear span of Eα,β is dense in Uα,β , and the Fourier–Borel transform is one-
to-one on U ′

α,β .

Proof. Set J1 = {j ∈ {1, . . . , k} | αj = βj}, J2 := {j ∈ {1, . . . , k} | αj < βj},
denote by U1 the space of continuous functions on S1 = Πj∈J1

Sαj ,βj
vanishing at

infinity, set S2 := Πj∈J2
Sαj ,βj

, and denote by U2 the space of continuous func-
tions on S2 vanishing at infinity which satisfy the same analyticity condition as in
Definition 10.1 with respect to S2. Also set

E1 :=

⎧⎨⎩f = e−σ : σ ∈
∏
j∈J1

(0, e−i
αj+βj

2 .∞)

⎫⎬⎭ ,

E2 :=

⎧⎨⎩f = e−σ : σ ∈
∏
j∈J2

(0, e−i
αj+βj

2 .∞)

⎫⎬⎭ .

Assume that J1 �= ∅. Then the complex algebra span(E1) is self-adjoint and sep-
arates the point on U1, and it follows from the Stone–Weierstrass theorem applied
to the one-point compactification of S1 that span(E1) ⊕ C.1 is dense in U1 ⊕ C.1,
which implies that span(E1) is dense in U1 since U1 is the kernel of a character on
U1 ⊕ C.1.

Now assume that J2 �= ∅, set S∗
2 = Πj∈J2

S−π
2 −αj ,

π
2 −βj

, let φ ∈ U ′
2, and define

the Cauchy transform and the Fourier–Borel transform of φ as in Definition 10.3.
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Assume that 〈f, φ〉 = 0 for φ ∈ E2. If j ∈ J2, then g = 0 for every holomorphic
function g on S∗

αj ,βj
which vanishes on (0, e−i

αj+βj
2 .∞). An immediate finite in-

duction shows then that FB(φ) = 0 since FB(φ) is holomorphic on S∗
2 . It follows

then from Proposition 10.4 that C(φ) = 0, and it follows from (23) and (26) that
〈f, φ〉 = 0 for every f ∈ U2. Hence φ = 0, which shows that span(E2) is dense in
U2. This shows that span(Eα,β) is dense in Uα,β if J1 = ∅ or if J2 = ∅.

Now assume that J1 �= ∅ and J2 �= ∅, and denote by E ⊂ Uα,β the set of products
f = gh, where g ∈ U1 and h ∈ U2. The space U1 = C0(S1) is a closed subspace of
codimension one of C(S1 ∪ {∞}). Since the space C(K) has a Schauder basis for
every compact space K, [4],[33], the space U1 has a Schauder basis. Identifying the
dual space of U1 to the space of measures of bounded variation on S1, this means
that there exists a sequence (gn)n≥1 of elements of U1 and a sequence (νn)n≥1 of
measures of bounded variation on S

1
such that we have

g =

+∞∑
n=1

(∫
S1

g(η)dνn(η)

)
gn (g ∈ U1),

where the series is convergent in (U1, ‖.‖∞).

Set Pm(g) =
m∑

n=1

(∫
S1

g(η)dνn(η)
)
gn for g ∈ U1,m ≥ 1. Then Pm : U1 → U1

is a bounded linear operator, and lim supm→+∞ ‖Pm(g)‖ ≤ ‖g‖ < +∞ for every
g ∈ U1. It follows then from the Banach–Steinhaus theorem that there exists M > 0
such that ‖Pm‖B(U1) ≤ M for m ≥ 1, a standard property of Schauder bases in
Banach spaces.

Now let φ ∈ U ′
α,β such that 〈f, φ〉 = 0 for f ∈ E, let ν be a representing measure

for φ, and let f ∈ Uα,β . The function fζ = η → f(η, ζ) belongs to U1 for ζ ∈ S2,
and a routine verification shows that the function hn : ζ →

∫
S1

fζ(σ)dνn(σ) =∫
S1

f(ζ, η)dνn(η) belongs to U2 for n ≥ 1. Since the evaluation map g → g(η) is
continuous on U1 for η ∈ S1, we obtain, for η ∈ S1, ζ ∈ S2,

f(η, ζ) = lim
m→+∞

m∑
n=1

gn(η)hn(ζ).

We have, for m ≥ 1, η ∈ S1, ζ ∈ S2,∣∣∣∣∣
m∑

n=1

gn(η)hn(ζ)

∣∣∣∣∣ ≤ ‖Pm(fζ)‖∞ ≤ M‖fζ‖∞ ≤ M‖f‖∞.

It follows then from the Lebesgue dominated convergence theorem that

∫
Sα,β

f(η, ζ)dν(η, ζ) = lim
m→+∞

m∑
n=1

∫
Sα,β

gn(η)hn(ζ)dν(η, ζ) = 0.

This shows that span(E) is dense in Uα,β . Since span(E1) is dense in U1 and
span(E2) is dense in U2, span(Eα,β) is dense in span(E), and so span(Eα,β) is
dense in Uα,β .

Now let φ ∈ U ′
α,β . If FB(φ) = 0, then 〈f, φ〉 = 0 for every f ∈ Eα,β , and

so φ = 0 since span(Eα,β) is dense in Uα,β , which shows that the Fourier–Borel
transform is one-to-one on Uα,β . �
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We will now give a way to compute 〈f, φ〉 for f ∈ Vα,β(X), φ ∈ U ′
α,β by using

Fourier–Borel transforms. For σ ∈ Π1≤j≤k

(
C \ S∗

αj ,βj

)
, define e∗σ ∈ U ′

α,β by using
the formula

(26) 〈f, e∗σ〉 = FB(f)(−σ).

Also for φ ∈ U ′
α,β , g ∈ Uα,β , define φg ∈ U ′

α,β by using the formula

〈f, φg〉 = 〈fg, φ〉 (f ∈ Uα,β).

It follows from Definition 10.3 that if σ = (σ1, . . . , σk) ∈ Π1≤j≤k

(
C \ S∗

αj ,βj

)
,

we have, for f ∈ Uα,β ,

〈f, e∗σ〉 =
∫ eiω .∞

0

eσζf(ζ)dζ,

where ω = (ω1, . . . , ωk) satisfies αj ≤ ωj ≤ βj , Re(σje
iωj ) < 0 for 1 ≤ j ≤ k,

which gives

‖e∗σ‖∞ ≤
∏

1≤j≤k

∫ ∞

0

etRe(σje
iωj )dt =

1∏
1≤j≤k

(−Re(σjωj))
.

The same formula as above holds with the same ω to compute 〈f, e∗σ′〉 for
σ′ ∈ Π1≤j≤k

(
C \ S∗

αj ,βj

)
when |σ − σ′| is sufficiently small, and so the map σ →

e∗σ ∈ U ′
α,β is holomorphic on Π1≤j≤k

(
C \ S∗

αj ,βj

)
since the L1(R+)-valued map

λ→ e−λ is holomorphic on the open half-plane P+ := {λ ∈ C | Re(λ) > 0}.
Now let ε ∈ S∗

α,β and let ω ∈ Π1≤j≤k[αj , βj ] such that Re(εje
iωj ) > 0 for

1 ≤ j ≤ k. Then σ− ε ∈ Π1≤j≤k

(
C \ S∗

αj ,βj

)
for σ ∈ ∂̃S∗

α,β , and we have Re((σj −
εj)e

iωj ) ≤ −Re(εje
iωj ) < 0 for 1 ≤ j ≤ k. We obtain

‖e∗σ−ε‖ ≤ 1∏
1≤j≤k

Re(εjeiωj )
,

and so supσ∈∂̃S∗
α,β
‖e∗σ−ε‖∞ < +∞ (ε ∈ S∗

α,β).

We now give the following certainly well-known natural result.

Proposition 10.8. Let φ ∈ U ′
α,β . Assume that∫

∂̃S∗
α,β

|FB(φ)(σ)||dσ| < +∞.

Then we have, for ε ∈ S∗
α,β ,

φe−ε =
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)e∗σ−εdσ,

where the Bochner integral is computed in (U ′
α,β , ‖.‖∞), which gives
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(27) 〈fe−ε, φ〉 =
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)FB(f)(−σ + ε)dσ (f ∈ Vα,β(X)).

Proof. Since the map σ → e∗σ−ε ∈ U ′
α,β is continuous on ∂̃S∗

α,β , and since
supσ∈∂̃S∗

α,β
‖e∗σ−ε‖∞ < +∞, the Bochner integral

∫
∂̃S∗

α,β
FB(φ)(σ)e∗σ−εdσ is well-

defined in (U ′
α,β , ‖.‖∞). Set φε := 1

(2πi)k

∫
∂̃S∗

α,β
FB(φ)(σ)e∗σ−εdσ ∈ U ′

α,β . Since the

map φ→ FB(φ)(ζ) is continuous on U ′
α,β , we have, for ζ ∈ Sα,β ,

FB(φε)(ζ) =
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)FB(e∗σ−ε)(ζ)dσ

=
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)〈e−ζ , e
∗
σ−ε〉dσ.

It follows from (27) that 〈e−ζ , e
∗
σ−ε〉 = FB(e−ζ)(ε−σ). Let ω ∈ Π1≤j≤k[αj , βj ]

such that Re(εje
iωj ) > 0 for j ≤ k. Since Re((σj − εj)e

iωj ) ≤ −Re(εje
iωj ) < 0 for

1 ≤ j ≤ k, we have, for σ ∈ ∂̃S∗
α,β ,

FB(e−ζ)(ε− σ) =

∫ eiω.∞

0

e(σ−ε)ηe−ζ(η)dη

=

∫ eiω.∞

0

e(σ−ε−ζ)ηdη

=
1∏

1≤j≤k

(ζj + εj − σj)
.

Using the notation 1
ζ+ε−σ := 1

Π1≤j≤k(ζj+εj−σj)
, this gives

FB(φε)(ζ) =
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)
ζ + ε− σ

dσ.

As in Appendix 3, set Wj,n(ζj) =
n2(

n+e
αj+βj

2
iζj

)2 for n ≥ 1, ζj ∈ S
∗
αj ,βj

, and

set Wn(ζ) = Πj≤kWn,j(ζj) for ζ ∈ S
∗
α,β .

Then |Wn,j(ζj)| ≤ 1 for ζj ∈ S
∗
αj ,βj

, Wn(ζ) → 1 as n → ∞ uniformly on
compact sets of S

∗
α,β , and lim |ζ|→∞

ζ∈S∗
α,β

Wn(ζ) = 0. The open set S∗
α,β is admissible

with respect to (α, β) in the sense of Definition 12.1 and, since FB(φ) is bounded
on S∗

α,β , FB(φ)Wn ∈ H(1)(S∗
α,β) for n ≥ 1. It follows then from Theorem 12.5 that

we have, for t ∈ (0, 1), ζ ∈ S
∗
α,β ,

1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ + tε)Wn(σ + tε)

ζ + (1− t)ε− σ
dσ

=
1

(2πi)k

∫
∂̃S∗

α,β+tε

FB(φ)(σ)Wn(σ)

ζ + ε− σ
dσ = FB(φ)(ζ + ε)Wn(ζ + ε),

and it follows from the Lebesgue dominated convergence theorem that we have
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1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)Wn(σ)

ζ + ε− σ
dσ = FB(φ)(ζ + ε)Wn(ζ + ε).

Taking the limit as n→ +∞, and using again the Lebesgue dominated conver-
gence theorem, we obtain, for ζ ∈ S

∗
α,β ,

FB(φε)(ζ) =
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)
ζ + ε− σ

dσ = FB(φ)(ζ + ε)

= 〈e−ζe−ε, φ〉
= 〈e−ζ , φe−ε〉 = FB(φe−ε)(ζ),

and it follows from the injectivity of the Fourier–Borel transform on U ′
α,β that

φε = φe−ε.

This gives, for f ∈ Vα,β(X), since 〈f, e∗σ−ε〉 = FB(f)(−σ + ε) for σ ∈ ∂̃S∗
α,β ,

〈fe−ε, φ〉 = 〈f, φe−ε〉 =
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)〈f, e∗σ−ε〉dσ

=
1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)FB(f)(−σ + ε)dσ.

�

For J ⊂ {1, . . . , k}, set
• PJ,j = C \ −S−π

2 −αj ,
π
2 −αj

, ωJ,j = αj for j ∈ J,
• PJ,j = C \ −S−π

2 −βj ,
π
2 −βj

, ωJ,j = βj for j ∈ {1, . . . , k} \ J,
• PJ = Π1≤j≤kPJ,j , ωJ = (ωJ,1, . . . , ωJ,k).

If f ∈ Vα,β(X), and if
∫
∂̃Sα,β

‖f(ζ)‖X |dζ| < +∞, then the formula

FB(f)(σ) =
∫ eiωJ .∞

0

e−ζσf(ζ)dσ

defines a continuous bounded extension of FB(f) to PJ , and so FB(f) has a
continuous bounded extension to ∪J⊂{1,...,k}PJ = Π1≤j≤k

(
C \ −S∗

αj ,βj

)
. Apply-

ing formula (28) to the sequence (εn) = ( ε
n ) for some ε ∈ S∗

α,β , we deduce from
the Lebesgue dominated convergence theorem and from formula (23) the following
result.

Corollary 10.9. Let f ∈ Vα,β(X), and let φ ∈ U ′
α,β . Assume that the following

conditions are satisfied

(i)

∫
∂̃Sα,β

‖f(ζ)‖X |dζ| < +∞.

(ii)

∫
∂̃S∗

α,β

|FB(φ)(σ)||dσ| < +∞.

Then

(28) 〈f, φ〉 = 1

(2πi)k

∫
∂̃S∗

α,β

FB(φ)(σ)FB(f)(−σ)dσ.
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In the following we will denote by ν̃ the functional f →
∫
Sα,β

f(ζ)dν(ζ) for
ν ∈ M(Sα,β). In order to give a way to compute 〈f, φ〉 for φ ∈ U ′

α,β , f ∈ Vα,β(X),
we will use the following easy observation.

Proposition 10.10. Let ν be a probability measure on Sα,β , let R > 0, and let
Xbe a separable Banach space. Set νR(A) = ν(RA) for every Borel set A ⊂ Sα,β .
Then limR→+∞ ‖fν̃R

− f‖∞ = 0 for every f ∈ Uα,β(X).

Proof. Let f ∈ Uα,β(X). Then f is uniformly continuous on Sα,β , and so
for every δ > 0 there exists r > 0 such that ‖f(ζ + η) − f(ζ)‖X < δ for every
ζ ∈ Sα,β and for every η ∈ Sα,β ∩B(0, r). It follows from the Lebesgue dominated
convergence theorem that

lim
R→+∞

νR(B(0, r)) = lim
R→+∞

ν(B(0, rR)) = ν(Sα,β) = 1.

This gives

lim sup
R→+∞

‖fν̃R
− f‖∞ = lim sup

R→+∞

(
sup

ζ∈Sα,β

∥∥∥∥∥
∫
Sα,β

(f(ζ + η)− f(ζ))dνR(η)

∥∥∥∥∥
X

)

≤ lim sup
R→+∞

(
sup

ζ∈Sα,β

∫
Sα,β∩B(0,r)

‖f(ζ + η)− f(ζ)‖XdνR(η)

)

+ 2‖f‖∞ lim sup
R→+∞

∫
Sα,β\(Sα,β∩B(0,r))

dνR(η) ≤ δ.

Hence limR→+∞ ‖fν̃R
− f‖∞ = 0. �

It follows from the definition of νR that 〈f, ν̃R〉 = 〈f 1
R
, ν̃〉 for f ∈ Vα,β(X),

where f 1
R
(ζ) = f(R−1ζ) (ζ ∈ Sα,β). In particular FB(ν̃R) = FB(ν) 1

R
, and (ν̃1)R ∗

(ν̃2)R = (ν̃1 ∗ ν̃2)R = (ν̃1 ∗ ν2)R for R > 0 if ν1 and ν2 are two probability measures
on Sα,β .

We deduce from Proposition 10.8 and Proposition 10.9 the following corollary,
in which the sequence (Wn)n≥1 of functions on S

∗
α,β introduced in Appendix 3

and used in the proof of Proposition 10.8 allows to compute 〈f, φ〉 for φ ∈ U ′
α,β ,

f ∈ Vα,β(X) in the general case.

Corollary 10.11. Set Wn(ζ) = Π1≤j≤k
n2(

n+ζje
i
αj+βj

2

)2 for n ≥ 1, ζ ∈ S
∗
α,β .

Then we have, for φ ∈ U ′
α,β , f ∈ Vα,β(X),

(29) 〈f, φ〉 = lim
ε→0

ε∈Sα,β

(
lim

n→+∞

1

(2πi)k

∫
∂̃S∗

α,β

Wn(σ)FB(φ)(σ)FB(f)(ε− σ)dσ

)
.

Proof. Define a measure ν0 on Sα,β by using the formula

〈f, ν0〉 =
∫
[0,+∞)k

e−t1···−tkf(t1e
i
α1+β1

2 , . . . , tke
i
αk+βk

2 )dt1 . . . dtk (f ∈ C0(Sα,β)).

Then ν0 and ν = ν0 ∗ ν0 are probability measures on Sα,β , and we have, for
ζ ∈ S

∗
α,β ,
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FB(ν̃0)(ζ) =
∫
[0,+∞)k

e−t1···−tke−t1ζ1e
i
α1+β1

2 −···−tkζke
i
αk+βk

2 dt1 . . . dtk

=
∏

1≤j≤k

1

1 + ζjei
αj+βj

2

.

Hence FB(ν̃) = FB(ν̃0)2 = W1, and FB(ν̃n) = (W1) 1
n
= Wn. It follows from

(29) that we have, for ε ∈ S
∗
α,β ,

〈fe−ε, φ〉 = lim
n→+∞

〈(fe−ε)ν̃n
, φ〉

= lim
n→+∞

〈fe−ε, φ ∗ ν̃n〉

= lim
n→+∞

1

(2πi)k

∫
∂̃S∗

α,β

FB(φ ∗ ν̃n)(σ)FB(f)(ε− σ)dσ

= lim
n→+∞

1

(2πi)k

∫
∂̃S∗

α,β

Wn(σ)FB(φ)(σ)FB(f)(ε− σ)dσ,

and the result follows from the fact that 〈f, φ〉 = lim ε→0
ε∈Sα,β

〈fe−ε, φ〉. �

11. Appendix 2: An algebra of fast-decreasing holomorphic functions
on products of sectors and half-lines and its dual

In this section we will use the notations introduced in Definition 4.1 for α, β ∈
Rk satisfying αj ≤ βj < αj + π for 1 ≤ j ≤ k. Notice that is x ∈ C, y ∈ C, there
exists z ∈ C such that

(
x+ S

∗
αj ,βj

)
∩
(
y + S

∗
αj ,βj

)
= z + S

∗
αj ,βj

. Such a complex

number z is unique if αj < βj . If αj = βj , then S
∗
αj ,βj

= Sαj−π/2,αj+π/2 is a closed

half-plane, the family
{
x+ S

∗
αj ,βj

}
x∈C

is linearly ordered with respect to inclusion

and the condition
(
x+ S

∗
αj ,βj

)
∩
(
y + S

∗
αj ,βj

)
= z + S

∗
αj ,βj

defines a real line of

the form z0 + eiαjR, where z0 ∈ {x, y}.
The following partial preorder on Ck is the partial order associated to the cone

S
∗
α,β if αj < βj for 1 ≤ j ≤ k.

Definition 11.1. (i) For z = (z1, . . . , zk) ∈ Ck and z′ = (z′1, . . . , z
′
k) ∈ Ck, set

z � z′ if z′ ∈ z + S
∗
α,β .

(ii) If (z(j))1≤j≤m is a finite family of elements of Ck denote by sup1≤j≤m z(j)

the set of all z ∈ Ck such that ∩1≤j≤k

(
z(j) + S

∗
α,β

)
= z + S

∗
α,β .

For z = (z1, . . . , zk) ∈ Ck, set ez = (ez1 , . . . , ezk), and denote again by ez :
Ck → C the map (ζ1, . . . , ζk)→ ezζ = ez1ζ1+···+zkζk .

It follows from (17) that e−z′Uα,β ⊆ e−zUα,β if z � z′.
For f ∈ e−zVα,β , set ‖f‖e−zVα,β

= ‖ezf‖∞, which defines a Banach space norm
on e−zUα,β and e−zVα,β .

Proposition 11.2. (i)Set γn = ne−iα+β
2 for n ≥ 1. Then the sequence (γn)n≥1

is cofinal in (Ck,�).
(ii) If z � z′, then e−z′Uα,β is a dense subset of (e−zUα,β , ‖.‖e−zUα,β

).
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(iii) The set ∩z∈Cke−zUα,β is a dense ideal of Uα,β , which if a Fréchet algebra
with respect to the family (‖.‖e−γnUα,β

)n≥1.

(iv) If X is a separable Banach space, and if z ∈ sup1≤j≤mz(j), then

e−zUα,β(X) ⊂ ∩1≤j≤me−z(j)Uα,β(X), e−zVα,β(X) ⊂ ∩1≤j≤me−z(j)Vα,β(X),

and max1≤j≤m ‖f‖e−z(j)
Vα,β(X) ≤ ‖f‖e−zVα,β(X) for f ∈ e−zVα,β(X).

If, further, k = 1, then

e−zUα,β(X) = ∩1≤j≤me−z(j)Uα,β(X), e−zVα,β(X) = ∩1≤j≤me−z(j)Vα,β(X),

and max1≤j≤m ‖f‖e−z(j)
Vα,β(X) = ‖f‖e−zVα,β(X) for f ∈ e−zVα,β(X).

Proof. (i) Let z = (z1, . . . , zk) ∈ Ck, and let j ≤ k. Since(π

2
− βj

)
+

(
−π

2
− αj

)
= −(αj + βj),

t0,je
−i

(αj+βj)

2 ∈ ∂(zj + S
∗
αj ,βj

) for some t0,j ∈ R, so te−i
(αj+βj)

2 ∈ zj + S
∗
αj ,βj

for
every t ≥ t0,j , and (i) follows.

(ii) Assume that z � z′. The fact that e−z′Uα,β ⊂ e−zUα,β follows from (16).
Let z′′ ∈ z′ + S∗

α,β ⊂ z + S∗
α,β . We have z′′ = z + reiη where r > 0, and where

η = (η1, . . . , ηk) satisfies −π
2 − αj < ηj <

π
2 − βj for j ≤ k.

The semigroup (e−teiη)t>0 is analytic and bounded in the Banach algebra Uα,β ,
and limt→0+‖f − fe−teiη‖∞ = 0 for every f ∈ Uα,β .

It follows then from the analyticity of this semigroup that[
e−reiηUα,β

]−
=

[
∪t>0e−teiηUα,β

]−
= Uα,β .

Hence e−z′′Uα,β is dense in e−zUα,β , which proves (ii) since e−z′′Uα,β ⊂ e−z′Uα,β .
(iii) Denote by iz,z′ : f → f the inclusion map from e−z′Uα,β into e−zUα,β

for z � z′. Equipped with these maps, the family (e−zUα,β)z∈Ck is a projective
system of Banach spaces, and we can identify

(
∩z∈Cke−zUα,β , (‖.‖ezUα,β

)z∈Ck

)
to

the inverse limit of this system, which defines a structure of complete locally con-
vex topological space on

(
∩z∈Cke−zUα,β , (‖.‖e−zUα,β

)z∈Ck

)
. It follows from (i) that

the sequence (‖.‖e−γnUα,β
)n≥1 of norms defines the same topology as the family(

‖.‖e−zUα,β
)z∈Ck

)
on ∩z∈Cke−zUα,β = ∩n≥1e−γn

Uα,β , which defines a Fréchet alge-
bra structure on ∩z∈Cke−zUα,β .

It follows from (ii) that e−γn+1
Uα,β is dense in e−γn

Uα,β for n ≥ 0, and a
standard application of the Mittag-Leffler theorem of projective limits of complete
metric spaces, see for example Theorem 2.14 of [14], shows that ∩z∈Cke−zUα,β =
∩n≥1e−γn

Uα,β is dense in e−γ0
Uα,β = Uα,β .

(iv) Let z, z′ ∈ Ck, and let z” ∈ sup(z, z′). Then

e−z”+z ∈ Vα,β , e−z”+z′ ∈ Vα,β , ‖e−z”+z‖∞ ≤ 1, ‖e−z”+z‖∞ ≤ 1,

and so

e−z”Uα,β(X) ⊂ e−zUα,β(X) ∩ e−z′Uα,β(X), e−z”Vα,β(X) ⊂ e−zVα,β(X) ∩ e−z′Vα,β(X),

and max(‖f‖e−zVα,β(X), ‖f‖e−z′Vα,β(X)) ≤ ‖f‖e−z”Vα,β(X) for f ∈ e−z”Vα,β(X).
Now assume that k = 1.
We claim that |ez”ζ | = max(|ezζ |, |ez′ζ |) for ζ ∈ ∂Sα,β . If z ∈ z′ + S

∗
α,β , or if

z′ ∈ z + S
∗
α,β , this is obviously true. Otherwise we have α < β and, say, z” =
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z + rei(−α−π
2 ) = z′ + r′ei(−β+π

2 ), with r > 0, r′ > 0. Let ζ = ρeiθ ∈ Sα,β , where
ρ ≥ 0, θ ∈ {α, β}. We have

Re((z”− z)ζ) = rρ cos(θ − α− π

2
) ≥ 0, and Re((z”− z′)ζ) = r′ρ cos(θ − β +

π

2
) ≥ 0.

So |ez′ζ | ≤ |ezζ | = |ez”ζ | if θ = α, and |ezζ | ≤ |ez′ζ | = |ez′′ζ | if θ = β, which proves
the claim.

We now use the Phragmén–Lindelöf principle. Let s ∈ (1, π
β−α ) and let ζs be

a continuous determination of the s-power of ζ on S β−α
2 ,α−β

2
which is holomorphic

on S β−α
2 ,α−β

2
if α < β. Let f ∈ e−zVα,β(X) ∩ e−z′Vα,β(X), and let ε > 0. Set

gε(ζ) = e
−ε

(
ζe

−i
α+β

2

)s

ez”ζf(ζ)

for ζ ∈ Sα,β . Then gε ∈ Uα,β(X), and it follows from the maximum modulus
principle that there exists ζ0 ∈ ∂Sα,β such that

‖gε‖Uα,β(X) = ‖gε(ζ0)‖ ≤ |ez”ζ0 ||f(ζ0)| = max(|ezζ0 ||f(ζ0)|, |ez
′ζ0 ||f(ζ0)|).

Since limε→0 e
−εζs

= 1 for every ζ ∈ Sα,β , this shows that f ∈ e−z”Vα,β(X), and
‖f‖e−z”Vα,β(X) = max(‖f‖e−zVα,β(X), ‖f‖e−z′Vα,β(X)).

Now let f ∈ e−zUα,β(X) ∩ e−z′Uα,β(X). Then f ∈ e−z”Vα,β(X), and

lim
|ζ|→0

ζ∈∂Sα,β

‖ez”ζf(ζ)‖ = 0.

The Banach algebra Uα,β possesses a sequential bounded approximate identity
(gn)n≥1, one can take for example gn(ζ) =

nζ

nζ+ei
α+β

2

. We have

lim
n→+∞

‖ez”fgn − ez”f‖∞ = lim
n→+∞

max
ζ∈∂Sα,β

‖ez”(ζ)f(ζ)gn(ζ)− ez”(ζ)f(ζ)‖ = 0,

and so ez”f ∈ Uα,β(X) since Uα,β(X) is a closed subspace of Vα,β(X). This con-
cludes the proof of (iv) when m = 2. The general case follows by an immedi-
ate induction, since sup(ζ, z(l)) = sup1≤j≤l z

(j)) for every ζ ∈ sup1≤j≤l−1 z
(j) if

(z1), . . . , z(l)) is a finite family of elements of Ck. �

Notice that assertions (ii) and (iii) of the proposition do not extend to the
case where βj = αj + π for some j ≤ k. It suffices to consider the case where αj =
−π

2 , βj =
π
2 . Set λj(t) = (λs,t)1≤s≤k, where λs,t = 0 for s �= j and λj,t = t. Then the

map f → e−λj(t)f is an isometry on Uα,β for every t ≥ 0 and ∩t>0uλj(t)Uα,β = {0}
since the zero function is the only bounded holomorphic function f on the right-
hand open half-plane satisfying limr→+∞ |etrf(r)| = 0 for every t > 0.

Let iζ : f → f be the inclusion map from ∩z∈Cke−zUα,β into e−ζUα,β . Since
iζ has dense range, the map i∗ζ : φ → φ|∩

z∈Ck
e−zUα,β

is a one-to-one map from
(e−ζUα,β)′ into ∩z∈Cke−zUα,β)′, which allows to identify (e−ζUα,β)′ to a subset of
(∩z∈Cke−zUα,β)′, so that we have

(30) (∩z∈Cke−zUα,β)
′ = ∪z∈Ck (e−zUα,β)

′ = ∪n≥1(e
−ne

−i
α+β

2
Uα,β)

′.

Definition 11.3. Set Fα,β := (∩z∈Cke−zUα,β)′. Let φ ∈ Fα,β , and let X be a
separable Banach space.

(i) The domain of the Fourier–Borel transform of φ is defined by the formula
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Dom(FB(φ)) := {z ∈ Ck | φ ∈ (e−zUα,β)
′}.

(ii) For z ∈ Dom(FB(φ)) the functional φe−z ∈ U ′
α,β is defined by the formula

〈f, φe−z〉 = 〈e−zf, φ〉 (f ∈ Uα,β),

and 〈g, φ〉 is defined for g ∈ e−zVα,β(X) by the formula

〈g, φ〉 = 〈ezg, φe−z〉.

(iii) The Fourier–Borel transform of φ is defined for z ∈ Dom(FB(φ)) by the
formula

FB(φ)(z) = 〈e−z, φ〉.

(iv) The z-Cauchy transform of φ is defined on Ck\−S∗
α,β for z ∈ Dom(FB(φ))

by the formula

Cz(φ) = C(φe−z).

(v) If z ∈ Dom(FB(φ)) a measure ν of bounded variation on Sα,β is said to be
a z-representing measure for φ if ν is a representing measure for φe−z.

Since the map ζ → e−ζ is holomorphic on S∗
α,β , the map z → e−z is a holomor-

phic map from λ + S∗
α,β into e−λUα,β for every λ ∈ Dom(FB(φ)), and so FB(φ)

is holomorphic on the interior of Dom(FB(φ)) for φ ∈ Fα,β . Also the z-Cauchy
transform Cz(φ) is holomorphic on C \ Sα,β if z ∈ Dom(FB(φ)). Notice also that
if φ ∈ U ′

α,β , then S
∗
α,β ⊂ Dom(FB(φ)) and so the function FB(φ) defined above is

an extension to Dom(FB(φ)) of the Fourier–Borel transform already introduced in
Definition 10.3 on S

∗
α,β .

Assume that g ∈ e−zVα,β(X) ∩ e−z′Vα,β(X), where z, z′ ∈ Dom(FB(φ)). Let
z′′ ∈ sup(z, z′) ⊂ Dom(FB(φ)). Then g ∈ e−z”Vα,β(X). Let ν be a z-representative
measure for φ.

We have, for h ∈ ∩λ∈Cke−λUα,β , since e−z = e−z′′ez′′−z,

〈h, φ〉 =
∫
Sα,β

ez(ζ)h(ζ)dν(ζ) =

∫
Sα,β

ez′′(ζ)h(ζ)ez−z′′(ζ)dν(ζ).

Since ez−z′′ν is a measure of bounded variation on Sα,β , ez−z”ν is a z′′-representa-
tive measure for φ. Similarly if ν′ is a z′-representative measure for φ then ez′−z′′ν′

is a z′′-representative measure for φ, and we have
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∫
Sα,β

ez(ζ)g(ζ)dν(ζ) =

∫
Sα,β

ez′′(ζ)g(ζ)ez−z′′(ζ)dν(ζ)

=

∫
Sα,β

ez′′(ζ)g(ζ)ez′−z′′(ζ)dν′(ζ)

=

∫
Sα,β

ez′(ζ)g(ζ)dν′(ζ),

which shows that the definition of 〈g, φ〉 does not depend on the choice of z ∈
Dom(FB(φ)) such that g ∈ e−zVα,β(X).

Proposition 11.4. Let φ ∈ Fα,β .
(i) The set Dom(FB(φ)) is connected.
(ii) z + S

∗
α,β ⊂ Dom(FB(φ)), and FB(φ) is continuous on z + S

∗
α,β and holo-

morphic on z + S∗
α,β for every z ∈ Dom(FB(φ)).

Proof. (i) The fact that Dom(FB(φ)) is connected follows from the fact that
the arcwise connected set (z1+S

∗
α,β)∪ (z2+S

∗
α,β) is contained in Dom(FB(φ)) for

z1 ∈ Dom(FB(φ)), z2 ∈ Dom(FB(φ)).
(ii) Let z ∈ Dom(FB(φ)). It follows from (17) that z + S

∗
α,β ⊂ Dom(FB(φ))

and so FB(φ) is holomorphic on the open set z + S∗
α,β ⊂ Dom(FB(φ)). Let ν be

a measure of bounded variation on Sα,β which is z-representing measure for φ. We
have, for η ∈ Sα,β ,

FB(φ)(z + η) = 〈e−z−η, φ〉 = 〈e−η, φe−z〉 =
∫
Sα,β

e−ηζdν(ζ),

and the continuity of FB(φ) on z+ S
∗
α,β follows from the Lebesgue dominated

convergence theorem. �

Notice that Dom(FB(φ)) is not closed in general: for example if we set

〈f, φ〉 =
∫
S−π

4
, π
4

ζf(ζ)dm(ζ)

for f ∈ ∩z∈Cke−zU−π
4 ,π4

, where m denotes the Lebesgue measure on C, then
t ∈ Dom(FB(φ)) for every t > 0, but 0 /∈ Dom(FB(φ)). Notice also that if ν is a
measure supported by a compact subset of Sα,β , and if we set

〈f, φ〉 :=
∫
Sα,β

f(ζ)dν(ζ)

for f ∈ ∩z∈Cke−zUα,β , then φ ∈ ∩z∈Ck(e−zUα,β)′, so that Dom(FB(φ)) = Ck, and
FB(φ) is the entire function defined on Ck by the formula

FB(φ)(z) =
∫
Sα,β

e−zζdν(ζ).

We now introduce the convolution product of elements of Fα,β .

If φ ∈ Fα,β , f ∈ ∩z∈Cke−zUα,β , λ ∈ Sα,β , set again fλ(ζ) = f(ζ + λ) for
ζ ∈ Sα,β . Then fλ ∈ ∩z∈Cke−zUα,β , and we can compute 〈fλ, φ〉. The map λ→ fλ
is a continuous map from Sα,β into the Fréchet algebra ∩z∈Cke−zUα,β which is
holomorphic on Sα,β . We obtain
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Lemma 11.5. Let φ ∈ Fα,β . Then the function fφ : λ → 〈fλ, φ〉 belongs to
∩z∈Cke−zUα,β for every f in ∩z∈Cke−zUα,β , and the linear map f → fφ is contin-
uous on ∩z∈Cke−zUα,β .

Proof. Let f ∈ ∩z∈Cke−zUα,β , let z0 ∈ Dom(FB(φ)), let ν be a z0-representing
measure for φ on Sα,β , and let z ∈ Ck.

Let z1 ∈ sup(z0, z), so that (z0 + S
∗
α,β) ∩ (z + S

∗
α,β) = z1 + S

∗
α,β , and set

η0 = z1 − z0, η = z1 − z. We have, for λ ∈ Sα,β ,

ezλ〈fλ, φ〉 =
∫
Sα,β

ezλ+z0ζf(ζ + λ)dν(ζ) =

∫
Sα,β

e−ηλ−η0ζez1(ζ+λ)f(ζ + λ)dν(ζ).

Since |e−ηλ−η0ζez1(ζ+λ)f(ζ + λ)| ≤ ‖ez1f‖∞, it follows from Lebesgue’s domi-
nated convergence theorem that lim|λ|→+∞

λ∈Sα,β

|ezλ〈fλ, φ〉| = 0, and so fφ ∈ ∩z∈Cke−zUα,β .

Also ‖ezfφ‖∞ ≤ ‖ez1f‖∞
∫
Sα,β

d|ν|(ζ), which shows that the map f → fφ is con-
tinuous on ∩zk∈Ce−zUα,β . �

Notice that it follows from the Hahn-Banach theorem that if φ ∈ (e−z0Uα,β)′
there exists a z0-representing measure ν for φ such that∫

Sα,β

d|ν|(ζ) = ‖φ‖(e−z0
Uα,β)′ .

The calculation above shows then that we have, for z ∈ Ck, f ∈ ∩z∈Cke−zUα,β ,
φ ∈ Fα,β , z0 ∈ Dom(FB(φ)), z1 ∈ sup(z0, z),

(31) ‖ezfφ‖∞ ≤ ‖ez1f‖∞‖φ‖(e−z0
Uα,β)′ .

Proposition 11.6. For φ1 ∈ Fα,β , φ2 ∈ Fα,β , define the convolution product
φ1 ∗ φ2 ∈ Fα,β by the formula

〈f, φ1 ∗ φ2〉 = 〈fφ1 , φ2〉 (f ∈ ∩z∈Cke−zUα,β).

Then

sup(z1, z2) ⊂ Dom(FB(φ1 ∗ φ2)) (z1 ∈ Dom(FB(φ1)), z2Dom(FB(φ2)),

and we have, for z ∈ sup(z1, z2),

‖φ1 ∗ φ2‖(e−zUα,β)′ ≤ ‖φ1‖(e−z1
Uα,β)′‖φ2‖(e−z2

Uα,β)′ .

More generally Dom(FB(φ1)) ∩ Dom(FB(φ2)) ⊂ Dom(FB(φ1 ∗ φ2)), and if
z ∈ Dom(FB(φ1)) ∩Dom(FB(φ2)) then (φ1 ∗ φ2)e−z = (φ1e−z) ∗ (φ2e−z), so that
ν1 ∗ ν2 is a z-representative measure for φ1 ∗ φ2 if ν1 is a z-representing measure
for φ1 and if ν2 is a z-representing measure for ν2, and we have

FB(φ1 ∗ φ2)(z) = FB(φ1)(z)FB(φ2)(z) (z ∈ Dom(FB(φ1)) ∩Dom(FB(φ2)).

Proof. Let z1 ∈ Dom(FB(φ1)), let z2 ∈ Dom(FB(φ2)), and let z ∈ sup(z1, z2).
It follows from (32) that we have, for f ∈ ∩z∈CkezUα,β ,
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|〈f, φ1 ∗ φ2〉| = |〈fφ1
, φ2〉|

≤ ‖ez2fφ1
‖∞‖φ2‖(e−z2

Uα,β)′

≤ ‖ezf‖∞‖φ1‖(e−z1
Uα,β)′‖φ2‖(e−z2

Uα,β)′ .

Hence φ1 ∗ φ2 ∈ Fα,β , sup(z1, z2) ⊂ Dom(FB(φ1 ∗ φ2)), and
‖φ1 ∗ φ2‖(e−zUα,β)′ ≤ ‖φ1‖(e−z1

Uα,β)′‖φ2‖(e−z2
Uα,β)′ for z ∈ sup(z1, z2).

Let z ∈ Dom(FB(φ1)) ∩ FB(φ2)). Then z ∈ sup(z, z) ⊂ Dom(FB(φ1 ∗ φ2)).
Let ν1 be a z-representing measure for φ1 and let ν2 be a z-representing measure

for φ2. We have, for f ∈ ∩s∈Cke−sUα,β ,

〈f, φ1 ∗ φ2〉 = 〈fφ1
, φ2〉

=

∫
Sα,β

ezλfφ1
(λ)dν2(λ)

=

∫
Sα,β

[∫
Sα,β

ezζf(ζ + λ)dν1(λ)

]
ezλdν2(λ)

=

∫ ∫
Sα,β×Sα,β

ez(ζ+λ)f(ζ + λ)dν1(ζ)dν2(λ)

=

∫
Sα,β

ezsd(ν1 ∗ ν2)(s),

and so ν1 ∗ ν2 is a representing measure for (φ1 ∗ φ2)e−z, which means that
ν1 ∗ ν2 is a z-representative measure for φ1 ∗ φ2. Since ν1 is a representative mea-
sure for φ1e−z, and since φ2 is a representative measure for φ2e−z, it follows from
Proposition 10.5 (ii) that (φ1 ∗ φ2)e−z = (φ1e−z) ∗ (φ2e−z).

It follows also from Proposition 10.5(ii) that

FB(φ1 ∗ φ2)(z) = FB((φ1 ∗ φ2)e−z)(1)

= FB((φ1e−z) ∗ (φ2e−z))(1)

= FB(φ1e−z)(1)FB(φ2e−z)(1)

= FB(φ1)(z)FB(φ2)(z).

�

Using Proposition 10.4, we obtain the following link between z-Cauchy trans-
forms and Fourier–Borel transforms of elements of Fα,β .

Proposition 11.7. Let φ ∈ Fα,β . For j ≤ k, set Iη,j = (π2 − η, π
2 − βj ] for

η ∈ (βj , αj + π], Iη,j = (−π
2 − αj ,

π
2 − βj) for η ∈ (αj + π, βj + π], and set

Iη,j = (−π
2 − αj ,

3π
2 − η) for η ∈ (βj + π, αj + 2π). Then Iη,j ⊂ [−π

2 − αj ,
π
2 − βj ],

cos(η + s) < 0 for s ∈ Iη,j , and if λ = (λ1, . . . , λk) ∈ Ck \ Sα,β , we have for
ω = (ω1, . . . , ωk) ∈ Π1≤j≤kIarg(λj),j , z ∈ Dom(FB(φ)),

Cz(φ)(λ) =
1

(2πi)k

∫ eiω.∞

0

eλσFB(φ)(σ + z)dσ

:=
1

(2πi)k

∫ eiω1 .∞

0

· · ·
∫ eiωk .∞

0

eλσFB(φ)(σ + z)dσ.
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Proof. We have Cz(φ) = C(φe−z), and, for σ ∈ S
∗
α,β ,

FB(φ)(σ + z) = 〈e−σ−z, φ〉 = 〈e−σe−z, φ〉 = 〈e−σ, φe−z〉 = FB(φe−z)(σ).

The result follows then from formula (22) applied to φe−z. �

Let X be a separable Banach space. For η ∈ Sα,β , z ∈ Ck, f ∈ e−zVα,β(X),

set fη(ζ) = f(ζ + η) (ζ ∈ Sα,β). If φ ∈ Fα,β , and if z ∈ Dom(FB(φ)), we have

〈f, φ ∗ δη〉 = 〈ezf, (φ ∗ δη)e−z〉
= 〈ezf, (φe−z) ∗ (δηe−z)〉
= e−zη〈ezf, (φe−z) ∗ δη〉
= e−zη〈(ezf)η, (φe−z)〉
= 〈ezfη, φe−z〉
= 〈fη, φ〉.

We also have, for f ∈ e−zUα,β(X),

lim
η→0

η∈Sα,β

‖fη − f‖e−zUα,β(X)

= lim
η→0

η∈Sα,β

sup
ζ∈Sα,β

‖ezζf(ζ + η)− ezζf(ζ)‖∞

≤ lim
η→0

η∈Sα,β

(
‖(ezf)η − ezf‖∞ + |1− e−zη|‖(ezf)η)‖∞

)
= 0,

and so, since (e−εf)η = e−εηe−εfη,

lim
η→0,η∈Sα,β

ε→0,ε∈S∗
α,β

‖(e−εf)η − f‖e−zUα,β(X)

= lim
η→0,η∈Sα,β

ε→0,ε∈S∗
α,β

‖e−εfη − f‖e−zUα,β(X) = 0 (f ∈ e−zUα,β(X), z ∈ Ck).

Now let f ∈ e−zVα,β(X), and let φ ∈ (e−zUα,β)′. If ν is a z-representative
measure for φ, we have, for η ∈ Sα,β , ε ∈ S

∗
α,β ,

〈(e−εf)η, φ〉 = e−εη〈e−εfη, φ〉 = e−(ε+z)η

∫
Sα,β

e−εζez(ζ+η)f(ζ + η)dν(ζ),

and it follows from the Lebesgue dominated convergence theorem that we have

lim
η→0,η∈Sα,β

ε→0,ε∈S∗
α,β

‖〈(e−εf)η, φ〉 − 〈f, φ〉‖X

= lim
η→0,η∈Sα,β

ε→0,ε∈S∗
α,β

‖〈e−εfη, φ〉 − 〈f, φ〉‖X = 0 (f ∈ e−zVα,β(X), φ ∈ (e−zUα,β)′, z ∈ Ck).

The following consequences of Proposition 10.6 allow to compute in some cases
〈f, φ〉 for φ ∈ U ′

α,β , f ∈ Vα,β(X), z ∈ Dom(FB(φ)) by using the z-Cauchy trans-
form.
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Proposition 11.8. Assume that αj < βj < αj +π for 1 ≤ j ≤ k, let φ ∈ Fα,β ,
let z ∈ Dom(FB(φ)), and let X be a separable Banach space.

If f ∈ e−zVα,β(X), and if∫
∂̃Sα,β

eRe(zσ)‖f(σ)‖X |dσ| < +∞,

then we have, for η ∈ Sα,β ,

(32) 〈fη, φ〉 = 〈f, φ ∗ δη〉 =
∫
∂̃Sα,β

ez(σ−η)Cz(φ)(σ − η)f(σ)dσ.

In particular we have, for f ∈ Vα,β(X), ε ∈ S∗
α,β , η ∈ Sα,β ,

(33) e−εη〈e−εfη, φ〉 = 〈e−εf, φ ∗ δη〉 =
∫
∂̃Sα,β

e(z−ε)(σ−η)Cz(φ)(σ − η)f(σ)dσ.

Proof. Assume that f ∈ e−zVα,β(X) satisfies the condition∫
∂̃Sα,β

‖f(σ)‖X |dσ| < +∞.

We have, for η ∈ Sα,β , ε ∈ S∗
α,β ,

〈fη, φ〉 = 〈ezfη, φe−z〉 = e−zη〈(ezf)η, φe−z〉, e−εfη = eεη(e−εf)η

so (32) follows from (25) applied to ezf and φe−z, and (33) follows from (32)
applied to e−εf. �

For z ∈ Ck, f ∈ e−zVα,β(X), recall the Fourier–Borel transform of f is defined
for ζ = (ζ1 . . . , ζk) ∈ Π1≤j≤k

(
C \ (−zj − S

∗
αj ,βj

)
)

by the formula

FB(f)(ζ) = FB(ezf)(z + ζ) =

∫ eiω.∞

0

e−ζσf(σ)dσ

:=

∫ eiω1 .∞

0

· · ·
∫ eiωk .∞

0

e−ζ1σ1···−ζkσkf(σ1, . . . , σk)dσ1 . . . dσk,

where αj ≤ ωj ≤ βj and where Re((zj + ζj)e
iωj ) > 0 for 1 ≤ j ≤ k.

The following consequences of Proposition 10.8, Corollary 10.9 and Corol-
lary 10.11 allow to interpret the action of φ ∈ Fα,β on e−zUα,β for z ∈ Dom(FB(φ))
in terms of Fourier–Borel transforms.

Proposition 11.9. Let φ ∈ Fα,β , let z = (z1, . . . , zk) ∈ Dom(FB(φ)), and let
f ∈ e−zVα,β(X). Set again, for ζ = (ζ1, . . . , ζk) ∈ S∗

α,β , n ≥ 1,

Wn(ζ) = Π1≤j≤k
n2(

n+ ζje
i
αj+βj

2

)2 .

Then
(i) 〈f, φ〉 = lim

ε→0
ε∈Sα,β

(
lim

n→+∞
1

(2πi)k

∫
z+∂̃S

∗
α,β

Wn(σ − z)FB(φ)(σ)FB(f)(−σ + ε)dσ

)
.
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(ii) If, further,
∫
∂̃S∗

α,β
|FB(φ)(σ))||dσ| < +∞, then we have, for ε ∈ S∗

α,β ,

〈e−εf, φ〉 =
1

(2πi)k

∫
z+∂̃S

∗
α,β

FB(φ)(σ)FB(f)(−σ + ε)dσ,

and so

〈f, φ〉 = lim
ε→0

ε∈Sα,β

1

(2πi)k

∫
z+∂̃S

∗
α,β

FB(φ)(σ)FB(f)(−σ + ε)dσ.

If, further,
∫
∂̃Sα,β

eRe(zσ)‖f(σ)‖|dσ| < +∞, then
(iii)

〈f, φ〉 = 1

(2πi)k

∫
z+∂̃S

∗
α,β

FB(φ)(σ)FB(f)(−σ)dσ.

Proof. We have 〈f, φ〉 = 〈ezf, φe−z〉. Since 〈fb(f)(−ζ − z) = FB(ezf)(−ζ)
for ζ ∈ Π1≤j≤k

(
C \ S∗

α,β

)
, and since FB(φe−z)(ζ) = 〈e−ζ−z, φ〉 = FB(φ)(ζ + z)

for ζ ∈ S
∗
α,β , it follows from Corollary 10.11 that we have

〈f, φ〉 = 〈ezf, φe−z〉

= lim
ε→0

ε∈S∗
α,β

(
1

(2πi)k

∫
∂̃S∗

α,β

Wn(ζ)FB(φe−z)(ζ)FB(ezf)(ε− ζ)dζ

)

= lim
ε→0

ε∈S∗
α,β

(
1

(2πi)k

∫
∂̃S∗

α,β

Wn(ζ)FB(φ)(z + ζ)FB(f)(−z + ε− ζ)dζ

)
,

and we obtain (i) by using the change of variables σ = z + ζ for ζ ∈ ∂̃S∗
α,β . Using

the same change of variables we deduce (ii) from Proposition 10.8 and (iii) from
Corollary 10.9. �

Lemma 11.10. Let α, α′, β, β′ ∈ Rk such that α′
j ≤ αj ≤ βj ≤ β′

j < α′
j + π for

j ≤ k. Then ∩z∈Cke−zUα′,β′ is dense in ∩z∈Cke−zUα,β .

Proof. Let φ ∈ Fα,β , and assume that 〈f, φ〉 = 0 for every f ∈ ∩z∈Cke−zUα′,β′ .

Let z ∈ Dom(FB(φ)). Then FB(φ)(z+ζ) = 0 for every ζ ∈ S
∗
α′,β′ . Since Dom(FB(φ))

is connected, we have FB(φ) = 0. Hence φ = 0, since the Fourier–Borel transform
is one-to-one on Fα,β . �

So we can identify Fα,β to a subset of Fα′,β′ if α′
j ≤ αj ≤ βj ≤ β′

j < α′
j + π for

1 ≤ j ≤ k.
A standard application of the Mittag-Leffler theorem of projective limits of

complete metric spaces, see for example [14], Theorem 2.14, shows that we have
the following result, where as before

Ma,b = {(α, β) ∈ Rk × Rk | aj < αj ≤ βj < bj if aj < bj , αj = βj = aj if aj = bj}.

Proposition 11.11. Let a = (a1, . . . , ak) ∈ Rk, b = (b1, . . . , bk) ∈ Rk such that
aj ≤ bj ≤ aj + π for j ≤ k. Then ∩(α′,β′)∈Ma,b,λ∈Cke−λUα′,β′ is dense in e−zUα,β
for every z ∈ Ck and every (α, β) ∈Ma,b.
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Let (a, b) ∈ Rk × Rk be as above, and denote by Δa,b the set of all triples
(α, β, z) where (α, β) ∈ Ma,b and z ∈ Ck. Denote by � the product partial order
on Rk associated to the usual order on R. If (α, β, z) ∈ Δa,b, (α

′, β′, z′) ∈ Δa,b, set
(α, β, z) � (α′, β′, z′) if α′ � α, β � β′ and z′ ∈ z + S

∗
α′,β′ . For every finite family

F = {(α(l), β(l), z(l))}1≤l≤m of elements of Δa,b, set

sup(F ) = { inf
1≤l≤m

α(l)} × { sup
1≤l≤m

β(l)} × sup
1≤l≤m

z(l),

where sup1≤l≤m z(l) denotes the set of all z ∈ Ck satisfying the condition

z + S
∗
inf1≤l≤m α(l),sup1≤l≤m β(l) = ∩1≤l≤m

(
z(l) + S

∗
inf1≤l≤k α(l),sup1≤l≤k β(l)

)
,

so that sup1≤l≤m z(l) is the set introduced in Definition 9.1(ii) when
α = inf1≤l≤m α(l) and β = sup1≤l≤m β(l). Notice that sup1≤l≤m z(j), is a singleton
if (inf1≤l≤m α(l))j < (sup1≤l≤m β(l))j for 1 ≤ j ≤ k.

It follows from the proposition that we can identify the dual of the projec-
tive limit ∩(α,β,z)∈Δa,b

e−zUα,β to the inductive limit ∪(α,β,z)∈Δa,b
(e−zUα,β)′. This

suggests the following definition.

Definition 11.12. Let a = (a1, . . . , ak) ∈ Rk, b = (b1, . . . , bk) ∈ Rk such that
aj ≤ bj ≤ aj + π for j ≤ k. Set

Ga,b = (∩(α,β,z)∈Δa,b
e−zUα,β)

′ = ∪(α,β,z)∈Δa,b
(e−zUα,β)

′.

For φ ∈ Ga,b, set dom(φ) = {(α, β, z) ∈ Δα,β | φ ∈ (e−zUα,β)′}.

We thus see that the inductive limit Ga,b = ∪(α,β)∈Ma,b
Fα,β is an associative

unital pseudo-Banach algebra with respect to the convolution product introduced
above on the spaces Fα,β . A subset V of Ga,b is bounded if and only if there exists
(α, β) ∈Ma,b and z ∈ Ck such that V is a bounded subset of (e−zUα,β)′.

The proof of the following proposition is left to the reader.

Proposition 11.13. Let φ ∈ Ga,b, and let (α, β, z) ∈ dom(φ).
Then (α′, β′, z′) ∈ dom(φ) if (α, β, z) � (α′, β′, z′).
In particular if (φj)1≤j≤m is a finite family of elements of Ga,b, and if

(α(j), β(j), z(j)) ∈ dom(φj) for 1 ≤ j ≤ m, then

sup1≤j≤m(α(j), β(j), z(j)) ⊂ ∩1≤j≤mdom(φj) ⊂ dom(φ1 ∗ · · · ∗ φm).

12. Appendix 3: Holomorphic functions on admissible open sets

Definition 12.1. Let a = (a1, . . . , ak) ∈ Rk, b = (b1, . . . , bk) ∈ Rk such that
aj ≤ bj ≤ aj + π for j ≤ k.

An open set U ⊂ Ck is said to be admissible with respect to (α, β) ∈ Ma,b if
U = Π1≤j≤kUj , where the open sets Uj ⊂ C satisfy the following conditions for
some z = (z1, . . . , zk) ∈ Ck,

(i) Uj + S
∗
αj ,βj

⊂ Uj

(ii) Uj ⊂ zj + S∗
αj ,βj

, and

∂Uj − zj = (e(−
π
2
−αj)i.∞, e(−αj−π

2
)is0,j) ∪ θj([0, 1]) ∪ (e(

π
2
−βj)is1,j , e

(π
2
−βj)i.∞),
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where s0,j ≥ 0, s1,j ≥ 0, and where

θj : [0, 1] → S
∗
αj ,βj

\
(
e(−

π
2
−αj)i.∞, e(−αj−π

2
)isj,0) ∪ (e(

π
2
−βj)isj,1, e

(π
2
−βj)i.∞)

)
is a one-to-one piecewise-C1 curve such that

θj(0) = e(−αj−π
2
)isj,0, and θj(1) = e(

π
2
−βj)isj,1.

If U is an admissible open set with respect to some (α, β) ∈ Ma,b, H(1)(U)
denotes the space of all functions F holomorphic on U such that

‖F‖H(1)(U) := sup
ε∈S∗

α,β

∫
∂̃U+ε

|F (σ)||dσ| < +∞.

For example if αj = βj then conditions (i) and (ii) are satisfied if an only if Uj

is a half-plane of the form {zj ∈ C | Re(zje
iαj) > λ} for some λ ∈ R.

If αj < βj , define x̃j = x̃j(ζj) and ỹj = ỹj(ζj) for ζj ∈ C by the formula

(34) ζj = zj + x̃je
(−π

2
−αj)i + ỹje

( π
2
−βj)i.

Notice that ζ ′j ∈ zj + S
∗
αj ,βj

⊂ Uj if ζj ∈ Uj , and if x̃j(ζ
′
j) ≥ x̃j(ζj) and

ỹj(ζ
′
j) ≥ ỹj(ζj). This shows that there exists tj,0 ∈ [0, sj,0] and tj,1 ∈ [0, sj,1] and

continuous piecewise C1-functions fj and gj defined respectively on [0, tj,0] and
[0, tj,1] such that

Uj − zj

= {ζj ∈ S∗
αj ,βj

| x̃(ζj) ∈ (0, tj,0], ỹ(ζj) > fj(x̃(ζj))} ∪ {ζj ∈ S∗
αj ,βj

| x̃(ζj) > tj,0}
= {ζj ∈ S∗

αj ,βj
| ỹ(ζj) ∈ (0, tj,1], x̃(ζj) > gj(ỹ(ζj))} ∪ {ζj ∈ S∗

αj ,βj
| ỹ(ζj) > tj,1}.

We have fj(0) = tj,1, fj(tj,0) = 0, gj(0) = tj,1, gj(tj,1) = 0, fj and gj are strictly
decreasing and fj = g−1

j if tj,s > 0 for some, hence for all s ∈ {1, 2}.
For α = (α1, . . . , αk) ∈ Rk, β = (β1, . . . , βk) ∈ Rk, we will use the obvious

conventions
inf(α, β) = (inf(α1, β1), . . . , inf(αk, βk)), sup(α, β) = (sup(α1, β1), . . . , sup(αk, βk)).

Clearly, if (α(1), β(1)) ∈Ma,b and (α(2), β(2)) ∈Ma,b, then

(inf(α(1), α(2)), sup(β(1), β(2))) ∈ Ma,b.

Proposition 12.2. If U (1) is admissible with respect to (α(1), β(1)) ∈Ma,b and
if U (2) is admissible with respect to (α(2), β(2)) ∈Ma,b, then U (1)∩U (2) is admissible
with respect to (inf(α(1), α(2)), sup(β(1), β(2))).

Proof. Set α(3) = inf(α(1), α(2)), β(3) = sup(β(1), β(2)), and U (3) = U (1) ∩
U (2). The fact that U (3) satisfies (i) follows from the fact that

S
∗
α
(3)
j ,β

(3)
j

= S
∗
α
(1)
j ,β

(1)
j

∩ S
∗
α
(2)
j ,β

(2)
j

.

The fact that U (3) satisfies (ii) follows easily from the fact that[
z(1) + S∗

α(1),β(1)

]
∩

[
z(2) + S∗

α(2),β(2)

]
is itself admissible with respect to (α(3), β(3)) if U (1) satisfies Definition 12.1 with
respect to z(1) and if U (2) satisfies Definition 12.1 with respect to z(2). �
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Lemma 12.3. Let U be an admissible open set with respect to (α, β) ∈ Ma,b,
and let F ∈ H(1)(U).

(i) We have, for ε = (ε1, . . . , εk) ∈ S∗
α,β ,∫

Πj≤k(Uj\(Uj+εj))
|F (ζ)|dm(ζ) ≤ |ε1| . . . |εk|‖F‖H(1)(U).

where m denotes the Lebesgue measure on Ck ≈ R2k.
(ii) We have, for ζ ∈ U,

|F (ζ)| ≤ 2k

πk cos
(
β1−α1

2

)
. . . cos

(
βk−αk

2

) Π1≤j≤kdist(ζj , ∂S
∗
αj ,βj

)

[Π1≤j≤kdist(ζj , ∂Uj)]
2 ‖F‖H(1)(U).

Proof. (i) Let F ∈ H(1)(U), let ε = (ε1, . . . , εk) ∈ S∗
α,β , for j ≤ k let

γj ∈ (−π
2 − αj ,

π
2 − βj) be a determination of arg(εj), and set rj = |εj | > 0.

Set Uj,1 = zj + tj,0e
(−π

2 −αj)i + S−π
2 −αj ,γj

, Uj,2 = zj + tj,1e
(π
2 −βj)i + Sγj ,

π
2 −βj

,

and Uj,3 = zj + ∪ρ>0

(
ρeγji +

(
∂Uj ∩ S∗

αj ,βj

))
, with the convention Uj,3 = ∅ if

tj,0 = tj,1 = 0. Also for ζj ∈ C set xi = Re(ζj), yj = Im(ζj).
For tj < 0, 0 < ρj < rj , set

ζj = ζj(ρj , tj) = ρje
iγj + (tj,0 − tj)e

−i( π
2
−αj).

This gives a parametrization of Uj,1 \ (Uj,1 + εj), and we have

dxjdyj =

∣∣∣∣ cos(γj) sin(αj)
sin(γj) cos(αj)

∣∣∣∣ dρjdtj = cos(αj + γj)dρjdtj .

Similarly for tj > tj,1, 0 < ρj < rj , set

ζj = ζj(ρj , tj) = ρje
iγj + tje

i( π
2
−βj).

This gives a parametrization of Uj,2 \ (Uj,2 + εj), and we have

dxjdyj =

∣∣∣∣ cos(γj) sin(βj)
sin(γj) cos(βj)

∣∣∣∣ dtjdρj = cos(βj + γj)dρjdtj .

Now assume that Uj,3 �= ∅, so that tj,0 > 0 and tj,1 > 0. For 0 < tj < tj,1,
0 < ρj < rj set

ζj = ζj(ρj , tj) = ρje
iγj + gj(tj)e

(−π
2
−αj)i + tje

( π
2
−βj)i.

This gives a parametrization of Uj,3 \ (Uj,3 + εj), and we have

dxjdyj =

∣∣∣∣ cos(γj) −g′j(t) sin(αj) + sin(βj)
sin(γj) −g′j(t) cos(αj) + cos(βj)

∣∣∣∣ dρjdtj
= (cos(βj + γj)− g′j(t) cos(αj + γj))dρjdtj .

We have 0 < cos(αj + γj) < 1, 0 < cos(αj + γj) < 1, g′j(tj) < 0, and using the
Cauchy-Schwartz inequality, we obtain
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0 < cos(βj + γj)− g′j(t) cos(αj + γj)

= cos(γj)(cos(βj)− g′j(t) cos(αj))− sin(γj)(sin(βj)− g′j(t) sin(αj))

≤
√
(cos(βj)− g′j(t) cos(αj))2 + (sin(βj)− g′j(t) sin(αj))2

=
√
1− 2g′j(t) cos(βj − αj) + g′j(t)

2.

On the other hand we have

∣∣∣∣∂ζj∂tj
(ρj , tj)

∣∣∣∣2 =
(
g′j(t)e

(−π
2 −αj)i + e(

π
2 −βj)i

)(
g′j(t)e

(π
2 +αj)i + e(−

π
2 +βj)i

)
= 1− 2g′j(t) cos(βj − αj) + g′j(t)

2.

The boundary ∂Uj + ρje
iγj being oriented from e(−

π
2 −αj)i.∞ to e(

π
2 −βj).∞, we

obtain

∫
Πj≤k(Uj\(Uj+εj))

|F (ζ)|dm(ζ)

≤
∫
(0,r1)×···×(0,rk)

[∫
Πj≤k(∂Uj+ρje

iγj )

|F (σj)||dσ1| . . . |dσk|
]
dρ1 . . . dρk

≤ r1 . . . rk‖F‖H(1)(U),

which proves (i).
(ii) Let F ∈ H(1)(U), let ζ ∈ U , set rj = dist(ζj , ∂Uj), set r = (r1, . . . , rk),

and set B(ζ, r) = Πj≤kB(ζj , rj). Using Cauchy’s formula and polar coordinates, we
obtain the standard formula

(35) F (ζ) =
1

|B(ζ, r)|

∫
B(ζ,r)

F (η)dm(η).

where |B(ζ, r)| = πkr21 . . . r
2
k denotes the Lebesgue measure of B(ζ, r).

Denote by uj the orthogonal projection of ζj on the real line zj + Rei(−
π
2 −αj),

denote by vj the orthogonal projection of ζj on the real line zj +Re(
π
2 −βj)i, and let

wj ∈ {uj , vj} be such that |ζj −wj | = min(|ζj − uj |, |ζj − vj |). An easy topological
argument shows that wj ∈ ∂S∗

αj ,βj
, so that

|ζj − wj | = dist(ζj , ∂S
∗
αj ,βj

) ≥ dist(ζj , Uj) = rj .

For λ ∈ R, we have

ζj /∈ S
∗
αj ,βj

+ zj + 2(ζj − wj) + λi(ζj − wj) ⊃ U j + 2(ζj − wj) + λi(ζj − wj).

If π − βj + αj >
π
2 , then ζj −wj ∈ S∗

αj ,βj
. If π − βj + αj ≤ π

2 , then we can choose
λ ∈ R such that ζj−wj+λi(ζj−wj) ∈ S

∗
αj ,βj

and such that |ζj−wj+λi(ζj−wj)| =
|ζj−wj |

cos
(

βj−αj
2

) . So there exists in both cases εj ∈ S∗
αj ,βj

such that ζj /∈ U j + εj and

|εj | =
2dist(ζj ,∂S

∗
αj,βj

)

cos
(

βj−αj
2

) .

Using (40) and (i), we obtain
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|F (ζ)| ≤ 1

πkr21 . . . r
2
k

∫
Πj≤k(Uj\(Uj+εj))

|F (η)|dm(η)

≤ 2k

πk cos
(

β1−α1

2

)
. . . cos

(
βk−αk

2

) Π1≤j≤kdist(ζj , ∂S
∗
αj ,βj

)

[Π1≤j≤kdist(ζj , ∂Uj)]
2 ‖F‖H(1)(U),

which proves (ii). �

Corollary 12.4. (H(1)(U), ‖.‖H(1)(U)) is a Banach space, FU+ε is bounded on
U + ε, and limdist(ζ,∂U)→+∞

ζ∈U+ε

F (ζ) = 0 for every F ∈ H(1)(U) and every ε ∈ S∗
α,β .

Proof. It follows from (ii) that for every compact set K ⊂ U there exists
mK > 0 such that maxζ∈K |F (ζ)| ≤ mK‖F‖H(1)(U). So every Cauchy sequence
(Fn)n≥1 in (H(1)(U), ‖.‖H(1)(U)) is a normal family which converges uniformly
on every compact subset of U to a holomorphic function F : U → C. Since∫
∂̃U+ε

|F (σ) − Fn(σ)||dσ| = limR→+∞
∫
B(0,R)∩(∂̃U+ε) |F (σ) − Fn(σ)|dσ|, an easy

argument shows that F ∈ H(1)(U) and that limn→+∞ ‖F − Fn‖H(1)(U) = 0.
Now let ε > 0. For 1 ≤ j ≤ k, there exists mj > 0 such that

dist(ζj , ∂U) ≥ mjdist(ζj , ∂S
∗
αj ,βj

)

for every ζj ∈ U j + εj , which gives, for ζ ∈ U + ε,

|F (ζ)| ≤ 2k

πkm1 . . .mk cos
(
β1−α1

2

)
. . . cos

(
βk−αk

2

)
Π1≤j≤kdist(ζj , ∂Uj)

‖F‖H(1)(U).

Since infζj∈Uj+εj
dist(ζj , ∂Uj) > 0 for j ≤ k, this shows that F is bounded on

U + ε, and that limdist(ζ,∂U)→+∞
ζ∈U+ε

F (ζ) = 0. �

Theorem 12.5. Let U be an admissible open set with respect to (α, β) ∈Ma,b,
and let F ∈ H(1)(U). Then

∫
∂̃U+ε

F (σ)dσ = 0

for every ε ∈ S∗
α,β , and

F (ζ) =
1

(2πi)k

∫
∂̃U+ε

F (σ)dσ

Π1≤j≤k(ζj − σj)

for every ε ∈ S∗
α,β and for every ζ ∈ U+ε, where ∂Uj is oriented from ei(−

π
2 −αj).∞

to ei(
π
2 −βj).∞ for j ≤ k.

Proof. Let z ∈ Ck satisfying the conditions of Definition 12.1 with respect
to U, let ε ∈ S∗

α,β , let L > 1 such that (zj + eiαj .∞, zj + Leiαj ] ⊂ ∂Uj and
[zj + Leiβj , zj + eiβj .∞) ⊂ ∂Uj for j ≤ k, and let M > 1. Set

Mj :=
(
(zj + εj + Leiαj , zj + εj + eiαj .∞) ∪ (zj + εj + Leiβj , zj + εj + eiβj .∞)

)
,

Nj :=
(
(zj + Lεj + Leiαj .∞, zj + Lεj + Leiαj ) ∪(zj + Lεj + Leiβ , zj + εj + eiβj .∞)

)
,
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ΓL,j,1 = (εj + ∂Uj) \Mj ,

ΓL,j,2 = [zj + εj + Leiβj , zj + Lεj + Leiβj ],

ΓL,j,3 = (Lεj + ∂Uj) \Nj ,

ΓL,j,4 = [zj + Lεj + Leiαj , zj + εj + Leiαj ],

ΓL,j = ∪1≤s≤4ΓL,j,s,

where the Jordan curve ΓL,j is oriented clockwise.
For n ≥ 1, ζj ∈ S

∗
αj ,βj

, set Wj,n(ζj) =
n2(

n+e
αj+βj

2
iζj

)2 , and set

Wn(ζ) = Πj≤kWn,j(ζj), (ζ ∈ S
∗
α,β).

Then |Wn,j(ζj)| ≤ 1 for ζj ∈ S
∗
αj ,βj

, Wn(ζ) → 1 as n → ∞ uniformly on compact sets of
S

∗
α,β , and lim |ζ|→∞

ζ∈S∗
α,β

Wn(ζ) = 0.

Denote by VL,j the interior of ΓL,j and set VL = Π1≤j≤kVL,j . If ζ ∈ VL, it follows
from Cauchy’s theorem that we have

∑
l∈{1,2,3,4}k

∫
Πj≤kΓL,j,l(j)

Wn(σ − z − ε)F (σ)dσ =

∫
∂̃VL

Wn(σ − z − ε)F (σ)dσ = 0.

Set l0(j) = 1 for j ≤ k. It follows from the corollary that there exists M > 0

such that |F (ζ)| ≤ M for ζ ∈ U + ε, and there exists Rn > 0 such that, for every L
satisfying the conditions given above, we have

∫
ΓL,j

|Wn(σj − zj − εj)||dσ| ≤ Rn. Also
lim supL→+∞

∫
ΓL,j,s

|Wn,j(σj − zj − εj)||d(σj)| = 0 for s ≥ 2, j ≤ k.

Let l �= l0, and let jl ≤ k such that jl ≥ 2. We have

lim sup
L→+∞

∣∣∣∣∣
∫
Πj≤kΓL,j,l(j)

|Wn(σ − z − ε)F (σ)dσ

∣∣∣∣∣
≤ MRk−1

n

∫
ΓL,jl,l(jl)

|Wn,jl(ζjl − zjl − εjl)||dσjl | = 0.

This gives

∫
∂U+ε

Wn(σ − z − ε)F (σ)dσ = lim
L→+∞

∫
Πj≤kΓL,j,l0(j)

Wn(σ − z − ε)F (σ)dσ

= lim
L→+∞

∑
l∈{1,2,3,4}k

∫
Πj≤kΓL,j,l(j)

Wn(σ − z − ε)F (σ)dσ

= 0.

It follows then from the Lebesgue dominated convergence theorem that
∫
∂U+ε

F (σ)dσ = 0.

Similarly, applying Cauchy’s formula when ζ ∈ U + ε is contained in VL, we obtain
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1

(2πi)k

∫
∂U+ε

Wn(σ − z − ε)F (σ)

(ζ1 − σ1) . . . (ζk − σk)
dσ

= lim
L→+∞

1

(2πi)k

∫
ΓL,j,l0(j)

Wn(σ − z − ε)F (σ)

(ζ1 − σ1) . . . (ζk − σk)
dσ

= lim
L→+∞

1

(2πi)k

∑
l∈{1,2,3,4}k

∫
Πj≤kΓL,j,l(j)

Wn(σ − z − ε)F (σ)

(ζ1 − σ1) . . . (ζk − σk)
dσ

= lim
L→+∞

1

(2πi)k

∫
∂̃VL

Wn(σ − z − ε)F (σ)

(ζ1 − σ1) . . . (ζk − σk)
dσ

= Wn(ζ − z − ε)F (ζ).

It follows then again from the Lebesgue dominated convergence theorem that we have

F (ζ) = lim
n→+∞

Wn(ζ − z − ε)F (ζ)

= lim
n→+∞

1

(2πi)k

∫
∂U+ε

Wn(σ − z − ε)F (σ)

(ζ1 − σ1) . . . (ζk − σk)
dσ

=
1

(2πi)k

∫
∂U+ε

F (σ)

(ζ1 − σ1) . . . (ζk − σk)
dσ.

�

Let ζ ∈ U, and let ε ∈ S∗
α,β . It follows from the theorem that there exists ρ > 0

such that

|F (ζ)| ≤ 1

(2π)k
‖F‖H(1)(U)

Πj≤kdist(ζj , ∂Uj + tεj)

for t ∈ (0, ρ]. Since

lim
t→0+

dist(ζj , ∂Uj + tεj) = lim
t→0+

dist(ζj − tεj , ∂Uj) = dist(ζj , ∂Uj),

we obtain, for F ∈ H(1)(U), ζ ∈ U,

(36) |F (ζ)| ≤ 1

(2π)k
‖F‖H(1)(U)

Πj≤kdist(ζj , ∂Uj)
,

which improves inequality (ii) of Lemma 12.3.
If αj = βj for j ≤ k, then every (α, β) admissible open set U is a product

of open half-planes and the space H(1)(U) is the usual Hardy space H1(U). The
standard conformal mappings of the open unit disc D onto half planes induce an
isometry from the Hardy space H1(Dk) onto H1(U). It follows then from standard
results about H1(Dk), see Theorems 3.3.3 and 3.3.4 of [31], that F admits a.e. a
nontangential limit F ∗ on ∂̃U, and that

lim
ε→0

|
∫
∂̃U

|F ∗(σ)− F (σ + ε)||dσ| = 0.

This gives the formula

(37) F (ζ) =
1

(2πi)k

∫
∂̃U

F ∗(σ)dσ

(ζ1 − σ1) . . . (ζk − σk)
for every ζ ∈ U.

We did not investigate whether such nontangential limits of F on ∂̃U exist in
the general case.
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Recall that the Smirnov class N+(P+) on the right-hand open half-plane P+

consists in those functions F holomorphic on P+ which can be written under the
form F = G/H where G ∈ H∞(P+) and where H ∈ H∞(P+) is outer, which
means that we have, for Re(ζ) > 0,

F (ζ) = exp

(
1

π

∫ +∞

−∞

1− iyζ

(ζ − iy)(1 + y2)
log |F ∗(iy)|dy

)
,

where F ∗(iy) = limx→0+ F (x + iy) if defined a.e. on the vertical axis and
satisfies

∫ +∞
−∞

| log |F∗(iy)|
1+y2 dy < +∞.

Set , for Re(ζ) > 0,

Fn(ζ) = exp

(
1

π

∫ +∞

−∞

1− iyζ

(ζ − iy)(1 + y2)
sup(log |F ∗(iy)|,−n)dy

)
.

It follows from the positivity of the Poisson kernel on the real line that we have
|F (ζ)| ≤ |Fn(ζ)| and limn→+∞ Fn(ζ) = F (ζ) for Re(ζ) > 0. Also the
nontangential limit F ∗

n(iy) of F at iy exists a.e. on the imaginary axis and |F ∗
n(iy)| =

sup(e−n, |F ∗(iy)|) a.e., which shows that supζ∈P+ |Fn(ζ)| = supζ∈P+ |F (ζ)| when
n is sufficiently large. Hence limn→+∞ F (ζ)F−1

n (ζ) = 1 for ζ ∈ P+.
This suggests the following notion.

Definition 12.6. Let U ⊂ Ck be a connected open set.
A holomorphic function F ∈ H∞(U) is said to be strongly outer on U if there

exists a sequence (Fn)n≥1 of invertible elements of H∞(U) satisfying the following
conditions

(i) |F (ζ)| ≤ |Fn(ζ)| (ζ ∈ U, n ≥ 1),
(ii) limn→+∞ F (ζ)F−1

n (ζ) = 1 (ζ ∈ U).
The Smirnov class S(U) consists of those holomorphic functions F on U such

that FG ∈ H∞(U) for some strongly outer function G ∈ H∞(U).

It follows from (ii) that F (ζ) �= 0 for every ζ ∈ U if F is strongly outer on U,
and F|V is strongly outer on V if V ⊂ U. Similarly if F ∈ S(U) then F|V ∈ S(V ).
Also it follows immediately from the definition that the set of bounded strongly
outer functions on U is stable under products, and that if there is a conformal
mapping θ from an open set V ⊂ Ck onto U then F ∈ H∞(U) is strongly outer on
U if and only if F ◦ θ is strongly outer on V , and if G is holomorphic on U then
G ∈ S(U) if and only F ◦ θ ∈ S(V ).

Now let (α, β) ∈ Ma,b and let U = Πj≤kUj be an admissible open set with
respect to (α, β). Then each set Uj is conformally equivalent to the open unit disc
D, and so there exists a conformal mapping θ from Dk onto U , and the study of
the class of bounded strongly outer functions on U (resp. the Smirnov class on
U) reduces to the study of the class bounded strongly outer functions (resp. the
Smirnov class) on Dk.

Let F ∈ H∞(Dk) be strongly outer, and let (Fn)n≥1 be a sequence of invertible
elements of H∞(Dk) satisfying the conditions of Definition 12.6 with respect to F.
Denote by T = ∂D the unit circle. Then H∞(Dk) can be identified to a w∗-closed
subspace of L∞(Tk) with respect to the w∗-topology σ(L1(Tk), L∞(Tk)).

Let L ∈ H∞(Dk) be a w∗-cluster point of the sequence (FF−1
n )n≥1. Since the

map G→ G(ζ) is w∗-continuous on H∞(Dk) for ζ ∈ Dk, L = 1, and so FH∞(Dk)
is w∗-dense in H∞. When k = 1, this implies as well-known that F is outer, and
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the argument used for the half-plane shows that, conversely, every bounded outer
function on D is strongly outer, and so S(D) = N+(D).

Recall that a function G ∈ H∞(Dk) is said to be outer if

log(|G(0, . . . , 0)|) = 1

(2π)k

∫
Tk

log |G∗(eit1 , . . . , eitk )|dt1 . . . dtk,

where G∗(eit1 , . . . , eitk) denotes a.e. the nontangential limit of G at (eit1 , . . . , eitk),
see [31], Definition 4.4.3, and G is outer if and only if almost every slice function
Gω is outer on D, where Gω(ζ) = G(ωζ) for ω ∈ Tk, ζ ∈ D, see [31], Lemma 4.4.4.
If follows from Definition 12.6 that every slice function Fω is strongly outer on D if
F ∈ H∞(Dk) is strongly outer on Dk, and so every strongly outer bounded function
on Dk is outer. It follows from an example from [31] that the converse is false if
k ≥ 2.

Proposition 12.7. Let k ≥ 2, and set F (ζ1, . . . , ζk) = e
ζ1+ζ2+2
ζ1+ζ2−2 for (ζ1, . . . , ζk)

∈ Dk. Then F is outer on Dk, but F is not strongly outer on Dk.

Proof. Set f(ζ) = e
ζ+1
ζ−1 for ζ ∈ D. Then f ∈ H∞(D) is a singular inner

function. Since f(ζ) �= 0 for ζ ∈ D, it follows from [31], Lemma 4.4.4b that the
function

f̃ : (ζ1, ζ2) → f(
ζ1 + ζ2

2
,
ζ1 + ζ2

2
) = e

ζ1+ζ2+2
ζ1+ζ2−2

is outer on D2. Hence we have

log |F (0, . . . , 0)| = log |f̃(0, 0)|

=
1

(2π)2

∫
T2

f̃(eit1 , eit2)dt1dt2

=
1

(2π)k

∫
Tk

F (eit1 , . . . , eitk)dt1 . . . dtk,

and so F is outer on Dk.
Now set ω = (1, . . . , 1). Then Fω = f is not outer on D, and so F is not strongly

outer on Dk. �

The fact that some bounded outer functions on D are not strongly outer is not
surprising: The Poisson integral of a real valued integrable function on Tk is the
real part of some holomorphic function on Dk if an only if its Fourier coefficients
vanish on Zk \ (Z+)k ∪ (Z−)k, see [31], Theorem 2.4.1, and so the construction of
the sequence (Fn)n≥1 satisfying the conditions of Definition 12.6 with respect to
a bounded outer function F on Dk breaks down when k ≥ 2. We conclude this
appendix with the following trivial observations.

Proposition 12.8. Let U = Πj≤kUj ⊂ Ck be an admissible open set with
respect to some (α, β) ∈Ma,b.

(i) Let θj : Uj → D be a conformal map and let πj : (ζ1, . . . , ζk) → ζj be the
j-th coordinate projection. If f ∈ H∞(D) is outer, then f ◦ θj ◦ πj is strongly outer
on U.

(ii) The Smirnov class S(U) contains all holomorphic functions on U having
polynomial growth at infinity.

Proof. (i) Since f is strongly outer on D, there exists a sequence (fn)n≥1 of in-
vertible elements of H∞(D) satisfying the conditions of Definition 12.6 with respect
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to f. Then the sequence (fn ◦ θj ◦ πj)n≥1 satisfies the conditions of Definition 12.6
with respect to f ◦ θj ◦ πj , and so f ◦ θj ◦ πj is strongly outer on U.

(ii) For j ≤ k there exists γj ∈ [−π, π) and mj ∈ R such that open set Uj is
contained in the open half plane Pj := {ζj ∈ C | Re(ζje

iγj ) ≥ mj}. The function
σ → 1−σ

2 is outer on D, since | 1−σ
2 | ≤

∣∣∣ 1+1/n−σ
2

∣∣∣ for σ ∈ D, and the function ζj →

ζje
iγj−mj−1

ζje
iγj−mj+1

maps conformally Uj onto D. Set Fj(ζ1, . . . , ζk) =
1− ζje

iγj −mj−1

ζje
iγj −mj+1

2 =
1

ζje
iγj−mj+1

. It follows from (i) that Fj is strongly outer on Πj≤kPj , hence strongly
outer on U.

Now assume that a function F holomorphic on U has polynomial growth at
infinity. Then there exists p ≥ 1 such that FΠj≤kF

p
j is bounded on U, and so

F ∈ S(U). �
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An integral Hankel operator on H1(D)

Miron B. Bekker and Joseph A. Cima

Abstract. An integral Hankel operator generated by a Carleson measure with
support on [0, 1) is investigated. We show that this operator boundedly maps
the Hardy space H1(D) into the space of Cauchy Transforms. We also study
some properties of the corresponding measure on the unit circle T.

1. Introduction

Perhaps the best place to begin this article is a significant result of Ch. Pom-
merenke [17]. He asked (and successfully answered) the following question: for
which analytic functions g in the unit disk D is the linear operator

f →
∫ z

0

f(w)g′(w)dw

continuous on the Hardy space H2(D)? His answer was that this operator is contin-
uous onH2(D) if and only if g ∈ BMOA. This lead to others asking this question in
the more general setting of the Hardy space Hp(D), 0 < p <∞. The answers in this
setting were settled in papers by A. Aleman and A. Siskakis [3] and A. Aleman and
J. Cima [2]. This lead to a great flurry of activity for introducing several different
types of linear, integral operators and investigating their behaviour on many other
spaces, such as Bergman spaces, Dirichlet spaces, Analytic Morrey spaces, Fock
spaces, etc . . . . The references given at the end of this paper give an abbreviated
selection of some of the papers written over last 15 or so years and the interested
reader will find a fairly complete background list of pertinent publications in the
references to the listed papers.

It is the goal of this print to consider one such operator on the Hardy space
H1(D). This will neccesiate introducing some material from the setting of the
Cauchy transform of finite Borel measures on the unit circle T, and some tools
from that discipline. We will make the definitions and supply necessary background
material in the next section.

2. Definitions and pertinent background material

There are many good references available for theory of Hardy spaces and we
suggest a book by J. Cima, A. Matheson and W. Ross [6] as one such. In that text
there is a detailed discussion of the Banach space known as the space of Cauchy
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transforms (on the unit circle), denoted as CT. Namely, a function f analytic in
the unit disk D belongs to CT if it can be represented in the form

(2.1) f(z) =

∫
T

dν(ζ)

1− zζ̄
≡ (Kν)(z),

where ν is a finite Borel measure on the unit circle T, and z ∈ D.
It is easy to see that the measure ν involved is not unique and adding the

complex conjugate of any analytic polynomial against Lebesgue measure dm(ζ) to
ν will yield the same analytic function f . The space CT can be realized as the dual
of the Banach space A of all functions analytic in D and continuous on D. This
requires that the norm be a coset norm, namely

(2.2) A∗ =
(
L1(T)/H1

0

)
⊕Ms,

where Ms denotes the singular measures. The norm in question for our f is given
as

(2.3) ‖f‖CT = inf{‖μ‖ : f(z) = (Kμ)(z)},

where ‖μ‖ is the total variation norm of the measure μ. In this situation there is a
measure, say μ, such that ‖f‖CT = ‖μ‖. Further, if the measure giving f , say ν, is
singular then it is unique among the singular measures, and ‖f‖CT = ‖ν‖.

For a given measurable function g on the unit circle the distribution function
for g is defined as follows. Put

A(y, g) = A(y) = {ζ ∈ T : |g(ζ)| > y}.

The distribution function d(y), y > 0 is given as d(y) = m(A(y)), where m is the
normalized Lebesgue measure on the unit circle T . Recall that the function d is a
non-increasing and right-continuous function.

There is an important result due to Poltoratski [16] relating the size of the
total variation of the singular part of the measure in question and a distribution
function.

Theorem 2.1. Assume y > 0, f(z) = (Kμ)(z), and that the lebesgue decom-
position of μ is given as dμ(ζ) = F (ζ)dm(ζ)+dμs(ζ), where μs is the singular part
of the measure μ. Then the measures πyχ{|K(μ)>y|}dm converge weak∗ as y tends
to infinity to |μs|.

Finally, in this section let us mention the motivation for the operator we wish
to consider. The Hilbert matrix H = (aij), where aij = 1/(i+ j+1) is well studied
and it maps the Hilbert space l2 boundedly into itself. There is a natural way to
lift this matricial operation to an operator on the Hardy space H2(D) as follows.
Namely, if f(z) =

∑
n≥0 Anz

n is an analytic function on the unit disk, then define
a transformation of f by setting

(If)(z) =
∞∑

n=0

( ∞∑
k=0

Ak

n+ k + 1

)
zn.

It is straightforward to check that for f ∈ Hp(D) the following holds

(2.4) (If)(z) =

∫ 1

0

f(t)

1− zt
dt.
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We refer to [14] where some questions related to the transformation (2.4) are inves-

tigated. Since
∫ 1

0
ti+jdt = 1/(i + j + 1) this easily generalized to Hankel matrices

and the analogous integral operators where one uses the integral

(Hμf)(z) =

∫ 1

0

f(t)

1− zt
dμ(t),

where μ is a finite Borel measure on the interval [0, 1), and f ∈ L1(μ). In the next
section we will discuss one such extension for the Hardy space H1(D).

3. The embedding result

Assume μ is a positive Borel measure on the interval [0, 1) and f ∈ L1([0, 1), μ).
The operator we wish to study is the integral Hankel operator defined for f(z)
analytic on D and is given by

(3.1) (Hμf)(z) ≡
∫
[0,1)

f(t)

1− tz
dμ(t), z ∈ D.

Even in the most basic case where μ is the Lebesgue measure on [0, 1) and f ∈
H1(D) (and consequently by the Fejer-Riesz theorem in L1((−1, 1)dt)) there is a
class of examples given by Diamantopoulos and Siskakis ([7]), that shows that Hμ

need not map H1(D) into itself. Namely, the functions

fε(z) =
1

1− z

[
1

z
log

1

1− z

]−1−ε

are in H1(D) for ε > 0 (see [8]), but Hμfε are not in H1(D).
Hence one can ask for which of the classical Banach spaces the range of Hμ will

be continuously embedded. The following statement answers this question.

Theorem 3.1. Assume the positive Borel measure μ is a Carleson measure
with support in [0, 1). The Hankel operator Hμ is a continuous linear mapping
from the Hardy space H1(D) into the space of Cauchy Transforms.

Proof. It suffices to prove that for f ∈ H1(D) the function Hμf defines a
bounded linear functional on the disk algebra A.To this end we will show that for
g ∈ A

lim
r→1

∫
T

(Hμf)(re
iφ)g(eiφ)dm(φ)

exists. For the notational purposes set

M(r) =

∫
T

(Hμf)(re
iφ)g(eiφ)dm(φ).

Rewriting M we have

M(r) =

∫
[0,1)

f(t)g(rt)dμ(t).

Since g is uniformly continuous on [0, 1], we may use the assumption that μ is a
Carleson measure to conclude that given ε > 0 there is an r′ ∈ (0, 1) so that for

Licensed to AMS.
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r′ < r1 < r2 < 1 we have

|M(r1)−M(r2)| =
∣∣∣∣∣
∫
[0,1)

f(t)[g(r1t)− g(r2t)]dμ(t)

∣∣∣∣∣
< ε

∫
[0,1)

|f(t)|dμ(t)

≤ Cε‖f‖H1 ,

from which it follows that

lim
r→1

M(r)

exists.
This proves that Hμ is in the CT space. Hence there eixsts a finite Borel

measure, say ν, for which

(3.2) (Hμf)(z) =

∫
T

dν(ζ)

1− zζ̄
= (Kν)(z).

We show that the mapping f → Hμf is continuous by using the closed graph
theorem applied to the product space H1(D) × CT with the appropriate norms.
First, assume for fn ∈ H1(D) and Hμfn ≡ Fn there are two functions, f ∈ H1(D)
and F ∈ CT for which

(fn, Fn)→ (f, F )

in the graph norm of the product space. In particular we have convergence of both
sequences uniformly on compacta,

fn(z)⇒ f(z) and Fn(z)⇒ F (z).

If νn denote the measure that corresponds to Fn (n = 1, 2, . . .) with ‖Fn‖CT = ‖νn‖,
then they are bounded in total variation norm (choose z = 0 in the integral repre-
sentation). Then the sequence {νn} contains a subsequence (again written as {νn})
that converges weak∗ to a measure, say ν. Since, for each z ∈ D the function

1

1− zζ̄
as a function of ζ, is continuous on the closed unit disk, we conclude

lim
n→∞

∫
T

dνn(ζ)

1− zζ̄
=

∫
T

dν(ζ)

1− zζ̄
.

But this implies that

F (z) =

∫
T

dν(ζ)

1− zζ̄

and this is what was to be proved. �

4. The corresponding measure

Now let us consider the equality, for |z| < 1, of

(Hμf)(re
iφ) =

∫
T

dν(ζ)

1− reiφζ̄
= (Kν)(reiφ)

for φ ∈ (0, 2π).

Theorem 4.1. The singular part of the measure ν in the above representation
is a point mass at the point ζ = 1.
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Proof. By rewriting the denominator (1− treiφ) = (1− teiφ)− (treiφ − teiφ)
one can expand about the point z = eiφ and see that there is a neighborhood of
this point where Hν is analytic. Assuming this one has that Hνf is analytic on
T \ {1}. Then the integral ∫

T

dν(ζ)

1− reiφζ̄

can be extended to be analytic on the closed disk near any point in T \ {1}. Hence,
the integral is bounded on any compact subset of T which does not contain the point
ζ = 1. Thus, given any measurable subset of T, say E, such that there is an η > 0
for which E∩(|ζ−1| < 2η) = ∅ there is anM such that |(Hμf)(ζ)| = |(Kν)(ζ)| < M
for all ζ ∈ E. Choose a non-negative continuous function g on T which is one on E
and zero on T∩(|ζ−1| < η). Consider the statement of the Poltoratski theorem [16]
in this context. First, note that if y > M , the set A(y) = {ζ| |(Kν)(ζ)| > y} = ∅
and hence, χ{|(Kν)|>y}(ζ) = 0 for ζ ∈ E. Consider now∫

T

g(ζ)χ{|(Kν)|>y}(ζ)dm(ζ)

=

∫
|ζ−1|<η

g(ζ)χ{|(Kν)|>y}(ζ)dm(ζ) +

∫
T\{|ζ−1|<η}

g(ζ)χ{|(Kν)|>y}(ζ)dm(ζ).

Since g(ζ) = 0 in the first integral and χ{|(Kν)|>y}(ζ) = 0 for y > M in the second
integral, we have

lim
y→∞

πy

∫
T

g(ζ)χ{|(Kν)|>y}(ζ)dm(ζ) = 0

=

∫
T

g(ζ)d|νs|(ζ)

≥ |νs|(E).

Hence, |νs| is a singular measure with support at ζ = 1, and so must be a point
mass, |νs|(ζ) = |c|δ1(ζ). Consequently

νs(ζ) = cδ1(ζ)

where c is a complex constant. This establishes the result. �
From the above results we see that if the measure

dν(ζ) = F (ζ)dm(ζ) + cδ1(ζ)

corresponds to the integral operator then the function

(4.1) F (z) =

∫
T

F (ζ)

1− zζ̄
dm(ζ)

is continuous on D \ {1}. We can make more remarks concerning this function.

Proposition 4.2. The function F defined by (4.1) has the following property:

(4.2) lim
r↑1

(1− r)F (r) = −c.

Proof. For 0 < r < 1 we have

(Hμf)(r) =

∫ 1

0

f(t)

1− rt
dμ(t) = F (r) +

c

1− r
.

Let ε > 0 be given. For 0 < δ < 1 we have

|χ(1−δ,1)(t)f(t)| ≤ |f(t)|
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and
lim
δ↑1
|χ(1−δ,1)(t)f(t)| = 0.

Using the assumption f ∈ L1(dμ) for f ∈ H1 and the Lebesgue dominated conver-
gence theorem we conclude that there is a δ0 ∈ (0, 1) with∫ 1

1−δ0

|f(t)|dμ(t) < ε.

Hence

(1− r)

∣∣∣∣∫ 1

1−δ0

f(t)

1− rt
dμ(t)

∣∣∣∣ < ε.

Also

(1− r)

∣∣∣∣∣
∫ 1−δ0

0

f(t)

1− rt
dμ(t)

∣∣∣∣∣ ≤ 1− r

1− r(1− δ0)
C‖f‖H1

implying that

lim
r↑1

(1− r)

∫ 1−δ0

0

f(t)

1− rt
dμ(t) = 0.

Thus

lim
r↑1

(1− r)(Hμf)(r) = 0 = lim
r↑1

(1− r)

[
F (r) +

c

1− r

]
for f ∈ H1. This yealds the desired equality. �

Remark 4.3. The Proposition implies that

lim
z→1

(1− z)F (z) = −c

for all z ∈ D for which (1 − z)/(1 − zt)| ≤ M with t near the point 1 (e.g. a
truncated cone in D with vertex in 1 and t > 1/2).

Remark 4.4. If c �= 0 Proposition 4.2 implies that F can not be in H1.

Finally, it is possible to make one more comment about the correspondence
between the function f ∈ H1(D) and the Lebesgue decomposition of the measure
in question.

Proposition 4.5. There is a choice of the measures in the Lebesgue decompo-

sition of ν so that the map of H1(D) into Ms and L1(T)/H1
0 (D) is continuous.

Proof. It suffices to assume that fn ∈ H1(D) and fn → 0 in H1(D) and then
prove that the map fn �→ νns is continuous, where νns is an appropriate singular
measure corresponding to fn in the integral decomposition. We choose Fn ∈ L1(T)
and νns as mentioned above, so we have

‖Hμf‖CT = ‖Fn‖L1(T) + ‖νns ‖ → 0

implying the continuity in question. �

The following fact may be worthwhile noting.

Proposition 4.6. Assume μ is a Carleson measure on [0, 1) and Hμ is the
associated Hankel operator. Then Hμ maps polynomials into BMOA.
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Proof. It suffices to prove that Hμz
k, k ∈ Z+, is in BMOA. Let p(z) be a

polynomial. As above it suffices to prove that for 0 < r < 1∣∣∣∣∫
T

Hμ(zk)(rζ)p(ζ)dm(ζ)

∣∣∣∣ ≤ C‖p‖H1

where C is independent of p.
Write ∫

T

(∫ 1

0

tk

1− rζt
dμ(t)

)
p(ζ)dm(ζ)

=

∫ 1

0

tkdμ(t)

∫
T

p(ζ)

1− rζ̄t
dm(ζ) =

∫ 1

0

tkdμ(t)

∫
T

ζp(ζ)

ζ − rt
dm(ζ)

=

∫ 1

0

tkrtp(rt)dμ(t).

Taking absolute value one obtains∣∣∣∣∫
T

(Hμzk)(rζ)p(ζ)dm(ζ)

∣∣∣∣ ≤ Cr‖zk+1pr‖H1 ≤ C‖p‖H1
.
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A panorama of positivity. II: Fixed dimension
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Abstract. This survey contains a selection of topics unified by the concept
of positive semidefiniteness (of matrices or kernels), reflecting natural con-
straints imposed on discrete data (graphs or networks) or continuous objects
(probability or mass distributions). We put emphasis on entrywise operations
which preserve positivity, in a variety of guises. Techniques from harmonic
analysis, function theory, operator theory, statistics, combinatorics, and group
representations are invoked. Some partially forgotten classical roots in metric
geometry and distance transforms are presented with comments and full bib-
liographical references. Modern applications to high-dimensional covariance
estimation and regularization are included.
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3.6. Digression: Schur polynomials from smooth functions, and new
symmetric function identities

3.7. Further applications: linear matrix inequalities, Rayleigh quotients,
and the cube problem

3.8. Entrywise preservers of totally non-negative Hankel matrices
4. Power functions
4.1. Sparsity constraints
4.2. Rank constraints and other Loewner properties
5. Motivation from statistics
5.1. Thresholding with respect to a graph
5.2. Hard and soft thresholding
5.3. Rank and sparsity constraints
Table of contents from Part I of the survey
References

This is the second part of a two-part survey; we include on p. 146 the table of
contents for the first part [9]. The survey in its unified form may be found online;
see [8]. The abstract, keywords, MSC codes, and introduction are the same for
both parts.

1. Introduction

Matrix positivity, or positive semidefiniteness, is one of the most wide-reaching
concepts in mathematics, old and new. Positivity of a matrix is as natural as
positivity of mass in statics or positivity of a probability distribution. It is a notion
which has attracted the attention of many great minds. Yet, after at least two
centuries of research, positive matrices still hide enigmas and raise challenges for
the working mathematician.

The vitality of matrix positivity comes from its breadth, having many theoret-
ical facets and also deep links to mathematical modelling. It is not our aim here to
pay homage to matrix positivity in the large. Rather, the present survey, split for
technical reasons into two parts, has a limited but carefully chosen scope.

Our panorama focuses on entrywise transforms of matrices which preserve their
positive character. In itself, this is a rather bold departure from the dogma that
canonical transformations of matrices are not those that operate entry by entry.
Still, this apparently esoteric topic reveals a fascinating history, abundant charac-
teristic phenomena and numerous open problems. Each class of positive matrices
or kernels (regarding the latter as continuous matrices) carries a specific toolbox
of internal transforms. Positive Hankel forms or Toeplitz kernels, totally positive
matrices, and group-invariant positive definite functions all possess specific positiv-
ity preservers. As we see below, these have been thoroughly studied for at least a
century.

One conclusion of our survey is that the classification of positivity preservers is
accessible in the dimension-free setting, that is, when the sizes of matrices are un-
constrained. In stark contrast, precise descriptions of positivity preservers in fixed
dimension are elusive, if not unattainable with the techniques of modern mathe-
matics. Furthermore, the world of applications cares much more about matrices of
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fixed size than in the free case. The accessibility of the latter was by no means a
sequence of isolated, simple observations. Rather, it grew organically out of dis-
tance geometry, and spread rapidly through harmonic analysis on groups, special
functions, and probability theory. The more recent and highly challenging path
through fixed dimensions requires novel methods of algebraic combinatorics and
symmetric functions, group representations, and function theory.

As well as its beautiful theoretical aspects, our interest in these topics is also
motivated by the statistics of big data. In this setting, functions are often applied
entrywise to covariance matrices, in order to induce sparsity and improve the qual-
ity of statistical estimators (see [33,34,53]). Entrywise techniques have recently
increased in popularity in this area, largely because of their low computational
complexity, which makes them ideal to handle the ultra high-dimensional datasets
arising in modern applications. In this context, the dimensions of the matrices are
fixed, and correspond to the number of underlying random variables. Ensuring that
positivity is preserved by these entrywise methods is critical, as covariance matrices
must be positive semidefinite. Thus, there is a clear need to produce characteri-
zations of entrywise preservers, so that these techniques are widely applicable and
mathematically justified. We elaborate further on this in the second part of the
survey.

We conclude by remarking that, while we have tried to be comprehensive in
our coverage of the field of matrix positivity and the entrywise calculus, there are
very likely to be some inadvertent omissions. Even if our survey is not complete
in terms of results and connections, we hope that it serves to impress upon the
reader the depth and breadth, the classical history and modern applications, and
the influence and beauty of the many facets of positivity.

2. A selection of classical results on entrywise positivity preservers

We begin by mentioning some results from the first part of the survey ([9]
or [8]), which are used or referred to in this part.

2.1. From metric geometry to matrix positivity. As discussed in the first
part of the survey, the study of entrywise positivity preservers naturally emerged
out of considerations of metric geometry. We recall here some early results of
Schoenberg, beginning with the following connection between metric geometry and
matrix positivity.

Theorem 2.1 (Schoenberg [55]). Let d ≥ 1 be an integer and let (X, ρ) be a
metric space. An (n+ 1)-tuple of points x0, x1, . . . , xn in X can be isometrically
embedded into Euclidean space Rd, but not into Rd−1, if and only if the matrix

(2.1) [ρ(x0, xj)
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2]nj,k=1

is positive semidefinite with rank equal to d.

The positivity of the matrix (2.1) is equivalent to the statement that the asso-
ciated (n+ 1)× (n+ 1) matrix

[−ρ(xj , xk)
2]nj,k=0

is conditionally positive semidefinite: recall that a real symmetric matrix A is con-
ditionally positive semidefinite if uTAu ≥ 0 whenever the coordinates of the real
vector u sum to zero.
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Schoenberg’s Theorem 2.1 marks an early appearance of positive and condition-
ally positive matrices in the analysis literature. It says that applying the function
−x2 entrywise transforms Euclidean-distance matrices into conditionally positive
semidefinite matrices. A natural next step is to remove the word “conditionally”
and ask which functions transform distance matrices, from a given metric space
(X, ρ), into positive matrices. This is precisely the definition of positive definite
functions on (X, ρ).

Schoenberg showed [56] that Euclidean spaces are characterized by the prop-
erty that Gaussian kernels with arbitrary variances are positive definite on them.
He similarly showed [55] that among metric spaces of diameter no more than π,
the unit spheres Sd−1 ⊂ Rd and S∞ ⊂ �2

R
admit a similar characterization in terms

of just one function, cosine. Following this result, and the work of Bochner [14,15]
in classifying positive definite functions on Euclidean and compact homogeneous
spaces, Schoenberg was interested in understanding classes of positive definite func-
tions on these spheres.

Theorem 2.2 (Schoenberg [57]). Let f : [−1, 1]→ R be continuous.

(1) For a given dimension d ≥ 2, the function f ◦ cos is positive definite on
the unit sphere Sd−1 if and only if it has a distinguished Fourier-series
decomposition with non-negative coefficients. That is,

(2.2) f(cos θ) =
∞∑
k=0

ckP
(λ)
k (cos θ) (θ ∈ R),

where P
(λ)
k are the ultraspherical orthogonal polynomials with λ = (d−2)/2

and the coefficients ck ≥ 0 for all k ≥ 0 with
∑∞

k=0 ck <∞.
(2) The function f(cos θ) is positive definite on all finite-dimensional spheres,

or, equivalently, is positive definite on S∞, if and only if

(2.3) f(cos θ) =
∞∑
k=0

ck cos
k θ,

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.

By freeing the previous result from the spherical context, Schoenberg obtained
his celebrated result on positivity preservers.

Theorem 2.3 (Schoenberg [57]). Let f : [−1, 1]→ R be continuous. If the ma-
trix [f(ajk)]

n
j,k=1 is positive semidefinite for all n ≥ 1 and all positive semidefinite

matrices [ajk]
n
j,k=1 with entries in [−1, 1], then, and only then,

f(x) =
∞∑
k=0

ckx
k (x ∈ [−1, 1]),

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.

2.2. Entrywise functions preserving positivity in all dimensions. The-
orem 2.3 provides a definitive answer to one version of the following central question,
which is the driving idea throughout this survey.

Which functions, when applied entrywise to certain classes of matrices, preserve
positive semidefiniteness?

The fundamental result for answering this question is the Schur product the-
orem [58]: if A and B are positive semidefinite matrices of the same size, then
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their entrywise product is positive semidefinite too. As observed by Pólya and
Szegö [51], the fact that the set of positive matrices forms a closed convex cone
immediately implies, by Schur’s result, that every power series with non-negative
Maclaurin coefficients is a positivity preserver; they asked if there are any other
functions with this property. It follows from Schoenberg’s Theorem 2.3 that there
are no additional continuous functions, and Rudin [54] subsequently removed the
continuity hypothesis for real-valued functions on (−1, 1).

A similar variant was proved by Vasudeva [60], for a different domain. To state
this result, and for later, we recall some notation from the first part of the survey
[9].

Definition 2.4. Fix a domain I ⊂ C and integers m, n ≥ 1. Let Pn(I) denote
the set of n × n Hermitian positive semidefinite matrices with entries in I, with
Pn(C) abbreviated to Pn. A function f : I → C acts entrywise on a matrix

A = [ajk]1≤j≤m, 1≤k≤n ∈ Im×n

by setting

f [A] := [f(ajk)]1≤j≤m, 1≤k≤n ∈ Cm×n.

Below, we allow the dimensions m and n to vary, while keeping the uniform notation
f [−]. We also let 1m×n denote the m × n matrix with each entry equal to one.
Note that 1n×n ∈ Pn(R).

Now we can state Vasudeva’s result.

Theorem 2.5 (Vasudeva [60]). Let f : (0,∞) → R. Then f [−] preserves
positivity on Pn

(
(0,∞)

)
for all n ≥ 1, if and only if f(x) =

∑∞
k=0 ckx

k on (0,∞),
where ck ≥ 0 for all k ≥ 0.

A final variant is for matrices with possibly complex entries. This result was
conjectured by Rudin in [54] and proved four years later.

Theorem 2.6 (Herz [37]). Let D(0, 1) denote the open unit disc in C, and sup-
pose f : D(0, 1)→ C. The entrywise map f [−] preserves positivity on Pn

(
D(0, 1)

)
for all n ≥ 1, if and only if

f(z) =
∑
j,k≥0

cjkz
jzk for all z ∈ D(0, 1),

where cjk ≥ 0 for all j, k ≥ 0.

2.3. The Horn–Loewner theorem and its variants. The first part of this
survey [9] focuses on various refinements of our central question when the matrices
under consideration are of arbitrary dimension (the “dimension-free” setting). Here,
we consider the situation where the dimension N of the test matrices is fixed. This
turns out to be highly challenging, and remains open to date for each N ≥ 3. The
following necessary condition was first published by R. Horn (who in [40] attributes
it to his PhD advisor C. Loewner), and is essentially the only general result known.

Theorem 2.7 (Horn–Loewner [40]). Let f : (0,∞) → R be continuous. Fix
a positive integer n and suppose f [−] preserves positivity on Pn

(
(0,∞)

)
. Then

f ∈ Cn−3
(
(0,∞)

)
,

f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 3,
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and f (n−3) is a convex non-decreasing function on (0,∞). Furthermore, if f ∈
Cn−1

(
(0,∞)

)
, then f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 1.

This theorem has produced several variants: the arguments are purely local,
they involve low-rank matrices, and continuity need not be assumed. Another
possibility involves working with real-analytic functions, and we use this below.

Lemma 2.8 (Belton–Guillot–Khare–Putinar [6] and Khare–Tao [43]). Let n
be a positive integer, suppose 0 < ρ ≤ ∞ and let f(x) =

∑
k≥0 ckx

k be a conver-

gent power series on I = [0, ρ) that preserves positivity entrywise for all rank-one
matrices in Pn(I). Suppose further that cm′ < 0 for some m′.

(1) If ρ <∞, then cm > 0 for at least n values of m < m′. (Thus, the first n
non-zero Maclaurin coefficients of f , if they exist, must be positive.)

(2) If ρ = ∞, then cm > 0 for at least n values of m < m′ and at least n
values of m > m′. (Thus, if f is a polynomial, then the first n non-zero
coefficients and the last n non-zero coefficients of f , if they exist, are all
positive.)

These results, and others in the literature for smooth functions, admit a com-
mon generalization that was recently obtained.

Theorem 2.9 (Khare [42]). Let a ∈ R+ and ε ∈ (0,∞), and suppose
f : [a, a+ε)→ R is smooth. Fix integers n, p, q such that n ≥ 1 and 0 ≤ p ≤ q ≤ n,
with p = 0 if a = 0, and such that f has q− p non-zero derivatives at a of order at
least p; let

mp < mp+1 < · · · < mq−1

be the orders of these derivatives.
If there exists u := (u1, . . . , un)

T ∈ (0, 1)n with distinct entries and such that
f [a1n×n + tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then the derivative f (k)(a) is non-
negative whenever 0 ≤ k ≤ mq−1.

The proof of Theorem 2.9 involves a determinant computation that generalizes
one by Horn and Loewner, and leads to an unexpected connection to symmetric
function theory. See Theorem 3.22 for more details.

2.4. Preservers of positive Hankel matrices. Finally for this chapter,
we consider entrywise maps preserving the set of positive Hankel matrices. A
distinguished subset of these matrices arise as moment matrices for measures on
the real line; we collect some concepts from the first part of the survey.

Definition 2.10. A measure μ with support in R is said to be admissible if μ
is non-negative and all its moments are finite:

sk(μ) :=

∫
R

xk dμ(x) <∞ (k ∈ Z+).

The sequence s(μ) :=
(
sk(μ)

)∞
k=0

is the moment sequence of μ, and the moment
matrix of μ is the semi-infinite Hankel matrix

Hμ :=

⎡⎢⎢⎢⎣
s0(μ) s1(μ) s2(μ) · · ·
s1(μ) s2(μ) s3(μ) · · ·
s2(μ) s3(μ) s4(μ) · · ·

...
...

...
. . .

⎤⎥⎥⎥⎦ .
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A function f : R→ R acts entrywise on moment sequences, so that

f [s(μ)] := (f
(
s0(μ)

)
, . . . , f

(
sk(μ)

)
, . . .),

and f [Hμ] = Hσ if f [s(μ)] = s(σ) for some admissible measure σ.

Working with positive moment matrices and their entrywise preservers provides
a route to proving stronger versions of Vasudeva’s and Schoenberg’s theorems. We
conclude this section by stating these results.

Theorem 2.11 (Belton–Guillot–Khare–Putinar [7]). Suppose I = (0,∞) and
f : I → R. The following are equivalent.

(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) There exists u0 ∈ (0, 1) such that f [−] preserves positivity for all moment

matrices of the form Hμ, where μ = aδ1 + bδu0
and a, b ∈ I.

(3) The function f has a power-series representation
∑∞

k=0 ckx
k valid for all

x ∈ I, where the Maclaurin coefficients ck ≥ 0 for all k ≥ 0.

Theorem 2.12 (Belton–Guillot–Khare–Putinar [7]). Suppose 0 < ρ ≤ ∞, let
I = (−ρ, ρ) and suppose f : I → R. The following are equivalent.

(1) The entrywise map f [−] preserves positivity on Pn(I), for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on the set of Hankel matrices

in Pn(I) of rank at most 3, for all n ≥ 1.
(3) The function f is real analytic, and absolutely monotonic on (0, ρ), so

that f(x) =
∑∞

k=0 ckx
k for all x ∈ I, with ck ≥ 0 for all k ≥ 0.

3. Entrywise polynomials preserving positivity in fixed dimension

Having discussed at length the dimension-free setting, we now turn our atten-
tion to functions that preserve positivity in a fixed dimension N ≥ 2. This is a
natural question from the standpoint of both theory as well as applications. This
latter connection to applied fields and to high-dimensional covariance estimation
will be explained below in Chapter 5.

Mathematically, understanding the functions f such that f [−] : PN → PN

for fixed N ≥ 2, is a non-trivial and challenging refinement of Schoenberg’s 1942
theorem. A complete characterization was found for N = 2 by Vasudeva [60]:

Theorem 3.1 (Vasudeva [60]). Given a function f : (0,∞)→ R, the entrywise
map f [−] preserves positivity on P2

(
(0,∞)

)
if and only f is non-negative, non-

decreasing, and multiplicatively mid-convex:

f(x)f(y) ≥ f
(√

xy
)2

for all x, y > 0.

In particular, f is either identically zero or never zero on (0,∞), and f is also
continuous.

On the other hand, if N ≥ 3, then such a characterization remains open to
date. As mentioned above, perhaps the only known result for general entrywise
preservers is the Horn–Loewner theorem 2.7 or its more general variants, some of
which are stated above.

In light of this challenging scarcity of results in fixed dimension, a strategy
adopted in the literature has been to further refine the problem, in one of several
ways:
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(1) Restrict the class of functions, while operating entrywise on all of PN

(over some given domain I, say (0, ρ) or (−ρ, ρ) for 0 < ρ ≤ ∞). For
example, in this survey we consider possibly non-integer power functions,
polynomials and power series, and even linear combinations of real powers.

(2) Restrict the class of matrices and study entrywise functions over this class
in a fixed dimension. For instance, popular sub-classes of matrices include
positive matrices with rank bounded above, or with a given sparsity pat-
tern (zero entries), or classes such as Hankel or Toeplitz matrices; or in-
tersections of these classes. For instance, in discussing the Horn–Loewner
and Schoenberg–Rudin results, we encountered Toeplitz and Hankel ma-
trices of low rank.

(3) Study the problem under both of the above restrictions.

In this chapter we begin with the first of these restrictions. Specifically, we
will study polynomial maps that preserve positivity, when applied entrywise to
PN . Recall from the Schur product theorem that if the polynomial f has only
non-negative coefficients then f [−] preserves positivity on PN for every dimension
N ≥ 1. It is natural to expect that if one reduces the test set, from all dimensions
to a fixed dimension, then the class of polynomial preservers should be larger.
Remarkably, until 2016 not a single example was known of a polynomial positivity
preserver with a negative coefficient. Then, in quick succession, the two papers [6,
43] provided a complete understanding of the sign patterns of entrywise polynomial
preservers of PN . The goal of this chapter is to discuss some of the results in these
works.

3.1. Characterizations of sign patterns. Until further notice, we work
with entrywise polynomial or power-series maps of the form

(3.1) f(x) = c0x
n0 + c1x

n1 + · · · , with 0 ≤ n0 < n1 < · · · ,
and cj ∈ R typically non-zero, which preserve PN (I) for various I. Our goal is
to try and understand their sign patterns, that is, which cj can be negative. The
first observation is that as soon as I contains the interval (0, ρ) for any ρ > 0, by
the Horn–Loewner type necessary conditions in Lemma 2.8, the lowest N non-zero
coefficients of f(x) must be positive.

The next observation is that if I �⊂ R+, then, in general, there is no structured
classification of the sign patterns of the power series preservers on PN (I). For
example, let k be a non-negative integer; the polynomials

fk,t(x) := t(1 + x2 + · · ·+ x2k)− x2k+1 (t > 0)

do not preserve positivity entrywise on PN

(
(−ρ, ρ)

)
for any N ≥ 2. This may be

seen by taking u := (1,−1, 0, . . . , 0)T and A := ηuuT for some 0 < η < ρ, and
noting that

uT fk,t[A]u = −4η2k+1 < 0.

Similarly, if one allows complex entries and uses higher-order roots of unity,
such negative results (vis-à-vis Lemma 2.8) are obtained for complex matrices.

Given this, in the rest of the chapter we will focus on I = (0, ρ) for 0 < ρ ≤ ∞.1

As mentioned above, if f as in (3.1) entrywise preserves positivity even on rank-one
matrices in PN

(
(0, ρ)

)
then its first N non-zero Maclaurin coefficients are positive.

1That said, we also briefly discuss the one situation in which our results do apply more
generally, even to I = D(0, ρ) ⊂ C (an open complex disc).
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Our goal is to understand if any other coefficient can be negative (and if so, which
of them). This has at least two ramifications:

(1) It would yield the first example of a polynomial entrywise map (for a
fixed dimension) with at least one negative Maclaurin coefficient. Recall
the contrast to Schoenberg’s theorem in the dimension-free setting.

(2) This also yields the first example of a polynomial (or power series) that
entrywise preserves positivity on PN (I) but not PN+1(I). In particu-
lar it would imply that the Horn–Loewner type necessary condition in
Lemma 2.8(1) is “sharp”.

These goals are indeed achieved in the particular case n0 = 0, . . . , nN−1 = N−1
in [6], and subsequently, for arbitrary n0 < · · · < nN−1 in [43]. (In fact, in the
latter work the nj need not even be integers; this is discussed below.) Here is a
‘first’ result along these lines. Henceforth we assume that ρ <∞; we will relax this
assumption midway through Section 3.5 below.

Theorem 3.2 (Belton–Guillot–Khare–Putinar [6] and Khare–Tao [43]). Sup-
pose N ≥ 2 and n0 < · · · < nN−1 are non-negative integers, and ρ, c0, . . . , cN−1

are positive scalars. Given εM ∈ {0,±1} for all M > nN−1, there exists a power
series

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 +
∑

M>nN−1

dMxM

such that f is convergent on (0, ρ), the entrywise map f [−] preserves positivity on
PN

(
(0, ρ)

)
and dM has the same sign (positive, negative or zero) as εM for all

M > nN−1.

Outline of proof. The claim is such that it suffices to show the result for
exactly one εM = −1. Indeed, given the claim, for each M > nN−1 there exists

δM ∈ (0, 1/M !) such that
∑N−1

j=0 cjx
nj + dxM preserves positivity entrywise on

PN

(
(0, ρ)

)
whenever |d| ≤ δM . Now let dM := εMδM for all M > nN−1, and define

fM (x) :=

N1∑
j=0

cjx
nj + dMxM and f(x) :=

∑
M>nN−1

2nN−1−MfM (x).

Then it may be verified that |f(x)| ≤
∑N−1

j=0 cjx
nj + 2nN−1ex/2, and hence f has

the desired properties. �
Thus it suffices to show the existence of a polynomial positivity preserver on

PN

(
(0, ρ)

)
with precisely one negative Maclaurin coefficient, the leading term. In

the next few sections we explain how to achieve this goal. In fact, one can show a
more general result, for real powers as well.

Theorem 3.3 (Khare–Tao [43]). Fix an integer N ≥ 2 and real exponents
n0 < · · · < nN−1 < M in the set Z+ ∪ [N − 2,∞). Suppose ρ, c0, . . . , cN−1 > 0 as
above. Then there exists c′ < 0 such that the function

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 + c′xM
(
x ∈ (0, ρ)

)
preserves positivity entrywise on PN

(
(0, ρ)

)
. [Here and below, we set 00 := 1.]

The restriction of the nj lying in Z+ ∪ [N − 2,∞) is a technical one that is
explained in a later chapter on the study of entrywise powers preserving positivity
on PN

(
(0,∞)

)
; see Theorem 4.1.
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Remark 3.4. A stronger result, Theorem 3.15, which also applies to real pow-
ers, is stated below. We mention numerous ramifications of the results in this
chapter following that result.

The proofs of the preceding two theorems crucially use type-A representation
theory (specifically, a family of symmetric functions) that naturally emerges here
via generalized Vandermonde determinants. These symmetric homogeneous poly-
nomials are introduced and used in the next section.

For now, we explain how Theorem 3.3 helps achieve a complete classification
of the sign patterns of a family of generalised power series, of the form

f(x) =
∞∑
j=0

cjx
nj , nj ∈ Z+ ∪ [N − 2,∞) for all j ≥ 0,

but without the requirement that that exponents are non-decreasing. In this gener-
ality, one first notes that the Horn–Loewner-type Lemma 2.8 still applies: if some
coefficient cj0 < 0, then there must be at least N indices j such that nj < nj0 and
cj > 0. The following result shows that once again, this necessary condition is the
best possible.

Theorem 3.5 (Classification of sign patterns for real-power series preservers,
Khare–Tao [43]). Fix an integer N ≥ 2, and distinct real exponents n0, n1, . . . in
Z+ ∪ [N − 2,∞). Suppose εj ∈ {0,±1} is a choice of sign for each j ≥ 0, such that
if εj0 = −1 then εj = +1 for at least N choices of j such that nj < nj0 . Given any
ρ > 0, there exists a choice of coefficients cj with sign εj such that

f(x) :=

∞∑
j=0

cjx
nj

is convergent on (0, ρ) and preserves positivity entrywise on PN

(
(0, ρ)

)
.

Notice this result is strictly more general than Theorem 3.2, because the se-
quence n0, n1, . . . can contain an infinite decreasing sequence of positive non-integer
powers, for example, all rational elements of [N − 2,∞). Thus Theorem 3.5 covers
a larger class of functions than even Hahn or Puiseux series.

Theorem 3.5 is derived from Theorem 3.3 in a similar fashion to the proof of
Theorem 3.2, and we refer the reader to [43, Section 1] for the details.

3.2. Schur polynomials; the sharp threshold bound for a single ma-
trix. We now explain how to prove Theorem 3.3. The present section will discuss
the case of integer powers, and end by proving the theorem for a single ‘generic’
rank-one matrix. In the following section we show how to extend the results to
all rank-one matrices for integer powers. The subsequent section will complete the
proof for real powers, and then for matrices of all ranks.

The key new tool that is indispensable to the following analysis is that of Schur
polynomials. These can be defined in a number of equivalent ways; we refer the
reader to [16] for more details, including the equivalence of these definitions shown
using ideas of Karlin–Macgregor, Lindström, and Gessel–Viennot. For our purposes
the definition of Cauchy is the most useful:

Definition 3.6. Given non-negative integers N ≥ 1 and n0 < · · · < nN−1, let

n := (n0, . . . , nN−1)
T , and nmin := (0, 1, . . . , N − 1)T ,
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and define V (n) :=
∏

0≤i<j≤N−1(nj − ni).

Given a vector u = (u1, . . . , uN )T and a non-negative integer k, let u◦k :=
(uk

1 , . . . , u
k
N )T , and let u◦n be the N ×N matrix with (j, k) entry u

nk−1

j .
The Schur polynomial in variables u1, . . . , uN of degree n is given by

(3.2) sn(u) :=
detu◦n

detu◦nmin
.

Notice that the numerator is a generalized Vandermonde determinant, so a
homogeneous and alternating polynomial, while the denominator is the usual Van-
dermonde determinant in the indeterminates u1, . . . , uN . Hence their ratio sn(u)
is a homogeneous symmetric polynomial in Z[u1, . . . , uN ]. It follows that Schur
polynomials are well defined when working over any commutative unital ring.

Schur polynomials are an extremely well-studied family of symmetric functions.
Their appeal lies in the important observation that they are the characters of all
irreducible (finite-dimensional) polynomial representations of the complex Lie group
GLn(C) (or of the Lie algebra sln+1(C)). In this setting, the definition of Cauchy
is a special case of the Weyl character formula. Thus, its specialization yields the
corresponding Weyl dimension formula, which will be of use below:

(3.3) sn((1, . . . , 1)
T ) =

∏
0≤i<j≤N−1

nj − ni

j − i
=

V (n)

V (nmin)
.

An alternate proof of (3.3) comes from the principal specialization formula: for
a variable q, one has that

(3.4) sn
(
(1, q, . . . , qN−1)T ) =

∏
0≤i<j≤N−1

qnj − qni

qj − qi
;

this follows from (3.2) because now the numerator is also a standard Vandermonde
determinant. We also refer the reader to [48] for many more results and properties
of Schur polynomials.

Returning to polynomial positivity preservers, we wish to consider functions of
the form

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 + c′xM ,

with non-negative integers n0 < · · · < nN−1 < M and positive coefficients c0, . . . ,
cN−1. We are interested in characterizing those c′ ∈ R for which the entrywise
map f [−] preserves positivity on PN

(
(0, ρ)

)
. By the Schur product theorem, this is

equivalent to finding the smallest c′ such that f [−] is a preserver. We may assume
that c′ < 0, so we rescale by t := |c′|−1 and define

(3.5) pt(x) := t

N−1∑
j=0

cjx
nj − xM .

The goal now is to find the smallest t > 0 such that pt[−] preserves positivity on
PN

(
(0, ρ)

)
. We next achieve this goal for a single rank-one matrix.

Proposition 3.7. With notation as above, define

nj = (n0, . . . , nj−1, n̂j , nj+1, . . . , nN−1,M)T

for 0 ≤ j ≤ N − 1. Given a vector u ∈ (0,∞)N with distinct coordinates, the
following are equivalent.

(1) The matrix pt[uu
T ] is positive semidefinite.
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(2) det pt[uu
T ] ≥ 0.

(3) t ≥
N−1∑
j=0

snj
(u)2

cjsn(u)2
.

In particular, this shows that for a generic rank-one matrix in PN

(
(0, ρ)

)
, there

does exist a positivity-preserving polynomial with a negative leading term.
In essence, the equivalences in Proposition 3.7 hold more generally; this is

distilled into the following lemma.

Lemma 3.8 (Khare–Tao [44]2). Fix w ∈ RN and a positive-definite matrix H.
Fix t > 0 and define Pt := tH −wwT . The following are equivalent.

(1) Pt is positive semidefinite.
(2) detPt ≥ 0.

(3) t ≥ wTH−1w = 1− det(H −wwT )

detH
.

We refer the reader to [44] for the detailed proof of Lemma 3.8, remarking
only that the equality in assertion (3) follows by using Schur complements in two

different ways to expand the determinant of the matrix

[
H w
wT 1

]
.

Now Proposition 3.7 follows directly from Lemma 3.8, by setting

H =

N−1∑
j=0

cju
◦nj (u◦nj )T and w = u◦M ,

where H is positive definite because of the following general matrix factorization
(which is also used below).

Proposition 3.9. Let f(x) =
∑M

k=0 fkx
k be a polynomial with coefficients in

a commutative ring R. For any integer N ≥ 1 and any vectors u = (u1, . . . , uN )T

and v = (v1, . . . , vN )T ∈ RN , it holds that

f [tuvT ] =
M∑
k=0

fkt
ku◦k(v◦k)T(3.6)

=

⎡⎢⎢⎢⎣
1 u1 · · · uM

1

1 u2 · · · uM
2

...
...

. . .
...

1 uN · · · uM
N

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
f0 0 · · · 0
0 f1t · · · 0
...

...
. . .

...
0 0 · · · fM tM

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 v1 · · · vM1
1 v2 · · · vM2
...

...
. . .

...
1 vN · · · vMN

⎤⎥⎥⎥⎦
T

,

where 1 is a multiplicative identity which is adjoined to R if necessary.

Now to adopt Lemma 3.8(3), this same equation and the Cauchy–Binet for-
mula allow one to compute det(H −wwT ) in the present situation, and this yields

precisely that t ≥
N−1∑
j=0

snj
(u)2

cjsn(u)2
, as desired.

2The work [44] is an extended abstract of the paper [43], but some of the results in it have
different proofs from [43].
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3.3. The threshold for all rank-one matrices: a Schur positivity re-
sult. We continue toward a proof of Theorem 3.3. The next step is to use Propo-
sition 3.7 to achieve an intermediate goal: a threshold bound for c′ that works for
all rank-one matrices in PN

(
(0, ρ)

)
, still working with integer powers. Clearly, to

do so one has to understand the supremum of each ratio Rj := snj
(u)2/sn(u)

2, as

u runs over vectors in (0,
√
ρ)N with distinct coordinates. More precisely, one has

to understand the supremum of the weighted sum
∑

j Rj/cj .

This observation was first made in the work [6] for the case
nj = j, that is, n = nmin. It led to the first proof of Theorem 3.3, with all of
the denominators being the same: snmin

(u) = 1. We now use another equivalent
definition of Schur polynomials, by Littlewood, realizing them as sums of monomi-
als corresponding to certain Young tableaux. Every monomial has a non-negative
integer coefficient. It follows by the continuity and homogeneity of snj

and the Weyl
Dimension Formula (3.3), that the supremum in the previous paragraph equals the
value at (

√
ρ, . . . ,

√
ρ)T , namely

sup
u∈(0,

√
ρ)N

snj
(u)2 =

V (nj)
2

V (nmin)2
ρM−nj .

Since all of these suprema are attained at the same point
√
ρ(1, . . . , 1)T , the weighted

sum in Proposition 3.7(3) also attains its supremum at the same point. Thus, we
conclude using Proposition 3.7 that

f(x) =
N−1∑
j=0

cjx
nj + c′xM

preserves positivity entrywise on all rank-one matrices uuT ∈ PN

(
(0, ρ)

)
if and

only if

c′ ≥ −
(N−1∑

j=0

V (nj)
2

cjV (nmin)2
ρM−nj

)−1

.

In fact, if n = nmin then the entire argument above goes through even when one
changes the domain to the open complex disc D(0, ρ), or any intermediate domain
(0, ρ) ⊂ D ⊂ D(0, ρ). This is precisely the content of the main result in [6].

Theorem 3.10 (Belton–Guillot–Khare–Putinar [6]). Fix ρ > 0 and integers
M ≥ N ≥ 2. Let

f(z) =

N−1∑
j=0

cjz
j + c′zM , where c0, . . . , cN−1, c

′ ∈ R,

and let I := D(0, ρ) be the closed disc in the complex plane with centre 0 and
radius ρ. The following are equivalent.

(1) The entrywise map f [−] preserves positivity on PN (I).
(2) The entrywise map f [−] preserves positivity on rank-one matrices in

PN

(
(0, ρ)

)
.

(3) Either c0, . . . , cN−1, c
′ are all non-negative, or c0, . . . , cN−1 are positive

and

c′ ≥ −
(N−1∑

j=0

V (nj)
2

cjV (nmin)2
ρM−j

)−1

,
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where nj := (0, 1, . . . , j − 1, ĵ, j + 1, . . . , N − 1,M)T for 0 ≤ j ≤ N − 1.

This theorem provides a complete understanding of which polynomials of degree
at most N preserve positivity entrywise on PN

(
(0, ρ)

)
and, more generally, on any

subset of PN

(
D(0, ρ)

)
that contains the rank-one matrices in PN

(
(0, ρ)

)
.

Remark 3.11. Clearly (1) =⇒ (2) here, and the proof of (2) ⇐⇒ (3) was
outlined above via Proposition 3.7. We defer mentioning the proof strategy for
(2) =⇒ (1), because we will later see a similar theorem over I = (0, ρ) for more
general powers nj . The proof of that result, Theorem 3.15, will be outlined in some
detail.

Having dealt with the base case of n = nmin, as well as n = (k, k + 1, . . . , k +
N − 1) for any k ∈ Z+, which holds by the Schur product theorem, we now turn to
the general case. In general, sn(u) is no longer a monomial, and so it is no longer
clear if and where the supremum of each ratio snj

(u)2/sn(u)
2, or of their weighted

sum, is attained for u ∈ (0,
√
ρ)N . The threshold bound for all rank-one matrices

itself is not apparent, and the bound for all matrices in PN

(
(0, ρ)

)
is even more

inaccessible.
By a mathematical miracle, it turns out that the same phenomenon as in the

base case holds in general. Namely, the ratio of each snj
and sn attains its supre-

mum at
√
ρ(1, . . . , 1)T . Hence one can proceed as above to obtain a uniform thresh-

old for c′, which works for all rank-one matrices in PN

(
(0, ρ)

)
.

Example 3.12. To explain the ideas of the preceding paragraph, we present
an example. Suppose

N = 3, n = (0, 2, 3), M = 4, and u = (u1, u2, u3)
T .

Then

n3 = (0, 2, 4),

sn(u) = u1u2 + u2u3 + u3u1,

and sn3
(u) = (u1 + u2)(u2 + u3)(u3 + u1).

The claim is that sn3
(u)/sn(u) is coordinatewise non-decreasing for u ∈ (0,∞)3;

the assertion about its supremum on (0,
√
ρ)N immediately follows from this. It

suffices by symmetry to show the claim only for one variable, say u3. By the
quotient rule,

sn(u)∂u3
sm(u)− sm(u)∂u3

sn(u) = (u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is clearly non-negative on the positive orthant, proving the claim. As
we see, the above expression is, in fact, monomial positive, from which numerical
positivity follows immediately.

In fact, an even stronger fact holds. Viewed as a polynomial in u3, every
coefficient in the above expression is in fact Schur positive. In other words, the
coefficient of each uj

3 is a non-negative combination of Schur polynomials in u1 and
u2:

(u1 + u2)(u1u3 + 2u1u2 + u2u3)u3 =
∑
j≥0

pj(u1, u2)u
j
3,
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where

pj(u1, u2) =

⎧⎪⎨⎪⎩
2s(1,3)(u1, u2) if j = 1,

s(0,3)(u1, u2) + s(1,2)(u1, u2) if j = 2,

0 otherwise.

In particular, this implies that each coefficient is monomial positive, whence numer-
ically positive. We recall here that the monomial positivity of Schur polynomials
follows from the definition of sn(u) using Young tableaux.

The miracle to which we alluded above, is that the Schur positivity in the
preceding example in fact holds in general.

Theorem 3.13 (Khare–Tao [43]). If n0 < · · · < nN−1 and m0 < · · · < mN−1

are N-tuples of non-negative integers such that mj ≥ nj for j = 0, . . . , N−1, then
the function

fm,n : (0,∞)N → R; u �→ sm(u)

sn(u)

is non-decreasing in each coordinate. Furthermore, if

(3.7) sn(u)∂uN
sm(u)− sm(u)∂uN

sn(u)

is considered as a polynomial in uN , then the coefficient of every monomial uj
N is

a Schur-positive polynomial in u1,. . . , uN−1.

The second, stronger part of Theorem 3.13 follows from a deep and highly
non-trivial result in symmetric function theory (or type-A representation theory)
by Lam, Postnikov, and Pylyavskyy [45], following earlier results by Skandera. We
refer the reader to this paper and to [43] for more details. Notice also that the
first assertion in Theorem 3.13 only requires the numerical positivity of the expres-
sion (3.7). This is given a separate proof in [43], using the method of condensation
due to Charles Lutwidge Dodgson [18].3 In this context, we add for complete-
ness that in [43] the authors also show a log-supermodularity (or FKG, or MTP2)
phenomenon for determinants of totally positive matrices.

3.4. Real powers; the threshold works for all matrices. We now return
to the proof of Theorem 3.3, which holds for real powers. Our next step is to
observe that the first part of Theorem 3.13 now holds for all real powers. Since
one can no longer define Schur polynomials in this case, we work with generalized
Vandermonde determinants instead:

Corollary 3.14. Fix N-tuples of real powers n = (n0 < · · · < nN−1) and
m = (m0 < · · · < mN−1), such that nj ≤ mj for all j. Letting u◦n := [u

nk−1

j ]Nj,k=1

as above, the function

f : {u ∈ (0,∞)N : ui �= uj if i �= j} → R; u �→ detu◦m

detu◦n

is non-decreasing in each coordinate.

We sketch here one proof. The version for integer powers, Theorem 3.13, gives
the version for rational powers, by taking a “common denominator” L ∈ Z such

that Lmj and Lnj are all integers, and using a change of variables yj := u
1/L
j . The

3This article by Dodgson immediately follows his better-known 1865 publication, Alice’s
Adventures in Wonderland.
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general version for real powers then follows by considering rational approximations
and taking limits.

Corollary 3.14 helps prove the real-power version of Theorem 3.3, just as The-
orem 3.13 would have shown the integer-powers case of Theorem 3.3. Namely, first
note that Proposition 3.7 holds even when the nj are real powers; the only changes
are (a) to assume that the coordinates of u are distinct, and (b) to rephrase the
last assertion (3) to the following:

t ≥
N−1∑
j=0

(detu◦nj )2

cj(detu◦n)2
.

These arguments help prove the first part of the following result, which is the
culmination of these ideas.

Theorem 3.15 (Khare–Tao [43]). Fix an integer N ≥ 1 and real exponents
n0 < · · · < nN−1 < M , as well as scalars ρ > 0 and c0, . . . , cN−1, c

′. Let

f(x) :=

N−1∑
j=0

cjx
nj + c′xM .

The following are equivalent.

(1) The function f preserves positivity entrywise on all rank-one matrices in
PN

(
(0, ρ)

)
.

(2) The function f preserves positivity entrywise on all Hankel rank-one ma-
trices in PN

(
(0, ρ)

)
.

(3) Either the coefficients c0, . . . , cN−1 and c′ are non-negative, or c0, . . . ,
cN−1 are positive and

c′ ≥ −
(N−1∑

j=0

V (nj)
2

cjV (n)2
ρM−nj

)−1

,

where V (n) and nj are as defined above.

If, moreover, the exponents nj all lie in Z+ ∪ [N − 2,∞), then these assertions
are also equivalent to the following.

(4) The function f preserves positivity entrywise on PN

(
(0, ρ)

)
.

Before sketching the proof, we note several ramifications of this result.

(1) The theorem completely characterizes linear combinations of up to N +1
powers that entrywise preserve positivity on PN

(
(0, ρ)

)
. The same is true

for any subset of PN

(
(0, ρ)

)
that contains all rank-one positive semidefi-

nite Hankel matrices.
(2) As discussed above, Theorem 3.15 implies Theorem 3.5, which helps in

understanding which sign patterns correspond to countable sums of real
powers that preserve positivity entrywise on PN

(
(0, ρ)

)
(or on the subset

of rank-one matrices). In particular, the existence of sign patterns which
are not all non-negative shows the existence of functions which preserve
positivity on PN but not on PN+1.

(3) Theorem 3.15 bounds A◦M in terms of a multiple of
∑N−1

j=0 cjA
◦nj . More

generally, one can do this for an arbitrary convergent power series instead
of a monomial, in the spirit of Theorem 3.2. Even more generally, one
may work with Laplace transforms of measures; see Corollary 3.17 below.
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For completeness, we also mention two developments related (somewhat more
distantly) to the above results.

• A refinement of a conjecture of Cuttler, Greene, and Skandera (2011) and
its proof; see [43] for more details. In particular, this approach assists with
a novel characterization of weak majorization, using Schur polynomials.

• A related “Schubert cell-type” stratification of the cone PN (C); see [6] for
further details.

We conclude this section by outlining the proof of Theorem 3.15.

Proof. Clearly, (4) =⇒ (1) =⇒ (2). If (2) holds, then, by Lemma 2.8,
either all the cj and c′ are non-negative, or cj is positive for all j. Thus, we suppose
that cj > 0 > c′.

Note that if u(u0) := (1, u0, . . . , u
N−1
0 )T for some u0 ∈ (0, 1), then

A(u0) := ρu2
0u(u0)u(u0)

T

is a rank-one Hankel matrix and hence in our test set. Repeating the analysis in
Section 3.2, using generalized Vandermonde determinants instead of Schur polyno-
mials and rank-one Hankel matrices of the form A(u0),

|c′|−1 ≥ sup
u0∈(0,1)

N−1∑
j=0

(det[
√
ρu0u(u0)]

◦nj )2

cj(det[
√
ρu0u(u0)]◦n)2

=

N−1∑
j=0

lim
u0→1−

N−1∑
j=0

(detu(u0)
◦nj )2

cj(detu(u0)◦n)2
(ρu2

0)
M−nj ,

where the equality follows from Corollary 3.14 above. The real-exponent version
of (3.4) holds if q ∈ (0,∞) \ {1} and the exponents nj are real and non-decreasing:

detu(q)◦n =
∏

0≤i<k≤N−1

(qnk − qni) = V (q◦n).

Applying this identity, the above computation yields

|c′|−1 ≥ lim
u0→1−

N−1∑
j=0

V (u
◦nj

0 )2

V (u◦n
0 )2

(ρu2
0)

M−nj

cj
=

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj .

Thus (2) =⇒ (3). Conversely, that (3) =⇒ (1) follows by a similar analysis
to that given above, using Corollary 3.14 and the density of matrices uuT , where

u ∈
(
0,
√
ρ
)N

has distinct entries, in the set of all rank-one matrices in PN

(
(0, ρ)

)
.

It remains to show that (1) =⇒ (4) if all the exponents nj ∈ Z+ ∪ [N − 2,∞).
We proceed by induction on N . The case N = 1 is immediate. For the inductive
step, we apply the extension principle of the following Proposition 3.16 with h =
f , which requires verification that f ′[−] preserves positivity on PN−1. This is a
straightforward calculation via the induction hypothesis. �

The following extension principle was inspired by work of FitzGerald and
Horn [25].

Proposition 3.16 (Khare–Tao [43]). Suppose 0 < ρ ≤ ∞, and I = (0, ρ),
(−ρ, ρ) or the closure of one of these sets. Let h : I → R be a continuously
differentiable function on the interior of I. If h′[−] preserves positivity entrywise
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on PN−1(I) and h[−] does so on the rank-one matrices in PN (I), then h[−] in fact
preserves positivity on all of PN (I).4

Proposition 3.16 relies on two arguments found in [25]: (a) every matrix in PN

may be written as the sum of a rank-one matrix in PN , and a matrix in PN−1 with
its last row and column both zero, and (b) applying the integral identity

h(x)− h(y) =

∫ y

x

h′(t) dt =

∫ 1

0

(x− y)h′(λx+ (1− λ)y) dλ

entrywise to this decomposition. See [43, Section 3] for more details. The original
use of these arguments was when h is a power function; this is explained in Chapter 4
below.

3.5. Power series preservers and beyond; unbounded domains. In the
remainder of this chapter, we use Theorem 3.15 to derive several corollaries; thus,
we retain and use the notation of that theorem. As discussed following Theo-
rem 3.15, the first consequence extends the theorem from bounding monomials

A◦M = (xM )[A] by a multiple of
∑N−1

j=0 cjA
◦nj , to bounding f [A] for more general

power series. Even more generally, one can work with Laplace transforms of real
measures on R.

Corollary 3.17 (Khare–Tao [43]). Let the notation be as for Theorem 3.15,
with cj > 0 for all j. Suppose μ is a real measure supported on [nN−1 + ε,∞) for
some ε > 0, and let

(3.8) gμ(x) :=

∫ ∞

nN−1+ε

xt dμ(t).

If gμ is absolutely convergent at ρ, then there exists a finite threshold tμ > 0 such
that, for all A ∈ PN

(
(0, ρ)

)
, the matrix

tμ

N−1∑
j=0

cjA
◦nj − gμ[A]

is positive semidefinite.

Proof. By Theorem 3.15 and the fact that PN (R) is a closed convex cone, it
suffices to show the finiteness of the quantity∫ ∞

nN−1+ε

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj dμ+(M),

where μ+ is the positive part of μ. This follows from the hypotheses. �

We now turn to the ρ = ∞ case, which was briefly alluded to above. In other
words, the domain is now unbounded: I = (0,∞). As in the bounded-domain
case, the question of interest is to classify all possible sign patterns of polynomial
or power-series preservers on PN (I) for a fixed integer N .

Similar to the above discussion for bounded I, the crucial step in classifying sign
patterns of power series (or more general functions, as in Theorem 3.5) is to work
with integer powers and precisely one coefficient that can be negative. Thus, one

4An analogous version of this results holds for I = D(0, ρ) or its closure in C, with h : I → C
analytic. This is used to prove the corresponding implication in Theorem 3.10 above.
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first observes that Lemma 2.8(2) holds in the unbounded-domain case I = (0,∞).
Hence given a polynomial

f(x) =

2N−1∑
j=0

cjx
nj + c′xM ,

where
0 ≤ n0 < · · · < nN−1 < M < nN < nN+1 · · · < n2N−1,

if f [−] preserves positivity on PN

(
(0,∞)

)
, then either all the coefficients c0, . . . ,

c2N−1, c
′ are non-negative, or c0, . . . , c2N−1 are positive and c′ can be negative. In

this case, an explicit threshold is not known as it is in Theorem 3.15, but we now
explain why such a threshold exists.

We start from (3.6) and repeat the subsequent analysis via the Cauchy–Binet
formula. To find a uniform threshold for c′ that works for all rank-one matrices
in PN

(
(0,∞)

)
, it suffices to bound, uniformly from above, certain ratios of sums

of squares of Schur polynomials. This may be done because of the following tight
bounds.

Proposition 3.18 (Khare–Tao [43]). If n := (n0, ..., nN−1) and

u := (u1, ..., uN ),

where n0 < · · · < nN−1 are non-negative integers and u1 ≤ · · · ≤ uN are non-
negative real numbers, then

(3.9) un−nmin ≤ sn(u) ≤
V (n)

V (nmin)
un−nmin ,

where nmin := (0, . . . , nN−1). The constants 1 and V (n)/V (nmin) on each side
of ( 3.9) cannot be improved.

We refer the reader to [43, Section 4] for further details, including how Propo-
sition 3.18 implies the existence of preservers f as above for rank-one matrices with
c′ < 0. The extension from rank-one matrices to all of PN

(
(0,∞)

)
is carried out

using the extension principle in Proposition 3.16.
In a sense, Proposition 3.18 isolates the ‘leading term’ of every Schur polyno-

mial. This calculation can be generalized to the case of non-integer powers,5which
helps extend the above results for the unbounded domain I = (0,∞) to real powers.
This yields the desired classification, similar to Theorem 3.5 in the bounded-domain
case.

Theorem 3.19 (Khare–Tao [43]). Let N ≥ 2, and let

{αj : j ≥ 0} ⊂ Z+ ∪ [N − 2,∞)

be a set of distinct real numbers. For each j ≥ 0, let εj ∈ {0,±1} be a sign and
suppose that, whenever εj0 = −1, then εj = +1 for at least N choices of j such that
αj < αi0 and also for at least N choices of j such that αj > αi0 . There exists a
series with real coefficients,

f(x) =
∞∑
j=0

cjx
αj

5We refer the reader again to [43, Section 5] for the details, which use additional concepts
from type-A representation theory: the Harish-Chandra–Itzykson–Zuber integral and Gelfand–
Tsetlin patterns.
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which converges on (0,∞), preserves positivity entrywise on PN

(
(0,∞)

)
, and is

such that cj has the same sign as εj for all j ≥ 0.

Note that, in particular, Theorem 3.19 reaffirms that the Horn–Loewner-type
conditions in Lemma 2.8(2) are sharp.

3.6. Digression: Schur polynomials from smooth functions, and new
symmetric function identities. Before proceeding to additional applications of
Theorem 3.15 and related results, we take a brief detour to explain how Schur
polynomials arise naturally from any sufficiently differentiable function.

Theorem 3.20 (Khare [42]). Fix non-negative integers m0 < m1 < ... <
mN−1, as well as scalars ε > 0 and a ∈ R. Let M := m0+ · · ·+mN−1 and suppose
the function f : [a, a + ε) → R is M -times differentiable at a. Given vectors u,
v ∈ RN , define Δ : [0, ε′)→ R for a sufficiently small ε′ ∈ (0, ε) by setting

Δ(t) := det f [a1N×N + tuvT ].

Then,
(3.10)

Δ(M)(0) =
∑
m�M

(
M

m0,m1, . . . ,mN−1

)
V (u)V (v)sm(u)sm(v)

N−1∏
k=0

f (mk)(a),

where the first factor in the summand is a multinomial coefficient, and we sum
over all partitions m = (m0, . . . ,mN−1) of M with unequal parts, that is,
M = m0 + · · ·+mN−1 and 0 ≤ m0 < · · · < mN−1.

In particular, Δ(0) = Δ′(0) = · · · = Δ((N2 )−1)(0) = 0.

Remark 3.21. As a special case, if f : R→ R is smooth at a, and u, v ∈ RN ,
then defining Δ(t) := det f [a1N×N + tuvT ] gives a function Δ which is smooth
at 0, and Theorem 3.20 gives all of these derivatives via the formula (3.10). The
general version of Theorem 3.20 is a key ingredient in showing Theorem 2.9, which
subsumes all known variants of Horn–Loewner-type necessary conditions in fixed
dimension.

The key determinant computation required to prove the original Horn–Loewner
necessary condition in fixed dimension (see Theorem 2.7) is the special case of The-
orem 3.20 where u = v and mj = j for all j. In this situation, sm(u) = sm(v) = 1,
so Schur polynomials do not appear. The general version of Theorem 3.20 decou-
ples the vectors u and v, and holds for all M > 0 if f is smooth (as in Loewner’s
setting). Moreover, it reveals the presence of Schur polynomials in every case other

than the ones studied by Loewner, that is, when M >
(
N
2

)
.

While Theorem 3.20 involves derivatives of a smooth function, the result and
its proof are, in fact, completely algebraic, and valid over any commutative ring.
To show this, an algebraic analogue of the differential operator is required, with
more structure than is given by a derivation. The precise statement and its proof
may be found in [42, Section 2].

We conclude this section by applying Theorem 3.20 and its algebraic avatar to
symmetric function theory. We begin by recalling the famous Cauchy summation
identity [48, Example I.4.6]: if f0(x) := 1 + x + x2 + · · · is the geometric series,
viewed as a formal power series over a commutative unital ring R, and u1, . . . , uN ,
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v1, . . . , vN are commuting variables, then

(3.11) det f0[uv
T ] = V (u)V (v)

∑
m

sm(u)sm(v),

where the sum runs over all partitions m with at most N parts.6

A natural question is whether similar formulae hold when f0 is replaced by
other formal power series. Very few such results were known; this includes one due
to Frobenius [26], for the function fc(x) := (1− cx)/(1−x) with c an scalar. (This
is also connected to theta functions and elliptic Frobenius–Stickelberger–Cauchy
determinant identities.) For this function,

det fc[uv
T ] = det

[1− cujvk
1− ujvk

]N
j,k=1

= V (u)V (v)(1− c)N−1

×
( ∑
m:m0=0

sm(u)sm(v) + (1− c)
∑

m:m0>0

sm(u)sm(v)
)
.(3.12)

A third, obvious identity is if f is a ‘fewnomial’ with at most N − 1 terms. In
this case, f [uvT ] is a sum of at most N−1 rank-one matrices, and so its determinant
vanishes.

The following result extends all three of these cases to an arbitrary formal power
series over an arbitrary commutative ring R, and with an additional Z+-grading.

Theorem 3.22 (Khare [42]). Fix a commutative unital ring R and let t be
an indeterminate. Let f(t) :=

∑
M≥0 fM tM ∈ R[[t]] be an arbitrary formal power

series. Given vectors u, v ∈ RN , where N ≥ 1, we have that
(3.13)

det f [tuvT ] = V (u)V (v)
∑

M≥(N2 )

tM
∑

m=(mN−1,...,m0) �M
sm(u)sm(v)

N−1∏
k=0

fmk
.

The heart of the proof involves first computing, for each M ≥ 0, the coefficient
of tM in det f [tuvT ], over the “universal ring”

R′ := Q[u1, . . . , uN , v1, . . . , vN , f0, f1, . . .],

where uj , vk and fm are algebraically independent over Q. These coefficients

are seen to equal Δ(M)(0)/M !, by the algebraic version of Theorem 3.20. Thus,
(3.13) holds over R′. Then note that both sides of (3.13) lie in the subring
R0 := Z[u1, . . . , uN , v1, . . . , vN , f0, f1, . . .], so the identity holds in R0. Finally,
it holds as claimed by specializing from R0 to R.

An alternate approach to proving Theorem 3.22 is also provided in [42]. The
identity (3.6) is applied, along with the Cauchy–Binet formula, to each truncated
Taylor–Maclaurin polynomial f≤M of f(x). The result follows by taking limits in
the t-adic topology, using the t-adic continuity of the determinant function.

6Usually one uses infinitely many indeterminates in symmetric function theory, but given the
connection to the entrywise calculus in a fixed dimension, we will restrict our attention to uj and

vj for 1 ≤ j ≤ N .
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3.7. Further applications: linear matrix inequalities, Rayleigh quo-
tients, and the cube problem. This chapter ends with further ramifications
and applications of the above results. First, notice that Theorem 3.15 implies the
following linear matrix inequality version that is ‘sharp’ in more than one sense:

Corollary 3.23. Fix ρ > 0, real exponents n0 < · · · < nN−1 < M for some
integer N ≥ 1, and scalars cj > 0 for all j. Then,

A◦M ≤ C
(
c0A

◦n0 + · · ·+ cN−1A
◦nN−1

)
,

where C =

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj ,

for all A ∈ PN

(
(0, ρ)

)
of rank one, or of all ranks if n0, . . . , nN−1 ∈ Z+∪[N−2,∞).

Moreover, the constant C is the smallest possible, as is the number of terms N on
the right-hand side.

In the above Corollary and henceforth, the notations A ≤ B and B ≥ A mean
that the matrix B −A is positive semidefinite.

Seeking a uniform threshold such as C in the preceding inequality can also
be achieved (as explained above) by first working with a single positive matrix,
then optimizing over all matrices. The first step here can be recast as an extremal
problem that involves Rayleigh quotients:

Proposition 3.24 (see [6, 43]). Fix an integer N ≥ 2 and real exponents
n0 < · · · < nN−1 < M , where each nj ∈ Z+ ∪ [N − 2,∞). Given positive scalars
c0, . . . , cN−1, let

h(x) :=

N−1∑
j=0

cjx
nj

(
x ∈ (0,∞)

)
.

Then, for 0 < ρ <∞ and A ∈ PN

(
[0, ρ]

)
,

(3.14) t h[A] ≥ A◦M if and only if t ≥ �(h[A]†/2A◦Mh[A]†/2),

where �[B] and B† denote the spectral radius and the Moore–Penrose pseudo-
inverse of a square matrix B, respectively. Moreover, for every non-zero matrix
A ∈ PN

(
[0, ρ]

)
, the following variational formula holds:

�(h[A]†/2A◦Mh[A]†/2) = sup
u∈(ker h[A])⊥\{0}

uTA◦Mu

uTh[uuT ]u
≤

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cj
.

Proposition 3.24 is shown using the Kronecker normal form for matrix pencils;
see the treatment in [27, Section X.6]. When the matrix A is a generic rank-one
matrix, the above generalized Rayleigh quotient has a closed-form expression, which
features Schur polynomials for integer powers. This reveals connections between
Rayleigh quotients, spectral radii, and symmetric functions.

Proposition 3.25. Let the notation be as in Proposition 3.24, but now with
nj not necessarily in Z+∪ [N − 2,∞). If A = uuT , where u ∈ (0,∞)N has distinct
coordinates, then h[A] is invertible, and the threshold bound

(3.15) �(h[A]†/2A◦Mh[A]†/2) = (u◦M )Th[uuT ]−1u◦M =
N−1∑
j=0

(detu◦nj )2

cj(detu◦n)2
.

Licensed to AMS.



FIXED-DIMENSION POSITIVITY 131

In fact, the proof of the final equality in (3.15) is completely algebraic, and
reveals new determinantal identities that hold over any field F with at least N
elements.

Proposition 3.26 (Khare–Tao [43]). Suppose N ≥ 1 and

0≤n0 < ... < nN−1<M

are integers, and u,v ∈ FN each have distinct coordinates. Let cj ∈ F× and define

h(t) :=
∑N−1

j=0 cjt
nj . Then h[uvT ] is invertible, and

(v◦M )Th[uvT ]−1u◦M =

N−1∑
j=0

detu◦nj detv◦nj

cj detu◦n detv◦n .

The final result is a variant of the matrix-cube problem [49], and connects to
spectrahedra [13, 61] and modern optimization theory. Given two or more real
symmetric N ×N matrices A0, . . . , AM+1, the corresponding matrix cube of size
2η > 0 is

U [η] :=
{
A0 +

M+1∑
m=1

umAm : um ∈ [−η, η]
}
.

The matrix-cube problem is to find the largest η > 0 such that U [η] ⊂ PN (R). In
the present setting of the entrywise calculus, the above results imply asymptotically
matching upper and lower bounds for the size of the matrix cube.

Theorem 3.27 (see [6, 43]). Suppose M ≥ 0 and 0 ≤ n0 < n1 < · · · are
integers. Fix positive scalars ρ > 0, 0 < α1 < · · · < αM+1, and cj > 0 for all j ≥
0, and define for each N ≥ 1 and each matrix A ∈ PN

(
[0, ρ]

)
, the cube

(3.16) UA[η] :=

⎧⎨⎩
N−1∑
j=0

cjA
◦nj +

M+1∑
m=1

umA◦(nN−1+αm) : um ∈ [−η, η]

⎫⎬⎭ .

Also define for N ≥ 1 and α > 0:

(3.17) Kα(N) :=
N−1∑
j=0

V (nj(α,N))2

V (n(N))2
ρα−nj

cj
,

where n(N) := (n0, . . . , nN−1)
T , and

nj(α,N) := (n0, . . . , nj−1, nj+1, . . . , nN−1, nN−1 + α).

Then for each fixed N ≥ 1, we have the uniform upper and lower bounds:

η ≤
(
Kα1

(N) + · · ·+ KαM+1
(N)

)−1
=⇒ UA[η] ⊂ PN for all A ∈ PN

(
[0, ρ]

)
=⇒ η ≤ KαM+1

(N)−1.

(3.18)

Moreover, if the nj grow linearly, in that

αM+1 − αM ≥ nj+1 − nj for all j ≥ 0,

then the lower and upper bounds for η = ηN in ( 3.18) are asymptotically equal as
N →∞:

lim
N→∞

KαM+1
(N)−1

M+1∑
m=1

Kαm
(N) = 1.
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3.8. Entrywise preservers of totally non-negative Hankel matrices.
The first part of this survey discusses entrywise preservers of totally positive and
totally non-negative matrices; these turn out to be very rigid in nature. If, instead,
we consider the subfamily of totally non-negative matrices which are Hankel, then
a richer class of preservers emerges, as well as a parallel story to that of entrywise
positivity preservers on all matrices.

Definition 3.28. A real matrix A is said to be totally non-negative or totally
positive if every minor of A is non-negative or positive, respectively. We will denote
these matrices, as well as the property, by TN and TP.

In the recent article [22] by Fallat, Johnson, and Sokal, the authors study when
various classes of totally non-negative (TN) matrices are closed under taking sums
or Schur products. As they observe, the set of all TN matrices is not closed under
these operations; for example, the 3 × 3 identity matrix and the all-ones matrix
13×3 are both TN but their sum is not.

It is of interest to isolate a class of TN matrices that is a closed convex cone,
and is furthermore closed under taking Schur products. Indeed, it is under these
conditions that the observation of Pólya–Szegö (see Section 2.2) holds, leading to
large classes of TN preservers.

Such a class of matrices has been identified in both the dimension-free as well
as fixed-dimension settings. It consists of the TN Hankel matrices. In a fixed
dimension, there is the following classical result from 1912.

Lemma 3.29 (Fekete [24]). Let A be a possibly rectangular real Hankel matrix
such that all of its contiguous minors are positive. Then A is totally positive.

Recall that a minor is said to be contiguous if it is obtained from successive
rows and successive columns of A.

If A is a square Hankel matrix, let A(1) be the square submatrix of A obtained
by removing the first row and the last column. Notice that every contiguous minor
of A is a principal minor of either A or A(1). Combined with Fekete’s lemma, these
observations help show another folklore result.

Theorem 3.30. Let A be a square real Hankel matrix. Then A is TN or TP if
and only if both A and A(1) are positive semidefinite or positive definite, respectively.

Theorem 3.30 is a very useful bridge between matrix positivity and total non-
negativity. A related dimension-free variant (see [2, 28]) concerns the Stieltjes
moment problem: a sequence (s0, s1, . . . , ) is the moment sequence of an admissi-
ble measure on R+ (see Definition 2.10) if and only if the Hankel matrices H :=
(sj+k)j,k≥0 and H(1) (obtained by excising the first row of H, or equivalently, the
first column) are both positive semidefinite. By Theorem 3.30, this is equivalent to
saying that H is totally non-negative.

With Theorem 3.30 in hand, one can easily show several basic facts about
TN Hankel matrices; we collect these in the following result for convenience.

Lemma 3.31. For an integer N ≥ 1 and a set I ⊂ R+, let HTNN (I) denote the
set of N ×N TN Hankel matrices with entries in I. For brevity, we let HTNN :=
HTNN

(
R+).

(1) The family HTNN is closed under taking sums and non-negative scalar
multiples, or more generally, integrals against non-negative measures (as
long as these exist).
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(2) In particular, if μ is an admissible measure supported on R+, then its

moment matrix Hμ :=
(
sj+k(μ)

)∞
j,k=0

is totally non-negative.

(3) HTNN is closed under taking entrywise products.
(4) If the power series f(x) =

∑
k≥0 ckx

k is convergent on I ⊂ R+, with

ck ≥ 0 for all k ≥ 0, then the entrywise map f [−] preserves total non-
negativity on HTNN (I), for all N ≥ 1.

Given Lemma 3.31(4), which is identical to the start of the story for positivity
preservers, it is natural to expect parallels between the two settings. This does in
fact occur, in both the dimension-free and the fixed-dimension settings, and we now
elaborate on both of these. For example, one can ask if a Schoenberg-type phenom-
enon also holds for preservers of total non-negativity on

⋃
N≥1 HTNN

(
[0, ρ)

)
with

0 < ρ ≤ ∞. This is indeed the case; we set ρ = ∞ for ease of exposition. From
Theorem 2.12 and the subsequent discussion, it follows via Hamburger’s theorem
that the class of functions

∑
k≥0 ckx

k with all ck ≥ 0 characterizes the entrywise
maps preserving the set of moment sequences of admissible measures supported on
[−1, 1]. By the above discussion, in considering the family of matrices HTNN for
all N ≥ 1, we are studying moment sequences of admissible measures supported on
I = R+, or the related Hausdorff moment problem for I = [0, 1]. In this case, one
also has a Schoenberg-like characterization, outside of the origin.

Theorem 3.32 (Belton–Guillot–Khare–Putinar [7]). Let f : R+ → R. The
following are equivalent.

(1) Applied entrywise, the map f preserves the set HTNN for all N ≥ 1.
(2) Applied entrywise, the map f preserves positive semidefiniteness on

HTNN for all N ≥ 1.
(3) Applied entrywise, the map f preserves the set of moment sequences of

admissible measures supported on R+.
(4) Applied entrywise, the map f preserves the set of moment sequences of

admissible measures supported on [0, 1].
(5) The function f agrees on (0,∞) with an absolutely monotonic entire func-

tion, hence is non-decreasing, and 0 ≤ f(0) ≤ limε→0+ f(ε).

Remark 3.33. If we work only with f : (0,∞)→ R, then we are interested in
matrices in HTNN with positive entries. Since the only matrices in HTNN with
a zero entry are scalar multiples of the elementary square matrices E11 or ENN

(equivalently, the only admissible measures supported in R+ with a zero moment
are of the form cδ0), the test set does not really reduce, and hence the preceding
theorem still holds in essence: we must replace HTNN by HTNN

(
(0,∞)

)
in (1)

and (2), reduce the class of admissible measures to those that are not of the form
cδ0 in (3) and (4), and end (5) at ‘entire function’. These five modified statements
are, once again, equivalent, and provide further equivalent conditions to those of
Vasudeva (Theorems 2.5 and 2.11).

In a similar vein, we now present the classification of sign patterns of polynomial
or power-series functions that preserve TN entrywise in a fixed dimension on Hankel
matrices. This too turns out to be exactly the same as for positivity preservers.
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Theorem 3.34 (Khare–Tao [43]). Fix ρ > 0 and real exponents
n0 < · · ·<nN−1<M . For any real coefficients c0, . . . , cN−1, c

′, let

(3.19) f(x) :=
N−1∑
j=0

cjx
nj + c′xM .

The following are equivalent.

(1) The entrywise map f [−] preserves TN on the rank-one matrices in
HTNN

(
(0, ρ)

)
.

(2) The entrywise map f [−] preserves positivity on the rank-one matrices in
HTNN

(
(0, ρ)

)
.

(3) Either all the coefficients c0, . . . , cN−1, c
′ are non-negative, or c0, . . . ,

cN−1 are positive and c′ ≥ −C−1, where

(3.20) C =
N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cj
.

If nj ∈ Z+ ∪ [N − 2,∞) for j = 0, . . . , N − 1, then conditions (1), (2) and (3) are
further equivalent to the following.

(4) The entrywise map f [−] preserves TN on HTNN

(
[0, ρ]

)
.

In particular, this produces further equivalent conditions to Theorem 3.15.
Notice that assertion (2) here is valid because the rank-one matrices used in proving

Theorem 3.15 are of the form cuuT , where u = (1, u0, . . . , u
N−1
0 )T , u0 ∈ (0, 1), and

c ∈ (0, ρ), so that cuuT ∈ HTNN

(
(0, ρ)

)
.

The consequences of Theorem 3.15 also carry over for TN preservers. For
instance, one can bound Laplace transforms analogously to Corollary 3.17, by re-
placing the words “positive semidefinite” by “totally non-negative” and the set
PN

(
(0, ρ)

)
by HTNN

(
(0, ρ)

)
. Similarly, one can completely classify the sign pat-

terns of power series that preserve TN entrywise on Hankel matrices of a fixed
size:

Theorem 3.35 (Khare–Tao [43]). Theorems 3.5 and 3.19 hold upon replac-
ing the phrase “preserves positivity entrywise on PN

(
(0, ρ)

)
” with “preserves TN

entrywise on HTNN

(
(0, ρ)

)
”, for both ρ <∞ and for ρ =∞.

We point the reader to [43, End of Section 9] for details.
To conclude, it is natural to seek a general result that relates the positivity

preservers on PN (I) and TN preservers on the set HTNN (I) for domains I ⊂ R+.
Here is one variant which helps prove the above theorems, and which essentially
follows from Theorem 3.30.

Proposition 3.36 (Khare–Tao [43]). Fix integers 1 ≤ k ≤ N and a scalar
0 < ρ ≤ ∞. Suppose f : [0, ρ) → R is such that the entrywise map f [−] preserves
positivity on Pk

N

(
[0, ρ)

)
, the set of matrices in PN

(
[0, ρ)

)
with rank no more than k.

Then f [−] preserves total non-negativity on HTNN

(
[0, ρ)

)
∩ Pk

N

(
[0, ρ)

)
.

4. Power functions

A natural approach to tackle the problem of characterizing entrywise preservers
in fixed dimension is to examine if some natural simple functions preserve positiv-
ity. One such family is the collection of power functions, f(x) = xα for α > 0.
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Characterizing which fractional powers preserve positivity entrywise has recently
received much attention in the literature. One of the first results in this area reads
as follows.

Theorem 4.1 (FitzGerald and Horn [25, Theorem 2.2]). Let N ≥ 2 and let
A = [ajk] ∈ PN

(
R+

)
. For any real number α ≥ N − 2, the matrix A◦α := [aαjk] is

positive semidefinite. If 0 < α < N − 2 and α is not an integer, then there exists a
matrix A ∈ PN

(
(0,∞)

)
such that A◦α is not positive semidefinite.

Theorem 4.1 shows that every real power α ≥ N − 2 entrywise preserves pos-
itivity, while no non-integers in (0, N − 2) do. This surprising “phase transition”
phenomenon at the integer N − 2 is referred to as the “critical exponent” for pre-
serving positivity. Studying which powers entrywise preserve positivity is a very
natural and interesting problem. It also often provides insights to determine which
general functions preserve positivity. For example, Theorem 4.1 suggests that func-
tions that entrywise preserve positivity on PN should have a certain number of
non-negative derivatives, which is indeed the case by Theorem 2.7.

Outline of the proof. The first part of Theorem 4.1 relies on an ingenious
idea that we now sketch. The result is obvious for N = 2. Let us assume it holds
for some N − 1 ≥ 2, let A ∈ PN (R+), and let α ≥ N − 2. Write A in block form,

A =

[
B ξ
ξT aNN

]
,

where B has dimension (N − 1)× (N − 1) and ξ ∈ RN−1. Assume without loss of
generality that aNN �= 0 (as the case where aNN = 0 follows from the induction
hypothesis) and let ζ := (ξT , aNN )T /

√
aNN . Then A− ζζT = (B − ξξT )/aNN ⊕ 0,

where (B − ξξT )/aNN is the Schur complement of aNN in A. Hence A − ζζT is
positive semidefinite. By the fundamental theorem of calculus, for any x, y ∈ R,

xα = yα + α

∫ 1

0

(x− y)(λx+ (1− λ)y)α−1 dλ.

Using the above expression entrywise, we obtain

A◦α = ζ◦α(ζ◦α)T +

∫ 1

0

(A− ζζT ) ◦ (λA+ (1− λ)ζζT )◦(α−1) dλ.

Observe that the entries of the last row and column of the matrix A− ζζT are all
zero. Using the induction hypothesis and the Schur product theorem, it follows
that the integrand is positive semidefinite, and therefore so is A◦α.

The converse implication in Theorem 4.1 is shown by considering a matrix
of the form a1N×N + tuuT , where a, t > 0, the coordinates of u are distinct,
and t1 is small. Recall this is the exact same class of matrices that was useful in
proving the Horn–Loewner theorem 2.7 as well as its strengthening in Theorem 2.9.
The original proof, by FitzGerald and Horn [25], used u = (1, 2, . . . , N)T , while a
later proof by Fallat, Johnson and Sokal [22] used the same argument, now with

u = (1, u0, . . . , u
N−1
0 )T ; the motivation in [22] was to work with Hankel matrices,

and the matrix a1N×N + tuuT is indeed Hankel. That said, the argument of
FitzGerald and Horn works more generally than both of these proofs, to show that,
for any non-integral power α ∈ (0, N − 2), a > 0, and vector u ∈ (0,∞)N with
distinct coordinates, there exists t > 0 such that (a1N×N + tuuT )◦α is not positive
semidefinite. �
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In her 2017 paper [41], Jain provided a remarkable strengthening of the result
mentioned at the end of the previous proof, which removes the dependence on t
entirely.

Theorem 4.2 (Jain [41]). Let

A := [1 + ujuk]
N
j,k=1 = 1N×N + uuT ,

where N ≥ 2 and u = (u1, . . . , uN )T ∈ (0,∞)N has distinct entries. Then A◦α is
positive semidefinite for α ∈ R if and only if α ∈ Z+ ∪ [N − 2,∞).

Jain’s result identifies a family of rank-two positive semidefinite matrices, every
one of which encodes the classification of powers preserving positivity over all of
PN

(
(0,∞)

)
. In a sense, her rank-two family is the culmination of previous work

on positivity preserving powers for PN

(
(0,∞)

)
, since for rank-one matrices, every

entrywise power preserves positivity: (uuT )◦α = u◦α(u◦α)T .
An immediate consequence of these results is the classification of the entrywise

powers preserving positivity on the N × N TN Hankel matrices. Recall from the
results in Section 3.8 (including Lemma 3.31(4)) that there is to be expected a
strong correlation between this classification and the one in Theorem 4.1.

Corollary 4.3. Given N ≥ 2, the following are equivalent for an exponent
α ∈ R.

(1) The entrywise power function x �→ xα preserves total non-negativity on
HTNN (see Lemma 3.31).

(2) The entrywise map x �→ xα preserves positivity on HTNN .
(3) The entrywise map x �→ xα preserves positivity on the matrices in

HTNN

(
(0,∞)

)
of rank at most two.

(4) The exponent α ∈ Z+ ∪ [N − 2,∞).

Proof. That (4) =⇒ (2) and (2) =⇒ (1) follow from Theorems 4.1 and 3.30,
respectively. That (1) =⇒ (2) and (2) =⇒ (3) are obvious, and Jain’s Theo-
rem 4.2 shows that (3) =⇒ (4). �

A problem related to the above study of entrywise powers preserving positivity,
is to characterize infinitely divisible matrices. This problem was also considered by
Horn in [40]. Recall that a complex N ×N matrix is said to be infinitely divisible
if A◦α ∈ PN for all α ∈ R+. Denote the incidence matrix of A by M(A):

M(A)jk = mjk :=

{
0 if ajk = 0

1 otherwise.

Also, let

L(A) := {x ∈ CN :
N∑

j,k=1

mjkxjxk = 0},

and note that L(A) is the kernel of M(A) if M(A) is positive semidefinite.
Assuming the arguments of the entries are chosen in a consistent way [40], we

let

log# A := M(A) ◦ log[A] = [μjk log ajk]
N
j,k=1,

with the usual convention 0 log 0 = 0.

Licensed to AMS.



FIXED-DIMENSION POSITIVITY 137

Theorem 4.4 (Horn [40, Theorem 1.4]). An N × N matrix A is infinitely
divisible if and only if (a) A is Hermitian, with ajj ≥ 0 for all j, (b) M(A) ∈ PN ,

and (c) log# A is positive semidefinite on L(A).

4.1. Sparsity constraints. Theorem 4.1 was recently extended to more struc-
tured matrices. Given I ⊂ R and a graph G = (V,E) on the finite vertex set
V = {1, . . . , N}, we define the cone of positive-semidefinite matrices with zeros
according to G:

(4.1) PG(I) := {A = [ajk] ∈ PN (I) : ajk = 0 if (j, k) �∈ E and i �= j}.
Note that if (j, k) ∈ E, then the entry ajk is unconstrained; in particular, it is
allowed to be 0. Consequently, the cone PG := PG(R) is a closed subset of PN .

A natural refinement of Theorem 4.1 involves studying powers that entrywise
preserve positivity on PG. In that case, the flavor of the problem changes signifi-
cantly, with the discrete structure of the graph playing a prominent role.

Definition 4.5 (Guillot–Khare–Rajaratnam [30]). Given a simple graph
G = (V,E), let

(4.2) HG := {α ∈ R : A◦α ∈ PG for all A ∈ PG(R+)}.
Define the Hadamard critical exponent of G to be

(4.3) CE(G) := min{α ∈ R : [α,∞) ⊂ HG}.
Notice that, by Theorem 4.1, for every graph G = (V,E), the critical exponent

CE(G) exists, and lies in [ω(G)− 2, |V | − 2], where ω(G) is the size of the largest
complete subgraph of G, that is, the clique number. To compute such critical
exponents is natural and highly non-trivial.

FitzGerald and Horn proved that CE(Kn) = n−2 for all n ≥ 2 (Theorem 4.1),
while it follows from [31, Proposition 4.2] that CE(T ) = 1 for every tree T . For
a general graph, it is not a priori clear what the critical exponent is or how to
compute it. A natural family of graphs that encompasses both complete graphs
and trees is that of chordal graphs. Recall that a graph is chordal if it does not
contain an induced cycle of length 4 or more. Chordal graphs feature extensively in
many areas, such as the theory of graphical models [46], and in problems involving
positive-definite completions (see [59]). Examples of important chordal graphs
include trees, complete graphs, Apollonian graphs, band graphs, and split graphs.

Recently, Guillot, Khare, and Rajaratnam [30] were able to compute the com-
plete set of entrywise powers preserving positivity on PG for all chordal graphs G.
Here, the critical exponent can be described purely combinatorially.

Theorem 4.6 (Guillot–Khare–Rajaratnam [30]). Let K
(1)
r denote the complete

graph with one edge removed, and let G be a finite simple connected chordal graph.
The critical exponent for entrywise powers preserving positivity on PG is r − 2,

where r is the largest integer such that Kr or K
(1)
r is an induced subgraph of G.

More precisely, the set of entrywise powers preserving PG is HG = Z+ ∪ [r− 2,∞),
with r as before.

The set of entrywise powers preserving positivity was also computed in [30] for
cycles and bipartite graphs.

Theorem 4.7 (Guillot–Khare–Rajaratnam [30]). The critical exponent of cy-
cles and bipartite graphs is 1.
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Surprisingly, the critical exponent does not depend on the size of the graph
for cycles and bipartite graphs. In particular, it is striking that any power greater
than 1 preserves positivity for families of dense graphs such as bipartite graphs.
Such a result is in sharp contrast to the general case, where there is no underlying
structure of zeros. That small powers can preserve positivity is important for
applications, since such entrywise procedures are often used to regularize positive
definite matrices, such as covariance or correlation matrices, where the goal is to
minimally modify the entries of the original matrix (see [47, 63] and Chapter 5
below).

For a general graph, the problem of computing the set HG or the critical ex-
ponent CE(G) remains open. We now outline some other natural open problems
in the area.

Problems.

(1) In every currently known case (Theorems 4.6, 4.7), CE(G) is equal to

r − 2, where r is the largest integer such that Kr or K
(1)
r is an induced

subgraph of G. Is the same true for every graph G?
(2) Is CE(G) always an integer? Can this be proved without computing

CE(G) explicitly?
(3) Recall that every chordal graph is perfect. Can the critical exponent be

calculated for other broad families of graphs such as the family of perfect
graphs?

4.2. Rank constraints and other Loewner properties. Another approach
to generalize Theorem 4.1 is to examine other properties of entrywise functions such
as monotonicity, convexity, and super-additivity (with respect to the Loewner semi-
definite ordering) [29,38]. Given a set V ⊂ PN (I), recall that a function f : I → R
is

• positive on V with respect to the Loewner ordering if f [A] ≥ 0 for all
0 ≤ A ∈ V ;

• monotone on V with respect to the Loewner ordering if f [A] ≥ f [B] for
all A, B ∈ V such that A ≥ B ≥ 0;

• convex on V with respect to the Loewner ordering if

f [λA+ (1− λ)B] ≤ λf [A] + (1− λ)f [B]

for all λ ∈ [0, 1] and all A, B ∈ V such that A ≥ B ≥ 0;
• super-additive on V with respect to the Loewner ordering if

f [A+B] ≥ f [A] + f [B]

for all A, B ∈ V for which f [A+B] is defined.

The following relations between the first three notions were obtained by Hiai.

Theorem 4.8 (Hiai [38, Theorem 3.2]). Let I = (−ρ, ρ) for some ρ > 0.

(1) For each N ≥ 3, the function f is monotone on PN (I) if and only if f is
differentiable on I and f ′ is positive on PN (I).

(2) For each N ≥ 2, the function f is convex on PN (I) if and only if f is
differentiable on I and f ′ is monotone on PN (I).

Power functions satisfying any of the above four properties have been charac-
terized by various authors. In recent work, Hiai [38] has extended Theorem 4.1 by
considering the odd and even extensions of the power functions to R. For α > 0,
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the even and odd extensions to R of the power function fα(x) := xα are defined
to be φα(x) := |x|α and ψα(x) := sign(x)|x|α. The first study of powers α > 0
for which φα preserves positivity entrywise on PN (R) was carried out by Bhatia
and Elsner [10]. Subsequently, Hiai studied the power functions φα and ψα that
preserve Loewner positivity, monotonicity, and convexity entrywise, and showed for
positivity preservers that the same phase transition occurs at n− 2 for φα and ψα,
as demonstrated in [25]. The work was generalized in [29] to matrices satisfying
rank constraints.

Definition 4.9. Fix non-negative integers n ≥ 2 and n ≥ k, and a set I ⊂ R.
Let Pk

n(I) denote the subset of matrices in Pn(I) that have rank at most k, and let

Hpos(n, k) := {α > 0 : xα preserves positivity on Pk
n(R+)},

Hφ
pos(n, k) := {α > 0 : φα preserves positivity on Pk

n(R)},(4.4)

Hψ
pos(n, k) := {α > 0 : ψα preserves positivity on Pk

n(R)}.

Similarly, let HJ (n, k), Hφ
J (n, k) and H

ψ
J (n, k) denote sets of the entrywise powers

preserving Loewner properties on Pk
n(R+) or Pk

n(R), where

J ∈ {monotonicity, convexity, super-additivity}.

The set of entrywise powers preserving the above notions are given in the table
below (see [29, Theorem 1.2]).

J HJ (n, k) Hφ
J (n, k) Hψ

J (n, k)

Positivity

k = 1 R R R
G–K–R G–K–R G–K–R

N ∪ [n− 2,∞) 2N ∪ [n− 2,∞) (−1 + 2N) ∪ [n− 2,∞)
2 ≤ k ≤ n FitzGerald–Horn Hiai, Bhatia–Elsner, Hiai, G–K–R

G–K–R

Monotonicity

k = 1 R+ R+ R+

G–K–R G–K–R G–K–R

2 ≤ k ≤ n N ∪ [n− 1,∞) 2N ∪ [n− 1,∞) (−1 + 2N) ∪ [n− 1,∞)
FitzGerald–Horn Hiai, G–K–R Hiai, G–K–R

Convexity

k = 1 [1,∞) [1,∞) [1,∞)
G–K–R G–K–R G–K–R

2 ≤ k ≤ n N ∪ [n,∞) 2N ∪ [n,∞) (−1 + 2N) ∪ [n,∞)
Hiai, G–K–R Hiai, G–K–R Hiai, G–K–R

Super-additivity

1 ≤ k ≤ n N ∪ [n,∞) 2N ∪ [n,∞) (−1 + 2N) ∪ [n,∞)
G–K–R G–K–R G–K–R

Table 1. Summary of real Hadamard powers preserving Loewner
properties, with additional rank constraints. See Bhatia–Elsner
[10], FitzGerald–Horn [25], Guillot–Khare–Rajaratnam [29], and
Hiai [38].
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5. Motivation from statistics

The study of entrywise functions preserving positivity has recently attracted
renewed attraction due to its importance in the estimation and regularization of
covariance/correlation matrices. Recall that the covariance between two random
variables Xj and Xk is given by

σjk = Cov(Xj , Xk) = E
[
(Xj − E[Xj])(Xk − E[Xk])

]
,

where E[Xj ] denotes the expectation of Xj . In particular, Cov(Xj , Xj) = Var(Xj),
the variance of Xj . The covariance matrix of a random vector X := (X1, . . . , Xm),
is the matrix Σ := [Cov(Xj , Xk)]

m
j,k=1. Covariance matrices are a fundamental tool

that measure linear dependencies between random variables. In order to discover
relations between variables in data, statisticians and applied scientists need to ob-
tain estimates of the covariance matrix Σ from observations x1, . . . , xn ∈ Rm of X.
A traditional estimator of Σ is the sample covariance matrix S given by

(5.1) S = [sjk]
m
j,k=1 =

1

n− 1

n∑
i=1

(xi − x)(xi − x)T ,

where x := 1
n

∑n
i=1 xi is the average of the observations. In the case where the

random vectorX has a multivariate normal distribution with mean μ and covariance
matrix Σ, one can show that x and n−1

n S are the maximum likelihood estimators
of μ and Σ, respectively [3, Chapter 3]. It is not difficult to show that S is an
unbiased estimator of Σ. More generally, under weak assumptions, one can show
that the distribution of

√
n(S −Σ) is asymptotically normal as n→∞. The exact

description of the limiting distribution depends on the moments and the cumulants
of X (see [12, Chapter 6.3]). For example, in the two-dimensional case, we have
the following result.

Let Nm(μ,Σ) denote the m-dimensional normal distribution with mean μ and
covariance matrix Σ.

Proposition 5.1 (see [12, Example 6.4]). Let x1, . . . , xn ∈ R2 be an inde-
pendent and identically distributed sample from a bivariate vector X = (X1, X2)
with mean μ = (μ1, μ2) and finite fourth-order moments, and let S be as in Equa-
tion ( 5.1). Then

√
n

⎡⎣⎡⎣ s21
s12
s22

⎤⎦−
⎡⎣ σ2

1

σ12

σ2
2

⎤⎦⎤⎦ d−→ N3(0,Ω),

where Ω is the symmetric 3× 3 matrix

Ω =

⎡⎢⎣ μ1
4 − (μ1

2)
2 μ12

31 − μ12
11μ

1
2 μ12

22 − μ1
2μ

2
2

μ12
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1
2 μ12

22 − (μ12
11)

2 μ12
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11μ
2
2

μ12
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2μ
2
2 μ12
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1
2 μ2

4 − (μ2
2)

2

⎤⎥⎦ ,

and μi
k = E[(Xi − μi)

k] and μij
kl = E[(Xi − μi)

k(Xj − μj)
l].

In traditional statistics, one usually assumes the number of samples n is large
enough for asymptotic results such as the one above to apply. In covariance es-
timation, one typically requires a sample size at least a few times the number of
variables m for that to apply. In such a case, the sample covariance matrix provides
a good approximation of the true covariance matrix Σ. However, this ideal setting is
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rarely seen nowadays. Indeed, our systematic and automated way of collecting data
today yields datasets where the number of variables is often orders of magnitude
larger than the number of instances available for study [19]. Classical statistical
methods were not designed and are not suitable for analyzing data in such settings.
Developing new methodologies that are adapted to modern high-dimensional prob-
lems is the object of active research. In the case of covariance estimation, several
strategies have been proposed to replace the traditional sample covariance matrix
estimator S. These approaches typically leverage low-dimensional structures in the
data (low rank, sparsity, . . . ) to obtain reasonable covariance estimates, even when
the sample size is small compared to the dimension of the problem (see [52] for
a detailed description of such techniques). One such approach involves applying
functions to the entries of sample covariance matrices to improve their properties
(see [5,11,21,35,36,47,53,63]). For example, hard thresholding a matrix entails
setting to zero the entries of the matrix that are smaller in absolute value than a
prescribed value ε > 0. Letting

(5.2) fH
ε (x) =

{
x if |x| > ε,

0 otherwise,

hard thresholding is equivalent to applying the function fH
ε entrywise to the entries

of the matrix. Another popular example that was first studied in the context of
wavelet shrinkage [20] is soft thresholding, where fH

ε is replaced by

fS
ε : x �→ sign(x)

(
|x| − ε

)
+

with y+ := max{y, 0}.

Soft thresholding not only sets small entries to zero, it also shrinks all the other
entries continuously towards zero. Several other thresholding and shrinkage proce-
dures were also recently proposed in the context of covariance estimation (see [23]
and the references therein).

Compared to other techniques, the above procedure has several advantages.
Firstly, the resulting estimators are often significantly more precise than the sam-
ple covariance matrices. Secondly, applying a function to the entries of a matrix
is very simple and not computationally intensive. The procedure can therefore be
performed in very high dimensions and in real-time applications. This is in contrast
to several other techniques that require solving optimization problems and often be-
come too intensive to be used in modern applications. A downside of the entrywise
calculus, however, is that the positive definiteness of the resulting matrices is not
guaranteed. As the parameter space of covariance matrices is the cone of positive
definite matrices, it is critical that the resulting matrices be positive definite for
the technique to be useful and widely applicable. The problem of characterizing
positivity preservers thus has an immediate impact in the area of covariance esti-
mation by providing useful functions that can be applied entrywise to covariance
estimates in order to regularize them.

Several characterizations of when thresholding procedures preserve positivity
have recently been obtained.

5.1. Thresholding with respect to a graph. In [33], the concept of thresh-
olding with respect to a graph was examined. In this context, the elements to
threshold are encoded in a graph G = (V,E) with V = {1, . . . , p}. If A = (ajk) is
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a p× p matrix, we denote by AG the matrix with entries

(AG)jk =

{
ajk if (j, k) ∈ E or j = k,

0 otherwise.

We say that AG is the matrix obtain by thresholding A with respect to the graph G.
The main result of [33] characterizes the graphs G for which the corresponding
thresholding procedure preserves positivity. Denote by P+

N the set of real symmetric

N ×N positive definite matrices and by P+
G the subset of positive definite matrices

contained in PG (see Equation 4.1).

Theorem 5.2 (Guillot–Rajaratnam [33, Theorem 3.1]). The following are
equivalent:

(1) AG ∈ P+
N for all A ∈ P+

N ;

(2) G =
⋃d

i=1 Gi, where G1, . . . , Gd are disconnected and complete compo-
nents of G.

The implication (2) =⇒ (1) of the theorem is intuitive and straightforward,
since principal submatrices of positive definite matrices are positive definite. That
(1) =⇒ (2) may come as a surprise though, and shows that indiscriminate or ar-
bitrary thresholding of a positive definite matrix can quickly lead to loss of positive
definiteness.

Theorem 5.2 also generalizes to matrices that already have zero entries. In that
case, the characterization of the positivity preservers remains essentially the same.

Theorem 5.3 (Guillot–Rajaratnam [33, Theorem 3.3]). Let G = (V,E) be an
undirected graph and let H = (V,E′) be a subgraph of G, so that E′ ⊂ E. Then
AH is positive definite for every A ∈ P+

G if and only if H = G1 ∪ · · · ∪ Gk, where
G1, . . . , Gk are disconnected induced subgraphs of G.

5.2. Hard and soft thresholding. Theorems 5.2 and 5.3 address the case
where positive definite matrices are thresholded with respect to a given pattern
of entries, regardless of the magnitude of the entries of the original matrix. The
more natural case where the entries are hard or soft thresholded was studied in
[33,34]. In applications, it is uncommon to threshold the diagonal entries of esti-
mated covariance matrices, as the diagonal contains the variance of the underlying
variables. Hence, for a given function f : R → R and a real matrix A = [ajk], we
let the matrix f∗[A] be defined by setting

f∗[A]jk :=

{
f(ajk) if j �= k,

ajk otherwise.

Theorem 5.4 (Guillot–Rajaratnam [33, Theorem 3.6]). Let G be a connected
undirected graph with n ≥ 3 vertices. The following are equivalent.

(1) There exists ε > 0 such that, for every A ∈ P+
G , we have (fH

ε )∗[A] ∈ P+
n .

(2) For every ε > 0 and every A ∈ P+
G , we have fH

ε [A] ∈ P+
n .

(3) G is a tree.

The case of soft thresholding was considered in [34]. Surprisingly, the charac-
terization of the thresholding levels that preserve positivity is exactly the same as
in the case of hard thresholding.
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Theorem 5.5 (Guillot–Rajaratnam [34, Theorem 3.2]). Let G = (V,E) be a
connected graph with n ≥ 3 vertices. Then the following are equivalent:

(1) There exists ε > 0 such that for every A ∈ P+
G , we have (fS

ε )
∗[A] ∈ P+

n .

(2) For every ε > 0 and every A ∈ P+
G , we have fS

ε [A] ∈ P+
n .

(3) G is a tree.

An extension of Schoenberg’s theorem (Theorem 2.3) to the case where the
function f is only applied to the off-diagonal entries of the matrix was also obtained
in [34].

Theorem 5.6 (Guillot–Rajaratnam [34, Theorem 4.21]). Let 0 < ρ ≤ ∞ and
f : (−ρ, ρ)→ R. The matrix f∗[A] is positive semidefinite for all A ∈ Pn

(
(−ρ, ρ)

)
and all n ≥ 1 if and only if f(x) = xg(x), where

(1) g is analytic on the disc D(0, ρ);
(2) ‖g‖∞ ≤ 1;
(3) g is absolutely monotonic on (0, ρ).

When ρ = ∞, the only functions satisfying the above conditions are the affine
functions f(x) = ax for 0 ≤ a ≤ 1.

5.3. Rank and sparsity constraints. An explicit and useful characteriza-
tion of entrywise functions preserving positivity on PN for a fixed N still remains
out of reach as of today. Motivated by applications in statistics, the authors in
[31,32] examined the cases where the matrices in PN satisfy supplementary rank
and sparsity constraints that are common in applications.

Observe that the sample covariance matrix (Equation (5.1)) has rank at most n,
where n is the number of samples used to compute it. Moreover, as explained at the
start of this Chapter, it is common in modern applications that n is much smaller
than the dimension p. Hence, when studying the regularization approach described
above, it is natural to consider positive semidefinite matrices with bounded rank.

An immediate application of Schoenberg’s theorem on spheres (see Equation
(2.2)) provides a characterization of entrywise positivity preservers of correlation
matrices of all dimensions, with rank bounded by n. Recall that a correlation matrix
is the covariance matrix of a random vector where each variable has variance 1, so is
a positive semidefinite matrix with diagonal entries equal to 1. As in Equation (2.2),

we denote the ultraspherical orthogonal polynomials by P
(λ)
k .

Theorem 5.7 (Reformulation of [57, Theorem 1]). Let n ∈ N and let
f : [−1, 1]→ R. The following are equivalent.

(1) f [A] ∈ PN for all correlation matrices A ∈ PN

(
[−1, 1]

)
with rank no more

than n and all N ≥ 1.

(2) f(x) =
∑∞

j=0 ajP
(λ)
j (x) with aj ≥ 0 for all j ≥ 0 and λ = (n− 1)/2.

Proof. The result follows from [57, Theorem 1] and the observation that
correlation matrices of rank at most n are in correspondence with Gram matrices
of vectors in Sn−1. �

In order to approach the case of matrices of a fixed dimension, we introduce
some notation.
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Definition 5.8. Let I ⊂ R. Define Sn(I) to be the set of n × n symmetric
matrices with entries in I. Let rankA denote the rank of a matrix A. We define:

Sk
n(I) := {A ∈ Sn(I) : rankA ≤ k},
Pk
n(I) := {A ∈ Pn(I) : rankA ≤ k}.

The main result in [32] provides a characterization of entrywise functions map-
ping P l

n into Pk
n .

Theorem 5.9 (Guillot–Khare–Rajaratnam [32, Theorem B]). Let 0 < R ≤ ∞
and I = [0, R) or (−R,R). Fix integers n ≥ 2, 1 ≤ k < n − 1, and 2 ≤ l ≤ n.
Suppose f ∈ Ck(I). The following are equivalent.

(1) f [A] ∈ Sk
n for all A ∈ P l

n(I);
(2) f(x) =

∑r
t=1 ctx

it for some ct ∈ R and some it ∈ N such that

(5.3)
r∑

t=1

(
it + l − 1

l − 1

)
≤ k.

Similarly, f [−] : P l
n(I) → Pk

n if and only if f satisfies (2) and ct ≥ 0 for all t.
Moreover, if I = [0, R) and k ≤ n − 3, then the assumption that f ∈ Ck(I) is not
required.

Notice that Theorem 5.9 is a fixed-dimension result with rank constraints.
This may be considered a refinement of a similar, dimension-free result with rank
constraints shown in [4], in which the authors arrive at the same conclusion as
in part (2) above. We compare the two settings: in [4], (a) the hypotheses held
for all dimensions N rather than in a fixed dimension; (b) the test matrices were
a larger set in each dimension, compared to just the positive matrices considered
in Theorem 5.9; (c) the test matrices did not consist only of rank-one matrices,
similar to Theorem 5.9; and (d) the test functions f in the dimension-free case
were assumed to be measurable, rather than Ck as in the fixed-dimension case.
Thus, Theorem 5.9 is (a refinement of) the fixed-dimension case of the first main
result in [4].7

The (2) =⇒ (1) implication in Theorem 5.9 is clear. Indeed, let i ≥ 0 and

A =
∑l

j=1 uju
T
j ∈ P l

n(I). Then

A◦i =
∑

m1+···+ml=i

(
i

m1, . . . ,ml

)
wmwT

m where wm := u◦m1
1 ◦ · · · ◦ u◦ml

l

and

(
i

m1, . . . ,ml

)
is a multinomial coefficient. Note that there are exactly

(
i+l−1
l−1

)
terms in the previous summation. Therefore rankA◦i ≤

(
i+l−1
l−1

)
, and so (1) easily

follows from (2). The proof that (1) =⇒ (2) is much more challenging; see [32]
for details.

In [31], the authors focus on the case where sparsity constraints are imposed
to the matrices instead of rank constraints. Positive semidefinite matrices with

7We also point out the second main result in loc. cit., that is, [4, Theorem 2], which classifies
all continuous entrywise maps f : C → C that obey similar rank constraints in all dimensions.
Such maps are necessarily of the form g(z) =

∑p
j=1 βjz

mj (z)nj , where the exponents mj and nj

are non-negative integers. This should immediately remind the reader of Rudin’s conjecture in
the ‘dimension-free’ case, and its resolution by Herz; see Theorem 2.6.
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zeros according to graphs arise naturally in many applications. For example, in
the theory of Markov random fields in probability theory ([46,62]), the nodes of
a graph G represent components of a random vector, and edges represent the de-
pendency structure between nodes. Thus, absence of an edge implies marginal or
conditional independence between the corresponding random variables, and leads to
zeros in the associated covariance or correlation matrix (or its inverse). Such models
therefore yield parsimonious representations of dependency structures. Character-
izing entrywise functions preserving positivity for matrices with zeros according to a
graph is thus of tremendous interest for modern applications. Obtaining such char-
acterizations is, however, much more involved than the original problem considered
by Schoenberg as one has to enforce and maintain the sparsity constraint. The
problem of characterizing functions preserving positivity for sparse matrices is also
intimately linked to problems in spectral graph theory and many other problems
(see e.g. [1,17,39,50]).

As before, for a given graph G = (V,E) on the finite vertex set V = {1, . . . , N},
we denote by PG(I) the set of positive-semidefinite matrices with entries in I and
zeros according to G, as in (4.1). Given a function f : R → R and A ∈ S|G|(R),
denote by fG[A] the matrix such that

fG[A]jk :=

{
f(ajk) if (j, k) ∈ E or j = k,

0 otherwise.

The first main result in [31] is an explicit characterization of the entrywise
positive preservers of PG for any collection of trees (other than copies of K2).
Following Vasudeva’s classification for PK2

in Theorem 3.1, trees are the only other
graphs for which such a classification is currently known.

Theorem 5.10 (Guillot–Khare–Rajaratnam [31, Theorem A]). Suppose
I = [0, R) for some 0 < R ≤ ∞, and f : I → R+. Let G be a tree with at
least 3 vertices, and let A3 denote the path graph on 3 vertices. The following are
equivalent.

(1) fG[A] ∈ PG for every A ∈ PG(I);
(2) fT [A] ∈ PT for all trees T and all matrices A ∈ PT (I);
(3) fA3

[A] ∈ PA3
for every A ∈ PA3

(I);
(4) The function f satisfies

(5.4) f
(√

xy
)2 ≤ f(x)f(y) for all x, y ∈ I

and is super-additive on I, that is,

(5.5) f(x+ y) ≥ f(x) + f(y) whenever x, y, x+ y ∈ I.

The implication (4) =⇒ (1) was further extended to all chordal graphs: it is
the following result with c = 2 and d = 1.

Theorem 5.11 (Guillot–Khare–Rajaratnam [30]). Let G be a chordal graph
with a perfect elimination ordering of its vertices {v1, . . . , vn}. For all 1 ≤ k ≤ n,
denote by Gk the induced subgraph on G formed by {v1, . . . , vk}, so that the neigh-
bors of vk in Gk form a clique. Define c = ω(G) to be the clique number of G, and
let

d := max{degGk
(vk) : k = 1, . . . , n}.
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If f : R → R is any function such that f [−] preserves positivity on P1
c (R) and

f [M + N ] ≥ f [M ] + f [N ] for all M ∈ Pd and N ∈ P1
d , then f [−] preserves

positivity on PG(R). [Here, P1
d denotes the matrices in Pd of rank at most one.]

See [30] for other sufficient conditions for a general entrywise function to pre-
serve positivity on PG for G chordal.

To state the final result in this section, recall that Schoenberg’s theorem (The-
orem 2.3) shows that entrywise functions preserving positivity for all matrices (that
is, according to the family of complete graphs Kn for n ≥ 1) are absolutely mono-
tonic on the positive axis. It is not clear if functions satisfying (5.4) and (5.5) in
Theorem 5.10 are necessarily absolutely monotonic, or even analytic. As shown in
[31, Proposition 4.2], the critical exponent (see Definition 4.5) of every tree is 1.
Hence, functions satisfying (5.4) and (5.5) do not need to be analytic. The second
main result in [31] demonstrates that even if the function is analytic, it can in fact
have arbitrarily long strings of negative Taylor coefficients.

Theorem 5.12 (Guillot–Khare–Rajaratnam [31, Theorem B]). There exists
an entire function f(z) =

∑∞
n=0 anz

n such that

(1) an ∈ [−1, 1] for every n ≥ 0;
(2) The sequence (an)n≥0 contains arbitrarily long strings of negative num-

bers;
(3) For every tree G, fG[A] ∈ PG for every A ∈ PG

(
R+

)
.

In particular, if Δ(G) denotes the maximum degree of the vertices of G, then there
exists a family Gn of graphs and an entire function f that is not absolutely mono-
tonic, such that

(1) supn≥1 Δ(Gn) =∞;
(2) fGn

[A] ∈ PGn
for every A ∈ PGn

(R+).
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Boundary values of holomorphic distributions
in negative Lipschitz classes

Anthony G. O’Farrell

Abstract. We consider the behaviour at a boundary point of an open subset
U ⊂ C of distributions that are holomorphic on U and belong to what are called
negative Lipschitz classes. The result explains the significance for holomorphic
functions of series of Wiener type involving Hausdorff contents of dimension
between 0 and 1. We begin with a survey about function spaces and capacities
that sets the problem in context and reviews the relevant general theory.

1. Introduction

1.1. Boundary values. It may happen that all bounded holomorphic func-
tions on an open set U ⊂ C admit a ‘reasonable boundary value’ at some boundary
point. This was first noted by Gamelin and Garnett [18]. The condition for the
existence of such a boundary value is expressed using a series of ‘Wiener type’, and
involves the Ahlfors analytic capacity, γ. The condition is

∞∑
n=1

2nγ(An \ U) < +∞.

Here, if b is the boundary point in question, An denotes the annulus

An(b) :=

{
z ∈ C :

1

2n+1
≤ |z − b| ≤ 1

2n

}
.

This condition says that in an appropriate sense the complement of U is very thin
at b; in particular it implies that U has full area density at b, i.e.

lim
r↓0

|B(b, r) ∩ U)|
πr2

= 1,

where we denote the area of a set E ⊂ C by |E|. When the series converges, it is
emphatically not the case that the limit

lim
z→b,z∈U

f(z)

exists for all functions f bounded and holomorphic on U (unless all such functions
extend holomorphically to a neighbourhood of b). But for each such function there
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is a (unique) value which we may call f(b), with the property that for some set
E ⊂ U having full area density at the point b

lim
z→b,z∈U

f(z) = f(a).

1.2. Peak points. This result is one of many about the boundary behaviour
of analytic and harmonic functions on arbitrary open sets. The original Wiener
series (cf. [42] or [1]) involved logarithmic capacity in dimension two, Newtonian
capacity in dimension three, and other Riesz capacities in higher dimensions, and
characterised boundary points that are regular for the Dirichlet problem. Later
these points were recognised as peak points for the space of functions harmonic on
an open set U and continuous on its closure. The first person to use such a series
with holomorphic functions was Melnikov [17, Theorem VIII.4.5]. He characterised
the peak points for the uniform closure on a compact set X ⊂ C of the algebra
of all rational functions having poles off X. He used the Ahlfors capacity, and he
showed that a point b ∈ X is a peak point if and only if

∞∑
n=1

2nγ(Ån \X) < +∞.

(This was used by Gamelin and Garnett to obtain their above-quoted result.)
For a bounded open set U ⊂ C, and a point b ∈ ∂U , the condition

∞∑
n=1

2nα(An \ U) < +∞,

where α denotes the so-called continuous analytic capacity (introduced by
Dolzhenko) is necessary and sufficient for b to be a peak point for the algebra
of all continuous functions on U , holomorphic on U [17].

1.3. Capacities. The vague idea that there is a capacity for every problem has
gathered momentum over time. A capacity is a function c that assigns nonnegative
extended real numbers to sets, and is nondecreasing:

E1 ⊂ E2 =⇒ c(E1) ≤ c(E2).

Keldysh [24] used Newtonian capacity to solve the problem of stability for the
Dirichlet problem. Vitushkin used analytic capacity to solve the problem of uni-
form rational approximation [17, Chapter VIII]. Vitushkin’s theorem is completely
analogous to Keldysh’s: harmonic functions have been replaced by holomorphic
functions, and Newtonian capacity by analytic capacity. The same switch relates
Wiener’s regularity criterion and Melnikov’s peak-point criterion.

In an influential little book [7], Carleson explained how other capacities (par-
ticularly kernel capacities) could be used to solve problems about boundary values,
convergence of Fourier series, and removable singularities, and in an appendix (pre-
pared by Wallin) he listed over a thousand articles from Mathematical Reviews up
to 1965 that involve some combination of these ideas.

1.4. Continuous point evaluations. In relation to Lp holomorphic approx-
imation, the appropriate capacity is a condenser capacity. The groundwork on
condenser capacities and (generalized) extremal length had already been laid down
by Fuglede [16]. Hedberg [22] (see also [2]) worked out the analogue of Vitushkin’s
theorem for Lp approximation on compact X ⊂ C, and [21] proved the analogue
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of Melnikov’s theorem. Hedberg’s result is about continuous point evaluations. To
explain this concept, consider a Banach space F of ‘functions’ on some set E ⊂ C,
where each element f ∈ F is defined almost-everywhere on E with respect to area
measure m. Suppose b ∈ E and the subspace Fb, consisting of those f ∈ F that
extend holomorphically to some neighbourhood of b, is a dense subset of F . Then
we say that F admits a continuous point evaluation at b if there exists κ > 0 such
that

|f(b)| ≤ κ‖f‖F , ∀f ∈ Fb.

This means that the functional f �→ f(b) has a continuous extension from Fb to
the whole of F . Taking the case where F is the closure Rp(X) in Lp(X,m) of
the rational functions with poles off a compact X ⊂ C, Hedberg showed that if
2 < p < +∞, then Rp(X) admits a continuous point evaluation at b if and only if

∞∑
n=1

2nqΓq(An(b) \X) < +∞.

Here q = p/(p− 1) is the conjugate index, and Γq is a certain condenser capacity.
When p < 2, Rp(X) never admits a continuous point evaluation at b, unless b is an
interior point of X. In the case p = 2, Hedberg left an interesting gap between the
sharpest known necessary condition and the sharpest known sufficient condition,
and this gap was closed by Fernström [14]. Historically, the existence of continuous
point evaluations in the L2 case attracted considerable attention, because of hopes
that it might provide a way to attack the invariant subspace problem for operators
on Hilbert space, and hopes that it might provide a way to attack the L2 rational
approximation problem [3–5].

The existence problem for continuous point evaluations at boundary points has
also been studied for harmonic functions in the Sobolev space W 1,2, and Kolsrud
[25] gave a solution in terms of Wiener series.

In the literature, continuous point evaluations are often referred to as bounded
point evaluations.

1.5. Continuous point derivations. There are similar results about the
possibility that the k-th complex derivative f �→ f (k) may have a continuous exten-
sion from Fb to all of F . These involve the same Wiener series as continuous point
evaluations, except that the base 2 is replaced by 2k+1. For instance, the Rp(X)
result (also due to Hedberg) involves the condition

∞∑
n=1

2(k+1)qnΓq(An(b) \X) < +∞.

The earliest such result was for the uniform closure of the rationals, and was due
to Hallstrom [20].

1.6. Intrinsic capacities. The present author began to formalize the pairing
of problems and capacities in his thesis [30]. He considered the limited context of
uniform algebras on compact subsets of the plane. To each functor X �→ F (X)
that associates a uniform algebra to each compact X ⊂ C, and subject to certain
coherence assumptions, he associated a capacity

α(F, ·) : O → [0,+∞),
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where O is the topology of C. He then proved a Capacity Uniqueness Theorem,
which stated that the map F �→ α(F, ·) is injective on the set of such functors,
i.e. the capacity determines the functor. The Local Capacity Uniqueness Theorem
states that two functors F and G have F (X) = G(X) for a given compact set
X if and only if the capacities α(F, ·) and α(G, ·) agree on all open subsets of

the complement of X. Thus F (X)
?
= G(X) is a problem for which there are two

capacities, not one! Vitushkin’s theorem on rational approximation is the case when
F (X) is the uniform closure of the rational functions having poles off X and G(X)

is the algebra of all functions continuous on X and holomorphic on X̊. This part of
the thesis is unpublished, mainly because the main result is essentially equivalent
to a theorem of Davie [9], obtained independently. In another unpublished chapter,
the author established that the results of Melnikov and Hallstrom extended to all
these F (X), replacing the analytic capacity by α(F, ·).

Other work by Wang [41] and the author [31,32] established a link between
equicontinuous pointwise Hölder conditions at a boundary point and series in which
2 is replaced by 2λ for a nonintegral λ > 1. For instance, Hölder conditions of order
α are related to the convergence of series such as

∞∑
n=1

2(1+α)nγ(An \X).

Moving on from the uniform norm, the author considered parallel questions for
Lipschitz or Hölder norms. Building on a result of Dolzhenko, he established that
the equivalent of continuous analytic capacity is the lower β-dimensional Hausdorff

content Mβ
∗ , with β = α + 1. (For β > 0, the β-dimensional Hausdorff content

Mβ(E) of a set E ⊂ Rd is defined to be the infimum of the sums
∑∞

n=0 r
β
n, taken

over all countable coverings of E by closed balls (B(an, rn))n. If we replace rβn by
h(rn) for an increasing function h : [0,+∞) → [0,+∞) we get the Hausdorff h-

content Mh(E). The lower β-dimensional Hausdorff content Mβ
∗ (E) is defined to

be the supremum of Mh(E), taken over all h such that 0 ≤ h(r) ≤ rβ for all r > 0,
and r−βh(r)→ 0 as r ↓ 0.) He proved [29] the analogue of Vitushkin’s theorem for
rational approximation. Later, Lord and he [26] proved the analogue of Hallstrom’s
theorem for boundary derivatives. For the k-th derivative, this involved the series
condition

∞∑
n=1

2(k+1)nMα+1
∗ (An(b) \X) < +∞.

1.7. SCS. Moving to a more general context, the author introduced the notion
of a Symmetric Concrete Space F on Rd, and considered the relation between
problems about a given such space F , in combination with an elliptic operator L,
and an appropriate associated capacity, the L-F -cap. A Symmetric Concrete Space
(SCS) on Rd is a complete locally-convex topological vector space F over the field
C, such that

• D ↪→ F ↪→ D∗;
• F is a topological D-module under the usual product φ·f of a test function
and a distribution;

• F is closed under complex conjugation;
• The affine group of Rd acts by composition on F , and each compact set
of affine maps gives an equicontinuous family of composition operators.
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Here D = C∞
cs (R

d,C), is the space of test functions and D∗ is its dual, the space
of distributions, A ↪→ B stands for “A ⊂ B and the inclusion map is continuous”.
(In fact, it is elementary that if A and B are metrizable SCS, then A ⊂ B implies
A ↪→ B.)

A SCS is a Symmetric Concrete Banach Space (SCBS) when it is normable and
is equipped with a norm.

We shall be concerned only with the case d = 2, and we identify R2 with C.
The various analytic capacities are ∂

∂z̄ -F -cap for particular F . The author
planned a book about this subject, but this project has never been completed.
Some extracts with useful ideas and results were published. The most useful ideas
concern localness. For SCS F and G, we define

Floc := {f ∈ D∗ : φ · f ∈ F, ∀φ ∈ D},

Fcs := {φ · f : f ∈ F and φ ∈ D},

F
loc
↪→ G ⇐⇒ Floc ↪→ Gloc,

F
loc
= G ⇐⇒ Floc = Gloc,

and observe that

F
loc
= Floc

loc
= Fcs.

Published results include the following:
(1) A Fundamental Theorem of Calculus for SCS that are weakly-locally invariant
under Calderon-Zygmund operators [35, Lemma 12]. This says that

D
∫
F

loc
=

∫
DF

loc
= F,

where

DF := D + span

{
∂f

∂xj
: 1 ≤ j ≤ d, f ∈ F

}
and ∫

F :=

{
f ∈ D∗ :

∂f

∂xj
∈ F, for 1 ≤ j ≤ d

}
.

(2) A 1-reduction principle that allows us to establish equivalences between prob-
lems for different operators L [35, Theorem 1]. The identity operator � : f �→ f is
elliptic. If U is open, then the equation �f = 0 on U just means that U∩supp(f) =
∅. The idea is to reduce questions about L and some space F to equivalent prob-
lems about � and the space LF := {Lf : f ∈ F}.
(3) A general Sobolev-type embedding theorem [34] involving the concept of the
order of an SCS, and
(4) A theorem that says that in dimension two all SCS are essentially (technically,
weakly-locally-) T-invariant [36], i.e. invariant under the Vitushkin localization
operators (see Section 6 below).

In 1990 the author circulated a set of notes on the concept of SCS and the main
examples. Some ideas from these papers were expounded by Tarkhanov in his book
on the Cauchy Problem for Solutions of Elliptic Equations [39, Chapter 1].

The general point of view raised many particular questions, and some of these
have been solved, while other loose ends remain.
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2. The Problem

Our objective in the present paper is to address a loose end connected to the
results on boundary behaviour of holomorphic functions mentioned above. For
0 < α < 1, the ∂

∂z̄ -F -cap associated to the Lipschitz class Lipα is Mα+1, and

that associated to the little Lipschitz class lipα is Mα+1
∗ . Kaufmann [23] showed

that M1 is the ∂
∂z̄ -BMO-cap, the capacity associated to the space of functions of

bounded mean oscillation, and Verdera [40] established that M1
∗ is the ∂

∂z̄ -VMO-
cap, the capacity associated to the space of functions of vanishing mean oscillation.
Verdera proved the Vitushkin theorem for VMO.

The question is, what do Mβ and Mβ
∗ have to do with the boundary behaviour

of analytic functions when 0 < β < 1?. What is the significance of the condition

∞∑
n=1

2nMβ(An \ U) < +∞,

when 0 < β < 1, where U is a bounded open subset of C and b ∈ ∂U?
We are considering a local problem, and it is worth noting that there are several

different meanings commonly attached to the global Lipschitz classes, and the little
Lipschitz classes. For 0 < α < 1, we define Lipα(Rd) to be the space of bounded
functions f : Rd → C that satisfy a Lipschitz-alpha condition:

|f(x)− f(y)| ≤ κf |x− y|α, ∀x, y ∈ Rd.

We would obtain a locally-equivalent Banach SCS if we omit the word ‘bounded’.
We would also obtain a locally-equivalent SCBS if we just require the Lipschitz
condition for |x− y| ≤ 1. Another locally-equivalent space is obtained by requiring
the Lipschitz condition with repect to the spherical metric (associated to the stere-
ographic projection Sd → Rd). We shall shortly meet another locally-equivalent
space, defined in terms of the Poisson transform. It makes no difference for our
problem which of these versions is used, and we can exploit this fact by choosing
whatever version is easiest to use in each context. For this paper, we define lipα
to be the closure of D in Lipα. This space is locally-equivalent to the space of
functions that have restriction in lip(α,X) for each compact X ⊂ Rd, but it has an
additional property ‘near ∞’, irrelevant for our purposes.

3. Results

3.1. The spaces Ts and Cs. The answer to the problem will not surprise
anyone who has studied the paper [35], but may be regarded as rather strange by
others.

The first step in trying to identify the L-F -cap for given L and F is based on
the principle that the compact sets X ⊂ Rd that have (L-F -cap)(X) = 0 should be
the sets of removable singularities for solutions of Lf = 0 of class F . This means
that (L-F -cap)(X) = 0 should be the necessary and sufficient condition that the
restriction map

{f ∈ F : Lf = 0 on U} → {f ∈ F : Lf = 0 on U \X}

be surjective for each open set U ⊂ Rd.
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In [35, p.140] it was established (as a special case of the 1-reduction principle)
that for nonintegral β the set function Mβ is zero on the sets of removable singu-
larities for holomorphic functions of a Lipschitz class, but when 0 < β < 1 this is a
negative Lipschitz class, there denoted Tβ−1.

The negative Lipschitz classes can be described in a number of equivalent ways.
In informal terms, the basic idea is that the Ts for s ∈ R form a one-dimensional
‘scale’ of spaces of distributions, i.e. a family of spaces totally-ordered under local
inclusion. When 0 < s < 1, Ts is locally-equal to Lips. Differentiation takes Ts

down to Ts−1, and DTs is locally-equivalent to Ts−1. Thus if s < 0 and k ∈ N has
s + k > 0, then Ts is locally-equal to DkLip(s + k). The elements of Ts having
compact support may also be characterised by the growth of the Poisson transform
as we approach the plane from the upper half of R3, or by the growth of the
convolution with the heat kernel. This idea originated in the work of Littlewood
and Paley and was fully developed by Taibleson [38, Chapter 5]. The Poisson kernel
is

Pt(z) :=
t

π(t2 + |z|2) 3
2

, (t > 0, z ∈ C).

It is real-analytic in z and t, and is harmonic in (z, t) in the upper half-space

H3 := C× (0,+∞).

For a distribution f ∈ E∗ := (C∞(C,C))∗ having compact support, the Poisson
transform of f is the convolution

F (z, t) := (Pt ∗ f)(z)
where Pt ∗ f denotes the convolution on C = R2. For s < 0 we say (following [35])
that f belongs to the ‘negative Lipschitz space’ Ts if

‖f‖s := sup{t−s|F (z, t)| : z ∈ C, t > 0} < +∞,

and belongs to the ‘small negative Lipschitz space Cs if, in addition,

lim
t↓0

t−s sup{|F (z, t)| : z ∈ C} = 0.

For s ≥ 0, we define Ts and Cs by requiring that for f ∈ E∗, f ∈ Ts (respectively
Cs) if and only if all k-th order partial derivatives of f belong to Ts−k (respectively
Cs−k) for each (or, equivalently, for some) integer k > s.

The Riesz transforms1, convolution with |z|t−d, map Ts locally into Ts+t, so
behave like ‘fractional integrals’.

The scale corresponding to the little Lipschitz class Cs may be described as the
closure of the space D in Ts.

Delicate questions arise at integral values s, and we shall not consider such s
in this paper.

3.2. Statements. For an open set U ⊂ C, and s ∈ R, let

As(U) := {f ∈ Cs : f is holomorphic on U},
and

Bs(U) := {f ∈ Ts : f is holomorphic on U}.

1Strictly speaking the order t Riesz transform is the operator (−Δ)−t/2, which for t > 0 is
convolution with ct|z|t−d, for a certain constant ct [38, p 117].
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We are interested in the range −1 < s < 0, and for such s the elements of As(U)
and Bs(U) are distributions on C that may fail to be representable by integration
against a locally-L1 function, so the definition of continuous point evaluation given
above does not apply. However, we can make a straightforward adjustment. We
shall prove the following lemma:

Lemma 3.1. For each s ∈ R, each open set U ⊂ C and each b ∈ C, the set
{f ∈ As(U) : f is holomorphic on some neighbourhood of b} is dense in As(U).

Here, when we say that the distribution f on C is holomorphic on an open set
V , we mean that its distributional ∂̄-derivative has support off V , i.e.〈

φ,
∂f

∂z̄

〉
:= −

〈
∂φ

∂z̄
, f

〉
= 0

whenever the test function φ has support in V . Recall that by Weyl’s Lemma this
means that the restriction f |V is represented by an ordinary holomorphic function,
so that it and all its derivatives have well-defined values throughout V .

Let us denote

As
b(U) := {f ∈ As(U) : f is holomorphic on some neighbourhood of b}.

Definition 3.2. We say that As(U) admits a continuous point evaluation at
a point b ∈ C if the functional f �→ f(b) extends continuously from As

b(U) to the
whole of As(U).

Our main result is this:

Theorem 3.3. Let 0 < β < 1 and s = β−1. Let U ⊂ C be a bounded open set,
and b ∈ ∂U . Then As(U) admits a continuous point evaluation at b if and only if

∞∑
n=1

2nMβ
∗ (An \ U) < +∞.

3.3. Weak-star continuous evaluations. We can also give a result about
the big Lipschitz class Bs(U). We cannot replace As(U) by Bs(U) in Lemma 3.1
as it stands. However, the Ts spaces are dual spaces, and so have a weak-star
topology (see Subsection 6.2 for details), and restricting this topology gives us a
second useful topology on Bs(U). We have the following:

Lemma 3.4. For each s ∈ R, each open set U ⊂ C and each b ∈ C, The set
{f ∈ Bs(U) : f is holomorphic on some neighbourhood of b} is weak-star dense in
Bs(U).

Denoting

Bs
b (U) := {f ∈ Bs(U) : f is holomorphic on some neighbourhood of b},

we can then give the following definition:

Definition 3.5. We say that Bs(U) admits a weak-star continuous point eval-
uation at a point b ∈ C if the functional f �→ f(b) extends weak-star continuously
from Bs

b (U) to the whole of Bs(U).

Our result for Bs(U) is this:

Licensed to AMS.



BOUNDARY VALUES 159

Theorem 3.6. Let 0 < β < 1 and s = β − 1. Let U ⊂ C be a bounded open
set, and b ∈ ∂U . Then Bs(U) admits a weak-star continuous point evaluation at b
if and only if

∞∑
n=1

2nMβ(An \ U) < +∞.

3.4. Boundary derivatives. In the same spirit, we get results about bound-
ary derivatives. We denote the set of positive integers by N.

Theorem 3.7. Let 0 < β < 1, s = β − 1, and let k ∈ N. Let U ⊂ C be a
bounded open set, and b ∈ ∂U . Then the functional f �→ f (k)(b) has a continuous
extension from As

b(U) to the whole of As(U) if and only if

∞∑
n=1

2(k+1)nMβ
∗ (An \ U) < +∞.

Theorem 3.8. Let 0 < β < 1, s = β − 1, and let k ∈ N. Let U ⊂ C be a
bounded open set, and b ∈ ∂U . Then the functional f �→ f (k)(b) has a weak-star
continuous extension from Bs

b (U) to the whole of Bs(U) if and only if

∞∑
n=1

2(k+1)nMβ(An \ U) < +∞.

The spaces As(U) are not algebras — essentially SCS are only algebras when
they are locally-included in C0 — so we avoid using the term derivation, lest we
confuse people.

3.5. Harmonic functions. The foregoing results concern objects f that are
not ‘proper functions’. Using the ideas related to 1-reduction, we may derive a
theorem about ordinary harmonic functions:

For 0 < α < 1, let Hα(U) denote the space of (complex-valued) functions that
are harmonic on U and belong to the little Lipschitz α class on the closure of U
(or, equivalently, have an extension belonging to the global little Lipschitz class).
For b ∈ ∂U , let

Hα
b (U) := {h ∈ Hα(U) : h is harmonic on a neigbourhood of b}.

If we denote, as is usual,

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

then Δ = 4
∂

∂z

∂

∂z̄
.

Theorem 3.9. Let 0 < α < 1, let U ⊂ C be bounded and open, and b ∈ ∂U .
Then
(1) Hα

b (U) is dense in Hα(U).
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(2) The functional h �→ ∂h

∂z
(b) extends continuously from Hα

b (U) to Hα(U) if and

only if
∞∑

n=1

2nMα
∗ (An \ U) < +∞.

(3) The C2-valued function h �→ (∇h)(b) extends continuously from Hα
b (U) to

Hα(U) if and only if
∞∑

n=1

2nMα
∗ (An \ U) < +∞.

4. Examples

4.1. Smooth boundary. If U is smoothly-bounded, then there are no con-
tinuous point evaluations at any boundary point on As(U) for any s < 0. Indeed,
if b belongs any to any nontrivial continuum K ⊂ C \ U , then no such continuous
point evaluation exists at b.

4.2. Multiple components. If b belongs to the boundary of two (or more)
connected components of the open set U , then no such continuous point evaluation
exists at b.

To see this, note that the assumptions imply that for all small enough r, the
circle |z− b| = r meets the complement of U , and this implies that for large enough
n, the Mβ content of An \ U is at least 2−nβ. Hence the series in Theorem 3.3
diverges for all s ∈ (−1, 0).

This contrasts with the behaviour found in [26] for ordinary Lipschitz classes,
for which interesting behaviour is possible at the boundary of Jordan domains with
piecewise-smooth boundary, and at common boundary points of two components.

4.3. Slits. Let an ↓ 0, rn ↓ 0 and

an+1 + rn+1 < an − rn, ∀n ∈ N.

Then 0 is a boundary point of the slit domain

U := B̊(0, a1 + r1) \
∞⋃

n=1

[an − rn, an + rn].

For a line segment I of length d, we have

Mβ(I) = Mβ
∗ (I) = dβ ,

for 0 < β < 1. Then for −1 < s < 0, As(U) admits a continuous point evaluation
at 0 if and only if Bs(U) admits a weak-star continuous point evaluation at 0, and
if and only if

(4.1)

∞∑
n=1

rs+1
n

an
< +∞.

This follows at once from Theorems 3.3 and 3.6 in case an = 2−n. In the general
case, one obtains it by imitating the proofs, using contours that pass between the
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slits. The corresponding condition for the existence of a k-th order continuous point
derivation is

∞∑
n=1

r
(k+1)(s+1)
n

an
< +∞.

For example, if an = 2−n and rn = 4−n, then there is a continuous point evaluation
at 0 on As(U) if and only if s > − 1

2 .

4.4. Road-runner sets. The Mβ content of a disc and of one of its diameters
are both fixed multiples of (radius)β, and the lower content is the same, so the same
condition (4.1) is necessary and sufficient for the existence of a continuous point
evaluation on As(U) at 0 on the so-called road-runner set

U := B̊(0, a1 + r1) \
∞⋃

n=1

B(an, rn),

when the an and rn are as in the last subsection.

4.5. Below minus 1. The L-F -cap capacity of a singleton is positive as soon
as there are distributions f of class F having Lf = 0 on a deleted neighbourhood
of 0. In the case L = ∂

∂z̄ , this happens when the distribution represented by the

L1
loc function 1

z belongs to Floc. That explains why, in the case of Lp holomorphic

functions, there is a major transition at p = 2; the function 1
z belongs to Lp

loc when

1 ≤ p < 2. (The ‘smoothness’ of Lp(Rd) is −d/p. This can be extended below
p = 1 by using Hardy spaces Hp instead of Lp.)

The ‘delta-function’, δ0, the unit point mass at the origin, is the d-bar (distri-
butional) derivative of 1/z. More precisely

∂ 1
πz

∂z̄
= δ0.

The Poisson transform of δ0 is just the Poisson kernel t/π(|z|2 + t2)
3
2 , so grows no

faster than 1/t2 as t ↓ 0. Thus δ0 belongs to T−2 and 1
z ∈ T−1.

5. Tools

We abbreviate ‖f‖Ts
to ‖f‖s. We use K to denote a positive constant which

is independent of everything but the value of the parameter s, and which may be
different at each occurrence.

5.1. The strong module property. For a nonnegative integer k, and φ ∈ D,
we use the notation

Nk(φ) := d(φ)k · sup |∇k(φ)|.
where d(φ) denotes the diameter of the support of φ. Here, we take the norm |∇kφ|
to be the maximum of all the k-th order partial derivatives of φ.

Note that for κ > 0, Nk(κ · φ) = κ ·Nk(φ), that

N0(φ) ≤ N1(φ) ≤ N2(φ) ≤ · · · ,
and that (by Leibnitz’ formula)

Nk(φ · ψ) ≤ 2kNk(φ)Nk(ψ)

whenever φ, ψ ∈ D and k ∈ N.
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Also, Nk(φ) is invariant under rescaling: If φ ∈ D, r > 0, and ψ(x) := φ(r · x),
then Nk(ψ) = Nk(φ) for each k.

An SCBS F has the (order k-) strong module property if there exists k ∈ Z+

and K > 0 such that

‖φ · f‖F ≤ K ·Nk(φ) · ‖f‖F , ∀f ∈ F.

Most common SCBS have this property. Note that for every SCBS and each φ ∈ D
the fact that F is a topological D-module tells us that there is some constant K(φ)
such that

‖φ · f‖F ≤ K(φ)‖f‖F , ∀f ∈ F.

Thus the strong module property amounts to saying that the least K(φ) are dom-
inated by some Nk(φ), up to a fixed multiplicative constant.

It is readily seen that the ordinary Lipschitz spaces have the order 1 strong
module property.

5.2. Standard pinchers. If b ∈ Rd, a standard pincher at b is a sequence of
nonnegative test functions (φn)n, such that φn = 1 on a neighbourhood of b, the
diameter of supp(φn) tends to zero, and for each k ∈ N, the sequence (Nk(φn))n is
bounded.

The elements φn of a standard pincher make the transition from the value 1 at
b down to zero in a reasonably gentle way, so that the various derivatives are not
greatly larger than they have to be in order to achieve the transition.

It is easy to see that such sequences exist. For instance, they may be constructed
in the form φn(x) = ψ(n|x− b|), where ψ : [0,+∞)→ [0, 1] is C∞, has ψ = 1 near
0 and ψ = 0 off [0, 1].

5.3. The Cauchy transform. The Cauchy transform is the convolution op-
erator

Cf :=
1

πz
∗ f.

It acts (at least) on distributions having compact support, and it almost inverts
the d-bar operator ∂

∂z̄ :

∂

∂z̄
Cf = f = C

∂f

∂z̄
,

whenever f ∈ E∗. Recall from Subsection 1.7 that if F is an SCS we have the
associated spaces Fcs and Floc. The Cauchy transform maps (Ts)cs continuously
into Ts+1 and (Cs)cs into Cs+1, so in combination with ∂

∂z̄ it can be used to relate
properties of Ts to properties of Ts+1. For our present purposes, this allows us to
move from our spaces of distributions corrresponding to −1 < s < 0 to spaces of
ordinary Lip(s+ 1) functions.

The Cauchy kernel 1
πz̄ does not belong to L1, but it does belong to L1

loc, and
indeed there is a uniform bound on its norm on discs of fixed radius:∥∥∥∥ 1

πz̄

∥∥∥∥
L1(B(a,r))

≤ 2r, ∀a ∈ C, ∀r > 0.

So if F is a SCBS, and translation acts isometrically on F , then

(5.1) ‖Cf‖F ≤ d‖f‖F ,
whenever f ∈ Fcs is supported in a disc of radius d.
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5.4. Evaluating the Cauchy transform. The value of (Cf)(b) at a point
off the support of the distribution f may be evaluated in the obvious way:

Lemma 5.1. Let f ∈ E∗, and b ∈ C \ supp(f). Let χ ∈ D be any test function
having χ(z) = 1/(z − b) near supp(f). Then

C(f)(b) =
〈χ
π
, f
〉
.

Proof. We take b = 0, without loss in generality.
For any ψ ∈ D with

∫
ψdm = 1 and supp(ψ) ∩ supp(f) = ∅, we have

〈ψ,C(f)〉 = −
〈
ψ ∗ 1

πz
, f

〉
.

Let (φn)n be a standard pincher at 0 and take

ψn =
φn∫
φndm

.

Then ψn ∗ 1
πz →

1
πz = χ/π in C∞ topology on a neighbourhood of supp(f), so〈χ

π
, f
〉
= lim

n

〈
ψn ∗

1

πz
, f

〉
= − lim

n
〈ψn,C(f)〉 = C(f)(0).

�

5.5. The Vitushkin localization operator. The Vitushkin localization op-
erator is defined by

Tφ(f) := C

(
φ · ∂f

∂z̄

)
.

Here φ ∈ D and f ∈ D∗.
In view of the distributional equation

∂

∂z̄
Tφ(f) = φ · ∂f

∂z̄
,

Tφ(f) is holomorphic wherever f is holomorphic and off the support of φ.
It was established in [36] (using soft general arguments) that whenever F is an

SCS, Tφ maps F continuously into Floc, and that when F is an SCBS, we actually
get a continuous map into the Banach subspace F∞ ⊂ Floc normed by

‖f‖F∞ := sup{‖f |B‖F (B) : B is a ball of radius 1},
where f |B denotes the restriction coset f+J(F,B), with J(F,B) equal to the space
of all elements g ∈ F that vanish near B, and the F (B) norm of a restriction is the
infimum of the F norms of all its extensions in F , i.e.

‖f |B‖F (B) := inf{‖h‖F : h ∈ F, h− f = 0 near B}.
When F is an SCBS with the strong module property (of order k), and translation
acts isometrically on F , the identity

Tφ(f) = φ · f − C

(
∂φ

∂z̄
· f
)

together with equation (5.1) yields the more precise estimate

(5.2) ‖Tφ(f)‖F ≤ KNk+1(φ) · ‖f‖F , ∀φ ∈ D, ∀f ∈ F.
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5.6. Our spaces Ts. We denote the (Ts)∞ norm of a distribution f by ‖f‖s,∞.
Notice that if the support of f has diameter at most 1, then ‖f‖s and ‖f‖s,∞ are
comparable, i.e. stay within constant multiplicative bounds of one another. In
fact, using only the translation-invariance of the norm and the (ordinary) D-module
property, it is easy to see that, for such f ,

‖f‖s,∞ ≤ ‖f‖s ≤ K‖f‖s,∞,

where K is independent of f .

Lemma 5.2. Let k ∈ N and −k−1 < s < −k. Then (Ts)∞ has the order (k+2)
strong module property, and in fact

‖φ · f‖s ≤ K ·Nk+2(φ) · ‖f‖s,
for all φ ∈ D with d(φ) ≤ 1 and all f ∈ Ts, where K > 0 is independent of φ and
f .

Proof. We use induction on k, starting with k = −1.
For 0 < s < 1, Lip(s) has the strong module property of order 1, and since Ts

is locally-equal to Lip(s), we have the result in this case.
Now suppose it holds for some k, and fix s ∈ (−k − 2,−k − 1).
It suffices to prove the estimate for φ supported in B(0, 2), and multiplying

f by a fixed test function ψ that equals 1 on B(0, 2), we may assume that f has
compact support (without changing φ · f or increasing ‖f‖s by more than a fixed

constant that depends only on ψ and s). Then g := Cf ∈ Ts+1 has
∂g

∂z̄
= f and

‖g‖s+1 ≤ K‖f‖s. Also ∂
∂z̄ maps Ts+1 continuously into Ts, and

∂
∂z̄C(φ · f) = φ · f ,

so using (5.2) with k replaced by k + 2, we have

‖φ · f‖s ≤ K‖C(φ · f)‖s+1 = K‖Tφ(g)‖s+1 ≤ K ·Nk+3(φ)‖g‖s+1,∞,

since (Ts+1)∞ has the strong module property of order k + 2, by the induction
hypothesis. Then

‖φ · f‖s ≤ K ·Nk+3(φ) · ‖g‖s+1 ≤ K ·Nk+3(φ) · ‖f‖s
Hence the result holds for k + 1, completing the induction step. �

Remark 5.3. A similar result holds for all s, but for positive s one has to
replace ‖g‖ by ‖g − p‖, where p is the degree !s" Taylor polynomial of g about a.

5.7. The Cs norm on small discs. Since C maps (Cs)cs into Cs+1, induction
also gives the following:

Lemma 5.4. Let s < 0, f ∈ Cs and a ∈ C. Then for each ε > 0 there exists
r > 0 and g ∈ Cs such that f = g on B̊(a, r) and ‖g‖Ts

< ε. �
Remark 5.5. We note that since Tφ(f) is holomorphic off the support of φ

and has a zero at ∞, Tφ maps Cs into Cs.

5.8. Estimate for 〈φ, f〉. The strong module property gives an estimate for
the action of f ∈ F on a given φ ∈ D:

Lemma 5.6. Suppose F is an SCBS with the order k strong module property.
Then for each compact X ⊂ C, there exists K > 0 such that

|〈φ, f〉| ≤ K ·Nk(φ) · ‖f‖F ,
whenever φ ∈ D, f ∈ F and supp(φ · f) ⊂ X.
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Proof. Fix χ ∈ D with χ = 1 near X. Then since f �→ 〈χ, f〉 is continuous
there exists K > 0 such that

|〈χ, f〉| ≤ K · ‖f‖F .

Thus

|〈φ, f〉| = |〈χ, φ · f | ≤ K ·Nk(φ) · ‖f‖F .
�

Putting it another way, the order k strong module property says that the
operator f �→ φ · f on F has operator norm dominated by Nk(φ), and this last
lemma says that the functional f �→ 〈φ, f〉 has F (X)∗ norm dominated by Nk(φ).

It turns out that we can improve substantially on this estimate, for our partic-
ular spaces. The trick is to pay close attention to the support of φ · f .

5.9. Scaling: better estimate. The action of an affine map A : Rd → Rd

on distributions is defined by

〈φ, f ◦A〉 := |A|−1〈φ ◦A−1, f〉, ∀φ ∈ D.

In the case of a dilation A(z) = r · z on C, this means that

〈φ, f〉 = r2〈φ ◦A, f ◦A〉.

Taking into account the fact that Nk(φ) = Nk(φ ◦A) whereas the identity

(Pt ∗ f)(z) = (Pt/r ∗ (f ◦A))(rz)

gives

‖f ◦A‖s = rs‖f‖s,
we obtain:

Lemma 5.7. Let −2 < s < 0. Then

|〈φ, f〉| ≤ K ·N3(φ) · ‖f‖s · rs+2,

whenever φ ∈ D and supp(φ · f) ∈ B(0, r). �

Note that for f ∈ Cs, the norm of f in (Ts)B(a,r) tends to zero as r ↓ 0, so we
can replace the constant K in the estimate by η(r), where η depends on f , and
η(r)→ 0 as r ↓ 0.

5.10. Hausdorff content estimate. Next, using a covering argument, we
can bootstrap the estimate to:

Lemma 5.8. Let −2 < s < 0. Then

|〈φ, f〉| ≤ K ·N3(φ) · ‖f‖s ·Ms+2(supp(φ · f)),

whenever φ ∈ D and f ∈ Ts. �

Before giving the proof of this lemma, we need some preliminaries.
A closed dyadic square is a set of the form Im,n × Ir,n (for integers n,m, r)

where

Im,n :=

{
x ∈ R :

m

2n
≤ x ≤ m+ 1

2n

}
.
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Let S2 denote the family of closed dyadic squares. For β > 0, the β-dimensional
dyadic content of a set E ⊂ R2 is

Mβ
2 (E) := inf

{ ∞∑
n=1

side(Sn)
β : E ⊂

∞⋃
n=1

Sn, and Sn ∈ S2

}
.

This content is comparable to Mβ :

Mβ(E) ≤ 2β/2Mβ
2 (E), Mβ

2 (E) ≤ 2β+2Mβ(E),

for all bounded sets E.
Thus it suffices to prove Lemma 5.8 with Ms+2 replaced by Ms+2

2 in the state-
ment.

Also, since both sides change by a factor r2 when f and φ are replaced by f(r·)
and φ(r·), it suffices to consider the case when E := supp(φ · f) has diameter at
most 1. Given ε > 0, we may cover such an E by a countable sequence (Sn)n of
dyadic squares, of side at most 1, with

∞∑
n=1

side(Sn)
β < Mβ

2 + ε.

We now state the key partition-of-identity lemma:

Lemma 5.9. Let k ∈ N be given. There exist positive constants K and Λ such
that whenever E ∈ R2 is compact, and

E ⊂
∞⋃

n=1

Sn,

where the Sn are dyadic squares of side at most 1, there exists a sequence of test
functions (φn)n such that
(1) φn = 0 except for finitely many n;
(2)

∑
n φn = 1 on a neighbourhood of E;

(3) Nk(φn) ≤ K for all n, and
(4) supp(φn) ⊂ ΛSn.

Here ΛS denotes the square with the same centre as S and Λ times the side.
We shall show that Λ may be taken equal to 5, although we do not claim this is
sharp.

Proof. Rearrange the Sn in nonincreasing order of size. The interiors of the
5
4Sn form an open covering of E, so we may select a finite subcover,

F :=
{

5
4 S̊n : 1 ≤ n ≤ N

}
.

Remove all squares from the sequence (Sn)n that are contained in ( 54S1) \ S1, re-

number the remaining squares, and adjust n; then remove all in ( 54S2) \ S2, and so

on. Now no element Sn ∈ F is contained in any square ‘cordon’ ( 54Sm) \ Sm.
Group the squares of F into generations

Gm :=
{
S ∈ F : side(S) = 2−m

}
for m = 0, 1, 2, . . ..

Each (finite) generation Gm forms part of the tesselation Tm of the whole plane
by dyadic squares of side 2−m. We can construct a uniform partition of unity on

Licensed to AMS.



BOUNDARY VALUES 167

the whole plane subordinate to the covering by the open squares 5S̊, with S ∈ Tm,
as follows:

Choose ρ ∈ C∞([0,+∞)) such that ρ is nonincreasing, ρ(r) = 1 for 0 ≤ r ≤ 5
8

and ρ(r) = 0 for r ≥ 3
4 . Then define

θ(x, y) := ρ(x)ρ(y).

For a dyadic square S having centre (a, b) and side 1, define θS(x, y) := θ(x−a, y−b),
and

τ :=
∑
S∈T1

θS .

Then θS = 1 on 5
4S and is supported on 3

2S, so that 1 ≤ τ ≤ 4. Let

ψS :=
θS
τ
.

Then the test functions ψS , for S ∈ T1 form a partition of unity, and ck := Nk(ψS)
is independent of S. (This partition is invariant under translation by Gaussian
integers.)

For general m ∈ N, and a dyadic square S of side 2−m, define
ψS(z) := ψ2mS(2

mz). Then the ψS , for S ∈ Tm also form a nonnegative smooth
partition of unity, Nk(ψS) = ck is independent of S (and m), the support of ψS is
contained in 3

2S, hence at most 4 ψS are nonzero at any given point.
Note that

|∇kψS | ≤
(
diam 3

2S
)k

ck =
(

3√
2

)k

· (sideS)k · ck

for each k ∈ N.
For a dyadic square S, let S+ denote the set of 9 dyadic squares of the same

size that meet S. For any family H of dyadic squares, let

H+ :=
⋃
{S+ : S ∈ H}.

Thus S++ := (S+)+ is the family of 25 squares, consisting of S, the 8 other dyadic
squares of the same size that meet S, and the 16 other dyadic squares of the same
size that meet at least one of those 8 squares. Observe that the smooth function∑

T∈S+

ψT

is supported in
⋃
S++ = 5S and has sum identically 1 on 3

2S.

We now proceed to construct the desired collection of functions (φn).
Let

σm :=
∑

S∈G+
m

ψS .

Then σm is supported in
⋃
G++
m and

σm = 1 on Km :=
⋃

S∈Gm

3
2S.

Since at most 4 ψS are nonzero at any one point, we have

(5.3) |∇kσm| ≤ 4ck

(
3√
2

)k

· 2km, ∀k ∈ N.
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Now take the squares S ∈ G+
0 , and allocate each one to a ‘nearest’ square

n(S) ∈ G0 so that:
(1) if S ∈ G0, take n(S) = S;
(2) if S �∈ G0, pick n(S) with S ∈ n(S)+. (There may be up to eight ways to pick
n(S). It does not matter which you choose.)

Next, let

φT :=
∑

n(S)=T

ψS , ∀T ∈ G0.

Then each φT is supported on 5T , and

σ0 =
∑
T∈G0

φT .

Since the sum defining φT has at most 9 terms, and its support has diameter at
most 5 times that of T , we have

Nk(φT ) ≤ 9 · 5k · ck.
Let τ0 := σ0.

Next, consider G1. As before, allocate each square S ∈ G+
1 to a nearest square

n(S) ∈ G1, but this time let

φT := (1− τ0)
∑

n(S)=T

ψS , ∀T ∈ G1.

Then ∑
T∈G1

φT = (1− τ0)σ1.

and

τ1 := τ0 + (1− τ0)σ1

is supported in
⋃
(G++

0 ∪ G++
1 ) and is identically equal to 1 on K0 ∪K1.

Continuing in this way, for m ≥ 1 we allocate each square S ∈ G+
m+1 to a

nearest square n(S) ∈ Gm+1, and let

φT := (1− τm)
∑

n(S)=T

ψS , ∀T ∈ Gm+1,

and

τm+1 := τm + (1− τm)σm+1.

Then ∑
T∈Gm+1

φT = (1− τm)σm+1

and τm+1 = 1 on K0 ∪ · · · ∪Km+1.
When we have worked through all the nonempty generations Gm, we will have

defined φSn
for each Sn, and (renaming φSn

as φn) we have
∑

n φn = 1 on the
union of all the 3

2Sn, and hence on a neighbourhood of E. Since φn is supported
on 5Sn, it remains to prove the estimate (3) of the statement, i.e. to prove that
supn Nk(φn) < +∞.

This amounts to showing that there is a constant K > 0 (depending on k) such
that for 0 ≤ m ∈ Z and S ∈ Gm, we have

|∇kφS | ≤ K2km.
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To do this, we start by proving that for each k there exists C = Ck > 0 such that

(5.4) |∇kτm| ≤ C · 2km, ∀k ∈ N.

for all m ≥ 0.
To see this, we use induction on k and on m, and the identity

(5.5) τm+1 = σm+1 + (1− σm+1)τm,

together with the bound (5.3).
Let us write

dk := 4ck

(
3√
2

)k

,

so that (5.3) becomes |∇kσm| ≤ dk2
km. Since τ0 = σ0, then for any k, we know

that (5.4) holds for m = 0 as long as C is at least dk.
Take the case k = 1, and proceed by induction on m. If (5.4) holds for k = 1

and some m, then the identity (5.5) gives

|∇τm+1| ≤ d12
m+1 + |∇τm|+ |∇σm+1| ≤

(
d1 +

C

2
+ d1

)
2m+1.

Thus we get (5.4) with m replaced by m+ 1, as long as C ≥ 4d1. This proves the
case k = 1, with C1 = 4d1.

Now suppose that k > 1, and we have (5.4) with k replaced by any number r
from 1 to k − 1 and C replaced by some Cr. We proceed by induction on m. We
have the case m = 0, with any constant C ≥ dk. Suppose we have the case m, with
a constant C.

Using the identity, we can estimate |∇kτm+1| by

dk2
k(m+1) + C · 2km +

k∑
j=1

(
k

j

)
|∇jσm+1| · |∇k−jτm|.

This is no greater than (
C

2k
+R

)
· 2k(m+1),

where R is an expression involving d1,. . .,dk and C1,. . .,Ck−1. So as long as C > 2R,
we get (5.4) with m replaced by m+ 1, and the induction goes through.

So we have (5.4) for all k and m. It follows easily that for some C > 0
(depending on k) and for each S ∈ G+

m we have

|∇k(1− τm) · ψS | ≤ C · 2km,

and this gives

|∇kφS | ≤ 9C · 2km

whenever S ∈ Gm, as required. �

Proof of Lemma 5.8. With E = supp(φ·f), take the partition of the identity
(φn) constructed in Lemma 5.9, and note that φ =

∑
n φ · φn on a neighbourhood

of E. Thus

〈φ, f〉 =
N∑

n=1

〈φ · φn, f〉.

Now apply Lemma 5.7 with φ replace by φ·φn. The fact thatNk is submultiplicative
implies that N3(φ · φn) ≤ KN3(φ), so we get the stated result at once. �
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Further, using the remark about η(r) ↓ 0, we get a stronger statement for
elements of Cs:

Lemma 5.10. Let −2 < s < 0. Then

|〈φ, f〉| ≤ K ·N3(φ) · ‖f‖s ·Ms+2
∗ (supp(φ · f),

whenever φ ∈ D and f ∈ Cs. �

6. Proofs of preliminary lemmas

6.1. Proof of Lemma 3.1.

Proof. Fix f ∈ As(U). Take some ψ ∈ D having ψ = 1 near U . Then
f1 := ψ · f ∈ As(U), so we may write f = f1 + f2, where f2 ∈ Cs vanishes near U ,
and hence is holomorphic near b. So it remains to show that we can approximate
f1 by elements of As

b(U).
Now f1 has compact support. Take a standard pincher (φn)n at b.
Take gn := Tφn

(f1). Then ‖gn‖s ≤ K‖f1‖s. Since Tφn
depends only on the

restriction of f1 to the support of φn, an application of Lemmas 5.4 and 5.2 shows
that ‖gn‖s → 0 as n ↑ ∞. Thus f1 − gn → f1 in Ts norm. Finally,

∂

∂z̄
(f1 − gn) = (1− φn)

∂f1
∂z̄

,

so f1 − gn is holomorphic on a neighbourhood of b, and so belongs to As
b(U). �

6.2. Proof of Lemma 3.4. First, we have to explain the weak-star topology
in question, by specifying a specific predual for Ts.

The fact is that Ts is essentially the double dual of Cs. More, it is a concrete
dual : An SCS F is called small if it is the closure of D. If F is a small SCS, then its
dual F ∗ is naturally isomorphic to an SCS, where the isomorphism is the restriction
map L �→ L|D. We call this SCS the concrete dual of F , and denote it by the same
symbol F ∗. Also Floc and Fcs are also small,

(Floc)
∗ = (F ∗)cs,

(Fcs)
∗ = (F ∗)loc,

and so

(F ∗)
loc
= (Floc)

∗ loc
= (Fcs)

∗.

In the case of Cs, for 0 < s < 1, the concrete dual C∗
s is also small, and we

have

(C∗
s )

∗ loc
= Ts.

This fact is basically due to Sherbert, who observed the isomorphism

lip(α,K)∗∗ = Lip(α,K)

for all compact metric spacesK. The key to this is the fact that for each L ∈ lip(α,K)∗

that annihilates constants there exists a measure μ on K ×K, having no mass on
the diagonal, such that

Lf =

∫
K×K

f(x)− f(y)

dist(x, y)α
dμ(x, y),
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whenever f ∈ lip(α,K). In particular, each point-mass at an off-diagonal point
(z, w) ∈ C× C gives an element of the dual of lipα(C):

Q(z, w)(f) :=
f(z)− f(w)

|z − w|α , ∀f ∈ lipα.

This might lead one to suspect that the dual is non-separable, but the norm topol-
ogy on these functionals is not discrete. In fact, the map

P : C2 \ diagonal→ lipα∗

is continuous, and indeed locally Hölder-continuous: one may show that

‖Q(z, w)−Q(z′, w)‖lipα∗ ≤ 4|z − z′|α
|z − w|

whenever |z−z′| < 1
2 |z−w|. Hence the functional L on lipαloc represented by a given

measure μ may be approximated in the dual norm by finite linear combinations of
elements from

P := {Q(z, w) : z �= w}.
By smearing the point masses, each functional Q(z, w) may be approximated in the
dual norm by functionals

∫
C
Q(z+ζ, w+ζ)φ(ζ)dm(ζ), where φ ∈ D has

∫
φ dm = 1,

which send an element f ∈ lip(α) to∫
C

Q(z + ζ, w + ζ)(f) · φ(ζ) dm(ζ)

=

∫
C

f(ω)

(
φ(ω − z)− φ(ω − w)

|z − w|α

)
dm(ω),

and the function

ω �→ φ(ω − z)− φ(ω − w)

|z − w|α
is a test function, so the functional L may be approximated by test functions. Thus
lipα∗

loc has a concrete dual, and by Sherbert’s result this can only be Lipαcs.
Moreover, it follows that a sequence in Lipα is weak-star convergent to zero

if and only if it is bounded in Lipα norm and converges pointwise to zero on the
span of P. So in fact it suffices to show that it is bounded in norm and converges
pointwise on C. But we already know that if (φn) is a standard pincher, then, for
f ∈ Lipα, Tφn

f is bounded in Lipα norm and converges uniformly to zero, hence
we conclude that Tφn

f is weak-star convergent to zero. This proves the lemma in
case 0 < s < 1.

For other nonintegral s, we obtain it by applying the Fundamental Theorem
of Calculus. In particular, for the case of immediate interest, −1 < s < 0, we have
that

((Cs)loc)
∗∗ loc

= ((DCs+1)loc)
∗∗ loc

=
∫
Ts+1

loc
= Ts,

so to show that, for f ∈ Ts, the sequence (Tφn
f) converges weak-star in Ts, it

suffices to show that (CTφn
f) converges weak-star in Ts+1. We may assume that

f has compact support, since (Tφn
f) depends only on the restriction of f to a

neighbourhood of suppφ, and then taking g = Cf ∈ Ts+1, it suffices to show that

CTφn

∂g

∂z̄
converges weak-star to zero. But

CTφn

∂g

∂z̄
= C

2

(
φn ·

∂2g

∂z̄2

)
,

Licensed to AMS.



172 ANTHONY G. O’FARRELL

so we are just dealing with the equivalent of Tφ for the d-bar-squared operator
instead of the d-bar operator, so it is bounded on Lipα and on C0, independently
of n, and thus we have the desired weak-star convergence.

Remark 6.1. We expect that the argument of Subsection 6.2 may be used
more generally, i.e we conjecture the following:

Let F be a small SCBS, such that F ∗ is also small, F ∗∗ loc
↪→ C0, and the span

of the point evaluations is dense in F ∗, and F ∗∗ has the strong module property.
Then whenever (φn) is a standard pincher, and L is an elliptic operator with smooth
coefficients,

L−1(φn · Lf)→ 0 weak-star ∀f ∈ F ∗∗.

Here, L−1 denotes some suitably-chosen parametrix for L.

7. Proofs of Theorems

7.1. Proof of Theorem 3.3. We fix β ∈ (0, 1) and s = β − 1, and without
loss in generality we assume that the boundary point b = 0.

First, consider the ‘only if’ direction. Suppose the series diverges:

∞∑
n=1

2nMβ
∗ (An \ U) = +∞.

We wish to show that there exist f ∈ As
0(U) having ‖f‖s ≤ 1 and |f(0)| arbitrarily

large.

Since Mβ
∗ is subadditive, there exists at least one of the four right-angle sectors

Sr :=
{
z ∈ C : |arg(irz)| < π

4

}
(for r ∈ {0, 1, 2, 3}) such that

∞∑
n=1

2nMβ
∗ ((Sr ∩An) \ U) = +∞.

We may assume that this happens for r = 0, and we may assume further that U
contains the whole complement of S0 and the whole exterior of the unit disc. So
we may select closed sets En ⊂ S0 ∩An such that U ∩ En = ∅ and

∞∑
n=1

2nMβ
∗ (En) = +∞.

We may select numbers λn > 0 such that the individual terms

λn2
nMβ

∗ (En) ≤ 1, and yet

∞∑
n=1

λn2
nMβ

∗ (En) = +∞.

For each n, by Frostman’s Lemma, we may select a positive Radon measure sup-
ported on En such that (1) μn(B(a, r)) ≤ rβ for all a ∈ C and all r > 0 (i.e. μn ‘has

growth β’), (2) the total variation ‖μn‖ ≥ K ·Mβ
∗ (En), and (3) μn(B(a, r))/rβ → 0
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uniformly in a as r ↓ 0. Then taking r �→ h(r) to be the upper concave enve-

lope of r �→ supa μn(B(a, r) on [0,+∞), we have ‖μn‖ ≤Mh(En) ≤Mβ
∗ (En), so

λn2
n‖μn‖ ≤ 1 and

∞∑
n=1

λn2
n‖μn‖ = +∞.

Let hn := λnC(μn). Then hn ∈ Cs, hn is holomorphic off supp(μn), hence hn ∈
As

0(U). Also �(hn(0)) ≥ λn
2n√
2
‖μn‖. Hence∣∣∣∣∣

N∑
n=1

hn(0)

∣∣∣∣∣ ≥ 1√
2

N∑
n=1

λn2
n‖μn‖ → +∞

as N ↑ ∞. So now it suffices to show that fN :=
∑N

n=1 hn is bounded in Ts norm,
independently of N ∈ N.

For this, it suffices to show that the ∂
∂z̄ -derivatives

gN :=
∂

∂z̄
fN =

N∑
n=1

λnμn

are bounded in Ts−1 = Tβ−2, i.e. that for some K > 0 we have

N∑
n=1

λn

π
·
∫

t dμn(ζ)

(t2 + |z − ζ|2) 3
2

≤ Ktβ−2,

whenever z ∈ C and t > 0.
When t ≥ 1, we have the trivial estimate (independent of z)

λn(Pt ∗ μn)(z, t) ≤
λn

π

Mβ
∗ (En)

t2
≤ 1

π2nt2
,

so this gives |Pt ∗ gN | ≤ Kt−2 ≤ Ktβ−2.
So to finish, fix t ∈ (0, 1), and choose m ∈ N such that 2−m−1 ≤ t ≤ 2−m, take

the n-th term in the sum, and consider separately the ranges of n:
case 1◦: n > m− 2, and case 2◦: n < m− 2,
and the possible positions of z in relation to An.

Case 1◦:
The trivial estimate also gives

λn · (Pt ∗ μn)(z, t) ≤
Mβ(An)

πt2
≤ (2−n)β

πt2
,

so we get an estimate for the total contribution from all the Case 1◦ terms:

t2−β
∞∑

n=m−2

λn · (Pt ∗ μn)(z, t) ≤
1

π

∞∑
n=m−2

2(m+1−n)β =
8β

π(1− 2−β)
,

Case 2◦:
To deal with this we have to consider the position of z in relation to An.

There are at most three n such that the distance from z to An is less than
2−n−1. For these we can use the uniform estimate

t2−β · (Pt ∗ μn)(z, t) ≤ K,
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which follows from the fact that μn has growth β. (just write the value of Pt∗μn(w)
as a sum of the integrals over the annuli

{z ∈ C : 2mt < |z − w| ≤ 2m+1t}
from 0 to − log2 t plus the integral over the disc B(w, t)).

For the remaining n ∈ {1, . . . ,m− 3}, the estimate

(Pt ∗ μn)(z, t) ≤
t ·Mβ(An)

π · dist(z, An)3

gives

t2−β · (Pt ∗ μn)(z, t) ≤ (2β−3)m+1−n,

so

t2−β
m−3∑
n=1

λn · (Pt ∗ μn)(z, t) ≤ 3K +
m−3∑
n=1

(2β−3)m+1−n = K,

another constant (depending on β), and we are done.

Now consider the converse. Suppose
∑

n 2nMβ
∗ (An \ U) < +∞. We want to

show that As(U) admits a continuous point evaluation at 0.
If V is an open subset of U , then As(U) is a subset of As(V ), so it suffices to

prove the result for U that are contained in B̊(0, 1
2 ). We assume this is the case.

We may choose radial functions ψn ∈ D such that ψn = 1 on An, ψn = 0 off
An−1 ∪ An ∪An+1, and for each k the sequence (Nk(ψn))n is bounded. Let

φn :=
ψn∑∞

m=1 ψm

on the complement of {0}, and φn(0) = 0. Then each φn ∈ D, is zero off
An−1 ∪ An ∪An+1, the sequences (Nk(φn))n are all bounded, and

∑
n φn = 1 on

the union of all the An.
Fix a test function χ that equals 1 on B(0, 1

2 ) and is supported on B(0, 1).
Fix f ∈ As

0(U). We want to prove that |f(0)| ≤ K‖f‖s, where K > 0 does not
depend on f .

We have f(0) = (χ · f)(0), χ · f ∈ As(U), and ‖χ · f‖s ≤ K‖f‖s, so it suffices
to prove the estimate for f ∈ As

0(U) having support in B(0, 1).
Choose N ∈ N such that f(z) is holomorphic for |z| < 22−N . Define φ0(z) to

be 1−φN (z) when |z| < 2−N−1 and 0 otherwise. Then φ0 ∈ D, Nk(φ0) = Nk(φN ),
and the test function

φ := φ0 +

N∑
n=1

φn

is equal to 1 near B(0, 1).
We have

f = φ · f = C

(
∂

∂z̄
(φ · f)

)
.

Since
∂

∂z̄
φ = 0 on the support of f , this equals

C

(
φ
∂f

∂z̄

)
= C

(
φ0

∂f

∂z̄

)
+

N∑
n=1

C

(
φn

∂f

∂z̄

)
=

N∑
n=1

C(φn
∂f

∂z̄
),

since f is holomorphic on supp(φ0).
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Take a test function ψ that equals 1/z for 2−N < |z| < 2.
Applying Lemma 5.1, we have

C

(
φn ·

∂f

∂z̄

)
(0) = −

〈
ψ

π
, φn ·

∂f

∂z̄

〉
= −

〈
ψ · φn

π
,
∂f

∂z̄

〉
.

Thus

f(0) = −
N∑

n=1

〈
φn

πz
,
∂f

∂z̄

〉
(Here, by φn/z we understand the test function that equals 0 at the origin and
φn/z everywhere else in C.)

Applying the Hausdorff content estimate from Lemma 5.10, we have

|f(0)| ≤ K ·
N∑

n=1

N3

(
φn

z

)
·Mβ

∗

(
supp(φn ·

∂f

∂z̄
)

)
·
∥∥∥∥∂f∂z̄

∥∥∥∥
s−1

≤ K ·
∞∑

n=1

2nMβ
∗ ((An−1 ∪ An ∪ An+1) \ U) ·

∥∥∥∥∂f∂z̄
∥∥∥∥
s−1

,

since N3(φn/z) ≤ 2n+1N3(φn) ≤ K2n.

Since Mβ
∗ is subadditive and

∥∥∥∥∂f∂z̄
∥∥∥∥
s−1

≤ K‖f‖s ≤ K, we get

|f(0)| ≤ K ·
∞∑

n=1

2nMβ
∗ (An \ U) · ‖f‖s.

This completes the proof.

Remark 7.1. The proof actually shows that the sum of the series is the dual
norm of the point evaluation f �→ f(b), up to multiplicative constants that depend
only on β.

7.2. Proof of Theorems 3.6, 3.7 and 3.8. To prove Theorem 3.6, one can

use exactly the same argument, just replacing Mβ
∗ by Mβ , and using Lemma 5.8

instead of Lemma 5.10.
To prove the other two theorems, one just uses the corresponding Cauchy-

Pompeiu formulas for derivatives:

C(μn)
(k)(0) =

k!

π

∫
dμn(z)

zk+1

for the ‘only if’ direction, and

f (k)(0) = −
N∑

n=1

〈
k!φn

πzk+1
,
∂f

∂z̄

〉
for the ‘if’ direction.

7.3. Proof of Theorem 3.9. The point is that a distribution f ∈ Cs satisfies

Δf = 0 on the open set U if and only if
∂f

∂z
is holomorphic on U , and the operator

∂

∂z
maps Ts into Ts−1, and is inverted on (Ts−1)cs by the ‘anti-Cauchy’ transform.

So the results are just reformulations of Theorem 3.3.
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Remark 7.2. This is an example of 1-reduction, and one could also formulate

equivalent results about other elliptic operators. In particular, Mβ
∗ is also the

capacity for Tβ and the operator
(

∂
∂z̄

)2
, which is associated to complex elastic

potentials, and it is the capacity for Tβ+2 (a space of functions that are twice
differentiable, but may have discontinuities in the third derivative) and the operator
Δ2, associated to elastic plates.

8. Concluding remarks

8.1. In [6, p.311] Carleson proved that for 0 < β < 1 the Mβ-null sets are the
removable singularities for the class of Lipβ “multiple-valued holomorphic functions
having single-valued real part.” The expression in quotation marks is really code
for “harmonic functions”, so this is really the first version of the fact that Mβ is
the Δ-Lipβ-cap.

In the same paper, Carleson proved a precursor to Dolzhenko’s theorem [13]
about removable singularities for Lipβ holomorphic functions. He left a little gap,
between the Hausdorff content and the nearby Riesz capacity, and Dolzhenko closed
the gap.

8.2. Conjecture. Recently [37] the author showed that the existence of a
continuous point derivation on As(U) at b, for some positive s < 1, implies that the
value of the derivation may be calculated by taking limits of difference quotients
from a subset E ⊂ U having full area density at b. In case U also satisfies an
interior cone condition at b, the value may be calculated by taking limits along
the midline of the cone. It seems reasonable to hope that for negative s, if As(U)
admits a continuous point evaluation at b, then the value can be calculated in a
similar way, as

lim
z→b,z∈E

f(z)

for some E ⊂ U having full area density at b, and for segments E ⊂ U (if any)
along which nontangential approach to b is possible. In the case of Lp spaces, results
along these lines have also been obtained by Wolf [44] and Deterding [10–12]. See
also [14,27,43].

8.3. Question. Suppose F is an SCBS on Rd having the strong module prop-
erty

‖φ · f‖F ≤ K ·Nk(φ) · ‖f‖F , ∀φ ∈ D ∀f ∈ F,

for some positive constant K and some nonnegative integer k. Define an inner
capacity cF,k by the rule that for each compact E ⊂ Rd the value cF,k(E) is the
least nonnegative number c such that

|〈φ, f〉| ≤ Nk(φ) · ‖f‖F · c
whenever φ ∈ D, f ∈ F , and supp(φ ·f) ⊂ E. For example, if F = L∞, it is easy to
see that cF,0(E) is the d-dimensional Lebesgue measure of E, whereas for F = L1,
cF,0(E) = 1 for all E.

The question is this: For which F and k is it the case that
cF,k ≤ K · (1-F -cap) for some constant K?

Recall that for compact E ⊂ Rd,

1-F -cap(E) := inf{|〈χ, f〉| : ‖f‖F ≤ 1, supp(f) ⊂ E},
where χ ∈ D is any fixed test function such that χ = 1 on E.
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We have seen that this holds for F = Ts, s ∈ R. Does it hold for all SCBS
having the strong module property?

8.4. Question. If an SCBS F has the order k strong module property, when
is there an SCBS locally-equal to DF that has the strong order k + 1 module
property? And what about

∫
F?

DFloc is the Frechet space topologised by the seminorms defined by

‖f‖n = inf

{
‖g1 + · · ·+ gd‖F (B(0,n)) : gj ∈ F, f =

∂g1
∂x1

+ · · ·+ ∂gd
∂xd

}
.

Note that if d = 2, and F is weakly-locally invariant under Calderon-Zygmund
operators (or just under the Beurling transform), then DFloc is topologised by the
seminorms

‖f‖n = inf

{
‖g‖F (B(0,n)) : g ∈ Fcs, f =

∂g

∂z̄

}
,

and this implies that each ‖φ · f‖n is dominated by Nk+1(φ) · ‖f‖n, because

φ · ∂g
∂z̄

=
∂

∂z̄
(φ · g)−

(
∂φ

∂z̄

)
· g.

This property is a kind of local version of the strong module property.

8.5. Acknowledgment. The author is grateful to the referee for a careful
reading of the typescript and for corrections and suggestions that materially im-
proved the exposition.
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Dedicated to Thomas Ransford on the occasion of his 60th birthday.

Abstract. We study cyclicity in the Dirichlet type spaces for outer functions

whose zero set is countable.

1. Introduction and main result

Let X be a Banach space of functions holomorphic in the open unit disk D,
such that the shift operator S : f(z) → zf(z) is a continuous map from X into
itself. Given f ∈ X, we denote by [f ]X the smallest closed S–invariant subspace of
X containing f , namely

[f ]X = {pf : p is a polynomial}.
We say that f is cyclic in X if [f ]X = X.

The problem of cyclic vectors in the Dirichlet spaces goes back to the work
of Beurling and Carleson (see [B,C]). The classical Dirichlet space D consists of
holomorphic functions on the unit disc whose derivatives are square integrable.
While Beurling characterizes cyclic vectors in the Hardy space H2, the problem
of characterizing the cyclic vectors in the Dirichlet space D is much more difficult.
Beurling’s theorem says that the cyclic vectors inH2 are the outer functions. On the
other hand we know that there are outer functions in the Dirichlet space which are
not cyclic in D. In fact, the cyclicity of such a function depends on the distribution
of the zeros of the radial limit f∗ of f on the unit circle. The Brown–Shields
conjecture [HS] claims that f ∈ D is cyclic iff f is an outer function and the set of
all zeros of f∗ is a set of logarithmic capacity zero. A partial (positive) answer to
this conjecture was given in [EKR2,EKR1]. We mention the results of Beurling
[B] about the boundary behavior for the functions of the Dirichlet spaces: if f ∈ D
we write f∗(ζ) = limr→1− f(rζ), then the radial limit f∗ exists –q.e on T, that is f∗

exists outside a set of capacity logarithmic zero. As a consequence of a weak-type
inequality the invariant subspace DE defined by

DE = {f ∈ D, f∗|E = 0 q.e.}
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is closed in D. Carleson in [C] proved that for every closed subset E of the unit
circle which has zero logarithmic capacity, there exists a cyclic function in D which
vanishes on E.

We denote by A(D) the disc algebra. Hedenmalm and Shields showed in [HS]
that if f ∈ D ∩ A(D) is an outer function and Z(f∗) = {ζ ∈ T : f∗(ζ) = 0},
the zero set of f∗, is countable then f is cyclic in D. Richter and Sundberg
in [RS1] improve this result by showing that if f ∈ D is outer and
Z(f) = {ζ ∈ T : lim infz→ζ |f(z)| = 0} is countable then f is cyclic in D. When
the set of zeros of f∗ is not countable, see [EKMR,EKR1,EKR2] in the case
of the classical Dirichlet space D2

0 and [EKR3] in the case of D2
α, 0 < α < 1 for

further results on cyclicity in that context.

In this paper we are interested in cyclicity, in more general Dirichlet spaces,
of outer functions such that the zero set is countable. We now introduce some
notations. The Dirichlet/Besov space Dp

α with p ≥ 1 and α > −1 is given by

Dp
α =

{
f ∈ Hol(D) : ‖f‖pDp

α
= |f(0)|p +

∫
D

|f ′(z)|pdAα(z) <∞
}
.

where dAα denotes the finite measure on the unit disc D given by

dAα(z) := (1 + α)(1− |z|2)αdA(z),

and dA(z) = dxdy/π stands for the normalized area measure on D. If p = 2 and
α = 1, then D2

1 is the Hardy space H2 and the classical Dirichlet space corresponds
to p = 2 and α = 0, D2

0 = D. The following theorem is the main result of this
paper.

Theorem. Let p > 1 be such that α + 1 < p ≤ α + 2 and let f ∈ Dp
α ∩ A(D).

If f is outer and Z(f) is countable, then f is cyclic in Dp
α.

Notice that when 1 < p < α + 1, Hp(D) is continuously embedded in Dp
α and

every outer function f ∈ Hp(D) is cyclic for Dp
α (Proposition 3.1). On the other

hand when p > α + 2 then every function which vanishes at least at one point is
not cyclic in Dp

α.

The method used for the proof of Theorem 3.10 is inspired by that of the
Hedenmalm and Shields [HS] in the case of the classical Dirichlet space and the
paper [EKR2] .

Throughout the paper, we use the following notations:

• A � B means that there is an absolute constant C such that A ≤ CB.
• A $ B if both A � B and B � A hold.

2. Dirichlet space and duality

The Bergman spaces Ap
α with p ≥ 1, α > −1 are given by

Ap
α(D) =

{
f ∈ Hol(D), ‖f‖pAp

α
=

∫
D

|f(z)|pdAα(z) <∞
}
.
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We define the Bergman spaces Ap
α(De) on the exterior disk De = (C ∪ {∞}) \ D

with p ≥ 1 and α > −1 by

Ap
α(De) =

{
g ∈ Hol(De), g(∞) = 0 and ‖g‖pAp

α
=

∫
De

|g(z)|p (|z|
2 − 1)α

|z|4−p+2α
dA(z) <∞

}
.

Note that Ap
α(D) and Ap

α(De) are isometrically isomorphic via the isometry
R : f �→ Rf defined on Ap

α(D) by

(2.1) Rf(z) =
1

z
f

(
1

z

)
, z ∈ De.

Indeed, by the variable change z �→ 1/z,∫
D

|f(z)|pdAα(z) =

∫
De

|f(1/z)/z|p (|z|
2 − 1)α

|z|4−p+2α
dA(z)

Futhermore if f =
∑

n≥0 anz
n ∈ Ap

α(D) then by (2.1)

(2.2) Rf(z) =

∞∑
n=0

an
zn+1

, z ∈ De.

Denote by S the shift operator on Ap
α(D) for p ≥ 1 and α > −1, that is the

multiplication by z on Ap
α(D). Let S

∗ denote the backward shift, that is

S∗f(z) =
f(z)− f(0)

z
.

Notice that S∗ is continuous onAp
α(D) for p ≥ 1 and α > −1. Indeed, for f ∈ Ap

α(D)
we get by subharmonicity ([HKZ, proposition 1.1]) that∣∣∣∣f(z)− f(0)

z

∣∣∣∣ ≤ sup
|w|≤1/2

|f ′(w)| � ‖f‖Ap
α(D), |z| < 1/2.

Since f �→ f(0) is continuous on Ap
α(D) ([HKZ, proposition 1.1]), we have

‖S∗f‖pAp
α
≤

∫
|z|≤1/2

‖f‖pAp
α
dAα(z) + 2p

∫
1/2<|z|<1

|f(z)− f(0)|pdAα(z)

� ‖f‖pAp
α(D)

+ ‖f − f(0)‖pAp
α(D)

� ‖f‖pAp
α(D)

.

From now, we suppose that p > 1 and we denote by q = p
p−1 .

Lemma 2.1. Suppose that −1 < α < p− 1. Then 〈·, ·〉 defined on
Dp

α ×A
q
−αq/p(D) by

(2.3) 〈f, g〉 =
∫
D

f ′(z)S∗g(z)dA(z) + f(0)g(0), f ∈ Dp
α, g ∈ A

q
−αq/p(D),

is linear on the left, anti-linear on the right and

|〈f, g〉| � ‖f‖Dp
α
‖g‖Aq

−αq/p
(D).

Proof. Since −αq/p > −1, (f, g)→ 〈f, g〉 is well defined. Clearly this map is
linear on the left and antilinear on the right. It is therefore sufficient to show that

|〈f, g〉| � ‖f‖Dp
α
‖g‖Aq

−αq/p
(D).
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Using Hölder’s inequality and the fact that the maps S∗ and f �→ f(0) are contin-
uous on the space Aq

−αq/p(D), we get

|〈f, g〉| ≤
∫
D

|f ′(z)| (1− |z|
2)α/p

(1− |z|2)α/p |S
∗g(z)|dA(z) + |f(0)g(0)|

≤
(∫

D

|f ′(z)|pdAα(z)

)1/p(∫
D

|S∗g(z)|qdA−αq/p

)1/q

+ |f(0)||g(0)|

≤ ‖f‖Dp
α
‖S∗g‖Aq

−αq/p
(D) + |f(0)||g(0)|

� ‖f‖Dp
α
‖g‖Aq

−αq/p
(D).

�
The previous lemma shows that 〈·, ·〉 defines a duality between Dp

α and
Aq

−αq/p(D). The following result shows that Aq
−αq/p(D) can be identified as the

dual of Dp
α.

Proposition 2.2. Let p > 1 and −1 < α < p − 1. The dual of Dp
α, noted by

Dp
α
′, is isomorphic to Aq

−αq/p(D).

Proof. We will show that the mapping g �→ 〈·, g〉 is an isomorphism of
Aq

−αq/p(D) in Dp
α
′, the dual of Dp

α. This mapping is well defined, antilinear, continu-

ous and injective. Let’s show that it’s surjective. Take L in Dp
α
′. For all f ∈ Ap

α(D),
we consider F the primitive of f on D such that F (0) = 0. It’s easy to see that
F ∈ Dp

α. We define the mapping L0 on Ap
α(D) by L0(f) = L(F ). Thus L0 belong

to the dual of Ap
α(D), since

|L0(f)| = |L(F )| ≤ ‖L‖‖F‖Dp
α
= ‖L‖‖f‖Ap

α
.

By the Hahn-Banach theorem, L0 extends to Lp
α(D) = Lp(D, dAα) in a

continuous linear form L̃0. By the Riesz representation theorem, there exists
ψ0 ∈ Lp

−αq/p(D) = Lp
α(D)

′ such that for any g ∈ Lp
α(D),

L̃0(g) =

∫
D

g(z)ψ0(z)dA(z).

Let P be the linear map defined by

P : f �→
(
z �→

∫
D

f(w)

(1− zw)2
dA(w)

)
.

According to [HKZ, Theorem 1.10], P is a bounded projection from Ls
γ(D) onto

As
γ(D) for γ < s− 1 which is the case when (s, γ) = (p, α) and (s, γ) = (q,−αq/p).

Set ψ = P (ψ0) ∈ Aq
−αq/p(D). So for f ∈ Ap

α(D), we get

L0(f) = L̃0(f) =

∫
D

f(z)ψ0(z)dA(z)

=

∫
D

∫
D

f(w)

(1− zw)2
ψ0(z)dA(w)dA(z)

=

∫
D

f(w)

∫
D

ψ0(z)

(1− wz)2
dA(z)dA(w)

=

∫
D

f(w)ψ(w)dA(w).
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Thus we showed that there is ψ ∈ Aq
−αq/p(D) such that for any F ∈ Dp

α with

F (0) = 0, we have

L(F ) =

∫
D

F ′(z)ψ(z)dA(z).

Set ϕ(z) = zψ(z) + L(1) ∈ Aq
−αq/p(D). We have S∗ϕ = ψ. Hence for h ∈ Dp

α

L(h) = L(h− h(0)) + L(h(0))

=

∫
D

h′(z)ψ(z)dA(z) + h(0)L(1)

=

∫
D

h′(z)S∗ϕ(z)dA(z) + h(0)ϕ(0) = 〈h, ϕ〉.

This shows that the mapping g �→ 〈·, g〉 is surjective and defines an isomorphism
from Aq

−αq/p(D) onto Dp
α
′. �

Remarks. If p > 1 and α < p− 1, the dual of Dp
α is identified as Aq

−αq/p(D).

Also the spaces Aq
−αq/p(D) and A

q
−αq/p(De) are isomorphic, so we can identify the

dual of Dp
α with Aq

−αq/p(De) by the duality

〈f, g〉e = 〈f,R−1g〉, f ∈ Dp
α, g ∈ Aq

−αq/p(De).

In the following we will introduce the tools to use the Hedenmalm and Shields
Theorem [HS, Theorem 1]. For all ϕ ∈ Dp

α
′, we set

ϕ̃(λ) = 〈fλ, ϕ〉, λ ∈ De

where fλ is given by

fλ(z) = (λ− z)−1, z ∈ D.

We define then as in [HS]

Dp
α
∗ =

{
ϕ̃, ϕ ∈ Dp

α
′} .

Let ϕ ∈ Dp
α
′, we have

ϕ̃(λ) =

〈 ∞∑
n=0

zn

λn+1
, ϕ

〉
=

∞∑
n=0

〈zn, ϕ〉
λn+1

.

We identify ϕ as an element of Aq
−αq/p(D) that we write

ϕ(z) =
∑
n≥0

anz
n, z ∈ D.

So if n = 0, 〈zn, ϕ〉 = ϕ(0) = a0 and if n ≥ 1,

〈zn, ϕ〉 =

∫
D

nzn−1S∗ϕ(z)dA(z)

=

∫
D

nzn−1
∞∑

m=1

am zm−1dA(z)

=
∞∑

m=1

nam

∫ 1

0

∫ 2π

0

rn+m−2eiθ(n−m)dθ/π rdr

= an

∫ 1

0

2nr2n−1dr = an.(2.4)
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Thus for λ ∈ De,

ϕ̃(λ) =

∞∑
n=0

an
λn+1

.

Moreover, according to (2.2), we also have

Rϕ(λ) =
∞∑

n=0

an
λn+1

, λ ∈ De.

So
Dp

α
∗ = Aq

−αq/p(De).

The following lemma will be useful for expressing duality (see [HS, Lemma 3]).

Lemma 2.3. Let p > 1 and −1 < α < p− 1. Let f ∈ Dp
α and g ∈ Aq

−αq/p(De).

For 0 ≤ r < 1, we set

fr(z) = f(rz), z ∈ D and g1/r(z) = g(z/r), z ∈ De,

Then

〈f, g〉e = lim
r→1−

〈fr, g1/r〉e = lim
r→1−

∞∑
n=0

anbnr
n = lim

r→1−

1

2π

∫ 2π

0

f(reiθ)g(eiθ/r)eiθdθ,

where f(z) =
∑∞

n=0 anz
n and g(1/z) =

∑∞
n=0 bnz

n+1, z ∈ D.

3. Cyclicity in Dp
α

We start this section by comparing the spaces Dp
α and the Hardy spaces Hp(D).

We suppose p ≥ 1 and α > −1. Let H∞(D) be the algebra of bounded analytic
functions on the open unit disc D and let Hp(D) be the Hardy space of analytic
functions f on D such that

‖f‖Hp = sup
r<1

Mp(f, r) <∞,

where

Mp(f, r) =

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

.

Let N be the Nevanlinna class of analytic functions f on D for which

sup
r<1

∫
T

ln+ |f(rζ)||dζ| <∞.

By Fatou’s Theorem, the radial limit f∗(ζ) = limr→1− f(rζ) exists a.e on T and
ln |f∗| ∈ L1(T). Recall that f ∈ N if and only if f = ϕ/ψ, where ϕ, ψ ∈ H∞(D).

Let N + be the Smirnov class of analytic functions f ∈ N such that

sup
r<1

∫
T

ln+ |f(rζ)||dζ| =
∫
T

ln+ |f∗(ζ)||dζ|.

The function f ∈ N + if and only if f = ϕ/ψ where ϕ, ψ ∈ H∞(D) and ψ is an
outer function, that is, ψ has the form

ψ(z) = exp

∫
T

ζ + z

ζ − z
logψ∗(ζ)

|dζ|
2π

, z ∈ D.

A function f ∈ Hp(D) is cyclic for Hp(D) if and only if f is outer [N, 4.8.4]. We
then study the different possible inclusions between the spaces Dp

α and Hp(D) to
obtain first conditions on the cyclicity in the Dirichlet spaces.
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Proposition 3.1. Let p ≥ 1 and α > −1. If p < α + 1 then Hp(D) is
continuously embedded in Dp

α. Consequently, if f ∈ Hp(D) is outer then f is cyclic
for Dp

α.

Proof. Let f ∈ Hp(D), z = reit ∈ D and r < ρ < 1. By Cauchy’s formula,

f ′(z) =
1

2π

∫ 2π

0

f(ρei(θ+t))

(ρeiθ − r)2
ρei(θ−t)dθ.

Now, by Minkowski’s inequality,

Mp(f
′, r) =

(
1

2π

∫ 2π

0

∣∣∣∣ 12π
∫ 2π

0

f(ρei(θ+t))

(ρeiθ − r)2
ρei(θ−t)dθ

∣∣∣∣p dt
)1/p

≤ ρ

2π

∫ 2π

0

(
1

2π

∫ 2π

0

|f(ρei(θ+t))|p
|ρeiθ − r|2p dt

)1/p

dθ

≤ 1

2π

∫ 2π

0

ρ

|ρeiθ − r|2 dθ Mp(f, ρ)

=
ρ

ρ2 − r2
Mp(f, ρ) ≤

1

ρ− r
Mp(f, ρ).

Now letting ρ→ 1, we get

1

2π

∫ 2π

0

|f ′(reiθ)|pdθ ≤ 1

(1− r)p
‖f‖pHp ,

Since p < α+ 1,∫
D

|f ′(z)|pdAα(z) =

∫ 1

0

∫ 2π

0

|f ′(reiθ)|pdθ(1− r2)αrdr/π

≤ 2α+1

∫ 1

0

(1− r)α

(1− r)p
dr‖f‖pHp

=
2α+1

α+ 1− p
‖f‖pHp .

So Hp(D) is continuously embedded in Dp
α. Now the result follows from the fact

that an outer function is cyclic in Hp(D). �
Remark. If p < α + 1, the Dirichlet space Dp

α = Ap
α−p(D), see [Wu]. There-

fore, in this case, there exists an inner function which is cyclic in Dp
α, see [Ro]. If

p > α+ 1 we have the following result.

Proposition 3.2. Let p > 1 and p > α + 1. The Dirichlet space Dp
α is

continuously embedded in Hp(D). Therefore if f ∈ Dp
α is cyclic in Dp

α then f is an
outer function.

Proof. Let f ∈ Dp
α and r ∈ [1/2, 1[. We have

f(reiθ) =

∫ r

0

f ′(seiθ)eiθds+ f(0).

Note that |f(0)| ≤ ‖f‖Dp
α
and by subharmonicity, there exists C > 0 such that

|f ′(seiθ)| ≤ C‖f‖Dp
α
, 0 ≤ s ≤ 1/2. So

|f(reiθ)| ≤
∫ r

1/2

|f ′(seiθ)|ds+ (C/2 + 1)‖f‖Dp
α
.
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By Hölder’s inequality, and since αq/p = α/(p− 1) < 1,(∫ 2π

0

|f(reiθ)|pdθ
)1/p

�
[∫ 2π

0

(∫ r

1/2

|f ′(seiθ)|ds
)p

dθ

]1/p

+ ‖f‖Dp
α

�
[∫ 2π

0

(∫ r

1/2

|f ′(seiθ)|p(1− s2)αds
)(∫ r

1/2

(1− s2)−αq/pds
)p/q

dθ

]1/p

+ ‖f‖Dp
α

�
[∫ 2π

0

∫ 1

1/2

|f ′(seiθ)|p(1− s2)α2sdsdθ

]1/p [∫ 1

1/2

(1− s2)−αq/pds

]1/q

+ ‖f‖Dp
α

�
(
1− αq

p

)
‖f‖Dp

α
+ ‖f‖Dp

α
.

So ‖f‖Hp � ‖f‖Dp
α
. Hence if f is cyclic for Dp

α then f is also cyclic for Hp(D) and
f is then an outer function. �

Remark. We have D2
1 (D) = H2(D) and D2

0 (D) = D. So if 1 ≤ p ≤ 2 and
p = α + 1, we obtain by interpolation theorem [Wu, (3.8)]), that Dp

α is contin-
uously embedded in Hp(D). Futhermore if p > α + 2, then Dp

α is continuously
embedded in H∞(D) (see the proof of [Wu, Theorem 4.2]).

We can summarize here all the inclusions obtained:

p < α+ 1 =⇒ Hp(D) ⊂ Dp
α = Ap

α−p(D)

1 ≤ p ≤ 2 and p = α+ 1 =⇒ Dp
α ⊂ Hp(D)

p > α+ 1 =⇒ Dp
α ⊂ Hp(D)

p > α+ 2 =⇒ Dp
α ⊂ H∞(D).

We assume in the following that p > α + 1. We will prove that any outer
function of A(D) ∩ Dp

α whose set of zeros is reduced to a single point is cyclic in
Dp

α. For that we will use a Hedenmalm-Shields Theorem [HS, Theorem 1]. We
first need to define the following notions. Let X ⊂ Hol(D) be a Banach space. The
multiplier set of X, noted M(X), is defined by

M(X) = {ϕ ∈ Hol(D), ϕf ∈ X, ∀f ∈ X}.
If X ⊂ Hol(De) we define in a similar way M(X).
As in [HS] we identify the dual X ′ of X with a space X∗ of holomorphic functions
on De. Finally for E ⊂ T a closed set of zero Lebesgue measure, we set

HE(N
+, X∗) =

{
ϕ ∈ Hol(C ∪ {∞} \ E), ϕ|D ∈ N +(D), ϕ|De

∈ X∗} .
We denote by Hol(D), respectively Hol(De), the space of all holomorphic functions
in a neighborhood of D, respectively De.

Theorem 3.3 (Hedenmalm-Shields [HS]). Let X ⊂ Hol(D) be a Banach space.
Assume that

(1) The embedding map of X into Hol(D) is continuous and X contains
Hol(D) as a dense subspace
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(2) X ∩ A(D) is a Banach algebra, containing Hol(D) as a dense algebra.
(3) Hol(D) ⊂M(X).
(4) Hol(De) ⊂M(X∗) = H∞(De).

If f ∈ X ∩A(D) is an outer function and if

HZ(f)(N
+, X∗) = {0}

then f is cyclic in X.

Hedenmalm and Shields show that iff ∈ A(D) ∩ D2
0 (D) is an outer function

and Z(f) = {1} then HZ(f)(N
+,D2

0 (D)
∗) = {0} and so f is cyclic (see also

[EKR2,EKMR]). We will prove a similar result for Dp
α where α+ 1 < p ≤ α+ 2.

Theorem 3.4. Let p > 1 and p > α+ 1. If f ∈ A(D) ∩ Dp
α is outer and if

HZ(f)(N
+,Dp

α
∗) = {0}

then f is cyclic on Dp
α.

To prove this result, we will use Theorem 3.3. For that we need only to show
the following lemma (see the proof of [DRS, lemma 11]).

Lemma 3.5. Let p > 1 and α > −1. Then M(Ap
α(De)) = H∞(De).

Proof. Let f ∈ Ap
α(De) and g ∈ H∞(De). We have∫

De

|f(z)g(z)|p (|z|
2 − 1)α

|z|4−p+2α
dA(z) ≤ ‖g‖p∞‖f‖

p
Ap

α
.

So fg ∈ Ap
α(De) and H∞(De) ⊂M(Ap

α(De)).

Now let g ∈ M(Ap
α(De)) and let Mg : Ap

α(De) → Ap
α(De) be the operator

given by Mg(f) = fg. By the closed graph theorem, Mg is bounded. For z ∈ De,
the linear functional Λz : Ap

α(De) → C defined by Λz(f) = f(z), is continuous
([HKZ, proposition 1.1]). So for f ∈ Ap

α(De) and z ∈ De,

|f(z)g(z)| = |Λz(Mgf)| ≤ ‖Λz‖‖Mg‖‖f‖Ap
α
.

Hence

‖Λz‖|g(z)| ≤ ‖Λz‖‖Mg‖
and g ∈ H∞(De). So M(Ap

α(De)) ⊂ H∞(De). On the other hand the inclusion
H∞(De) ⊂M(Ap

α(De)) is obvious. �

By identifying the dual of Dp
α with Aq

−αq/p(De), we have for f ∈ Dp
α and

ϕ ∈ Aq
−αq/p(De),

ϕ ∈
(
[f ]

Dp
α

N

)⊥
⇐⇒ 〈znf, ϕ〉e = 0, ∀n ∈ N.

Lemma 3.6. Let p > 1and p > α + 1. Let E ⊂ T a closed set of Lebesgue
measure, ϕ ∈HE(N +,Dp

α
∗) and f ∈ Dp

α. If the family of functions

z ∈ T �→ f(rz)ϕ(z/r), 1/2 < r < 1,

is uniformly integrable on T, then ϕ ∈
(
[f ]

Dp
α

N

)⊥
.
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Proof. This result holds by using the analogue arguments like those in
[EKR2, Lemma 3.4] for the classical Dirichlet space. For the sake of completeness,
we include it here. Let f ∈ Dp

α and ϕ|De
∈ Dp

α
∗ = Aq

−αq/p(De). By Proposition 2.3,

we have

〈f, ϕ〉 = lim
r→1−

1

2π

∫ 2π

0

f(reiθ)ϕ(eiθ/r)eiθdθ.

By Proposition 3.2, Dp
α ⊂ Hp(D) and so f∗, the radial limit of f , exists a.e. on T.

Since ϕ ∈ Hol(C \ E) and E is a closed set of Lebesgue measure zero, ϕ(z/r) −→
ϕ(z) exists a.e on T when r → 1−. So the family of the functions z �→ f(rz)ϕ(z/r)
converges a.e to f∗ϕ when r → 1−. By uniform integrability, this family of functions
converges in L1(T). Then

〈f, ϕ〉 = 1

2π

∫ 2π

0

f∗(eiθ)ϕ(eiθ)eiθdθ.

Futhermore ϕ ∈ N + and f ∈ Hp(D) ⊂ N +, so then fϕ ∈ N +. Since the
radial limit (fϕ)∗ = f∗ϕ ∈ L1(T), by Smirnov’s generalized maximum principal

[D, Theorem 2.11], fφ ∈ H1(D) and so f̂∗ϕ(n) = 0 :

f̂∗ϕ(n) = 〈f, ϕ〉 = 1

2π

∫ 2π

0

f∗(eiθ)ϕ(eiθ)eiθdθ = 0.

Repeating the same argument with f replaced by znf , we get 〈znf, ϕ〉 = 0 for all
n ∈ N. �

We have the following classical Lemma

Lemma 3.7. Let p > 1 and p > α + 1. Let E ⊂ T be a closed set of Lebesgue
measure zero and ϕ ∈ HE(N +,Dp

α
∗). Then there exists a constant C > 0 such

that

|ϕ(z)| ≤ C

dist(z, E)4
, 1 < |z| < 2.

Proof. Let ϕ ∈ HE(N +,Dp
α
∗). Since ϕ|D ∈ N +, ϕ|D = ϕiϕo, where ϕi is

an inner function and ϕo is an outer function in N (see [D, p. 25]). Futhermore,
since E has Lebesgue measure zero , ϕ(z) = ϕ∗(z) = limr→1− ϕ(rz) exists a.e on
T. The function log |ϕ| being in L1(T), we get

|ϕ(z)| ≤ |ϕo(z)| =
∣∣∣∣exp( 1

2π

∫ 2π

0

eit + z

eit − z
log |ϕ(eit)|dt

)∣∣∣∣
≤ exp

(
1

2π

∫ 2π

0

1− |z|2
|eit − z|2 log |ϕ(eit)|dt

)
≤ exp

(
1− |z|2
(1− |z|)2

∫ 2π

0

∣∣log |ϕ(eit)|∣∣ dt)
≤ exp

(
2

1− |z| ‖ log |ϕ|‖L1(T)

)
.

≤ exp

(
C1

1− |z|

)
,

for some constant C1 > 0. Let z ∈ De with |z| ≤ 2. The disc of radius (|z| − 1)/2
centered at z, D(z, (|z| − 1)/2) is contained in De. Since ϕ|De

∈ Aq
−αq/p(De), by
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subharmonicity of |ϕ| and for q = p/(p− 1) ≥ 1, we obtain

(|z| − 1)2

4
|ϕ(z)|q ≤ 1

π

∫
D(z,(|z|−1)/2)

|ϕ(w)|qdA(w)

≤ 1

π

∫
D(z,(|z|−1)/2)

|ϕ(w)|q (|w|
2 − 1)−αq/p

|w|4−q−2αq/p

|w|4−q−2αq/p

(|w|2 − 1)−αq/p
dA(w)

≤ max(22αq/p, 24−q)

∫
De

|ϕ(w)|q (|w|
2 − 1)−αq/p

|w|4−q−2αq/p
dA(w)

≤ max(22αq/p, 24−q)‖ϕ|De
‖Bq

−αq/p
.

So

|ϕ(z)| ≤ C2

(|z| − 1)2
, 1 < |z| ≤ 2,

for some constant C2 > 0. Since log |ϕ| is subharmonic function, by Taylor-Williams
estimates [RW, lemma 5.8 and 5.9] and [EKMR, Lemma 9.6.5], we get the lemma.

�

The following result allows us to reduce the study of cyclic vectors vanishing
on a closed set E to the study of cyclicity of particular functions. More precisely
we have

Theorem 3.8. Let p > 1 and p > α + 1. Let f ∈ Dp
α and E ⊂ T be a closed

set of Lebesgue measure zero. If there exists a constant C1 > 0 such that,

|f(z)| ≤ C1 dist(z, E)4, z ∈ D,

then

HE(N
+,Dp

α
∗) ⊂

(
[f ]

Dp
α

N

)⊥
.

This means that for all g ∈HE(N +,Dp
α
∗), g|De

∈
(
[f ]

Dp
α

N

)⊥
i.e.

〈znf, g|De
〉e = 0, ∀n ∈ N.

Proof. Let ϕ ∈ HE(N +,Dp
α
∗). By Lemma 3.7, there exists a constant

C2 > 0 such that

|ϕ(z)| ≤ C2

dist(z, E)4
, 1 < |z| < 2.

So for 1/2 < r < 1 and z ∈ T, we have

|f(rz)ϕ(z/r)| ≤ C1C2
dist(rz, E)4

dist(z/r, E)4
≤ C1C2.

The family of the functions z �→ f(rz)ϕ(z/r) is uniformly integrable on T for

1/2 < r < 1, thus by Lemma 3.6, ϕ ∈
(
[f ]

Dp
α

N

)⊥
, which finishes the proof. �

Corollary 3.9. Let p > 1 such that α+ 1 < p ≤ α+ 2. We have

H{1}(N
+,Dp

α
∗) = {0}.

Proof. Let f(z) := (z − 1)4. We have f ∈ Dp
α and |f(z)| ≤ |z − 1|4. By

Theorem 3.8 ,

H{1}(N
+,Dp

α
∗) ⊂

(
[f ]

Dp
α

N

)⊥
.
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It suffices to prove that f is cyclic. Let ϕ ∈ Aq
−αq/p(D) such that

〈zn(z − 1), ϕ〉 = 0, ∀n ∈ N.

Write ϕ(z) =
∑

n≥0 anz
n, we get by (2.4),

an = 〈zn, ϕ〉 = 〈zn+1, ϕ〉 = an+1.

Then

ϕ(z) =

∞∑
n=0

anz
n =

a0
1− z

, z ∈ D.

Suppose that ϕ �= 0. Since ϕ ∈ Aq
−αq/p(D), we have

(3.1)

∫
D

(1− |z|2)−αq/p

|1− z|q dA(z) <∞,

and so q+αq/p < 2 (see [HKZ, Theorem 1.7]), which contradicts the assumptions

on p and α. So ϕ = 0 and [z − 1]
Dp

α

N
= Dp

α. In particular z − 1 ∈ [(z − 1)2]
Dp

α

N
and

then
[(z − 1)2]

Dp
α

N
= [z − 1]

Dp
α

N
= Dp

α.

With the same argument we obtain

[(z − 1)4]
Dp

α

N
= Dp

α,

and f(z) = (z − 1)4 is cyclic in Dp
α. �

Remark. The proof of the previous result also gives us that for p > α + 2,
the function f(z) = z − 1 is not cyclic in Dp

α. Indeed by (3.1), ϕ(z) = 1/(1− z) ∈
Aq

−αq/p(D) and ϕ ⊥ znf , n ∈ N. More generally if f ∈ A(D) ∩ Dp
α with f(1) = 0,

then f is not cyclic in Dp
α. Indeed for p > α + 2, we have Dp

α ⊂ H∞(D) with
‖ · ‖H∞ � ‖ · ‖Dp

α
which implies

[f ]
Dp

α

N
⊂ {g ∈ A(D), g(1) = 0}.

Theorem 3.10. Let p > 1 such that α+1 < p ≤ α+2 and let f ∈ A(D)∩Dp
α.

If f is an outer function and Z(f) is countable then f is cyclic in Dp
α.

Proof. Since Z(f) is countable, by [BS, Theorem 3] it suffices to prove the
theorem when the zero set is reduced to a single point. The result now follows by
Theorem 3.4 and Corollary 3.9. �
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Inner vectors for Toeplitz operators

Raymond Cheng, Javad Mashreghi, and William T. Ross

Abstract. In this paper we survey and bring together several approaches to
obtaining inner functions for Toeplitz operators. These approaches include
the classical definition, the Wold decomposition, the operator-valued Poisson
Integral, and Clark measures. We then extend these notions somewhat to inner
functions on model spaces. Along the way we present some novel examples.

1. Introduction

For ϕ ∈ H∞, the bounded analytic functions on the open unit disk D, let

(1.1) Tϕ : H2 → H2, Tϕf = ϕf,

denote the analytic Toeplitz operator on the classical Hardy space H2. In this paper
we survey, continue, and synthesize some discussions begun in [4, 10, 11] dealing
with the notion of an “inner vector” for Tϕ along with the general notion of an
inner vector for a contraction on a Hilbert space. We connect these results with the
operator-valued Poisson kernel and some work from [2,3] concerning “factoring an
L1 function through a contraction”. Along the way we also produce some interesting
examples and reformulations of these connections.

2. Basic definitions and facts

We begin with the definition of an inner vector for a Toeplitz operator from
[10]. Recall that the inner product on the Hardy space H2 is

(2.1) 〈f, g〉 :=
∫
T

fg dm,

where m is normalized Lebesgue measure on the unit circle T. As is tradition, we
equate an f ∈ H2 with its L2 = L2(T,m) radial boundary function, i.e.,

f(ζ) = lim
r→1−

f(rζ)

for almost every ζ ∈ T. We will also use the term inner function (without any qual-
ifiers like in Definition 2.2 below) to denote an H∞ function that has unimodular
boundary values almost everywhere. Classical theory [6] says that an inner function
I can be factored uniquely as I = ξBSμ, where ξ is a unimodular constant, B is
a Blaschke product, and Sμ is a singular inner function associated with a positive
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196 CHENG, MASHREGHI, AND ROSS

measure μ on T that is singular with respect to m. We say the degree of I is equal
to d if I is a finite Blaschke product of order d, and equal to infinity otherwise.
Furthermore, any function f ∈ H2 can be factored, uniquely up to multiplicative
constants, as f = IG, where I is an inner function and G ∈ H2 is an outer function.

For ϕ ∈ H∞ the analytic Toeplitz operator Tϕ from (1.1) is a bounded operator
on H2 whose norm ‖Tϕ‖ satisfies

‖Tϕ‖ = ‖ϕ‖∞ := ess-sup{ |ϕ(ξ)| : ξ ∈ T}.

Also recall that the adjoint T ∗
ϕ of Tϕ satisfies T ∗

ϕ = Tϕ, where

Tϕf = P (ϕf) and P is the Riesz projection of L2 onto H2. When ϕ is an in-
ner function, observe from (2.1) that Tϕ is an isometry. See [8, Ch. 4] for the
details of these basic Toeplitz operator facts and [1] for a definitive treatise.

Definition 2.2. For ϕ ∈ H∞ we say a unit vector f ∈ H2 is Tϕ-inner if
〈Tn

ϕ f, f〉 = 0 for all n � 1.

When ϕ(z) = z, one can see from Fourier analysis that the Tz-inner vectors are
precisely the inner functions. Also observe that replacing ϕ with cϕ, where c > 0,
in Definition 2.2 does not change whether or not a function f is Tϕ-inner. Thus we
can always assume, by scaling ϕ, that

ϕ ∈ b(H∞) := {g ∈ H∞ : ‖g‖∞ � 1},

the closed unit ball of H∞. This normalization will be important when we need Tϕ

to be a contraction operator since in this case
‖Tϕ‖ = ‖ϕ‖∞ � 1. Immediate from Definition 2.2 and the inner product formula
from (2.1) are the following facts.

Proposition 2.3. Let ϕ ∈ b(H∞).

(1) If f ∈ H2 is Tϕ-inner and I is any inner function, then If is Tϕ-inner.
(2) If f ∈ H2 is Tϕ-inner and Θ is any inner divisor of f , i.e., f/Θ ∈ H2,

then f/Θ is Tϕ-inner.
(3) Any unit vector belonging to kerTϕ is Tϕ-inner.

If u denotes the inner factor of ϕ, it is known [8, p. 108] that

kerTϕ = Ku := (uH2)⊥,

the model space corresponding to u. Thus we have the simple corollary.

Corollary 2.4. If I is any inner function and u is the inner factor of ϕ ∈
b(H∞), then any unit vector from IKu is Tϕ-inner.

This corollary gives us many specific examples of Tϕ-inner vectors. For example,
if λ ∈ D, the reproducing kernel functions

kλ(z) :=
1− u(λ)u(z)

1− λz

belong to Ku. In fact, finite linear combinations of these functions are dense in Ku

[8, Ch. 5]. Since

‖kλ‖ =
√

kλ(λ) =

√
1− |u(λ)|2
1− |λ|2 ,

Licensed to AMS.
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then

I

√
1− |λ|2

1− |u(λ)|2
1− u(λ)u(z)

1− λz
, λ ∈ D, I inner,

are Tϕ-inner functions.
When ϕ = u is a finite Blaschke product, then the model space Ku is a certain

finite dimensional space of rational functions that are analytic in a neighborhood of
D [8, p. 117]. Furthermore, as we will see in a moment in Theorem 3.12, every Tu-
inner function is bounded. However, when u is not a finite Blaschke product then
Ku is infinite dimensional [8, p. 117] and, since multiplication by an inner function
I is an isometry on H2 (see (2.1)), IKu is a closed infinite dimensional subspace of
L2. By a theorem of Grothendieck, it will contain an unbounded function. Putting
this all together, we obtain the following.

Corollary 2.5. If the inner factor of ϕ ∈ b(H∞) is not a finite Blaschke
product, then there are unbounded Tϕ-inner functions.

A specific version of this was pointed out in [10, p. 103].
Of course one needs to discuss the case when ϕ is an outer function. Since ϕH2

is dense in H2 [8, p. 86], we see that kerTϕ = {0}. In this case, it is not clear
that there are any Tϕ-inner functions. Indeed, we do not see any obvious ones like
I kerTϕ since, in this case, kerTϕ = {0}.

Example 2.6. Suppose that ϕ is the outer function ϕ(z) = 1 + z and that
f ∈ H2 is Tϕ-inner, i.e.,

〈Tn
ϕ f, f〉 = 0, ∀n � 1.

In other words,

(2.7)

∫
T

(1 + ξ)n|f(ξ)|2 dm(ξ) = 0, ∀n � 1.

Then the L1 function |f |2 annihilates (1+z)n for all n � 1, along with all their
linear combinations. In particular, |f |2 annihilates

(1 + z)2 − (1 + z) = 1 + 2z + z2 − 1− z = z(1 + z).

The above observation will be the first step in a proof by induction. Next, suppose
that |f |2 annihilates zk(1 + z) for all 1 � k � n. Then

zn+1(1 + z) = (1 + z)n+2 −
[
(1 + z)n+1 − zn+1

]
(1 + z).

By the Tϕ-inner property of f notice that |f |2 annihilates the first term on the
right. It also annihilates the subtracted expression, by the induction hypothesis
(the expression in square brackets is a polynomial of degree n). Thus we have
shown by induction that |f |2 annihilates {zn(1 + z)}n�0 (the n = 0 case follows
from (2.7)). This means that

(2.8)

∫
T

ξn(1 + ξ)|f(ξ)|2dm(ξ) = 0, n � 0,

and by complex conjugation,∫
T

ξ
n
(1 + ξ)|f(ξ)|2dm(ξ) = 0, n � 0.

Licensed to AMS.
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A little algebra yields

(2.9)

∫
T

ξ
n+1

(1 + ξ)|f(ξ)|2dm(ξ), n � 0.

Equations (2.8) and (2.9) say that all of the Fourier coefficients of (1 + ξ)|f(ξ)|2
vanish and so (1 + ξ)|f(ξ)|2 is zero. Conclusion: there are no Tϕ-inner functions
when ϕ(z) = 1 + z.

3. Inner vectors via the Wold decomposition

Using some ideas from [10], we can use the Wold decomposition [9] to explore
the inner vectors for certain Toeplitz operators. Observe that when u is an inner
function the Toeplitz operator Tu is an isometry on H2. Thus the Wold decompo-
sition of H2 with respect to Tu becomes

H2 = X0 ⊕X1 ⊕ TuX1 ⊕ T 2
uX1 ⊕ · · · ,

where

X0 :=
∞⋂

n=1

Tn
u H

2 = {0}, X1 := H2 & TuH
2 = Ku.

Thus

H2 = Ku ⊕ uKu ⊕ u2Ku ⊕ · · · .
The above decomposition says that every f ∈ H2 has a unique expansion as

(3.1) f = F0 + uF1 + u2F2 + · · · , Fj ∈ Ku.

Furthermore, for each integer N � 1,

〈uNf, f〉 =
〈
uN

∑
k�0

ukFk,
∑
l�0

ulFl

〉
=

∑
k,l�0

〈uN+k−lFk, Fl〉

=
∑

l−k=N

〈Fk, Fl〉.

This leads us to the following.

Proposition 3.2. A unit vector f ∈ H2 with expansion

f = F0 + uF1 + u2F2 + · · · , Fj ∈ Ku,

as in (3.1) is Tu-inner if and only if

(3.3)
∞∑
k=0

〈Fk, FN+k〉 = 0, N � 1.

Though this is just a restatement of the condition for f to be Tu-inner, it is
useful for producing more tangible examples of Tu-inner functions.

Example 3.4. Choose orthogonal vectors Fj , j � 0 from Ku so that∑
j�0 ‖Fj‖2 = 1. Then the condition (3.3) is easily satisfied and thus the unit

vector f =
∑

j�0 u
jFj is a Tu-inner function (as is any inner function times this

vector).
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Example 3.5. If u(z) = zn, then Ku = span{1, z, z2, . . . zn−1} and the vectors

Fj =
zj√
n
, 0 � j � n− 1,

satisfy the conditions of the previous example. Thus

f =

n−1∑
j=0

ujFj =
1√
n
+

zn+1

√
n

+
z2n+2

√
n

+
z3n+3

√
n

+ · · ·+ z(n−1)(n+1)

√
n

is a Tzn -inner vector.

Example 3.6. The previous example can be generalized to a finite Blaschke
product

u(z) =
n∏

j=1

z − aj
1− ajz

, aj ∈ D.

If we define

F0(z) =

√
1− |a1|2
1− a1z

,

F1(z) =

√
1− |a2|2
1− a2z

z − a1
1− a1z

,

F2(z) =

√
1− |a3|2
1− a3z

z − a1
1− a1z

z − a2
1− a2z

,

...

Fn−1(z) =

√
1− |an|2
1− anz

n−1∏
j=1

z − aj
1− ajz

,

one can show that {F0, . . . , Fn−1} is an orthonormal basis for Ku. Now choose

α0, . . . , αn−1 ∈ C such that
∑n=1

j=0 |αj |2 = 1. Then

f =

n−1∑
j=0

αju
jFj

is Tu-inner.

From Corollary 2.4 we know, for an inner function I, that any unit vector from
the set {I kerTu : I is inner} is a Tu-inner vector. Perhaps one might think we have
equality here. Indeed, sometimes we do. For example, if u(z) = z, then kerTz = C
and, as discussed earlier, the Tz-inner vectors are precisely the inner functions. Here
is another positive example of when the unit vectors from {I kerTu : I is inner}
constitute the complete set of Tu-inner vectors.

Example 3.7. If the inner function u is the single Blaschke factor

u(z) =
z − a

1− az
, a ∈ D,

one can show [8, Ch. 5] that

kerTu = Ku = C
1

1− az
.
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As shown in [4], the Tu-inner vectors are

I

√
1− |a|2
1− az

, I inner.

However, in general, the unit vectors from {I kerTu : I is inner} form a proper
subset of the Tu-inner vectors. One can see this with the following example.

Example 3.8. Using the technique from Example 3.5, we see that when u(z) =
zn the vector

f =
1√
2
+

zn+1

√
2

is Tu-inner. However, f is not of the form Ig, where I is inner and g ∈ Ku. This
follows from the fact that f is outer and does not belong to

Ku = span{1, z, z2, . . . , zn−1}.

The papers [10,11] yield a description of the Tu-inner vectors. From the Wold
decomposition (3.1) we see that any f ∈ H2 can be written as

f =

∞∑
k=0

Fku
k.

If {vj}j�1 is an orthonormal basis for Ku, then we can expand things a bit further
and write

f =

∞∑
k=0

Fku
k

=

∞∑
k=0

uk
(∑

j�1

cj,kvj

)
=
∑
j�1

vj

( ∞∑
k=0

cj,ku
k
)
.

Observe that ∑
j�1

|cj,k|2 = ‖Fk‖2

and that

‖f‖2 =

∞∑
k=0

‖Fk‖2

=

∞∑
k=0

∑
j�1

|cj,k|2

=
∑
j�1

∞∑
k=0

|cj,k|2.

Thus for each j,
∑

k�0 |cj,k|2 <∞ and so

fj(z) =
∞∑
k=0

cj,kz
k
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defines a function in H2 (square summable power series). By the Littlewood sub-
ordination principle [8, p. 126], fj ◦ u also belongs to H2.

Thus every unit vector f ∈ H2 has the unique representation

(3.9) f(z) =
∑
j�1

vj(z)fj(u(z)),

where fj ∈ H2 with
∑

j�1 ‖fj‖2 < ∞, and {vj}j�1 is an orthonormal basis for

Ku. Furthermore, as observed in [10, Prop. 1] (and can be proved using the above
calculation), if

(3.10) f =
∑
j�1

vjfj(u), g =
∑
j�1

vjgj(u),

as in (3.9), then

(3.11) 〈f, g〉 =
∑
j�1

〈fj , gj〉.

Theorem 3.12. A unit vector f written as in (3.9) is Tu-inner if and only if

∞∑
j�1

|fj(ξ)|2 = 1

for almost every ξ ∈ T.

Proof. Here is the original proof from [10]. With

f =
∑
j�1

vjfj(u),

and n � 1, (3.11) yields

〈Tn
u f, f〉 = 〈fun, f〉

=
〈∑

j

vju
nfj(u),

∑
k

vkfk(u)
〉

=
∑
j�1

〈znfj , fj〉

=
∑
j�1

∫
T

ξn|fj(ξ)|2dm(ξ)

=

∫
T

ξn
(∑

j�1

|fj(ξ)|2
)
dm(ξ).(3.13)

Then 〈Tn
u f, f〉 = 0 for all n = 1, 2, . . . if and only if, by Fourier analysis,

∑
j�1 |fj |2

is constant almost everywhere. But since we assuming that f is a unit vector, we
see, by putting n = 0 in (3.13), that

∑
j�1 |fj |2 = 1 almost everywhere. �

When u is a finite Blaschke product, then Ku is finite dimensional. In this case
(3.9) is finite and each basis vector vj is a rational function that is analytic in a

neighborhood of D [8, Ch. 5]. From here it follows that every Tu-inner vector is
a bounded function. Contrast this with Corollary 2.5 which says that when u is
not a finite Blaschke product there are always Tu-inner vectors that are unbounded
functions.
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The two papers [10,11] go further and discuss an “inner-outer” factorization
of any f ∈ H2 in terms of Tu-inner and Tu-outer vectors. They also discuss the
concept of Tu-inner in Hp, for p > 1, along with some properties of the norms of
Tu-inner vectors as well as their growth near T.

4. Inner vectors via the operator-valued Poisson kernel

We can rephrase the language of inner vectors for Toeplitz operators in terms
of operator-valued Poisson kernels [2]. Moreover, using this new language, we can
extend our discussion to inner vectors for contractions on Hilbert spaces. For λ ∈ D
and ξ ∈ T, define

(4.1) Pλ(ξ) :=
1

1− λξ
+

1

1− λξ
− 1

and observe that this can be written as

Pλ(ξ) =
1− |λ|2
|ξ − λ|2 ,

which is the standard Poisson kernel. Classical theory says that for any g ∈ L1 =
L1(T,m) the function ∫

T

Pλ(ξ)f(ξ)dm(ξ)

is harmonic on D with

(4.2) lim
r→1−

∫
T

Prζ(ξ)f(ξ)dm(ξ) = f(ζ)

for almost every ζ ∈ T. Furthermore, if μ is a finite complex measure on T, we have

(4.3)

∫
T

Pλ(ξ)dμ(ξ) = μ̂(0) +
∑
n�1

μ̂(n)λn +
∑
n�1

μ̂(−n)λn
,

where

μ̂(n) :=

∫
T

ξ
n
dμ(ξ), n ∈ Z,

are the Fourier coefficients of μ. We will now discuss an operator version of the
Poisson kernel.

For a contraction T on a Hilbert space H, we imitate the formula in (4.1) and
define, for λ ∈ D, the operator-valued Poisson kernel Kλ(T ) as

Kλ(T ) := (I − λT ∗)−1 + (I − λT )−1 − I.

By the spectral radius formula, notice how σ(T ) ⊆ D and thus the formula for
Kλ(T ) above makes sense. A computation with Neumann series will show that for
r ∈ [0, 1) and θ ∈ [0, 2π)

(4.4) Kreiθ(T ) =
∞∑

n=0

rneinθT ∗n +
∞∑

n=0

rne−inθTn − I.

The operator identity

Kλ(T ) = (I − λT )−1(I − |λ|2TT ∗)(I − λT ∗)−1

from [2, Lemma 2.4] shows that for each x ∈ H

〈Kλ(T )x,x〉 � 0, λ ∈ D.
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Moreover, the function

λ �→ 〈Kλ(T )x,x〉
is harmonic on D. Hence, a classical harmonic analysis result of Herglotz ([6, p. 10]
or [8, p. 17]) produces a unique positive finite Borel measure μT,x on T such that

(4.5) 〈Kλ(T )x,x〉 =
∫
T

Pλ(ζ)dμT,x(ζ).

Since K0(T ) = I we have

1 = 〈x,x〉 = 〈K0(T )x,x〉 =
∫
T

dμT,x

and so μT,x is a probability measure.
As we defined for Toeplitz operators earlier in Definition 2.2, we say that a unit

vector x is T -inner if

〈Tnx,x〉 = 0, n � 1.

Note that x is T -inner if and only if x is T ∗-inner. From (4.4) we see that x is
T -inner if and only if 〈Kλ(T )x,x〉 = 1 for all λ ∈ D, or equivalently,

1 =

∫
T

Pλ(ζ)dμT,x(ζ), λ ∈ D.

By (4.3) this is equivalent to the condition μT,x = m. This gives us the following.

Proposition 4.6. Suppose that T is a contraction on a Hilbert space H and
x is unit vector in H. Then x is T -inner if and only if μT,x = m, where μT,x is
defined as in (4.5).

For an inner function u, note that Tu is an isometry, hence a contraction. Thus
we can apply the above analysis to μTu,f .

Proposition 4.7. If

f =
∑
j�1

vjfj(u)

is a vector from H2 as in (3.9), then

(4.8) dμTu,f =
∑
j�1

|fj |2 dm.

Proof. If

f =
∑
j�1

vjfj(u),

then

‖f‖2 =
∑
j�1

‖fj‖2 =
∑
j�1

∫
T

|fj |2dm =

∫
T

∑
j�1

|fj |2dm

and the calculation used to prove Theorem 3.12 yields

〈Tn
u f, f〉 =

∫
T

ξn
(∑

j�1

|fj(ξ)|2
)
dm(ξ),

〈T ∗n
u f, f〉 =

∫
T

ξ
n
(∑

j�1

|fj(ξ)|2
)
dm(ξ).
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From here we observe∫
T

Pλ(ξ)dμTu,f (ξ) = 〈Kλ(Tu)f, f〉

=
∑
n�0

λn〈T ∗n
u f, f〉+

∑
n�0

λ
n〈Tn

u f, f〉 − 〈f, f〉.

=
∑
n�0

λn

∫
T

ξ
n
(∑

j�1

|fj(ξ)|2
)
dm(ξ)

+
∑
n�0

λ
n
∫
T

ξn
(∑

j�1

|fj(ξ)|2
)
dm(ξ)

−
∑
j�1

∫
T

|fj(ξ)|2dm

=

∫
T

(
1

1− λξ
+

1

1− λξ
− 1)

∑
j�1

|fj(ξ)|2dm(ξ)

=

∫
T

Pλ(ξ)
∑
j�1

|fj(ξ)|2dm(ξ)

Now use the uniqueness of the Fourier coefficients of a measure along with (4.3) to
obtain (4.8). �

Notice how this gives us another way of thinking about Theorem 3.12: a unit
vector f ∈ H2 is Tu-inner if and only if μTu,f = m.

This brings us to an interesting related question. One can also show that for
any f, g ∈ H2, we can define the harmonic function 〈Kλ(Tu)f, g〉 on D and prove
this function also has bounded integral means. This yields, via Herglotz’s theorem,
a complex valued measure μTu,f,g on T for which

(4.9) 〈Kλ(Tu)f, g〉 =
∫
T

Pλ(ξ)dμT,f,g(ξ), λ ∈ D.

See [2, Prop. 2.6] for details. A similar calculation used to prove Proposition 4.6
shows that

(4.10) dμTu,f,g =
∑
j�1

fjgj dm.

In the above formula, fj and gj come from the representations of f and g from
(3.10). A general result from [3] says that given any F ∈ L1 and a non-constant
inner function u that is not an automorphism, there are f, g ∈ H2 for which

(4.11) F (ζ) =
dμTu,f,g

dm
(ζ)

m-almost everywhere. In the language of [3] this says that any F ∈ L1 can be
“factored through Tu”. Equivalently stated, using (4.10) and (4.11), we have

F (ζ) =
∑
j�1

fj(ζ)gj(ζ).

This is an interesting representation for L1 functions and a refinement of the one
from [3].
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Question 4.12. Proposition 4.7 shows that when ϕ is an inner function and
f, g ∈ H2, then dμTϕ,f,g is absolutely continuous with respect to m. When ϕ ∈
b(H∞) is this still the case? For this to be true we would need to know that
〈ϕnf, g〉, n � 1, are the Fourier coefficients of an L1 function.

5. Inner vectors via Clark measures

For any fixed α ∈ T and inner function u, the function

z �→ 1− |u(z)|2
|α− u(z)|2 = �

(α+ u(z)

α− u(z)

)
is a positive harmonic function on D. Thus by Herglotz’s theorem, there is a unique
positive measure σα on T for which

1− |u(z)|2
|α− u(z)|2 =

∫
T

Pλ(ξ)dσα(ξ).

The family of measures {σα : α ∈ T} is called the family of Clark measures corre-
sponding to u. Let us record some important facts about this family of measures.
Proofs can be found in [5].

First, one can use the fact that u is an inner function, along with standard
harmonic analysis, to prove that each σα is singular with respect to m. Second, if
Eα is defined to be the set of ξ ∈ T for which

lim
r→1−

u(rξ) = α,

then Eα is a Borel subset of T with

(5.1) σα(T \ Eα) = 0.

In other words, σα is “carried” by Eα. From this we also see that the measures {σα :
α ∈ T} are singular with respect to each other. Third, a beautiful disintegration
theorem of Aleksandrov says that if g ∈ L1 then for m-almost every α ∈ T, integral∫

T

g(ξ)dσα(ξ)

is well defined. Moreover this almost everywhere defined function

α �→
∫
T

g(ξ)dσα(ξ)

is integrable with respect to m and

(5.2)

∫
T

(∫
T

g(ξ)dσα(ξ)
)
dm(α) =

∫
T

g(ζ)dm(ζ).

Using Clark measures, we can use a technique from [11] to compute a formula
for 〈Kλ(Tu)f, f〉 along with the measure dμTu,f/dm. This gives us another way to
think about the formula (4.11). The result here is the following.

Theorem 5.3. For an inner function u and f ∈ H2 we have

dμTu,f (α) =
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).
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Proof. For any f ∈ H2 use the formulas from (5.1) and (5.2) to obtain

〈Tn
u f, f〉 =

∫
T

|f(ξ)|2u(ξ)ndm(ξ)

=

∫
T

(∫
T

|f(ξ)|2u(ξ)ndσα(ξ)
)
dm(α)

=

∫
T

(∫
T

|f(ξ)|2αndσα(ξ)
)
dm(α)

=

∫
T

αn
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).

In a similar way

〈T ∗n
u f, f〉 =

∫
T

αn
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).

Now follow the proof of Proposition 4.7 to get∫
T

Pλ(ξ)dμTu,f (ξ)

= 〈Kλ(Tu)f, f〉

=
∑
n�0

λn〈T ∗n
u f, f〉+

∑
n�0

λ
n〈Tn

u f, f〉 − 〈f, f〉

=

∫
T

(( 1

1− λα
+

1

1− λα
− 1

)(∫
T

|f(ξ)|2dσα(ξ)
))

dm(α)

=

∫
T

Pλ(α)
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).

Use (4.3) along with the uniqueness of Fourier coefficients of a measure to compute
the proof. �

Combing Theorem 5.3 and Proposition 4.6 yields the following result from [11].

Corollary 5.4. A unit vector f ∈ H2 is Tu-inner if and only if∫
T

|f(ξ)|2dσα(ξ) = 1

for m-almost every α ∈ T.

Recall the notation from (4.9) that for a given inner function u and f, g ∈ H2

〈Kλ(Tu)f, g〉 =
∫
T

Pλ(ξ)dμTu,f,g(ξ).

Moreover, if deg(u) � 2, any F ∈ L1 can be written as dμTu,f,g(ξ)/dm for some
f, g ∈ H2. Here is another way of thinking about this via Clark measures. The
same argument used to prove Theorem 5.3 shows that

(5.5) dμTu,f,g =

∫
T

f(ξ)g(ξ)dσα(ξ) dm

Since any F ∈ L1 is equal to dμTu,f,g/dm for some f, g ∈ H2 [3], we see that any
F ∈ L1 can be written as

F (α) =

∫
T

f(ξ)g(ξ)dσα(ξ).
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This Clark measure viewpoint has the additional feature, via Aleksandrov’s theo-
rem, that ∫

T

F (α)dm(α) =

∫
T

(∫
T

f(ξ)g(ξ)dσα(ξ)
)
dm(α)

=

∫
T

f(ζ)g(ζ)dm(ζ).

Example 5.6. If u is a finite Blaschke product of degree d and α ∈ T, then
one can compute (see [5, p. 209] for the details) the Clark measure to be

dσα =
d∑

j=1

1

|u′(ζj)|
δζj ,

where ζ1, . . . , ζd are the d distinct solutions to the equation u(z) = α and δζj is
the unit point pass as ζj . The denominators in the above expression may look
troublesome but at the end of the day we have u′ �= 0 on T. By Theorem 5.3 we
see that

dμTu,f

dm
(α) =

∫
T

|f(ξ)|2dσα(ξ) =

d∑
j=1

|f(ζj)|2
|u′(ζj)|

.

Thus the criterion for a unit vector f ∈ H2 to be a Tu-inner vector is that the
above sum is equal to 1 for m-almost every α ∈ T.

Furthermore, by (5.5), given F ∈ L1, there are f, g ∈ H2 so that

F (α) =
d∑

j=1

f(ζj)g(ζj)

|u′(ζj)|

for m-almost every α ∈ T. This formula appears in [3].

Example 5.7. Let us apply this to the simple case where u(z) = z2. Given
any α ∈ T, the two solutions ζ1, ζ2 to the equation z2 = α are

ζ1 = ei argα/2, ζ2 = −ei argα/2.

Thus the condition that a unit f is a Tz2 -inner vector becomes

|f(ei argα/2)|2 + |f(−ei argα/2)|2 = 2, m-a.e. α ∈ T.

Furthermore, given any F ∈ L1, there are f, g ∈ H2 for which

F (α) = 1
2f(e

i argα/2)g(ei argα/2) + 1
2f(−e

i argα/2)g(−ei argα/2).

This second fact was first observed in [3].

Example 5.8. Consider the atomic inner function

u(z) = exp
(z + 1

z − 1

)
.

For a fixed t ∈ [0, 2π), the solutions to u(z) = eit are

ζk =
i(t+ 2πk) + 1

i(t+ 2πk)− 1
, k ∈ Z.

Noting that

|u′(ζk)| =
2

|ζk − 1|2 ,
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a similar computation as in Example 5.6 shows that

dσeit =
1

2

∑
k∈Z

δζk |ζk − 1|2.

Thus

dμTu,f

dm
(eit) =

∫
T

|f(ξ)|2dσeit(ξ)

=
1

2

∑
k∈Z

|f(ζk)|2|ζk − 1|2

=
∑
k∈Z

∣∣∣f( i[t+ 2πk] + 1

i[t+ 2πk]− 1

)∣∣∣2 2

|i(t+ 2πk)− 1|2 .

To create a Tu-inner function, we need to find a unit vector f ∈ H2 so that the
above expression is equal to one for almost every t. Let us create a specific example
of when this happens. In fact we can even make f unbounded. We already knew
we could do this from Corollary 2.5 but our example below will be explicit, while
the proof of Corollary 2.5 needed Grothendieck’s theorem and is not an explicit
construction.

To see how to do this, fix β ∈ ( 12 , 1), and let ak, k ∈ Z, be the collection of
coefficients

(5.9) ak =
1

1 + |k|β .

Note that
∑

k∈Z
|ak|2 <∞.

Let Ik be the indicator function of the interval [−π + 2πk, π + 2πk), k ∈ Z.
Now define F on T by

F (eiθ) :=
√
2
∑
k∈Z

ak
eiθ − 1

Ik

(
i
1 + eiθ

1− eiθ

)
.

Then ∫
T

|F |2 dm = 2

∫ π

−π

|F (eiθ)|2 dθ

2π

= 2
∑
k∈Z

∫ π

−π

|ak|2
|eiθ − 1|2 Ik

(
i
1 + eiθ

1− eiθ

) dθ

2π

= 2
∑
k∈Z

∫ ∞

−∞
|ak|2

|it− 1|2
22

Ik(t)
2 dt

2π|it− 1|2

=
∑
k∈Z

∫ π

−π

|ak|2
∣∣i[t+ 2πk]− 1

∣∣2 dt

2π|i[t+ 2πk]− 1|2

=
∑
k∈Z

|ak|2 <∞,

i.e., F is square integrable on T with

(5.10) ‖F‖2 =
∑
k∈Z

|ak|2.
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Next we establish that log |F | is integrable. We’ll need the following estimates,
which hold for all k �= 0. First note that for k �= 0,

|ak|
∣∣i(t+ 2πk)− 1

∣∣ = |ak|([π + 2π|k|]2 + 1
)1/2

� |ak| · 2π|k|

� 2π|k|
1 + |k|β

� 1.

Consequently, for k �= 0 and t ∈ [−π, π),

∣∣∣ log (|ak|∣∣i(t+ 2πk)− 1
)∣∣∣ = log |ak||i(t+ 2πk)− 1|

� log
|i(π + 2π|k|)− 1|

1 + |k|β

� log
([2π(|k|+ 1/2)]2 + 1)1/2

1 + |k|β

� log
([2π(|k|+ |k|/2)]2 + |k|2)1/2

|k|β

� log(|k|1−β
√
9π2 + 1).

We now have∫
T

∣∣ log |F |∣∣ dm
=

∫ π

−π

∣∣∣ log |F (eiθ)|
∣∣∣ dθ
2π

=
∑
k∈Z

∫ π

−π

∣∣∣ log |ak|√2|eiθ − 1|

∣∣∣ Ik(i1 + eiθ

1− eiθ

) dθ

2π

=
∑
k∈Z

∫ ∞

−∞

∣∣∣ log (|ak|∣∣it− 1
∣∣√2/2

)∣∣∣ Ik(t) dt

2π|it− 1|2

=
∑
k∈Z

∫ π

−π

∣∣∣ log (6π|k|1−β
∣∣i[t+ 2πk]− 1

∣∣/√2
)∣∣∣ dt

2π|i[t+ 2πk]− 1|2 .

The series is summable, because the terms behave like (log |k|)/|k|2.
It follows that there exists an outer function g ∈ H2 with radial limit function

satisfying |g| = |F | almost everywhere on T, namely

g(z) := exp
(∫

T

eiθ + z

eiθ − z
log |F (eiθ)| dm(eiθ)

)
.
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Finally, let J be any classical inner function, and define f = gJ . Then

dμTu,f

dm
(eit) =

∑
k∈Z

∣∣∣f( i[t+ 2πk] + 1

i[t+ 2πk]− 1

)∣∣∣2 2

|i(t+ 2πk)− 1|2

=
∑
k∈Z

∣∣∣F( i[t+ 2πk] + 1

i[t+ 2πk]− 1

)∣∣∣2 2

|i(t+ 2πk)− 1|2

=
∑
k∈Z

|ak(i[t+ 2πk]− 1)
√
2|2

22
2

|i(t+ 2πk)− 1|2

=
∑
k∈Z

|ak|2.

Notice from (5.10) that
dμTu,f

dm
(eit) = ‖F‖2

and so one can scale F so that it (and hence f) is a unit vector This also gives us
dμTu,f/dm(eit) = 1 for almost every t. Any such f will be a Tu-inner function.

As a bonus, we get that the f we just constructed is unbounded. To see this,
note that F is unbounded, since for θ approaching zero, F (eiθ) takes values

F
( i[t+ 2πk] + 1

i[t+ 2πk]− 1

)
=

ak

1− i[t+2πk]+1
i[t+2πk]−1

=
−i[t+ 2πk] + 1

2 + 2|k|β

where t ∈ [−π, π). Since β < 1, this expression is unbounded as |k| → ∞.

6. Inner vectors in model spaces

In this section we depart slightly from Toeplitz operators on H2 to the related
topic of compressions of Toeplitz operators on model spaces. For an inner function
Θ, recall the model space KΘ = (ΘH2)⊥. An important operator to study here is
the compressed shift operator

SΘ : Ku → Ku, SΘf = PΘ(zf),

where PΘ is the orthogonal projection of L2 onto Ku. This operator is used to
model a certain class of contraction operators on Hilbert space [8, Ch. 9] – hence
the use of the phrase “model space.”

As a generalization of our discussion of classifying the Tz-inner vectors in H2,
one can ask for a description of the SΘ-inner vectors in KΘ, i.e., those unit vectors
f ∈ KΘ for which

〈Sn
Θf, f〉 = 0, n � 1.

Before continuing, let us make a few comments about SΘ. For the proofs, see
[8, Ch. 9]. First note that since SΘ is a compression of Tz to KΘ we have the
identity

Sn
Θ = PΘTzn |KΘ

.

Furthermore, we have the adjoint formula

S∗
Θ = Tz|KΘ

.

For any ϕ ∈ H∞ there is the functional calculus for SΘ which allows us to define

ϕ(SΘ) = PΘTϕ|KΘ
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along with the adjoint formula

ϕ(SΘ)
∗ = PΘTϕ|KΘ

.

One can actually compute the SΘ-inner vectors with the following result from [8,
p. 177].

Theorem 6.1. Any SΘ-inner function is an inner function. Moreover, KΘ

contains an inner function if and only if u(0) = 0 and the inner functions belonging
to KΘ are precisely the inner divisors of Θ(z)/z.

So now the question becomes the following.

Question 6.2. What are the ϕ(SΘ)-inner functions?

As we did before with Toeplitz operators, we focus our attention on the case
where ϕ is inner. It is clear that the inner vectors for ϕ(SΘ) are the same as those
for ϕ(SΘ)

∗. As observed with an analogous result in Proposition 2.3, we see that
any (unit) vector in kerϕ(SΘ)

∗ is a ϕ(SΘ)
∗-inner vector. It is well-known [8] that

(assuming ϕ is an inner function)

kerϕ(SΘ)
∗ = KΘ ∩Kϕ = Kgcd(Θ,ϕ),

where gcd(Θ, ϕ) is the greatest common inner divisor of the inner functions Θ and
ϕ.

At this point, it might the case that gcd(Θ, ϕ) is a unimodular constant function
whenceKgcd(Θ,ϕ) = {0} and it is not clear as to whether or not there are any ϕ(SΘ)-
inner vectors.

Question 6.3. We know that if gcd(Θ, ϕ) is non-constant, then there are
ϕ(SΘ)-inner vectors. Is the converse true?

For the special case where ϕ|Θ, let us find a class of ϕ(SΘ)-inner vectors. Define

I :=
Θ

ϕ

and observe from a result in [7] that an analytic function g on D multiplies Kϕ

to KΘ if and only g ∈ KzI . Recall from Theorem 6.1 that the inner functions
in KzI are precisely the inner divisors of I. Here is our result about some of the
ϕ(SΘ)-inner vectors.

Theorem 6.4. With the notation above, any unit vector from

{vKϕ : v|I}
is a ϕ(SΘ)-inner vector.

Proof. Let f be a unit vector from Kϕ and note that vf ∈ KΘ and hence
PΘ(vf) = vf . Thus for all n � 1 we have

〈(ϕ(SΘ))
n(vf), vf〉 = 〈PΘ(ϕ

nfv), vf〉
= 〈ϕnvf, PΘ(vf)〉
= 〈ϕnvf, vf〉
= 〈ϕnf, f〉
= 〈f, Tn

ϕ f〉.
But since f ∈ Kϕ = kerTϕ, this last quantity is equal to zero. This shows that vf
is a ϕ(SΘ)-inner vector. �
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When Θ(0) = 0 and ϕ(z) = z, notice how this recovers Theorem 6.1. At
the other extreme, notice that when ϕ = Θ then I is a unimodular constant inner
function and the theorem above yields KΘ as the complete set of TΘ-inner functions.
Of course this result is obvious once one realizes that 〈TΘf, f〉 = 0 for any f ∈ KΘ

by the definition of the model space KΘ = (ΘH2)⊥.
Also observe that one can relax the assumption that ϕ|Θ and set

I = u/ gcd(Θ, ϕ) and give a more general version of the theorem above.

References
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Jack and Julia

Richard Fournier and Oliver Roth
Abstract. We state and prove a multi-point version of Jack’s Lemma for
functions which are analytic on the open unit disc, but are not necessarily
analytic at boundary points. Our proof, in particular, does not rely on Julia’s
lemma.

1. Introduction and statement of the main result

Let D denote the open unit disc {z : |z| < 1} of the complex plane C and H(D)
the class of functions analytic in D; D is the closed disc {z : |z| ≤ 1} and H(D) is
the class of functions analytic on some open set containing D. The following result
was first stated by Jack [9] who attributed its proof to Clunie.

Jack’s lemma (smooth version). Let F ∈ H(D) with

|F (ζ)| = max
|z|≤1

|F (z)| = max
|z|=1

|F (z)| > 0,

where |ζ| = 1. Then

ζ
F ′(ζ)
F (ζ)

≥ 0

and in fact Re
(
1 + ζ F ′′(ζ)

F ′(ζ)

)
≥ ζ F ′(ζ)

F (ζ) > 0 if F is non-constant.

After its publication by Jack, it has been observed that the lemma is indeed
valid for functions F in H(D), analytic in a neighbourhood of ζ ∈ ∂D, and this result
goes back to Loewner at least in the 1930’s (see [14, p. 162]). Under the milder
hypothesis, the result has been rediscovered, improved and applied by a number of
mathematicians (see for example [7], the book of Miller and Mocanu [12] or the
interesting survey by Boas [4]. The survey by Elin et al. [6] also contains relevant
information).

The following result is indeed valid (we still call it Jack’s lemma in what fol-
lows).

Lemma (less smooth Jack’s lemma). Let F ∈ H(D) with F (D) ⊆ D and ζ ∈
∂D. The following statements are equivalent:

(i) lim infz→ζ
1−|F (z)|

1−|z| < ∞.
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214 RICHARD FOURNIER AND OLIVER ROTH

(ii) The radial limits F (ζ) := limr→1 F (rζ) and F ′(ζ) := limr→1 F
′(rζ) exist

with |F (ζ)| = 1 and |F ′(ζ)| < ∞.
Moreover, under (i) or (ii),

ζ
F ′(ζ)
F (ζ)

= lim
r→1

1 − |F (rζ)|
1 − r

= lim
r→1

1 − F (rζ)/F (ζ)
1 − r

> 0.

The strict positivity of ζ F ′(ζ)
F (ζ) above also follows, as observed for example by

Tom Ransford [15, p. 33], from the lemma of Hopf. We stress the fact that a proof
of the less smooth Jack’s lemma can be obtained, as in [1] or [8], from the properties
of the measure in the representation

1 + F (ζ)
1 − F (ζ)

=
∫ 2π

0

1 + e−iθζ

1 − e−iθζ
dμ(θ).

Such a proof is in particular “horocycle free” and does not rely on Julia’s lemma
[10] which may be conveniently stated as follows:

Julia’s lemma. Let F ∈ H(D) with F (D) ⊆ D, and limz→ζ
1−|F (z)|

1−|z| < ∞ for
some ζ ∈ ∂D. Then

ζ
F ′(ζ)
F (ζ)

≥ |1 − F (z)F (ζ)|2
1 − |F (z)|2

1 − |z|2

|1 − zζ|2
, z ∈ D.

To the best of our knowledge, the relation between Jack’s lemma and Julia’s
lemma was first made explicit by Ruscheweyh [5].We shall prove that a multi-point
version of Julia’s lemma can be obtained from the apparently weaker less smooth
Jack’s lemma. Our main result is the following:

Theorem A. Let f ∈ H(D), f(D) ⊆ D and ζ ∈ ∂D such that

(1) lim inf
z→ζ

1 − |f(z)|
1 − |z| < ∞.

Let also {zk} ⊂ D and define a (possibly finite) sequence {fk} ⊂ H(D) by f0 = f
and

fk+1(z) = 1 − zkz

z − zk

fk(z) − fk(zk)
1 − fk(zk)fk(z)

, k ≥ 0,

provided that fk is not a unimodular constant. Then

ζ
f ′(ζ)
f(ζ)

≥
n∑

j=0

(
j∏

k=0

∣∣1 − fk(zk)fk(ζ)
∣∣2

1 − |fk(zk)|2

)
1 − |zj |2

|1 − zjζ|2
.

Equality holds if and only if f is a Blaschke product of degree n + 1.

Remark that here the functions fk are the hyperbolic divided differences of the
initial function f at the points {zk}, cf. the work of Beardon and Minda [3] and
Baribeau, Rivard and Wegert [2] amongst others.

2. Proof of our main result

Each function fk belongs to H(D), fk(D) ⊆ D and satisfies (1) together with

ζ
f ′
k+1(ζ)
fk+1(ζ)

= ζ
f ′
k(ζ)
fk(ζ)

1 − |fk(zk)|2∣∣1 − fk(zk)fk(ζ)
∣∣2 − 1 − |zk|2

|1 − zkζ|2
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for all k ≥ 0. In particular Jack’s lemma yields

0 ≤ ζ
f ′
1(ζ)
f1(ζ)

= ζ
f ′(ζ)
f(ζ)

1 − |f(z0)|2∣∣1 − f(z0)f(ζ)
∣∣2 − 1 − |z0|2

|1 − z0ζ|2

and

(2) ζ
f ′(ζ)
f(ζ)

≥
∣∣1 − f(z0)f(ζ)

∣∣2
1 − |f(z0)|2

1 − |z0|2

|1 − z0ζ|2
.

This is Julia’s lemma and clearly equality shall hold in (2) if and only if the function
f1 is constant and therefore if f is a Blaschke product of order 1. An iteration of
this procedure shall lead to, for each n ≥ 0,

(3) ζ
f ′(ζ)
f(ζ)

≥
n∑

j=0

(
j∏

k=0

∣∣1 − fk(zk)fk(ζ)
∣∣2

1 − |fk(zk)|2

)
1 − |zj |2

|1 − zjζ|2

and equality holds in (3) if and only if f is a Blaschke product of order n + 1.

3. Two special cases

Case 1. Let us take zk = 0 for k ≥ 0. Then

(4) ζ
f ′(ζ)
f(ζ)

≥
n∑

j=0

(
j∏

k=0

∣∣1 − fk(0)fk(ζ)
∣∣2

1 − |fk(0)|2

)
≥

n∑
j=0

j∏
k=0

1 − |fk(0)|
1 + |fk(0)| .

It is not difficult to see that the righthand side of (4) is a quantity depending on
the n+ 1 first Taylor coefficients {αk}nk=0 of f(ζ) =:

∑∞
j=0 αjz

j . The case n = 0 is
due to Osserman [13] and the case n = 1 is due to Lecko and Uzar [11]. The series∑∞

j=0
∏j

k=0
1−|fk(0|
1+|fk(0)| is convergent with

{∏j
k=0

1−|fk(0)|
1+|fk(0)|

}
monotonically decreasing,

and hence

lim
j→∞

j

j∏
k=0

1 − |fk(0)|
1 + |fk(0)| = 0.

We recall that, according to a result of Boyd [8, p. 175],
∞∏
k=0

(1 − |fk(0)|) = exp
(

1
2π

∫ 2π

0
ln

(
1 − |f(eiθ)|2

)
dθ

)
.

Case 2. We apply our idea to a function f in H(D) with f(D) ⊆ D satisfying
(1) with zeros {zk} in D and to the sequence defined by fj+1(z) = f(z)

∏j
k=0

1−zkz
z−zk

.
We get

ζ
f ′
j+1(ζ)
fj(ζ)

= ζ
f ′(ζ)
f(ζ)

−
j∑

k=0

1 − |zk|2
|1 − zkζ!|2

≥ 0,

and the series
∑∞

k=0
1−|zk|2
|1−zkζ|2 is convergent. We finally recall that in the case where

f is a Blaschke product, the convergence of
∑∞

k=0
1−|zk|2
|1−zkζ|2

is necessary and sufficient

for the existence of F (ζ) and F ′(ζ) and in fact ζ f ′(ζ)
f(ζ) =

∑∞
k=0

1−|zk|2
|1−zkζ|2

. This is a
result of Frostman (see [5, p. 15]).
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Spectrum and local spectrum preservers of skew
Lie products of matrices

Z. Abdelali, A. Bourhim, and M. Mabrouk

Abstract. Let Mn(C) be the algebra of all n×n complex matrices, and fix a
nonzero vector x0 ∈ Cn. For any matrix T ∈ Mn(C), let σ(T ) be its spectrum
and σT (x0) be its local spectrum at x0. We show that a map ϕ on Mn(C)
satisfies

σϕ(T )ϕ(S)−ϕ(S)ϕ(T )∗ (x0) = σTS−ST∗ (x0), (T, S ∈ Mn(C))

if and only if there exists a unitary matrix U ∈ Mn(C) and a nonzero scalar
α such that Ux0 = αx0 and ϕ(T ) = ±UTU∗ for all T ∈ Mn(C). To prove
this result, we also describe the form of all maps ϕ on Mn(C) satisfying

σ (ϕ(T )ϕ(S)− ϕ(S)ϕ(T )∗) = σ (TS − ST ∗) , (T, S ∈ Mn(C)).

As immediate consequences, we characterize all maps on Mn(C) preserving
the local spectrum and spectrum of the skew Jordan product of matrices.

1. Introduction

In recent decades, numerous authors studied nonlinear preserver problems.
These problems demand the characterization of maps on algebras that preserve
various spectral quantities or subsets or relations but without assuming any alge-
braic condition like linearity or additivity or multiplicativity. The first nonlinear
preserver problem was considered by Kowalski and S
lodkowski who proved in [62]
that a complex-valued function f on a Banach algebra A is linear and multiplica-
tive provided that f(0) = 0 and f(x) − f(y) lies in the spectrum of x − y for all
x and y in A, and thus generalized the well-known theorem of Gleason–Kahane–
Żelazko in the theory of Banach algebra [54,61]. Since then, a number of techniques
have been developed to treat nonlinear preserver problems and many results have
been obtained mainly in matrix theory and in operator theory; see for instance
[8,9,17,26,27,31,37,38,40,43,48,52,56–59,64,67,69,70,73–75]. In [9], Bha-
tia, Šemrl and Sourour described the form of all surjective maps on the algebra
Mn(C) of all complex n × n-matrices preserving the spectral radius of the differ-
ence of matrices, and thus, in particular, they provided an extension of Marcus and
Moyls’ result [66] in the absence of the linearity. In [69], Molnár studied maps
preserving the spectrum of operator or matrix products and showed, in particular,
that a surjective map ϕ on L(H), the algebra of all bounded linear operators on
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an infinite-dimensional complex Hilbert space H, preserves the spectrum of opera-
tor products if and only if ϕ is an automorphism or an automorphism multiplied
by −1. His results have been extended in several directions, and a number of re-
sults were obtained on maps preserving several spectral quantities of operator or
matrix product, or Jordan product, or Jordan triple product, etc; see for exam-
ple[10,11,26,45,57–59,64] and the references therein.

In recent years, there has been an upsurge of interest for preservers of the skew
Lie product, which is defined on any ∗-ring R by

[x, y]∗ := xy − yx∗, (x, y ∈ R).

This product has been implicitly or explicitly studied by several authors and in
various contexts; see for instance [7,25,27,44,53,65,71,72,76,77] and the ref-
erences therein. Particularly, a number of authors described maps on algebras
preserving a spectral set or a quantity of the skew Lie product of matrices or oper-
ators. Maps on factor Von Neumann algebras preserving skew Lie product, strong
skew Lie product and zero skew Lie product are consider by several authors; see
[28, 42, 44, 46, 52, 78]. In [42], Cui and Li proved that, if A and B are factor
Von Neumann algebras and Φ : A → B is a bijective map preserving the skew
Lie product (i.e., Φ ([S, T ]∗) = [Φ(S),Φ(T )]∗ for all S, T ∈ A), then Φ is a ∗-ring
isomorphism. In [41], Cui and Hou characterized, in particular, all linear bijective
maps preserving zero skew Lie product of operators. In [28], the authors char-
acterized all maps on L(H) preserving numerical range and the maps preserving
pseudo-spectrum of skew Lie product of operators.

The topic of this paper belongs to the subject of linear and nonlinear local
spectra preserver problems that attracted in recent years the attention of numer-
ous researchers; see [1–5, 12–16, 18, 19, 22, 24] and the references therein. In
[16, 19, 22, 24, 29, 30, 35, 55], many results on linear maps on matrices or Ba-
nach space operators preserving the local spectrum have been obtained. Linear
maps on matrices or Banach space operators preserving the inner and outer local
spectral radii have been obtained in [16,19,21,24,36,39,49,50]. While, nonlin-
ear maps preserving local spectra of matrices and operators have been discussed
by various authors; see for instance [1–5,10,12–16,18,32–35,37,50,51,60] and
the references therein. In particular, nonlinear maps on matrices or Banach space
operators preserving the local spectrum of different products of matrices and op-
erators has been investigated in [1–5,10,12–16]. In this paper, we describe maps
ϕ on the algebra Mn(C) of all n × n complex matrices preserving the local spec-
trum at a fixed nonzero vector x0 ∈ Cn of the skew Lie product of matrices. We
show that such a map ϕ is a self-adjoint automorphism multiplied by either 1 or
−1 and the intertwining matrix sends x0 to a nonzero multiple of itself. Besides
some arguments quoted from [13], the proof of this result uses new techniques and
intermediate results. Among these results, one characterizes all maps on Mn(C)
preserving the spectrum of the skew Lie product of matrices. Another one provides
the local spectra of the skew Lie product of any rank one operator on a complex
Hilbert space H by an arbitrary bounded linear operator on H. We also use a local
spectral identity principal that tells us that if Ω is a dense subset of Mn(C) then
two matrices A and B in Mn(C) coincides if and only if the local spectra at x0 of
[T,A]∗ and [T,B]∗ are the same for all T ∈ Ω.

Licensed to AMS.
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2. Main results

Throughout this paper, let L(H) denote the algebra of all bounded linear oper-
ators on a complex Hilbert space H, andMn(C) be the algebra of all n×n complex
matrices. Let 1 stand for the identity operator of L(H) and the identity matrix
of Mn(C), and denote by Tr the usual trace functional on Mn(C). An operator
T ∈ L(H) is said to have the single-valued extension property (SVEP) provided
that for every open subset U of C, the equation (T − λ)f(λ) = 0, (λ ∈ U), has no
nontrivial analytic solution f . Every operator T ∈ L(H) for which the interior of its
point spectrum, σp(T ), is empty enjoys this property. The local resolvent set, ρT (x),
of an operator T ∈ L(H) at a point x ∈ H is the union of all open subsets U of C for
which there is an analytic function ζ : U → H such that (T −λ)ζ(λ) = x, (λ ∈ U).
The local spectrum of T at x is

σT (x) := C\ρT (x),
and is obviously a closed subset (possibly empty) of σ(T ), the spectrum of T . In
fact, σT (x) �= ∅ for all nonzero vectors x in H precisely when T has SVEP. In this
case, for every x ∈ H, there is a maximal analytic function, denoted by x̃T , on
ρT (x) such that (T −λ)x̃T (λ) = x for all λ ∈ ρT (x). It is worth mentioning that, as
demonstrated by weighted shift operators, sometimes the description of the local
spectra of an operator is difficult; see [20, 23, 68]. However, the local spectra of
matrices is well understood and can be found for instance in [21,55,79].

The first main result of this paper is the following theorem. It describes the
form of all maps ϕ on Mn(C) preserving the local spectrum at a fixed nonzero
vector x0 ∈ Cn of the skew Lie product of matrices.

Theorem 2.1. If x0 ∈ Cn is a nonzero vector, then a map ϕ on Mn(C)
satisfies

σϕ(T )ϕ(S)−ϕ(S)ϕ(T )∗(x0) = σTS−ST∗(x0), (T, S ∈Mn(C)),(2.1)

if and only if there exists a unitary matrix U ∈ Mn(C) and a nonzero scalar
α ∈ C such that Ux0 = αx0 and either ϕ(T ) = UTU∗ for all T ∈ Mn(C), or
ϕ(T ) = −UTU∗ for all T ∈Mn(C).

An immediate consequence of the above theorem is the following corollary. It
shows that Theorem 2.1 remains valid if the subtraction in (2.1) is replaced by the
sum. It suffices to observe that if x0 is a nonzero fixed vector in Cn and ϕ is a map
onMn(C) satisfying

σϕ(T )ϕ(S)+ϕ(S)ϕ(T )∗(x0) = σTS+ST∗(x0), (T, S ∈Mn(C)),(2.2)

then the map T �→ φ(T ) := iϕ(iT ) satisfies (2.1), and thus Theorem 2.1 applies.

Corollary 2.2. Let x0 be a fixed nonzero vector in Cn. A map ϕ on Mn(C)
satisfies (2.2) if and only if there exists a unitary matrix U ∈Mn(C) and a nonzero
scalar α ∈ C such that Ux0 = αx0 and either ϕ(T ) = UTU∗ for all T ∈ Mn(C),
or ϕ(T ) = −UTU∗ for all T ∈Mn(C).

The proof of Theorem 2.1 is presented in Section 7.1, and uses a series of
auxiliary results that are of independent interest. One of them is the following
theorem that completely characterizes all maps onMn(C) preserving the spectrum
of the skew Lie product of matrices.
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Theorem 2.3. A map ϕ from Mn(C) into itself satisfies

(2.3) σ (ϕ(T )ϕ(S)− ϕ(S)ϕ(T )∗) = σ (TS − ST ∗) , (T, S ∈Mn(C)),

if and only if there exists a unitary matrix U ∈ Mn(C) such that either ϕ(T ) =
UTU∗ for all T ∈Mn(C), or ϕ(T ) = −UTU∗ for all T ∈Mn(C).

This theorem seems to be a natural result but we couldn’t find it in the lit-
erature. Its proof uses some ideas from the proof of [26, Theorem 2.1] together
with certain auxiliary lemmas established in Section 3. The first one describes the
spectrum of the skew Lie product of any rank one operator by an arbitrary operator
in L(H). The second lemma tells us that if O is a dense subset ofMn(C) then two
matrices A and B in Mn(C) coincide if and only if σ([T,A]∗) = σ([T,B]∗) for all
T ∈ O.

With no extra efforts, the same proof of Corollary 2.2 yields the following
consequence of Theorem 2.3.

Corollary 2.4. A map ϕ from Mn(C) into itself satisfies

(2.4) σ (ϕ(T )ϕ(S) + ϕ(S)ϕ(T )∗) = σ (TS + ST ∗) , (T, S ∈Mn(C)),

if and only if there exists a unitary matrix U ∈ Mn(C) such that either ϕ(T ) =
UTU∗ for all T ∈Mn(C), or ϕ(T ) = −UTU∗ for all T ∈Mn(C).

Throughout the rest of this paper, we may and shall assume for the sake of
simplicity that n ≥ 3. If n = 1, then the proof of our main results is an easy
exercise. If n = 2, then the proof of our results remain valid but the statements of
Lemma 3.1 should be adjusted. Because if A and R are matrices in M2(C) such
that R has rank one, then [R,A]∗ is a matrix of rank at most 2 and thus it can be
invertible and 0 may or may not belong to the spectrum of [R,A]∗. Finally, note
that, in the above results, no linearity or surjectivity condition is imposed on the
maps ϕ. But these conditions are parts of the conclusion of these results.

3. Spectra and skew Lie product

For two nonzero vectors x and y in H, denote by x ⊗ y the operator of rank
one defined by

(x⊗ y)(z) := 〈z, y〉x.
Note that (x⊗y)∗ = y⊗x and that every rank one operator in L(H) can be written
as x⊗ y. Given an operator A ∈ L(H), we also note that

[x⊗ y,A]∗ = (x⊗ y)A−A(x⊗ y)∗ = x⊗ (A∗y) − (Ay)⊗ x.

It is an operator of rank at most two, and its spectrum is described by the following
result. To state it, set

ΔA(x, y) := (〈Ax, y〉+ 〈Ay, x〉)2 − 4‖x‖2〈A2y, y〉

for all x, y ∈ H and A ∈ L(H).

Lemma 3.1. For any nonzero vectors x, y ∈ H and A ∈ L(H), we have

(3.5) σ ([x⊗ y,A]∗) =
1

2

{
0, 〈Ax, y〉 − 〈Ay, x〉 ±

√
ΔA(x, y)

}
.
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Proof. Assume that there is a nonzero scalar α in σ ([x⊗ y,A]∗) and let h be
a nonzero vector in H such that [x⊗ y,A]∗h = αh. It follows that

〈Ah, y〉x− 〈h, x〉Ay = αh,(3.6)

and consequently,

(3.7) 〈Ah, y〉‖x‖2 − 〈h, x〉〈Ay, x〉 = α〈h, x〉,
and

(3.8) 〈Ah, y〉〈Ax, y〉 − 〈h, x〉〈A2y, y〉 = α〈Ah, y〉.
If 〈h, x〉 = 0, then from (3.7) it follows that 〈Ah, y〉 = 0 and (3.6) implies that
either α = 0 or h = 0. This contradiction shows that 〈h, x〉 �= 0.

If 〈A2y, y〉 �= 0, then 〈Ah, y〉 �= 0 by (3.8). Therefore, after rewriting (3.7) and
(3.8) as

(3.9) 〈Ah, y〉‖x‖2 − 〈h, x〉 (〈Ay, x〉+ α) = 0

and

(3.10) 〈Ah, y〉 (〈Ax, y〉 − α)− 〈h, x〉〈A2y, y〉 = 0,

we see that

(3.11) −α2 + (〈Ax, y〉 − 〈Ay, x〉)α+ 〈Ay, x〉〈Ax, y〉 − ‖x‖2〈A2y, y〉 = 0.

Accordingly, α =
1

2

(
〈Ax, y〉 − 〈Ay, x〉 ±

√
ΔA(x, y)

)
and thus (3.5) holds.

If, however, 〈A2y, y〉 = 0, then

(3.12) [x⊗ y,A]∗Ay = ((x⊗ y)A−A(y ⊗ x))Ay = −〈Ay, x〉Ay,

and −〈Ay, x〉 ∈ σ ([x⊗ y,A]∗). Moreover, if 〈Ax, y〉 + 〈Ay, x〉 �= 0, set z := x −
‖x‖2

〈Ax,y〉+〈Ay,x〉Ay. It then follows that z �= 0 and

[x⊗ y,A]∗z = ((x⊗ y)A−A(y ⊗ x)) z = 〈Ax, y〉z.
This shows that 〈Ax, y〉 ∈ σ ([x⊗ y,A]∗) and (3.5) holds in this case. If 〈Ax, y〉+
〈Ay, x〉 = 0, then (3.12) together with (3.6) ,(3.7) and (3.8) imply that α =
〈Ax, y〉 = −〈Ay, x〉, and σ ([x⊗ y,A]∗) = {0, 〈Ax, y〉}. Thus (3.5) is established
in this case too, and the proof is now complete. �

As a consequence of the above lemma, we obtain the following corollary which
gives necessary and sufficient conditions for two matrices to be the same.

Corollary 3.2. If O is a dense subset of Mn(C), then two matrices A and B
in Mn(C) coincide if and only if σ([T,A]∗) = σ([T,B]∗) for every X ∈ O.

Proof. Assume that σ([T,A]∗) = σ([T,B]∗) for all T ∈ O, and note that the
continuity of the spectrum and the involution onMn(C) together with the density
of O in Mn(C) imply that

(3.13) σ([T,A]∗) = σ([T,B]∗)

for every T ∈ Mn(C). Fix a unit vector x ∈ Cn, and note that (3.13) and Lemma
3.1 entail that{

0, i〈Ax, x〉 ± i
√
〈A2x, x〉

}
= σ ([(ix)⊗ x,A]∗) = σ ([(ix)⊗ x,B]∗)(3.14)

=
{
0, i〈Bx, x〉 ± i

√
〈B2x, x〉

}
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for all unit vectors x ∈ Cn. Therefore, either

〈Ax, x〉+
√
〈A2x, x〉 = 〈Bx, x〉+

√
〈B2x, x〉

and

〈Ax, x〉 −
√
〈A2x, x〉 = 〈Bx, x〉 −

√
〈B2x, x〉,

or

〈Ax, x〉+
√
〈A2x, x〉 = 〈Bx, x〉 −

√
〈B2x, x〉

and

〈Ax, x〉 −
√
〈A2x, x〉 = 〈Bx, x〉+

√
〈B2x, x〉.

Combining the two equations in either case, we clearly get that 〈Ax, x〉 = 〈Bx, x〉.
Since x is an arbitrary unit vector, we conclude that A = B; as desired. �

4. Local spectra and skew Lie product

In this section, we collect and provide several lemmas needed for the proof
of Theorem 2.1. The first one summarizes some known basic properties of the
local spectrum that will be used frequently through this paper. Among the rest of
these lemmas, one of them describes the local spectra of the skew Lie product of
any rank one operator by an arbitrary operator in L(H). Another one is a local
spectral identity principal that tells us that if x0 ∈ Cn is a nonzero vector and Ω
is a dense subset of Mn(C) then two matrices A and B in Mn(C) coincide if and
only if σ[T,A]∗(x0) = σ[T,B]∗(x0) for all T ∈ Ω.

Lemma 4.1. Let x and y be two vectors in H, and α a nonzero scalar in C.
For every operator T ∈ L(H), the following statements hold.

(1) σT (αx) = σT (x) and σαT (x) = ασT (x).
(2) σT (x+ y) ⊂ σT (x) ∪ σT (y). The equality holds if σT (x) ∩ σT (y) = ∅.
(3) For any n ≥ 1, σTn(x) = {σT (x)}n.
(4) If T has SVEP, then σ(T ) =

⋃
{σT (x) : x ∈ H}.

(5) If T has SVEP, x �= 0 and Tx = λx for some λ ∈ C, then σT (x) = {λ}.
(6) If T has SVEP and (T − λ)x = y for some λ ∈ C, then σT (y) ⊂ σT (x) ⊂

σT (y) ∪ {λ}.
(7) If T has SVEP, then σT

(
T kx

)
⊂ σT (x) ⊂ σT

(
T kx

)
∪ {0} for all positive

integers k.
(8) If R ∈ L(H) commutes with T , then σT (Rx) ⊂ σT (x).

Proof. See for instance [6] or [63]. �

The next lemma characterizes when a finite rank operator in L(H) has a trivial
local spectrum at a nonzero vector. In its proof, we use the analytic spectral
subspaces of operators. Recall that for any operator T ∈ L(H) and a closed subset
F of C, the corresponding analytic spectral subspace is defined by

HT (F ) :=
{
h ∈ H : σT (h) ⊂ F

}
.

It is a T -invariant subspace but it is not necessarily closed. However, if, in particu-
lar, T is a finite rank operator, then HT (F ) is closed for all closed subsets F of C;
see [63, Propositions 1.4.3 & 1.4.5].

Lemma 4.2. If T ∈ L(H) is an operator of rank n and x0 ∈ H is a nonzero
vector, then σT (x0) = {0} if and only if Tn+1(x0) = 0.
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Proof. If Tn+1(x0) = 0, then σT (x0) = {0} by Lemma 4.1-(6).
Conversely, assume that σT (x0) = {0} for certain nonzero vector x0 ∈ H,

and set H1 :=
∨
{T kx0 : k ≥ 0}. Note that H1 is a T -invariant subspace and

its dimension is at most n + 1. Then with respect to the space decomposition
H = H1 ⊕H⊥

1 , the operator T can be written as

T =

[
A C
0 B

]
Since T is a finite rank operator, both A and B must be too finite rank operators.
Now, fix a nonzero vector y ∈ H1 and let us first prove that σT (y) = σA(y) = {0}.
Indeed, since σT (T

kx0) ⊂ σT (x0) = {0} for all k ≥ 0 and HT ({0}) is a closed linear
space, we note that H1 ⊂ HT ({0}). In particular, y ∈ HT ({0}) and σT (y) = {0}.
To prove that σA(y) = {0}, write ỹT = f1 ⊕ f2 on ρT (y) = C\{0} and note that

H1 ( y = (T − λ)ỹT (λ) = [(A− λ)f1(λ) + Cf2(λ)]⊕ (B − λ)f2(λ)

for all λ ∈ C\{0}. It then follows that (B − λ)f2(λ) = 0 for all λ ∈ C\{0} and thus
f2 must be identically zero since B is a finite rank operator. Hence,

y = (T − λ)ỹ(λ) = (A− λ)f1(λ)

for all λ ∈ C\{0}, and σA(y) = {0}.
Now, we show that Tn+1x0 = 0. Since A is a finite rank operator and

σ(A) =
⋃

y∈H1

σA(y) = {0},

we see that A is nilpotent and thus An+1 = 0, by Cayley-Hamilton theorem. This
implies that Tn+1x0 = An+1x0 = 0, and the proof is complete. �

The following lemma gives complete description of the local spectra of the
skew Lie product of any rank one operator by an arbitrary operator in L(H). To
state it, we need to introduce some notation and the concept of the nonzero local
spectrum introduced in [14, 15]. Recall that the nonzero local spectrum of an
operator T ∈ L(H) at a nonzero vector x0 is defined by

σ∗
T (x0) :=

⎧⎨⎩ {0} if σT (x0) = {0}

σT (x0)\{0} if σT (x0) �= {0}.
For any vectors x and y in H, we have

(4.15) σ∗
x⊗y(x0) =

⎧⎨⎩ {0} if 〈x0, y〉 = 0,

{〈x, y〉} otherwise.

In particular, if x and Ay are linearly dependent, then [x⊗ y,A]∗ is an operator of
rank at most one, and the description of σ∗

[x⊗y,A]∗
(x0) can be deduced from (4.15).

For any A ∈ L(H) and x, y ∈ H, set

α1 (A, x, y) :=
1

2

(
〈Ax, y〉 − 〈Ay, x〉+

√
ΔA(x, y)

)
,

α2 (A, x, y) :=
1

2

(
〈Ax, y〉 − 〈Ay, x〉 −

√
ΔA(x, y)

)
,

(4.16) Γ0 (A, x, y) := 〈Ay, x〉+ 〈Ax, y〉,
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(4.17)

Γ1 (A, x, y) := 〈Ax0, y〉
α1 (A, x, y)− 〈Ax, y〉

(α2 (A, x, y)− α1 (A, x, y)) 〈A2y, y〉 +
〈x0, x〉

α2 (A, x, y)− α1 (A, x, y)
,

(4.18)

Γ2 (A, x, y) := 〈Ax0, y〉
α2 (A, x, y)− 〈Ax, y〉

(α2 (A, x, y)− α1 (A, x, y)) 〈A2y, y〉 +
〈x0, x〉

α2 (A, x, y)− α1 (A, x, y)
,

(4.19)

Γ3 (A, x, y) =

[
〈Ax0, y〉

(
〈Ax, y〉2 − 〈A2y, y〉‖x‖2

)
+ 〈x0, x〉〈A2y, y〉 (〈Ay, x〉 − 〈Ax, y〉)

]
,

and
(4.20)

Γ4 (A, x, y) =

[
〈Ax0, y〉

(
〈A2y, y〉〈Ay, x〉 − 〈Ax, y〉‖x‖2

)
+〈x0, x〉

(
〈A2y, y〉‖x‖2 − 〈Ay, x〉2

) ]
.

Lemma 4.3. Let x0 ∈ H be a nonzero vector. If A ∈ L(H) and x, y ∈ H such
that x and Ay are linearly independent, then the following assertions hold.

(1) If 〈A2y, y〉 = 0 and Γ0 (A, x, y) = 0, then

σ[x⊗y,A]∗(x0) =

⎧⎨
⎩

{0} if 〈Ax0, y〉 = 〈x0, x〉 = 0

{〈Ax, y〉} if 〈Ax0, y〉 �= 0 or 〈x0, x〉 �= 0

(2) If 〈A2y, y〉 = 0 and Γ0 (A, x, y) �= 0, then

σ[x⊗y,A]∗(x0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{0} if 〈Ax0, y〉 = 〈x0, x〉 = 0
{−〈Ay, x〉} if 〈Ax0, y〉 = 0 and 〈x0, x〉 �= 0

{〈Ax, y〉} if 〈Ax0, y〉 �= 0 and 〈Ax0,y〉‖x‖2
Γ0(A,x,y)

− 〈x0, x〉 = 0

{−〈Ay, x〉, 〈Ax, y〉} if 〈Ax0, y〉 �= 0 and 〈Ax0,y〉‖x‖2
Γ0(A,x,y)

− 〈x0, x〉 �= 0

(3) If 〈A2y, y〉 �= 0 and α1 (A, x, y) �= α2 (A, x, y), then

σ∗
[x⊗y,A]∗

(x0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if Γ1 (A, x, y) = Γ2 (A, x, y) = 0

{α1 (A, x, y)} if Γ1 (A, x, y) �= 0 and Γ2 (A, x, y) = 0

{α2 (A, x, y)} if Γ1 (A, x, y) = 0 and Γ2 (A, x, y) �= 0

{α1 (A, x, y) , α2 (A, x, y)} \ {0} if Γ1 (A, x, y) �= 0 and Γ2 (A, x, y) �= 0

(4) If 〈A2y, y〉 �= 0 and α := α1 (A, x, y) = α2 (A, x, y), then

σ∗
[x⊗y,A]∗

(x0) =

⎧⎨
⎩

{0} if Γ3 (A, x, y) = Γ4 (A, x, y) = 0

{α} if Γ3 (A, x, y) �= 0 or Γ4 (A, x, y) �= 0

Proof. Note that

(4.21) [x⊗ y,A]∗ (x0) = 〈Ax0, y〉 x− 〈x0, x〉 Ay,

and let us distinguish three cases.

Case 1. Assume that 〈A2y, y〉 = 0.

In this case, we note that

σ ([x⊗ y,A]∗) = {0,−〈Ax, y〉, 〈Ay, x〉} ,
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and that [x⊗ y,A]∗ Ay = −〈Ay, x〉Ay. It then follows that

(4.22) σ[x⊗y,A]∗
(Ay) = {−〈Ay, x〉} .

We also note that ([x⊗ y,A]∗ − 〈Ax, y〉1)x = −‖x‖2Ay, and then

(4.23) {−〈Ay, x〉} ⊆ σ[x⊗y,A]∗
(x) ⊆ {−〈Ax, y〉, 〈Ay, x〉} ,

by Lemma 4.1 and (4.27). If Γ0 (A, x, y) = 0, then 〈Ay, x〉 = −〈Ax, y〉 and (4.23)
implies that

(4.24) σ[x⊗y,A]∗
(x) = {−〈Ax, y〉} .

This together with (4.21) and (4.27) entail that

σ[x⊗y,A]∗
(x0) =

⎧⎨⎩ {0} if 〈Ax0, y〉 = 〈x0, x〉 = 0

{〈Ax, y〉} if 〈Ax0, y〉 �= 0 or 〈x0, x〉 �= 0

and the statement (1) is established.

If, however, Γ0 (A, x, y) �= 0, then 〈Ay, x〉 �= −〈Ax, y〉. Set z := x− ‖x‖2

Γ0(A,x,y)Ay,

and note that [x⊗ y,A]∗ z = 〈Ax, y〉z. Then

(4.25) σ[x⊗y,A]∗
(z) = {〈Ax, y〉}.

Since

[x⊗ y,A]∗ (x0) = 〈Ax0, y〉z +
(
〈Ax0, y〉‖x‖2
Γ0 (A, x, y)

− 〈x0, x〉
)
Ay,

we infer that

σ[x⊗y,A]∗
(x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} if 〈Ax0, y〉 = 〈x0, x〉 = 0
{−〈Ay, x〉} if 〈Ax0, y〉 = 0 and 〈x0, x〉 �= 0

{〈Ax, y〉} if 〈Ax0, y〉 �= 0 and 〈Ax0,y〉‖x‖2

Γ0(A,x,y) − 〈x0, x〉 = 0

{−〈Ay, x〉, 〈Ax, y〉} if 〈Ax0, y〉 �= 0 and 〈Ax0,y〉‖x‖2

Γ0(A,x,y) − 〈x0, x〉 �= 0

Case 2. Assume that 〈A2y, y〉 �= 0 and α1 (A, x, y) �= α2 (A, x, y).

Set

zi := 〈A2y, y〉 x − (〈Ax, y〉 − αi (A, x, y))Ay, (i = 1, 2),

and note that

[x⊗ y,A]∗ (zi) = αi (A, x, y) zi.

It then follows that

σ[x⊗y,A]∗
(zi) = {αi (A, x, y)} ,

and

σ[x⊗y,A]∗

(
[x⊗ y,A]∗(x0)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if Γ1 (A, x, y) = Γ2 (A, x, y) = 0

{α1 (A, x, y)} if Γ1 (A, x, y) �= 0 and Γ2 (A, x, y) = 0

{α2 (A, x, y)} if Γ1 (A, x, y) = 0 and Γ2 (A, x, y) �= 0

{α1 (A, x, y) , α2 (A, x, y)} if Γ1 (A, x, y) �= 0 and Γ2 (A, x, y) �= 0
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From this, we infer that

σ∗
[x⊗y,A]∗

(x0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if Γ1 (A, x, y) = Γ2 (A, x, y) = 0

{α1 (A, x, y)} if Γ1 (A, x, y) �= 0 and Γ2 (A, x, y) = 0

{α2 (A, x, y)} if Γ1 (A, x, y) = 0 and Γ2 (A, x, y) �= 0

{α1 (A, x, y) , α2 (A, x, y)}\{0} if Γ1 (A, x, y) �= 0 and Γ2 (A, x, y) �= 0

Case 3. Assume that 〈A2y, y〉 �= 0 and α1 (A, x, y) = α2 (A, x, y).

We have

(4.26) [x⊗ y,A]∗ (x) = 〈Ax, y〉 x− ‖x‖2 Ay,

and

(4.27) [x⊗ y,A]∗ (Ay) = 〈A2y, y〉 x− 〈Ay, x〉 Ay.

These and (4.21) imply that

[x⊗ y,A]
2
∗ (x0) =

[
〈Ax0, y〉〈Ax, y〉 − 〈x0, x〉〈A2y, y〉

]
x

+
[
〈Ax0, y〉‖x‖2 + 〈x0, x〉〈Ay, x〉

]
Ay,

and thus

[x⊗ y,A]3∗ (x0) =
[
〈Ax0, y〉〈Ax, y〉 − 〈x0, x〉〈A2y, y〉

]
[x⊗ y,A]∗ (x)

+
[
〈Ax0, y〉‖x‖2 + 〈x0, x〉〈Ay, x〉

]
[x⊗ y,A]∗ (Ay)

=

[
〈Ax0, y〉

(
〈Ax, y〉2 − 〈A2y, y〉‖x‖2

)
+ 〈x0, x〉〈A2y, y〉 (〈Ay, x〉 − 〈Ax, y〉)

]
x

+

[
〈Ax0, y〉

(
〈A2y, y〉〈Ay, x〉 − 〈Ax, y〉‖x‖2

)
+ 〈x0, x〉

(
〈A2y, y〉‖x‖2 − 〈Ay, x〉2

) ]
Ay

= Γ3 (A, x, y) x+ Γ4 (A, x, y) Ay.

Now, note that, since α1 (A, x, y) = α2 (A, x, y) := α, we have σ ([x⊗ y,A]∗) =
{0, α} and then either σ∗

[x⊗y,A]∗
(x0) = {0} or σ∗

[x⊗y,A]∗
(x0) = {α}. By Lemma 4.2,

we note that

σ∗
[x⊗y,A]∗

(x0) = {0} ⇐⇒ σ∗
[x⊗y,A]∗

([x⊗ y,A]∗ x0) = {0}

⇐⇒ [x⊗ y,A]3∗ x0 = 0

⇐⇒ Γ3 (A, x, y) x+ Γ4 (A, x, y) Ay = 0

⇐⇒ Γ3 (A, x, y) = 0 and Γ4 (A, x, y) = 0.

Therefore,

σ∗
[x⊗y,A]∗

(x0) =

⎧⎨⎩ {0} if Γ3 (A, x, y) = Γ4 (A, x, y) = 0

{α} if Γ3 (A, x, y) �= 0 or Γ4 (A, x, y) �= 0

The proof is then complete. �
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5. A local spectral identity principal

In this section, we establish a local spectral identity principal which might be
interesting in its own right. It shows that if x0 ∈ H is a fixed vector then two
operators A and B in L(H) coincide precisely when the local spectrum of [T,A]∗
and [T,B]∗ at x0 are the same whenever T ∈ L(H) is a rank one operator. Its
proof uses a density argument together with the following lemma that shows, with
the help of Lemma 4.3-(3), that if x0 ∈ H is a nonzero vector and A ∈ L(H)
is an operator with a nonzero square then the set of all (x, y) ∈ H2 for which
σ[x⊗y,A]∗(x0) contains two nonzero elements is dense in H2.

Lemma 5.1. Let x0 ∈ H be a nonzero vector and A ∈ L(H) be an operator. If
A2 �= 0, then the following assertions hold.

(1) The set

W :=
{
(x, y) ∈ H2 : 〈A2y, y〉 �= 0, ΔA(x, y) �= 0 and Γ1(A, x, y)Γ2(A, x, y) �= 0

}
is a dense open subset of H2.

(2) The set

O :=
{
(x, y) ∈ H2 : α1 (A, x, y)α2 (A, x, y) �= 0

}
is a dense open subset of H2, and x and Ay are linearly independent for
all (x, y) ∈ O.

Proof. (1) For every (x, y) ∈ H2, set

Φ(x, y) :=
(
−〈Ax0, y〉 (〈Ax, y〉+ 〈Ay, x〉) + 2〈x0, x〉〈A2y, y〉

)2−〈Ax0, y〉2 ΔA(x, y).

Let us show that Φ is not identically zero, and the set

W0 :=
{
(x, y) ∈ H2 : Φ(x, y) �= 0

}
is a dense open subset of H2. Indeed, if Ax0 = 0, then

Φ(x0, y) =
(
2‖x0‖2〈A2y, y〉

)2 �= 0

for all y ∈ H for which 〈A2y, y〉 �= 0. If, however, Ax0 �= 0, then there is y ∈ H
such that 〈A2y, y〉 �= 0 and 〈Ax0, y〉 �= 0. Therefore,

Φ(x, y) = 4〈Ax0, y〉2 ‖x‖2〈A2y, y〉 �= 0

for all nonzero x ∈ H for which 〈x0, x〉 = 0. Moreover, since Φ is continuous, the
set W0 is open. Now, assume that Φ(x1, y1) = 0 for some (x1, y1) ∈ H2, and fix
(x2, y2) ∈ H2 such that Φ(x2, y2) �= 0. Set

P (t) := Φ (x1 + t(x2 − x1), y1 + t(y2 − y1)) , (t ∈ R),

and note that P is a polynomial of degree at most 6. It is nonconstant since P (0) = 0
and P (1) = Φ(x2, y2) �= 0. Therefore, P (t) �= 0 for all scalars t except for a finite
number of zeros and (x1 + t(x2 − x1), y1 + t(y2 − y1)) ∈ W0 for all scalars t except
for a finite number of zeros. As limt→0 (x1 + t(x2 − x1), y1 + t(y2 − y1)) = (x1, y1),
we clearly see that W0 is dense.

Set

W1 :=
{
(x, y) ∈ H2 : 〈A2y, y〉 �= 0

}
,

and

W2 :=
{
(x, y) ∈ H2 : ΔA(x, y) �= 0

}
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Note that, since A2 �= 0 and ΔA(iy, y) = −4‖y‖2〈A2y, y〉 for all y ∈ H, the two sets
W1 and W2 are nonempty and thus are dense open subsets of H2. Now, observe
that for every (x, y) ∈ W1 ∩W2, we have

Γ1 (A, x, y) =

(
1

(α2(A, x, y)− α1(A, x, y)) 〈A2y, y〉

)
×(

−1

2
〈Ax0, y〉 (〈Ax, y〉+ 〈Ay, x〉) + 1

2
〈Ax0, y〉

√
ΔA(x, y) + 〈x0, x〉〈A2y, y〉

)
,

and

Γ2 (A, x, y) =

(
1

(α2(A, x, y)− α1(A, x, y)) 〈A2y, y〉

)
×(

−1

2
〈Ax0, y〉 (〈Ax, y〉+ 〈Ay, x〉)− 1

2
〈Ax0, y〉

√
ΔA(x, y) + 〈x0, x〉〈A2y, y〉

)

Thus,

Γ1 (A, x, y) Γ2 (A, x, y)

=

(
−〈Ax0, y〉 (〈Ax, y〉+ 〈Ay, x〉) + 2〈x0, x〉〈A2y, y〉

)2 − 〈Ax0, y〉2 ΔA(x, y)

16ΔA(x, y)〈A2y, y〉2

=
Φ(x, y)

16ΔA(x, y)〈A2y, y〉2

for all (x, y) ∈ W1 ∩W2. It then follows that

W =W0 ∩W1 ∩W2

is a dense open subset of H2; as desired.

(2) By a simple computation, we obtain that

O =
{
(x, y) ∈ H2 : ‖x‖2〈A2y, y〉 − 〈Ax, y〉〈Ay, x〉 �= 0

}
.

Note that, since A2 �= 0, there is a nonzero vector y0 ∈ H such that 〈A2y0, y0〉 �= 0.
Now, observe that (x, y0) ∈ O for all x ∈ H for which 〈Ay0, x〉 = 0, and thus O is
not trivial. Hence, O is a dense open subset of H2.

Finally, observe that if x and Ay are linearly dependent for some vector (x, y) ∈
H2, then

‖x‖2〈A2y, y〉 − 〈Ax, y〉〈Ay, x〉 = 0,

and (x, y) �∈ O. �

Now, we are in a position to state and prove the promised local spectral identity
principal.

Theorem 5.2. Let x0 ∈ H be a nonzero vector and A and B two operators in
L(H). Then the following assertions hold.

(1) A = B.
(2) σ[T,A]∗(x0) = σ[T,B]∗(x0) for all rank one operators T ∈ L(H).
(3) σ[T,A]∗(x0)∪σ[T,B]∗(x0) ⊂ σ([T,A]∗)∩σ([T,B]∗) for all rank one operators

T ∈ L(H).

Proof. It suffices that establish the implication (3)⇒ (1). So, assume that

(5.28) σ[T,A]∗(x0) ∪ σ[T,B]∗(x0) ⊂ σ([T,A]∗) ∩ σ([T,B]∗)
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for all rank one operators T ∈ L(H). First, assume that A2 �= 0, and note that
Lemma 5.1 implies that the sets

W :=
{
(x, y) ∈ H2 : 〈A2y, y〉 �= 0, ΔA(x, y) �= 0 and Γ1(A, x, y)Γ2(A, x, y) �= 0

}
and

O :=
{
(x, y) ∈ H2 : α1 (A, x, y)α2 (A, x, y) �= 0

}
are dense open subsets of H2, and x and Ay are linearly independent for all (x, y) ∈
O. By Lemma 3.1 and Lemma 4.3-(3), we have

{α1 (A, x, y) , α2 (A, x, y)} = σ∗
[x⊗y,A]∗

(x0) ⊂ σ
(
[x⊗ y, B]∗

)
= {0, α1 (B, x, y) , α2 (B, x, y)}

for all (x, y) ∈ W ∩O. It then follows that

〈Ax, y〉−〈Ay, x〉 = α1 (A, x, y)+α2 (A, x, y) = α1 (B, x, y)+α2 (B, x, y) = 〈Bx, y〉−〈By, x〉

for all (x, y) ∈ W ∩O. But, since W ∩O is dense in H2, we have

〈Ax, y〉 − 〈Ay, x〉 = 〈Bx, y〉 − 〈By, x〉

for all (x, y) ∈ H2. Therefore,

−2i〈Ax, x〉 = 〈Ax, ix〉 − 〈A(ix), x〉 = 〈Bx, ix〉 − 〈B(ix), x〉 = −2i〈Bx, x〉

for all x ∈ H, and A = B.
If, however, A2 = 0, then what has been discussed previously implies that B2 =

0. Fix a nonzero x ∈ H for which 〈x0, x〉 �= 0 and note that, since A2 = 0, either
Ax = 0 or the vectors x and Ax are linearly independent. Since Γ0(A, x, (ix)) =
Γ0(B, x, (ix)) = 0, in both cases (4.15) and Lemma 4.3 imply that

σ[x⊗(ix),A]∗(x0) = {−i〈Ax, x〉} and σ([x⊗ (ix), A]∗) = {0,−i〈Ax, x〉}.

We also have

σ[x⊗(ix),B]∗(x0) = {−i〈Bx, x〉} and σ([x⊗ (ix), B]∗) = {0,−i〈Bx, x〉}.

In view or (5.28), we have

〈Ax, x〉 = 〈Bx, x〉.
Now, let x ∈ H such that 〈x0, x〉 = 0. We have 〈x0, x + tx0〉 = t‖x0‖2 �= 0 for all
nonzero real scalars t and then 〈A(x+tx0), (x+tx0)〉 = 〈B(x+tx0), (x+tx0)〉 for all
nonzero real scalars t. Now take the limit as t goes to 0 to get that 〈Ax, x〉 = 〈Bx, x〉
in this case too. Since x is an arbitrary vector in H, we clearly have A = B. �

Finally, we close this section with a local spectral identity principal that gives
necessary and sufficient conditions for two matrices to be the same. It is a conse-
quence of Theorem 5.2 and lower semi-continuity of the local spectrum onMn(C)
at a fixed vector x0 of Cn; see [47]. That is if (Tk)k ⊂ Mn(C) is a sequence of
matrices converging to T ∈Mn(C) then σT (x0) ⊂ lim inf

k→∞
σTk

(x0).

Corollary 5.3. If x0 ∈ Cn is a nonzero vector and Ω is a dense subset of
Mn(C), then two matrices A and B in Mn(C) coincide if and only if

(5.29) σ[T,A]∗
(x0) = σ[T,B]∗

(x0)

for all T ∈ Ω.
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Proof. Assume that σ[T,A]∗(x0) = σ[T,B]∗(x0) for all T ∈ Ω. Take a matrix
T ∈Mn(C) and a sequence (Tk)k ⊂ Ω converging to T . We have

σ[Tk,A]∗(x0) = σ[Tk,B]∗(x0) ⊂ σ([Tk, A]∗) ∩ σ([Tk, B]∗)

for all k. By the continuity of the spectrum and lower semi-continuity of the local
spectrum on Mn(C), we have

σ[T,A]∗(x0) ⊂ σ([T,A]∗) ∩ σ([T,B]∗)

and
σ[T,B]∗(x0) ⊂ σ([T,A]∗) ∩ σ([T,B]∗).

Accordingly

(5.30) σ[T,A]∗(x0) ∪ σ[T,B]∗(x0) ⊂ σ([T,A]∗) ∩ σ([T,B]∗)

for all T ∈Mn(C). By Theorem 5.2, we have A = B and the proof is complete. �

6. Useful dense and spanning subsets of Mn(C)

The proofs of the main results are based on density arguments that use some
open dense subsets of Mn(C). Let GLn(C) denote, as usual, the group of all
invertible matrices in Mn(C), and let Dn(C) be the set of all matrices having n
distinct nonzero eigenvalues; i.e.,

Dn(C) := {T ∈ GLn(C) : |σ(T )| = n} .
Here, |σ(T )| denotes the cardinality of σ(T ). It is well known that Dn(C) is an
open, arcwise connected and dense subset of Mn(C). Set

Ωn(C) := {A ∈ GLn(C) : σ(A) ∩ σ(A∗) = ∅} .
With minor changes, the same argument of [13, Lemma 3.6] shows that this set is
open and dense inMn(C). Therefore,

Λn(C) := Ωn(C) ∩ Dn(C)

is also an open and dense subset of Mn(C). Moreover, reasoning in the same way
as the proof of [13, Lemma 3.6], we can show the following lemma.

Lemma 6.1. Λn(C) is an open dense and arcwise connected subset ofMn(C).

Recall that an operator T ∈ L(H) is said to be cyclic with a cyclic vector
x0 ∈ H provided that the linear span of {T kx0 : k ≥ 0} is dense in H. When
H = Cn is a finite-dimensional space, the collection of all matrices T ∈ Mn(C)
with the same cyclic vector x0 ∈ Cn is an open dense subset ofMn(C). Therefore,

G(n, x0) := {T ∈ Ωn(C) : |σ(T )| = n and T is cyclic with cyclic vector x0}
= Λn(C) ∩ {T ∈Mn(C) : T is cyclic with cyclic vector x0}

is an open and dense subset of Mn(C) as it is the intersection of two open dense
subsets of Mn(C). Finally, note that

(6.31) σ(T ) = σT (x0)

for all cyclic matrices T ∈Mn(C) with cyclic vector x0.
We close this section with the following lemma that tells us that the set {X −

X∗ : X ∈ O} spans Mn(C) whenever O is a nonempty open subset ofMn(C).

Lemma 6.2. If O is a nonempty open subset Mn(C), then the set {X −X∗ :
X ∈ O} spans Mn(C).
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Proof. Let R0 ∈ Mn(C) such that Tr (R0 (X −X∗)) = 0 for all X ∈ O, and
let us show that R0 = 0. Let X0 ∈ O and R ∈ Mn(C), and note that there exists
ε > such that X0 + tR ∈ O for all t ∈ (−ε, ε). Then Tr (R0 (X0 −X0

∗)) = 0 and

0 = Tr (R0 ((X0 + tR)− (X0 + tR)∗))

= 2Tr (R0 (X0 −X0
∗)) + tTr (R0(R−R∗))

= tTr (R0(R−R∗)) ,

and Tr (R0(R−R∗)) = 0. Replacing R by iR, we also get that Tr (R0(R+R∗)) = 0
and thus Tr(R0R) = 0 for all R ∈Mn(C). Accordingly, R0 = 0, and {X−X∗, X ∈
O} spans Mn(C). �

7. Proofs of the main results

In this section, by use of the fundamental theorem of projective geometry, we
present the proofs of the main results of this paper. The one of Theorem 2.1 uses
Theorem 2.3. So, it is more convenient to start first by proving Theorem 2.3 which
has interest of its own. As usual, denote by Eij ∈Mn(C) the matrix whose ij entry
is 1 and all its other entries are 0, and by A� the transpose of any m×n-matrix A.
If a1, ..., an are scalars, we denote by diag(a1, a2, ..., an) the diagonal matrix with
a1, ..., an on the main diagonal in this order. For any matrix X = (xij) ∈ Mn(C),
consider the following row and column vectors

RX := (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn),

and
CX := (x11, x21 . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn)

�.

7.1. Proof of Theorem 2.3. Checking the ”if ” part is on the straightforward
side, and we therefore will only deal with the ”only if ” part. Assume that ϕ verifies
(2.3), and let us break down the proof into five steps to show that ϕ takes the desired
form. The proofs of the first and second steps use similar arguments to those of
[26, Theorem 2.1]. We include them for the sake of completeness.

Step 1. For every A ∈ Dn(C), there is an open neighborhood NA of A such
that the restriction of ϕ on NA equals an invertible linear map LA.

Fix A ∈ Dn(C), and note that, since [i1, A]∗ = 2iA ∈ Dn(C), the continuity
of the eigenvalues and the map (X,Y ) �→ [X,Y ]∗ entail the existence of two open
neighborhoods Ni1 of i1 and NA of A such that [X,Y ]∗ ∈ Dn(C) for all X ∈ Ni1

and Y ∈ NA. By (2.3), the matrices [X,Y ]∗ and [ϕ(X), ϕ(Y )]∗ have the same n
distinct eigenvalues whenever X ∈ Ni1 and Y ∈ NA. Hence,

Tr (ϕ(Y ) (ϕ(X)− ϕ(X)∗)) = Tr (Y (X −X∗))(7.32)

for all X ∈ Ni1 and Y ∈ NA. It then follows that
(7.33)
Rϕ(Y )C(ϕ(X)−ϕ(X)∗) = Tr(ϕ(X)(ϕ(Y )− ϕ(Y )∗)) = Tr((X −X∗)Y ) = RY C(X−X∗)

for all X ∈ Ni1 and Y ∈ NA.
Next, we use similar argument as in the proof of [26, Assertion 1 of the proof

of Theorem 2.1]. In view of Lemma 6.2, there are n2 matrices X1, . . . , Xn2 in Ni1

such that {Xi − Xi
∗ : 1 ≤ i ≤ n2} is a basis of Mn(C). Let X and Z be the

n2 × n2-matrices with columns

CX1−X1
∗ , . . . , CXn2−Xn2

∗
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and
Cϕ(X1)−ϕ(X1)

∗ , . . . , Cϕ(Xn2)−ϕ(Xn2 )
∗ ,

respectively. By (7.33), we have

(7.34) Rϕ(Y )Z = RY X
for all Y ∈ NA. Now, let us show that Z is invertible. Indeed, let Y1, . . . , Yn2 be n2

matrices in NA such that {Y1, . . . , Yn2} is a basis of Mn(C), and let Y and W be
the n2×n2-matrices with rows RY1

, . . . , RYn2 and Rϕ(Y1), . . . , Rϕ(Yn2 ), respectively.

In view of (7.34), we have WZ = YX and then Z is invertible since both X and Y
are invertible. Thus, (7.34) implies that

(7.35) Rϕ(Y ) = RY XZ−1

for all Y ∈ NA, and the restriction of ϕ to NA coincides with an invertible linear
map LA.

Step 2. When restricted on Dn(C), the map ϕ is equal an invertible linear
map L.

Let A, ∈ Dn(C), and note that, since Dn(C) is arcwise connected, there is a
continuous function f from [0, 1] into Dn(C) such that f(0) = A and f(1) = B. Set

C := {t ∈ [0, 1] : ϕ = LA on an open neighborhood of f(t)} .
Just as in the proof of [26, Assertion 2 of the proof of Theorem 2.1], one can
observe that C is open and closed in [0, 1] to conclude that in fact C = [0, 1] and
thus LA = LB. This shows that on Dn(C) the map ϕ coincides with an invertible
linear map L.

Step 3. The mapping L is selfadjoint; i.e., L(X∗) = L(X)∗ whenever X ∈
Mn(C).

Let B := diag(i, 2i, . . . , ni), and note that B ∈ Dn(C) and

[B,B]∗ = diag(−2,−8, . . . ,−2n2) ∈ Dn(C).

Then the continuity of the maping (X,Y ) �→ [X,Y ]∗ onMn(C) implies that there
is an open neighborhood NB of B such that NB ⊆ Dn(C) and {[X,Y ]∗ : (X,Y ) ∈
N2

B} ⊆ Dn(C). We therefore have

(7.36) Tr (L(Y )(L(X)− L(X)∗) = Tr (ϕ(Y )(ϕ(X)− ϕ(X)∗) = Tr (Y (X −X∗))

for all (X,Y ) ∈ N2
B . Now, let X and Y be two matrices in Mn(C), and note that

there exists ε > 0 such that (B + tX,B + tY ) ∈ N2
B for all t ∈ (−ε, ε). Thus, (7.36)

gives that

Tr (L(B + tY )(L(B + tX)− L(B + tX)∗) = Tr ((B + tY )(B −B∗ + t(X −X∗)))

for all t ∈ (−ε, ε). Use the linearity of the trace, and then expand both sides of this
identity and compare the coefficients of t2 to see that

Tr (L(Y )(L(X)− L(X)∗) = Tr (Y (X −X∗)) .

If X is selfadjoint, then this implies that Tr (L(Y )(L(X)− L(X)∗) = 0. Since Y is
an arbitrary matrix inMn(C) and L is bijective, we conclude that L(X) = L(X)∗

for all selfadjoint matrices X ∈ Mn(C). Now, let X ∈ Mn(C) and X1 and X2 be
two selfadjoint matrices inMn(C) such that X = X1 + iX2, and note that

L(X∗) = L(X1 − iX2) = L(X1)− iL(X2) = (L(X1) + iL(X2))
∗ = L(X)∗.
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This shows that L is a selfadjoint mapping and the proof of this step is complete.

Step 4. There exist a unitary matrix U in Mn(C) and a scalar α ∈ {−1, 1}
such that L(T ) = αUTU∗ for all T ∈Mn(C).

Since L and ϕ coincide on the open dense subset Dn(C), the continuity of the
spectrum and L implies that L too satisfies (2.3). It then follows that

σ (L(T )L(S) + L(S)L(T )∗) = σ (L(iT )L(−iS)− L(−iS)L(iT )∗)
= σ ((iT )(−iS)− (−iS)(iT )∗)
= σ (TS + ST ∗)

for all T, S ∈Mn(C). In particular, we have

σ (L(T )L(S) + L(S)L(T )) = σ (TS + ST )

for all T, S ∈ Hn(C). As L maps Hn(C) into itself, [26, Theorem 3.2] and the
linearity of L on Mn(C) entail that there exist a unitary matrix U ∈ Mn(C) and
α ∈ {−1, 1} such that either

(7.37) L(T ) = αU∗TU, (T ∈Mn(C))

or

(7.38) L(T ) = αU∗T�U, (T ∈Mn(C)).

Assume for the sake of contradiction that L takes the form (7.38) and note that

{−i, i} ⊂ σ (E21E11 − E11E21
∗) = σ

(
L (E21)L (E11)− L (E11)L (E21)

∗) = σ(0) = {0}.

This contradiction shows that (7.38) can not occur and thus L takes only the form
(7.37); as desired.

Step 5. ϕ has the desired form.

For every T ∈ Dn(C) and S ∈Mn(C), we have

σ
(
L(T )L(S)− L(S)L(T )

∗)
= σ (TS − ST ∗)

= σ (ϕ(T )ϕ(S)− ϕ(S)ϕ(T )∗)

= σ
(
L(T )ϕ(S)− ϕ(S)L(T )∗

)
.

Since L bijectively maps Dn(C) onto itself, Corollary 3.2 entails that ϕ(S) = L(S) =
±U∗SU for all S ∈Mn(C).

7.2. Proof of Theorem 2.1. Checking the ‘if’ part is on the straightforward
side, and we therefore will only deal with the ‘only if’ part. Assume that

(7.39) σ[ϕ(T ),ϕ(S)]∗(x0) = σ[T,S]∗(x0)

for all T and S ∈Mn(C), and let us break down the proof into six claims to show
that ϕ takes the desired form.

Claim 1. Let A ∈ G(n, x0) be an arbitrary matrix. Then there is an open
neighborhoodNA and an invertible linear mapping LA onMn(C) such that ϕ(X) =
LA(X) for all X ∈ NA. In particular, ϕ is continuous on G(n, x0).
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Fix A ∈ G(n, x0), and note that, since [(i1), A]∗ = 2iA ∈ G(n, x0) and G(n, x0)
is an open set, we can find an open neighborhood NA ⊂ G(n, x0) of A and an
open neighborhood Ni1 of i1 such that [T, S]∗ = TS − ST ∗ ∈ G(n, x0) for all
S ∈ NA and T ∈ Ni1. Since σ(T ) = σT (x0), the identity (7.39) entails that
σ(TS − ST ∗) = σ(ϕ(T )ϕ(S) − ϕ(S)ϕ(T )∗) for all T ∈ NA and S ∈ Ni1. As
|σ(T )| = n for all T ∈ G(n, x0), it then follows that

Tr(S(T − T ∗)) = Tr (ϕ(S)(ϕ(T )− ϕ(T )∗))

for all S ∈ NA and T ∈ Ni1. Now, using the same argument as the ones in the
proof of Step 1 in the previous proof, one can show that there exists an invertible
linear mapping LA such that ϕ(X) = LA(X) for all X ∈ NA. In particular, ϕ is
continuous at A.

Claim 2. For every T ∈ Ωn(C), the set

ΔT, x0
:= {S ∈ G(n, x0) : TS − ST ∗ ∈ G(n, x0)}

is a nonempty open subset ofMn(C).

The proof of this claim follows closely the proof of Step 2 of [13, Proof of
Theorem 2.2]. However, we include it here for the convenience of the reader. Fix
T ∈ Ωn(C), and set

Δ′
T, x0

:= {S ∈ GLn(C) : TS − ST ∗ ∈ G(n, x0)} .
Observe that ΔT, x0

= Δ′
T, x0

∩G(n, x0), and note that, since G(n, x0) is a nonempty

open dense subset, it suffices to show that Δ′
T, x0

is a nonempty open subset of

Mn(C). Evidently ΔT, x0
is open since the map g : GLn(C) −→Mn(C) defined by

g(T ) := TS − ST ∗ is continuous and Δ′
S, x0

= g−1(G(n, x0)). It remains to show

that Δ′
T, x0

is a nonempty set. To that end, let A ∈ G(n, x0) and note that, since

T ∈ Ωn(C), Sylvester’s theorem tells us that the equation TS − ST ∗ = A has a
unique solution S ∈Mn(C). Accordingly

T (S − εT−1)− (S − εT−1)T ∗ = A+ εT−1T ∗ − ε1,

for all ε > 0. Note that, since S− εT−1 = T−1(TS− ε) and G(n, x0) is a non empty
open set, there is ε > 0 such that S − εT−1 ∈ GLn(C) and A + εT−1T ∗ − 2ε1 ∈
G(n, x0). Thus S − εT−1 ∈ Δ′

S, x0
�= ∅.

Claim 3. The map ϕ is continuous on Ωn(C).

Pick up an element T ∈ Ωn(C) and a sequence (Tk)k ∈ Mn(C) converging to
T , and let us show that (ϕ(Tk))k converges towards ϕ(T ). To do so, we first show
that (ϕ(Tk))k is a bounded sequence. Fix A ∈ ΔT, x0

, and note that, since ΔT, x0
⊂

G(n, x0), Claim 1 tells us that there exists an open neighborhood NA ⊂ ΔT, x0
of

A and an invertible linear map LA : NA −→ LA(NA) such that ϕ(X) = LA(X) for
all X ∈ NA. Let S ∈ NA and observe that ST−TS∗ ∈ G(n, x0) since NA ⊂ ΔT, x0

.
Since limSTk−TkS

∗ = ST −TS∗, there is N > 0 such that STk−TkS
∗ ∈ G(n, x0)

for all k ≥ N . By (6.31) and the continuity of the spectrum, we get

σ(ST − TS∗) = lim
k→∞

σ(STk − TkS
∗)

= lim
k→∞

σSTk−TkS∗(x0)

= lim
k→∞

σϕ(S)ϕ(Tk)−ϕ(Tk)ϕ(S)∗(x0)

= lim
k→∞

σ(ϕ(S)ϕ(Tk)− ϕ(Tk)ϕ(S)
∗).

Licensed to AMS.



SPECTRUM AND LOCAL SPECTRUM PRESERVERS 235

Accordingly the consequence (Tr(ϕ(Tk)(ϕ(S) − ϕ(S)∗))k is bounded for all S ∈
NA. Since ϕ(NA) is a nonempty open subset of Mn(C), Lemma 6.2 tells us that
{ϕ(S)−ϕ(S)∗) : S ∈ NA} spansMn(C). Therefore the linearity of the trace implies
that (Tr(ϕ(Tk)X))k is bounded for all X ∈ Mn(C), and the sequence (ϕ(Tk))k is
itself bounded.

By first choosing a subsequence, if necessary, we may assume that lim
k→∞

ϕ(Tk) =

T0 exists. A similar reasoning as above yields

(7.40) σ(ST − TS∗) = σ(ϕ(S)ϕ(T )− ϕ(T )ϕ(S)∗)

and

(7.41) σ(STk − TkS
∗) = σ(ϕ(S)ϕ(Tk)− ϕ(Tk)ϕ(S)

∗)

for all S ∈ NA and k large enough. Take the limit as k goes to infinity and use
above the equations to see that

σ( ϕ(S)T0 − T0ϕ(S)
∗) = σ(ST − TS∗) = σ(ϕ(S)ϕ(T )− ϕ(T )ϕ(S)∗)

for all S ∈ NA. Thus Tr(T0(ϕ(S) − ϕ(S)∗)) = Tr(ϕ(T )(ϕ(S) − ϕ(S)∗)) for all
S ∈ NA. By [13, Lemma 3.5], we conclude that ϕ(T ) = T0 and ϕ is continuous at
T .

Claim 4. The restriction of ϕ on Ωn(C) equals to a bijective linear map L.

Firstly, we show that

(7.42) σ(TS − ST ∗) = σ(ϕ(T )ϕ(S)− ϕ(S)ϕ(T )∗)

for all S and T in Ωn(C). Let S and T in Ωn(C) and take a sequence (Vk)k ⊂
G(n, x0) so that limVk = TS − ST ∗. As T ∈ Ωn(C), by Sylvester’s theorem, for
each k, there exists a unique matrix Wk ∈ Mn(C) such that TWk −WkT

∗ = Vk.
Note that the sequence (Wk)k is bounded since the mapping X �→ TX − XT ∗ is
bijective. Thus, we may assume without loss of generality (i.e.; after an eventual
extraction of a subsequence) that limWk = W for some W ∈ Mn(C). So, we
get TS − ST ∗ = TW −WT ∗. Which implies by the uniqueness of the solution of
Sylvester’s equation that limWk = W = S. Using the continuity properties for the
spectrum and the continuity of ϕ on Ωn(C), we get

σ([T, S]∗) = lim
k→∞

σ(Vk)

= lim
k→∞

σVk
(x0)

= lim
k→∞

σ[T,Wk]∗(x0)

= lim
k→∞

σ[ϕ(T ),ϕ(Wk)]∗(x0)

= lim
k→∞

σ([ϕ(T ), ϕ(Wk)]∗)

= σ([ϕ(T ), ϕ(S)]∗);

as desired.
By Lemma 6.1, the set Λn(C) is an open dense and path-connected subset of

Mn(C), and obviously contains G(n, x0). Thus, upon replacing the set G(n, x0) by
Λn(C), similar argument to the one used in the proof of the Claim 1, allows us to
conclude that for every A ∈ Λn(C), there is an open neighborhood NA of A such
that the restriction of ϕ on NA equals an invertible linear map LA. As Λn(C) is a
arcwise connected subset of G(n, x0), then just as in Step 2 of the previous proof
one argues as in the proof of Assertion 2 of [26, Proof of Theorem 2.1] to see that

Licensed to AMS.



236 Z. ABDELALI, A. BOURHIM, AND M. MABROUK

all linear maps LA are the same, and then conclude that the restriction of ϕ on
Λn(C) is equal to a bijective linear map L. Furthermore, from the continuity of the
maps ϕ and L on Ωn(C) and the density of the set Λn(C), we infer that the map ϕ
coincides with L on Ωn(C); which yields the desired conclusion.

Claim 5. There exist a unitary matrix U ∈Mn(C) and a nonzero scalar α ∈ C
such that Ux0 = αx0 and the mapping L in Claim 4 has the form L(T ) = ±UTU∗.

In view of the density of Ωn(C) and the continuity of L and the spectrum,
(7.42) yields that

(7.43) σ([T, S]∗) = σ([L(T ), L(S)]∗)

for any S and T inMn(C). Therefore, Theorem 2.1 entails that there is a unitary
matrix U ∈Mn(C) such that

(7.44) L(T ) = ±UTU−1, (T ∈Mn(C)).

Let T ∈ Ωn(C), and note that this together with Claim 4 and (7.39) imply that

2iσT (x0) = σ[(i1),T ]∗(x0) = σ[ϕ(i1),ϕ(T )]∗(x0) = σ[L(i1),L(T )]∗(x0) = 2iσUTU∗(x0).

Now, [13, Lemma 3.9] ensures that there is a nonzero scalar α ∈ C such that
Ux0 = αx0.

Claim 6. ϕ has the asserted form

By Claim 3, we have L(T ) = ±UTU∗ for all T in Mn(C). Further, ϕ(T ) =
L(T ) = ±UTU∗ for all T ∈ Ωn(C). With these, for every T in Ωn(C) and S ∈
Mn(C), we have

σ[T,ϕ(S)]∗(x0) = σ[ϕ(U∗TU),ϕ(S)]∗(x0)

= σ[U∗TU,S]∗(x0)

= σ[L(U∗TA),L(S)]∗(x0)

= σ[T,L(S)]∗(x0).

Whence Corollary 5.3 entails that ϕ(S) = L(S) = ±USU∗ for all S ∈Mn(C), and
the proof is thus complete.
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[55] M. González and M. Mbekhta, Linear maps on Mn(C) preserving the local spectrum, Linear
Algebra Appl. 427 (2007), no. 2-3, 176–182, DOI 10.1016/j.laa.2007.07.005. MR2351350

[56] A. E. Guterman and B. Kuzma, Preserving zeros of a polynomial, Comm. Algebra 37 (2009),
no. 11, 4038–4064, DOI 10.1080/00927870802545687. MR2573234

[57] J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math.
Soc. 134 (2006), no. 5, 1435–1446, DOI 10.1090/S0002-9939-05-08101-3. MR2199190

Licensed to AMS.

https://www.ams.org/mathscinet-getitem?mr=3440142
https://www.ams.org/mathscinet-getitem?mr=3372599
https://www.ams.org/mathscinet-getitem?mr=3232673
https://www.ams.org/mathscinet-getitem?mr=3230437
https://www.ams.org/mathscinet-getitem?mr=2913657
https://www.ams.org/mathscinet-getitem?mr=2825274
https://www.ams.org/mathscinet-getitem?mr=2720208
https://www.ams.org/mathscinet-getitem?mr=2745466
https://www.ams.org/mathscinet-getitem?mr=2317952
https://www.ams.org/mathscinet-getitem?mr=2238461
https://www.ams.org/mathscinet-getitem?mr=2535555
https://www.ams.org/mathscinet-getitem?mr=2388647
https://www.ams.org/mathscinet-getitem?mr=3230434
https://www.ams.org/mathscinet-getitem?mr=2952440
https://www.ams.org/mathscinet-getitem?mr=2921895
https://www.ams.org/mathscinet-getitem?mr=0318950
https://www.ams.org/mathscinet-getitem?mr=2674700
https://www.ams.org/mathscinet-getitem?mr=3274066
https://www.ams.org/mathscinet-getitem?mr=3833003
https://www.ams.org/mathscinet-getitem?mr=3567521
https://www.ams.org/mathscinet-getitem?mr=3451272
https://www.ams.org/mathscinet-getitem?mr=0213878
https://www.ams.org/mathscinet-getitem?mr=2351350
https://www.ams.org/mathscinet-getitem?mr=2573234
https://www.ams.org/mathscinet-getitem?mr=2199190


SPECTRUM AND LOCAL SPECTRUM PRESERVERS 239

[58] J. Hou, C.-K. Li, and N.-C. Wong, Jordan isomorphisms and maps preserving spectra of
certain operator products, Studia Math. 184 (2008), no. 1, 31–47, DOI 10.4064/sm184-1-2.
MR2365474

[59] J. Hou, C.-K. Li, and N.-C. Wong, Maps preserving the spectrum of generalized Jor-
dan product of operators, Linear Algebra Appl. 432 (2010), no. 4, 1049–1069, DOI
10.1016/j.laa.2009.10.018. MR2577648

[60] T. Jari, Nonlinear maps preserving the inner local spectral radius, Rend. Circ. Mat. Palermo

(2) 64 (2015), no. 1, 67–76, DOI 10.1007/s12215-014-0181-7. MR3324374
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[75] P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), no. 2-3, 364–393, DOI
10.1016/j.laa.2005.03.011. MR2198941
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Numerical range and compressions of the shift

Kelly Bickel and Pamela Gorkin

Abstract. The numerical range of a bounded, linear operator on a Hilbert
space is a set in C that encodes important information about the operator.
In this survey paper, we first consider numerical ranges of matrices and dis-
cuss several connections with envelopes of families of curves. We then turn to
the shift operator, perhaps the most important operator on the Hardy space
H2(D), and compressions of the shift operator to model spaces, i.e. spaces
of the form H2 � θH2 where θ is inner. For these compressions of the shift
operator, we provide a survey of results on the connection between their nu-
merical ranges and the numerical ranges of their unitary dilations. We also
discuss related results for compressed shift operators on the bidisk associated
to rational inner functions and conclude the paper with a brief discussion of
the Crouzeix conjecture.

1. Introduction

Let B(H) denote the set of bounded, linear operators on a Hilbert space H.
Then for A ∈ B(H), its numerical range or field of values is the subset of C defined
as follows:

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.
This crucial object encodes many properties of the operator A and is closely related
to the spectrum of A, denoted σ(A). Indeed, σ(A) is always contained in W (A) and
the convex hull of σ(A) can be recovered from the numerical ranges of operators
similar to A [45]. Typically, W (A) encodes significantly more information about
A than the spectrum does. For instance, if W (A) is contained in R, then A must
be Hermitian. Similarly, if H is finite dimensional, then W (A) is compact and the
maximal elements of W (A) are related to the combinatorial structure of A [54].

Due to these and many other such properties, numerical ranges and related
objects have found numerous applications in diverse areas including differential
equations, numerical analysis, and quantum computing, see for example [5,28,34,
36,50,51,60]. As the topic of numerical ranges is both natural and useful, it has
been extensively studied and the current body of research is quite vast. Thus this
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survey is not meant to be in any way exhaustive. Instead we refer the interested
readers to the books [39,42,46].

This survey primarily covers two topics: connections between numerical ranges
and envelopes and the numerical ranges of compressions of the shift. Section 2
presents several relationships between envelopes of families of curves F and nu-
merical ranges of matrices W (A). Specifically, let F be continuously differentiable
and let F denote the family of curves of (x, y) points that satisfy F (x, y, t) = 0
for different values of t ranging over an interval. Then, intuitively, an envelope
of F is a curve that, at each of its points, is tangent to a member of the family.
Envelopes have a number of applications and appear, for example, in both eco-
nomics and in robotics and gear construction, [53,59]. They are also connected to
numerical ranges in several ways. First, in [48], Kippenhahn showed that for any
matrix A, the boundary ∂W (A) of the numerical range is–after removing a finite
number of corners–an envelope of the family of support lines of W (A). Similarly in
[27], Donoghue outlined a proof of the elliptical range theorem, which character-
izes W (A) for 2× 2 matrices, that constructs ∂W (A) as an envelope of a family of
circles.

Sections 3-5 concern compressions of the shift and their numerical ranges. To
define these classical operators, recall that the Hardy space on the unit disk H2(D)
consists of functions of the form

(1) f(z) =

∞∑
n=0

anz
n, where

∞∑
n=0

|an|2 <∞.

A particularly important operator acting on H2 is S, the (forward) shift operator
defined by [S(f)](z) = zf(z). To compress S, first recall that an inner function θ
is a bounded analytic function on D whose radial limits have modulus one almost
everywhere. Then for each inner θ, the space θH2 is a subspace of H2 and the
model space Kθ and the compression of the shift Sθ can be defined as follows:

Kθ := H2 & θH2 and Sθ = PθS|Kθ
,

where Pθ is the orthogonal projection onto Kθ. The study of such spaces and
operators has been extensive and forms a key subarea of both classic operator theory
and complex analysis; for the main theory, we direct the readers to [30,63]. Indeed,
compressed shifts represent a large class of operators. For a contraction T ∈ B(H),
define the defect operator DT =

√
1− T �T and the defect space DT = DTH.

Then if T is a completely non-unitary contraction with defect indices dimDT =
dimDT� = 1, the Nagy-Foias functional model says that T is unitarily equivalent
to a compressed shift, see [64].

Arguably the prettiest results concern finite Blaschke products

B(z) = λ
n∏

j=1

z − aj
1− ajz

with |λ| = 1, which we discuss in Section 3. In this case, KB is finite dimensional
and SB has a nice (upper-triangular) matrix representation in terms of the zeros
of B. This allowed Gau and Wu to obtain a simple characterization of the unitary
1-dilations of SB and show that

(2) W (SB) = ∩{W (U) : U is a unitary 1-dilation of SB},
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see [31,32]. Their work–and that of Mirman in [55]–shows that each ∂W (SB) also
satisfies an elegant geometric condition called the Poncelet property.

There are numerous ways to generalize or extend these investigations of W (SB).
For example, researchers have studied Sθ for infinite Blaschke products and gen-
eral inner functions, considered operators with higher defect indices, and studied
compressions of shifts in the bivariate setting [8, 12, 15]. While versions of (2)
are true in some settings, many open questions remain. For details about such
generalizations, see Sections 4-5.

As shown by two previously-discussed topics, numerical ranges are at the heart
of many beautiful results and open questions in both operator and function theory.
Perhaps the most famous open question concerning numerical ranges is Crouzeix’s
conjecture [21], which states:

Conjecture (2004): There is a constant C such that for any polynomial p ∈ C[z]
and n× n matrix A, the following inequality holds:

‖p(A)‖ ≤ Cmax |p(z)|z∈W (A).

The best constant should be C = 2.
Initially in [23], Crouzeix showed that 2 ≤ C ≤ 11.08. However, significant

recent progress has been made on improving C, proving special cases, and identify-
ing other questions that imply the conjecture, see [17,22,35,61]. We include the
details in Section 6.

2. Numerical Ranges and Envelopes

2.1. Preliminaries. To examine the connections between numerical ranges
of matrices and envelopes of families of curves, we need some well-known results
about numerical ranges. We state these for matrices, but many results have gener-
alizations to bounded linear operators on a Hilbert space. First, it is easy to show
that numerical ranges are well behaved with respect to operations like unitary con-
jugation and affine transformation:

Theorem 2.1. If A is an n× n matrix, then
a. For U an n× n unitary matrix, W (U�AU) = W (A).
b. For α, β ∈ C, W (αA+ βI) = αW (A) + β := {αz + β : z ∈W (A)}.

It is also easy to see that W (A) contains the eigenvalues of A; indeed if λ is an
eigenvalue of A with normalized eigenvector x, then

〈Ax, x〉 = 〈λx, x〉 = λ〈x, x〉 = λ.

One of the deepest results about numerical ranges follows from theorems of Toeplitz
and Hausdorff in [44,67] and states:

Theorem 2.2 (Toeplitz-Hausdorff theorem). If A is an n × n matrix, then
W (A) is convex.

If A is normal, then this is the entire story. Indeed, the numerical range of a
normal matrix A is the convex hull of its eigenvalues. To see this, recall that A
must be unitarily equivalent to some diagonal matrix

D =

⎡⎢⎣ λ1

. . .
λn

⎤⎥⎦ ,
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where λ1, . . . , λn are the eigenvalues of A. For each x ∈ Cn, we have 〈Dx, x〉 =∑n
j=1 λj |xj |2. This implies that W (D), and hence W (A), is the convex hull of the

eigenvalues of A. More generally, the closure of the numerical range of a (bounded)
normal operator is the convex hull of its spectrum, see [42, pp. 112].

In contrast, non-normal matrices typically have more points in their numerical
ranges. Consider A1 and A2 given below:

(3) A1 =

[
0 0
0 0

]
and A2 =

[
0 1
0 0

]
.

They have the same eigenvalues with the same multiplicity, so the spectrum does
not distinguish between them. However, the numerical range does. Indeed, the
elliptical range theorem says

Theorem 2.3. Let A be a 2× 2 matrix with eigenvalues a and b. Then W (A)
is an elliptical disk with foci at a and b and minor axis given by (tr(A�A)− |a|2 −
|b|2)1/2.

This implies W (A1) = {0}, but W (A2) = {z : |z| ≤ 1/2}. More generally, the
elliptical range theorem is a key tool in several proofs of the Toeplitz-Hausdorff
theorem, see for example [39, pp. 4].

2.2. Envelopes. In what follows, we study numerical ranges of matrices using
envelopes of families of curves. To make this precise, let F be the family of curves
given by F (x, y, t) = 0, for some continuously differentiable function F . For each t
in some interval, let Γt denote the curve of (x, y) points satisfying F (x, y, t) = 0.

There is some historic vagueness concerning the definition of the envelope of a
family of curves, and many sources indicate at least three different ways to define it
[14,20,47,65]. We discuss two of these below. For more specific details, see [13].

Arguably, the most natural definition is the following:

Definition 2.4. A geometric envelope E1 of F is a curve so that each point
on E1 is a point of tangency to some member of the family Γt (and often, each Γt

is touched by E1).

In practice, it can be hard to use Definition 2.4 to find exact formulas for a
geometric envelope. In contrast, one can often compute the following set explicitly:

Definition 2.5. The discriminant envelope E2 of F is the set of points (x, y)
for which there is a value of t so that both F (x, y, t) = 0 and Ft(x, y, t) = 0.

In general, these definitions do not yield the same set of points. However it is
known that E1 is contained in E2, see [14, Propositions 1 and 2]. Moreover, if the
curves in E2 can be parameterized as (x(t), y(t)) and the relevant derivatives are
nonvanishing in the following sense:

F 2
x (x, y, t) + F 2

y (x, y, t) �= 0 and x′(t)2 + y′(t)2 �= 0,

then E1 = E2, see [20, pp. 173].
Often, it is easy to compute the discriminant envelope E2. For simple F , one

can find E2 by setting F (x, y, t) = 0 and Ft(x, y, t) = 0 and then eliminating the
parameter t; this process is called the envelope algorithm. There are also connections
between the boundary of F and its envelope(s) and often, the boundary (or a
piece of the boundary) of F will correspond to an envelope. For example in [47],
Kalman observes that if the boundary is smoothly parameterized by t, then it is
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part of the geometric envelope. However, such a condition is difficult to check. For
more information about these envelopes, additional definitions, and connections to
boundaries, see [14,20,47,65] and the references therein.

Let us now consider two connections between numerical ranges and envelopes.

2.3. Finding the numerical range via Kippenhahn. Let A be an n × n
matrix. Then A can be decomposed as

A = �(A) + i)(A), where �(A) = A+A�

2 and )(A) = A−A�

2i .

Using this decomposition, Kippenhahn developed a method that produces ∂W (A)
as the geometric envelope of a family of lines. Specifically, we say that a line
is a support line of W (A) if it touches ∂W (A) in either one point or along a line
segment. The following theorem, which can be found in Hochstenbach and Zachlin’s
translation of Kippenhahn’s paper [48, Theorem 9], allows us to identify support
lines of W (A):

Theorem 2.6. If A = �(A) + i)(A) with α1 ≤ α2 ≤ · · · ≤ αn the eigenvalues
of �(A) and β1 ≤ β2 ≤ · · · ≤ βn the eigenvalues of )(A), then the points of
W (A) lie in the interior or on the boundary of the rectangle constructed by the
line x = α1, x = αn; y = β1, y = βn positioned parallel to the axes. The sides of
the rectangle share either one point (possibly with multiplicity > 1) or one closed
interval with the boundary of W (A).

For a matrix A, let Me(A) denote the maximum eigenvalue of �(A). Then
Theorem 2.6 says that the vertical line

x = Me(A)

is a support line for W (A). To identify other support lines of W (A), fix γ ∈ (0, 2π)
and consider the rotated matrix e−iγA. As shown in the accompanying figure, the
numerical range W (e−iγA) is exactly the numerical range of W (A) rotated by the
angle −γ. By Theorem 2.6, it has vertical support line

x = Me(e
−iγA).

Rotating this line by an angle γ gives the new line

(4) x cos γ + y sin γ = Me(e
−iγA),

which is a support line of W (A).

Figure 2.1. The Kippenhahn construction giving support lines of W (A).
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Letting γ vary over [0, 2π] gives a family of support lines of W (A). Then the
convexity of W (A) implies that the intersections of ∂W (A) with these support lines
must give the entire boundary of W (A).

To connect this to envelopes, consider the family of lines F given in (4) for
γ ∈ [0, 2π]. Then the differentiable components of ∂W (A) are geometric envelopes
for F ; this is easy to see because each point of ∂W (A) lies on a line in (4) and
as long as ∂W (A) is differentiable at that point, it must be tangent to the line.
Restricting to differentiable components of ∂W (A) is reasonable because, as also
proved by Kippenhahn, there are at most a finite number of places where ∂W (A)
is not differentiable. Moreover these singular points must occur at the eigenvalues
of A, see [48, Theorem 13].

Kippenhahn actually proved much more than this. In particular, he completely
analyzed the boundary of the numerical range in the 3 × 3 setting. For more
information on this, see [48, Section 7]. For results about ∂W (A) for general
A ∈ B(H), see Agler’s paper [1].

2.4. The elliptical range theorem. Recall that the elliptical range theorem,
given in Theorem 2.3, characterizes the numerical ranges of 2× 2 matrices. Indeed,
if A is a 2 × 2 matrix with eigenvalues a and b, then W (A) is an elliptical disk
with foci a and b and minor axis (tr(A�A)− |a|2 − |b|2)1/2. C.-K. Li gave a simple
computational proof of this in [52] and other proofs can be found in [46,56].

One can also use envelopes of families of circles to prove the elliptical range
theorem. The proof idea described here is due to Donoghue [27], but many of the
details appear in [13]. First observe that each A is unitarily equivalent to

B =

[
a p
0 b

]
, where p = (tr(A�A)− |a|2 − |b|2)1/2.

If A has a repeated eigenvalue a and J =

[
0 1
0 0

]
, then Theorem 2.1 gives W (A) =

W (B) = pW (J) + a. A simple computation shows W (J) is the disk of radius 1
2

centered at (0, 0), which gives the result.
If A has distinct eigenvalues, we can define

T =

[
0 m
0 1

]
where m = p

|b−a| and apply Theorem 2.1 to show W (A) = W (B) = (b−a)W (T )+a.

Thus it suffices to study W (T ), which can be realized as a family of circles. Indeed

each normalized z ∈ C2 can be written as z =

[
teiθ1√

1− t2eiθ2

]
for some t ∈ [0, 1] and

θ1, θ2 ∈ [0, 2π), which gives

〈Tz, z〉 = (1− t2) +mei(θ2−θ1)(t
√
1− t2).

This implies W (T ) is the union of circles
⋃

t∈[0,1] Ct, where Ct is the circle with
center (1− t2, 0) and radius mt

√
1− t2. Equivalently, W (T ) is the family of curves

satisfying F (x, y, t) = 0 for

F (x, y, t) := (x− (1− t2))2 + y2 −m2t2(1− t2)

and t ∈ [0, 1]. To find the discriminant envelope, we apply the envelope algorithm.
Taking the equations Ft(x, y, t) = 0 and F (x, y, t) = 0 and solving for x and y gives
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the curves

(5) x(t) = (1− t2) + m2

2 (1− 2t2) and y(t) = ±
√

m2(t2 − t4)− m4

4 (1− 2t2)2

and the point (1, 0). It is easy to check that the curves in (5) give exactly the ellipse

(6) (x− 1
2 )

2

1+m2 + y2

m2 = 1
4 .

This leads to the question:
Do the envelope curves in (5) give the boundary of the union

⋃
t∈[0,1] Ct?

In general, the relationship between the boundary of a family of curves and its
envelope is murky. However in this case, the answer is yes. For the details about
that and the fact that W (T ) is the closed elliptical disk with boundary (5), see
[13]. Then the elliptical range theorem follows immediately from this result about
W (T ).

Figure 2.2. W (T ) as a union of circles Ct with elliptical boundary
from (6).1

3. The numerical range of a compressed shift operator (single variable)

Recall that H2 is the Hardy space on the unit circle T consisting of functions
of the form f(z) =

∑∞
n=0 anz

n where
∑∞

n=0 |an|2 < ∞ and an inner function
is a bounded analytic function on D with radial limits of modulus one almost
everywhere. Perhaps the most important operator acting on this space is S, the
(forward) shift operator on H2 defined by [S(f)](z) = zf(z); the adjoint of S is
the backward shift [S�(f)](z) = (f(z)− f(0))/z. In 1949, Beurling [9] proved the
following theorem about (closed) nontrivial invariant subspaces of the shift S, which
has implications for the invariant subspaces of the backward shift operator.

1This figure was created by Trung Tran. We thank him for his permission to use the figure
in this paper.
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Theorem 3.1 (Beurling’s theorem). The nontrivial invariant subspaces under
S are

θH2 = {θh : h ∈ H2},
where θ is a (nonconstant) inner function.

Thus we see that the invariant subspaces for the adjoint S� are Kθ := H2&θH2.
These subspaces are called model spaces. The following description of Kθ is often
helpful and it is not difficult to prove.

Theorem 3.2. Let θ be inner. Then Kθ = H2 ∩ θ zH2.

Let |aj | < 1 for j = 1, . . . , n and consider KB where B(z) =
∏n

j=1
z−aj

1−ajz
is a

finite Blaschke product. The reproducing kernel corresponding to the point a ∈ D is

defined by ga(z) =
1

1− az
and it has the property that 〈f, ga〉 = f(a) for all f ∈ H2.

As a consequence we see that 〈Bh, gaj
〉 = B(aj)h(aj) = 0 for all h ∈ H2. So if B is

a Blaschke product with zeros a1, . . . , an, then gaj
∈ KB for j = 1, 2, . . . , n. In fact,

if the points aj are distinct, KB = span{gaj
: j = 1, . . . , n} and the reproducing

kernels ga1
, . . . , gan

will be linearly independent.
It is not really essential that the points be distinct, but certain adjustments

must be made if they are not. However, the representations for our matrices will
not change; we refer the reader to [31].

The operators that we are interested in here are compressions of the shift op-
erator: For θ an inner function, we define Sθ : Kθ → Kθ by

Sθ(f) = Pθ(S(f))

where Pθ is the orthogonal projection from H2 onto Kθ. In this section, we are
particularly interested in the case in which θ = B is a finite Blaschke product.
In this case (and precisely in this case) KB is finite dimensional and with the
appropriate choice of an orthonormal basis, we can analyze this operator. The
basis that we choose is obtained from applying the Gram-Schmidt process to the
basis we obtained from the reproducing kernels. In finite dimensions, this basis is
called the Takenaka-Malmquist basis: Letting ba(z) = z−a

1−az , we take it to be the
following ordered basis:⎛⎝√

1− |a1|2
1− a1z

n∏
j=2

baj
,

√
1− |a2|2
1− a2z

n∏
j=3

baj
, . . . ,

√
1− |an−1|2
1− an−1z

ban
,

√
1− |an|2
1− anz

⎞⎠ .

We have chosen this ordered basis to yield an upper triangular matrix for SB. For
example, for two zeros a and b we obtain

A =

[
a

√
1− |a|2

√
1− |b|2

0 b

]
.

So A is the matrix representing SB when B has two zeros a and b. By the elliptical
range theorem, the numerical range is an elliptical disk with foci at a and b and
minor axis of length

√
1− |a|2

√
1− |b|2. When a = b we see that the numerical

range is a circular disk with center at a and radius (1 − |a|2)/2. Thus, as we
mentioned earlier, for the 2× 2 Jordan block A2 that we met in (3), it follows that
the numerical range is the closed disk centered at the origin of radius 1/2. What
about the n× n case?
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Here things are more complicated, but we can still obtain a matrix representing
SB: A computation shows that the n × n matrix representing SB with respect to
the Takenaka-Malmquist basis is

(7) A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

√
1− |a1|2

√
1− |a2|2 . . . (

∏n−1
k=2 (−ak))

√
1− |a1|2

√
1− |an|2

0 a2 . . . (
∏n−1

k=3 (−ak))
√

1− |a2|2
√

1− |an|2

. . . . . . . . . . . .

0 0 0 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that for each λ ∈ T, by adding only one row and one column, we can put A
“inside” a unitary matrix

Uλ
ij =

⎧⎪⎪⎨
⎪⎪⎩

Aij if 1 ≤ i, j ≤ n,

λ
(∏j−1

k=1(−ak)
)√

1− |aj |2 if i = n+ 1 and 1 ≤ j ≤ n,(∏n
k=i+1(−ak)

)√
1− |ai|2 if j = n+ 1 and 1 ≤ i ≤ n,

λ
∏n

k=1(−ak) if i = j = n+ 1.

Example 3.3. Let B(z) = zn. Then

KB = span(1, z, z2, . . . , zn−1)

and SB is represented (with respect to the Takenaka-Malmquist basis) by⎛
⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · 1
0 0 0 0 0

⎞
⎟⎟⎠ .

An example of a unitary 1-dilation of this matrix (the matrix with entries from SB in
bold) is ⎛

⎜⎜⎜⎜⎝
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
· · · · · · · · · · · · 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

3.1. Unitary dilations. Let A be a matrix with ‖A‖ ≤ 1. Then, following Halmos,
we may consider DA =

√
1−AA� and DA� =

√
1− A�A. Halmos noted that

U =

(
A DA

DA� −A�

)
is a unitary dilation of A to a space twice as large as the original and he posed the following
question [43]: Is

W (A) =
⋂

{W (U) : U a unitary dilation of A}?
We note that Halmos considered operators on a Hilbert space H and posed this

question for operators on (possibly) infinite dimensional spaces. In particular, the closures
of the numerical ranges are required in this general setting. For finite Blaschke products,
all numerical ranges in question will be closed.

In this paper, we focus on unitary dilations of a compressed shift operator SB. We
begin with the case in which B is a finite Blaschke product (and we will see later that a
similar result holds for Sθ when θ is a general inner function). For these, we know that
the unitary dilations can be parametrized as a family {Uλ} for each λ ∈ T, where
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Uλ =

[
SB ∗λ
∗λ ∗λ

]
, where we have added one row and one column.

(In this representation, each ∗λ can be determined once we have SB. This will be clear
for SB when B is finite and we discuss this parametrization later briefly for arbitrary inner
functions.)

In fact, up to unitary equivalence, these are all the unitary 1-dilations of SB. Note
also that it makes sense that there is a unitary 1-dilation: Looking at the Halmos di-
lation, recalling that rank(I − S�

BSB) = 1 = rank(I − SBS
�
B) and that this implies

rank(I − S�
BSB)

1/2 = rank(I − SBS
�
B)

1/2, we might expect that we need only add one
row and one column to get to the unitary dilation. To investigate this further, we mention
some important connections between the Blaschke product B and the unitary dilations of
SB. Before we do so, however, we note that one half of Halmos’s conjecture is easy: We
show that

W (SB) ⊆
⋂

{W (Uλ) : λ ∈ T}.
To see this, let V = [In, 0] be n× (n+ 1) and λ ∈ T. Then SB = V UλV

t and we see

that for x with ‖x‖ = 1 we have V tx =

[
x
0

]
, so ‖V tx‖ = 1. Suppose β ∈ W (SB). Then

there exists a unit vector x such that β = 〈SBx, x〉. Thus,

β = 〈SBx, x〉 = 〈V UλV
tx, x〉 = 〈UλV

tx, V tx〉.
Consequently, β ∈ W (Uλ). Since this holds for each λ ∈ T, we see that β lies in
∩λ∈TW (Uλ). Thus containment holds because SB is a compression of Uλ and the same
argument works in greater generality. From this it is not difficult to see that it is the other
containment that is interesting.

Because we know that the numerical range of a unitary matrix is the convex hull of
its eigenvalues, we first consider the eigenvalues of the unitary 1-dilation of SB where B
is a finite Blaschke product. In this case, it can be shown that the eigenvalues of Uλ are
the values B̂(z) := zB(z) maps to λ [31,33]. Recalling that a finite Blaschke product is
continuous on an open subset of C containing the closed unit disk, maps the unit circle to
itself, the open unit disk to itself, and the complement of the closed unit disk to itself, we
see that for λ ∈ T the only possible solutions to this equation will lie on the unit circle. It
is also well known (see, for example, [24]) that the argument of a finite Blaschke product
increases on the unit circle. As a consequence, the solutions to B̂ = λ will be distinct. If
B has degree n, there will precisely n+ 1 distinct solutions to B̂ = λ. Thus W (Uλ) is the
convex hull of these n+ 1 distinct points.

We are now ready to put all this together using a result of Gau and Wu [32] who
studied the class Sn of compressions of the shift to an n-dimensional space: These are
operators that have no eigenvalues of modulus 1, are contractions (completely non-unitary
contractions) with rank(I − T �T ) = rank(I − TT �) = 1 and they are compressions of the
shift operator with finite Blaschke product symbol:

(8) SB(f) = PB(S(f)) where f ∈ KB, PB : H2 → KB ,

where PB is defined by

PB(g) = BP−(Bg) = B(I − P+)(Bg)

and P− the orthogonal projection for L2 onto L2 �H2. Their result is the following (see
Figure 3.1):

Theorem 3.4. [32] For T ∈ Sn and any point λ ∈ T, there is an (n+1)-gon inscribed
in T that circumscribes the boundary of W (T ) and has λ as a vertex.

As a consequence of this result, Gau and Wu were able to prove the following:
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Figure 3.1. Polygons intersecting to yield numerical range

Theorem 3.5. [32] Let B be a finite Blaschke product. Then

W (SB) =
⋂

{W (U) : U a unitary 1-dilation of SB}.

The authors note that, for compressions of the shift operator, this is the “most eco-
nomical” intersection; that is, we need only consider dilations of our operators to a space
one dimension larger. For general operators, Choi and Li answered Halmos’s question in
2001:

Theorem 3.6 (General theorem, [16]). Let T be a contraction on a Hilbert space H.
Then

W (T ) =
⋂

{W (U) : U a unitary dilation of T on H⊕H}.

In addition to answering Halmos’s theorem for these operators, Gau and Wu’s result
has a very beautiful geometric consequence that we investigate in the next subsection.

3.2. The Poncelet property. In this section, we discuss the connection to a famous
theorem from projective geometry known as Poncelet’s theorem. Poncelet was born in
Metz, France in 1788. He joined Napoleon’s army as it was approaching Russia. On
October 19 Napoleon ordered the army to withdraw. The Russians then attacked the
retreating French army and sources say that Poncelet was left for dead on the battlefield.
Poncelet was held as a prisoner in Saratov and it was during this time that he discovered
the following theorem, now bearing his name.

Theorem 3.7. (Poncelet’s Theorem, 1813, ellipse version) Given one ellipse con-
tained entirely inside another, if there exists one circuminscribed (simultaneously inscribed
in the outer and circumscribed around the inner) n-gon, then every point on the boundary
of the outer ellipse is the vertex of some circuminscribed n-gon.

Poncelet’s theorem says that if you shoot a ball starting at a point on the exterior
ellipse, shooting tangent to the smaller ellipse, and the path closes in n steps, then no
matter where you begin the path will close in n steps. There are now many proofs of
Poncelet’s theorem – of course there is one due to Poncelet [58], one due to Griffiths
and Harris [38], and in 2015 for the bicentennial of Poncelet’s theorem, a proof due to
Halbeisen and Hungerbühler appeared [41].

Though this version of Poncelet’s theorem is about two ellipses, using an affine trans-
formation does not change the Poncelet nature of an inner ellipse. Thus we may assume
that the outer ellipse is the unit circle. Returning to Gau and Wu’s theorem, we see that
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it says that the boundary of the numerical range of a compression of the shift operator
is a Poncelet curve; that is, it is the case that given any point λ on the unit circle we
can find a polygon with all vertices on the unit circle that circumscribes the bounding
curve. All of the polygons will have the same number of sides. While the curves have
this beautiful property, they are not usually ellipses and we therefore call them Poncelet
curves. For further study in this regard, we note that work of Mirman [55] looks at this
same property as well as packages of Poncelet curves; that is, what if instead of connecting
successive points, we connect every other point? What happens if we connect every third
point? Examples of higher-degree cases in which the numerical range is elliptical can be
found in [25,29,37].

Example 3.8. Consider the special case in which B(z) = zn, and the matrix repre-
senting SB is the n × n Jordan block. Then the unitary 1-dilations are parametrized by
the unit circle and for each λ ∈ T the numerical range of Uλ is the convex hull of the points
for which B̂(z) = zB(z) = zn+1 = λ. By Theorem 3.4, the intersection of all W (Uλ) over
λ ∈ T is the numerical range of SB. It is now easy to see that the numerical range must
be bounded by a circle. Looking at the points on the unit circle that give rise to the real
eigenvalues, we see that the radius of the bounding circle must be cos(π/(n + 1)). (See
also [40,69] for this and related results.)

Thus, we have the following result.

Theorem 3.9. The numerical range of the n × n Jordan block is a circular disk of
radius cos(π/(n+ 1)).

We note that this circular disk of radius cos(π/(n + 1)) is inscribed in the convex
(n+ 1)-gon with vertices equally spaced on the unit circle; in other words, the boundary
is a Poncelet circle.

For Poncelet ellipses inscribed in triangles, we refer to the paper [24]. For more on a
Blaschke product perspective of Poncelet’s theorem, see also [25,26].

4. Extensions: General inner functions and other defect indices

Now we consider infinite Blaschke products as well as general inner functions. The
compression of the shift is defined as in (8).

For an infinite Blaschke product, we require that the zeros an ∈ D satisfy the Blaschke
condition

∑∞
n=1(1 − |an|) < ∞. We recall ([8]) that if an operator T is a completely

nonunitary contraction with a unitary 1-dilation, then
(1) every eigenvalue of T is in the interior of W (T );
(2) W (T ) has no corners in D.

4.1. Compressions of the shift with inner functions as symbol. To obtain
the matrix representation for our operators with inner function θ as symbol, we consider
two orthogonal decompositions of Kθ: The first decomposition will be

(9) M1 = C(S�θ) = {x(θ(z)− θ(0))/z : x ∈ C} and N1 = Kθ �M1

while the second will be

(10) M2 = C(θ θ(0)− 1) and N2 = Kθ �M2.

Computations then show that

Sθ(xS
�θ + w) = x((θ θ(0)− 1)θ(0) + Sw

for x ∈ C and w ∈ N1. Thus, we get this matrix representation for unitary 1-dilations on
K = Kθ ⊕ C:
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Figure 4.1. An approximation of an infinite Blaschke product
with one singularity

Sθ =

[
λ 0
0 S

]
and Uαβ =

⎡
⎣ λ 0 α

√
1− |λ|2

0 S 0

β
√

1− |λ|2 0 −αβλ

⎤
⎦ .

Here α, β have modulus 1 and |λ| < 1. If θ(0) = 0, then λ = 0. It appears that there are
several free variables, but up to unitary equivalence there is only one free parameter and
that is the value of αβ. Thus, the unitary dilations may be parametrized by γ ∈ T. We
have the celebrated theorem of D. Clark.

Theorem 4.1. [18] If θ is inner and θ(0) = 0, then all unitary 1-dilations of Sθ are
equivalent to rank-1 perturbations of Szθ.

For compressions of the shift with a Blaschke product as symbol, we obtain the
following:

Theorem 4.2. [15] Let B be an infinite Blaschke product. Then the closure of the
numerical range of SB satisfies

W (SB) =
⋂
γ∈T

W (Uγ),

where the Uγ are the unitary 1-dilations of SB (or, equivalently, the rank-1 Clark pertur-
bations of SB̂).

For some functions, we get an infinite version of Poncelet’s theorem, see Figure 4.1.

To extend this theorem to arbitrary inner functions, the following well-known result
of Frostman is useful.

Theorem 4.3 (Frostman’s Theorem). Let I be an inner function. Let a ∈ D and
ϕa(z) =

z−a
1−az

. Then ϕa ◦ I is a Blaschke product for almost all a ∈ D.

Every inner function is, therefore, a uniform limit of Blaschke products. So, if θ is
an arbitrary inner function, we may find a sequence (Bn) of Blaschke products convering
uniformly to θ. Since

Pθf = θP−(θf) for f ∈ H2,

where P− : L2(T) → L2(T) � H2 is the orthogonal projection, ‖Bn − θ‖∞ → 0 implies
that ‖PBn − Pθ‖ → 0. We may use this to obtain W (Sθ) from W (SBn) where Bn is a
Blaschke product. For more details, see [15].
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Combining results in [8] with Frostman’s theorem tells us that Theorem 4.2 holds for
arbitrary inner functions.

4.2. Higher defect index. Thus far, our operators have defect index equal to 1.
However, the situation for more general defect index and an operator on a complex separa-
ble Hilbert space H was studied by Bercovici and Timotin [8]. They considered n-dilations
of contractions, which are unitary dilations of T that act on H ⊕ Cn. In general, a con-
traction can be written as a direct sum of a unitary operator and a completely nonunitary
contraction. Since we understand the numerical range of the unitary piece of the op-
erator, most of the work in a proof focuses on the completely nonunitary part of the
contraction. To state the next result, we let DT = (I−T �T )1/2 denote the defect operator
and DT = DTH denote the defect space.

Theorem 4.4. Let T be a contraction with dim DT = dim DT� = n < ∞. Then

W (T ) =
⋂

{W (U) : U a unitary n− dilation of T}.

Once again, we see that we can use the “most economical” dilations of T . Bercovici
and Timotin also show that if � is a support line for the closure of the numerical range of
T , then there is a unitary n-dilation of T for which � is a support line for W (U). In some
sense, then, the geometry extends to this situation as well.

5. Compressed shifts on the bidisk

5.1. Two-variable Setup. While the earlier sections discuss many results on D,
there is another direction to pursue, namely compressions of shifts in several variables. To
that end, let D2 denote the unit bidisk and T2 its distinguished boundary

D2 = {(z1, z2) : |z1|, |z2| < 1} and T2 = {(τ1, τ2) : |τ1|, |τ2| = 1}.
In this setting, many one-variable objects generalize easily. Indeed, the Hardy space
H2(D2) consists of functions of the form

f(z) =

∞∑
m,n=0

am,nz
m
1 zn2 , where

∞∑
m,n=0

|am,n|2 < ∞.

Then there are two natural shift operators, Sz1 and Sz2 , on H2(D2), defined by [Szj (f)](z)

= zjf(z) for j = 1, 2. Similarly, a function Θ is inner if Θ ∈ Hol(D2) and limr↗1 |Θ(rτ)| = 1
for a.e. τ ∈ T2. Then ΘH2(D2) is a shift-invariant subspace of the two-variable Hardy
space and in analogy with the one-variable setting, one can define two-variable model
spaces as

KΘ = H2(D2)�ΘH2(D2)

and the associated compressed shifts

S̃1
Θ = PΘSz1 |KΘ and S̃2

Θ = PΘSz2 |KΘ ,

where PΘ is the orthogonal projection onto KΘ. The study of such compressed shifts is
aided by the existence of nice decompositions of KΘ into shift-invariant subspaces. Indeed,
Ball, Sadosky, and Vinnikov [7] showed that there are subspaces S1 and S2 such that

(11) KΘ = S1 ⊕ S2 and Sz1S1 ⊆ S1, Sz2S2 ⊆ S2.

Such decompositions are called Agler decompositions and were introduced by J. Agler
in a different form in [2]. For more information about Agler decompositions and their
properties see [3,10,11,19,49,68] and the references therein. Then using basic properties
of multiplication operators, one can show (as in [12]):

Lemma 5.1. Assume KΘ = S1 ⊕ S2 gives an Agler decomposition as in (11). Then

a. If S1 �= {0}, then W (S̃1
Θ) = W (Sz1 |S1) = D.

b. If S1 = {0}, then W (S̃1
Θ|S1) = ∅.

Licensed to AMS.



NUMERICAL RANGE AND COMPRESSIONS OF THE SHIFT 255

Typically S1 �= {0} and so Lemma 5.1 says that most compressed shifts have maximal
numerical ranges. This renders the standard numerical range questions trivial. To obtain
interesting questions, one can further compress the multiplication operators and define

S1
Θ := PS2 S̃

1
Θ|S2 = PS2Sz1 |S2 ,

where S2 is any subspace arising from an Agler decomposition of KΘ as in (11). The
numerical ranges of such S1

Θ have quite interesting properties, which will be discussed
later. In what follows, we always assume S2 �= {0}.

5.2. Rational Inner Functions. First consider the two-variable analogues of finite
Blaschke products, called rational inner functions. Although more complicated than finite
Blaschke products, rational inner functions still have fairly nice structures. Indeed, as
shown in [4,62], every rational inner function Θ with degΘ = (m,n) can be written as

Θ = λ
p̃

p
, where p̃(z) = zm1 zn2 p

(
1
z̄1
, 1
z̄2

)
,

and λ ∈ T. Here degΘ = (m,n) means that, after canceling any common factors of the
numerator and denominator, m is the largest power of z1 appearing in Θ and n is the
largest power of z2 appearing in Θ. Furthermore, one can choose p so that it has at most
a finite number of zeros on T2, is nonvanishing on D2 ∪ (D× T) ∪ (T× D), and shares no
common factors with p̃. For example, up to a unimodular constant, a general degree (1, 1)
rational inner function has the form

Θ(z) =
p̃(z)

p(z)
=

az1z2 + bz2 + cz1 + d

a+ bz1 + cz2 + dz1z2
,

where p = a+ bz1+ cz2+dz1z2 satisfies the stated conditions on its zero set and shares no
common factors with p̃. For rational inner functions Θ, the associated model spaces KΘ

have particularly nice Agler decompositions. For example, the following result describes
properties of S2 from (11):

Lemma 5.2. Let Θ = p̃
p

be rational inner with degree (m,n) and let H = S2 � Sz2S2.

Then dimH = m and if g ∈ H, then g = q
p

where q is a polynomial with deg q ≤ (m−1, n).

The complete result appears in [12], but related results and ideas appeared earlier
in [11, 68]. Rational inner functions also have close connections to one-variable finite
Blaschke products. For Θ a rational inner function with degΘ = (m,n), define the
exceptional set

EΘ = {τ ∈ T : p(τ1, τ) = 0 for some τ1 ∈ T}.
Then if τ ∈ T \ EΘ, the function θτ (z) := Θ(z, τ) is a finite Blaschke product with
deg θτ = m. In what follows, we let Kθτ denote the one-variable model space associated
to each θτ .

5.3. Results. Let us restrict to rational inner Θ and consider the compressed shift
S1
Θ and its numerical range.

Stating the main results requires some notation. Let H2
2 (D) denote the one-variable

Hardy space with variable z2 and H2
2 (D)

m := ⊕m
j=1H

2
2 (D) denote the space of vector-valued

functions
−→
f = (f1, . . . , fm) with fj ∈ H2

2 (D). If M is a bounded, m × m matrix-valued
function, let TM denote the matrix-valued Toeplitz operator defined by

(12) TM
−→
f = PH2

2 (D)
m(M

−→
f ).

Then the following results and their corollaries appear in [12]. The proofs rely heavily on
the structure of Agler decompositions, as given in Lemma 5.2 and other results.
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Theorem 5.3. Let Θ = p̃
p

be rational inner of degree (m,n) and let S2 be as in (11).
There is an m×m matrix-valued function MΘ with entries continuous on D and rational
in z2 such that S1

Θ is unitarily equivalent to TMΘ , the matrix-valued Toeplitz operator with
symbol MΘ, defined as in (12).

The symbol MΘ generalizes the classical matrix associated to a compressed shift.
Indeed, if Θ(z) = B(z1) is a one-variable finite Blaschke product, then

MΘ = the constant matrix of SB on KB given in (7).

In some more complicated situations, we can still compute MΘ. For example, let
Θ(z) =

(
2z1z2−z1−z2

2−z1−z2

)(
3z1z2−z1−2z2

3−2z1−z2

)
. Then an application of [12, Theorem 4.4] gives

MΘ(z2) =

⎡
⎢⎢⎢⎢⎢⎣

1

2− z̄2
0

−
√
6(1− z̄2)

2

(2− z̄2)(3− z̄2)

2

3− z̄2

⎤
⎥⎥⎥⎥⎥⎦ .

As in this example, Theorem 4.4 from [12] gives lower triangular matrices, rather than
upper triangular ones like in (7), because the proof orders the basis elements differently
than in the classical one-variable setup. This relationship between S1

Θ and the Toeplitz
operator with symbol MΘ gives information about the numerical range. Specifically,

Theorem 5.4. Let Θ = p̃
p

be rational inner of degree (m,n), let S2 be as in (11), and

let MΘ be as in Theorem 5.3. Then W (S1
Θ) = the convex hull of

(⋃
τ∈T

W (MΘ(τ))
)
.

For example, this means that if Θ(z) =
(

2z1z2−z1−z2
2−z1−z2

)(
3z1z2−z1−2z2

3−2z1−z2

)
, then by the

elliptical range theorem, the closure of W (S1
Θ) is the convex hull of a union of elliptical

disks. Moreover, Theorem 5.4 allows us to connect the study of W (S1
Θ) to the one-

variable setting as follows. Recall that the notation in the following theorem was defined
after Lemma 5.2.

Theorem 5.5. Let Θ = p̃
p

be rational inner of degree (m,n) and let S2 be as in (11).

Then W (S1
Θ) = the closure of the convex hull of

( ⋃
τ∈T\EΘ

W (Sθτ on Kθτ )
)
.

Thus, W (S1
Θ) can also be obtained using the numerical ranges of one-variable com-

pressions of the shift associated to Θ. As this formula no longer involves S2, it implies the
following:

Corollary 5.6. Let Θ = p̃
p

be rational inner of degree (m,n) and let S2, S̃2 be as in
(11). Then W (PS2Sz1 |S2) = W (PS̃2

Sz1 |S̃2
).

This is important because, in general, Agler decompositions are not unique and one
would expect that W (S1

Θ) would depend heavily on the choice of S2. Finally, one can
use the connection to one-variable compressions of the shift to characterize when S1

Θ has
maximal numerical radius w(S1

Θ), where the numerical radius is sup{|z| : z ∈ W (S1
Θ)}.

Then:

Corollary 5.7. Let Θ = p̃
p

be rational inner of degree (m,n) and let S2 be as in
(11). Then w

(
S1
Θ

)
= 1 if and only if Θ has a singularity on T2.

This indicates, for example, that many ∂W (S1
Θ) cannot satisfy a Poncelet property

because they touch T.
To say more about the geometry of W (S1

Θ), we restrict to very simple rational inner
functions, namely Θ = θ21 where θ1 = p̃

p
with p(z) = a − z1 + cz2 with a, c > 0 and
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p(1,−1) = 0. Then degΘ = (2, 2) and so each MΘ(τ) is a 2 × 2 matrix. Indeed, each
W (MΘ(τ)) is a circular disk and so the numerical range looks like the convex hull of this:

Figure 5.1. A collection of boundaries of W (MΘ(τ )) associated

to Θ(z) =
(

2z1z2+z1−z2
2−z1+z2

)2

.

In this case, taking the convex hull merely fills in the hole in this set. So, the boundary
of W (S1

Θ) is precisely the outer boundary of the family of disks W (MΘ(τ)). This should
bring to mind envelopes. Indeed, in this case, one can use the discriminant envelope from
Definition 2.5 to obtain formulas for the boundaries of these numerical ranges:

Theorem 5.8. For Θ = θ21 given above, the boundary of W (S1
Θ) is the curve E =

(x(t), y(t)) for t ∈ [0, 2π), where

x(t) =
a+ c cos t

a+ c
+

ac(1− cos t)

(a+ c)2
cos

(
t− arcsin

(
a

a+ c
sin t

))
;

y(t) =
c sin t

a+ c
+

ac(1− cos t)

(a+ c)2
sin

(
t− arcsin

(
a

a+ c
sin t

))
.

For more details and additional geometric results about W (S1
Θ), see [12].

6. Open Questions

In [21] M. Crouzeix stated the following conjecture:
Conjecture (2004): There exists a constant C such that for any polynomial p ∈ C[z]

and A an n× n matrix, the inequality holds:

‖p(A)‖ ≤ Cmax |p(z)|z∈W (A).

The best constant should be C = 2.

First let us see why the constant must be at least 2. Let p(z) = z and A =

[
0 1
0 0

]
.

Then ‖p(A)‖ = ‖A‖ = 1 and max |p(z)|z∈W (A) = max{z:|z|≤1/2} |z| = 1/2. So C ≥ 2.
Even though it is unclear that such a constant exists let alone is equal to 2, there

is reason to believe the conjecture is true. Crouzeix showed that in fact such a constant
does exist and is between 2 and 11.08. Okubo and Ando [57] showed that the conjecture
is true if the numerical range is a disk. Badea, Crouzeix and Delyon presented several
approaches to this problem and others in [6]. Recently, Glader, Kurula and Lindström
[35] considered the problem for tridiagonal 3 × 3 matrices with constant diagonal; this
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includes 3 × 3 matrices with elliptical numerical range and one eigenvalue at the center
of the ellipse. Choi [17] showed the conjecture holds for 3 × 3 matrices that are “nearly”
Jordan blocks. And recently, Crouzeix and Palencia [22] showed that the best constant is
between 2 and 1 +

√
2.

Crouzeix and Palencia’s proof relies on a crucial lemma, which we reproduce below.
In what follows, we let Ω be a bounded open convex set with smooth boundary and let
A(Ω) denote the algebra of functions continuous on Ω and holomorphic on Ω.

Lemma 6.1 (Crouzeix and Palencia). Let T be a bounded Hilbert space operator and
let Ω be a bounded open set containing the spectrum of T . Suppose that for each f ∈ A(Ω)
there exists g ∈ A(Ω) such that

‖g‖Ω ≤ ‖f‖Ω and ‖f(T ) + g(T )�‖ ≤ 2‖f‖Ω.
Then

‖f(T )‖ ≤ (1 +
√
2)‖f‖Ω, f ∈ A(Ω).

In proving their theorem, Crouzeix and Palencia apply the lemma with

g = Cf where (Cf)(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ, z ∈ Ω.

That is, g is the Cauchy transform of f .
Ransford and Schwenninger [61] give a short proof of this and show that in this lemma,

the constant (1 +
√
2) is sharp. However, as they point out, this is not a counterexample

to the theorem; it just shows that the theorem will not be established “merely by adjusting
the proof” of the lemma. Taking g to be the Cauchy transform of f and considering the
map from f to g, we see that this is an antilinear map and it maps 1 to 1; we say that it
is antilinear and unital. The example appearing in [61] is antilinear, but sends 1 to −1.
The authors of [61] suggest considering the following question, as a positive answer to this
would establish the Crouzeix conjecture.

Question. [61] Let T be a bounded Hilbert space operator and let Ω be a bounded
open set containing the spectrum of T . Suppose that there exists a unital antilinear map
α : A(Ω) → A(Ω) such that for all f ∈ A(Ω)

‖α(f)‖Ω ≤ ‖f‖Ω and ‖f(T ) + (α(f))(T )�‖ ≤ 2‖f‖Ω.
Does it follow that

‖f(T )‖ ≤ 2‖f‖Ω?
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On the asymptotics of n-times integrated semigroups

José E. Galé, Maŕıa M. Mart́ınez, and Pedro J. Miana

Abstract. We discuss the behaviour at infinity of n-times integrated semi-
groups with nonquasianalytic growth. The results obtained provide in this
setting extensions of the Arendt-Batty-Lyubich-Vũ theorem on stability of
C0-semigroups and of a theorem of El Mennaoui on stability of bounded once
integrated semigroups.

1. Introduction

The study of the asymptotic behaviour at infinity of discrete and continuous
semigroups is a well established topic in operator theory. In this setting, peripheral
spectral conditions on the semigroup are of significant importance. As a matter of
fact, the following results hold true. Assume that a bounded operator T on a Banach
space X, with spectrum σ(T ), is power-bounded, which is to say supn≥1 ‖Tn‖ <

∞. Gelfand proved that if T is invertible, T and T−1 are power-bounded, and
σ(T ) = {1} then T is the identity operator I; see [12]. This was extended by
Esterle, who showed that for every power-bounded T such that σ(T ) = {1} one has
‖Tn(I − T )‖ → 0 as n→∞; see [8]. Further, Katznelson and Tzafriri proved that
in order to arrive at the property limn→∞ ‖Tn(I − T )‖ = 0 is enough to assume
σ(T )∩T ⊂ {1} where T is the unit circle of complex numbers; see [13]. Other proofs
of the Katznelson-Tzafriri theorem were given by Allan, O’Farrell and Ransford in
[1], Allan and Ransford in [2], and also in [16] where, to complete the picture, Vũ
did notice that the Katznelson-Tzafriri theorem can be reduced to the Esterle’s
theorem. Of course, it is interesting to relax the growth conditions on T . In this
direction, T is said to be power-dominated if there exists a sequence of positive
numbers μn (n ≥ 0), with limn→∞ μ−1

n μn+1 = 1, such that ‖Tn‖ ≤ μn (n ≥ 0). In
[2], Allan and Ransford revealed the interest of that growth condition by proving its
equivalence with the spectral condition σ(T ) ⊂ D, where D is the (open) unit disc.
They also established some quantitative generalizations of the Katznelson-Tzafriri
theorem for power-dominated operators.

The above results apply to monothetic semigroups. As regards the continuous
semigroup case, let us first remark that Katznelson and Tzafriri proved in fact the
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fairly general result that if T is a power-bounded operator and f is an analytic
function of spectral synthesis with respect to its peripheral spectrum, lying in the
Wiener algebra on the unit disc, then limn→∞ ‖Tnf(T )‖ = 0. Here f(T ) is given
by the usual functional calculus associated with T , see [13]. The analogous version
of the above theorem for bounded C0-semigroups of operators was obtained by J.
Esterle, E. Strouse and F. Zouakia in [9, Théorème 3.4] and independently by Q.
P. Vũ in [17, Theorem 3.2]. In such a continuous version Tn is replaced by T (t),
t > 0, and f(T ) is given by the corresponding calculus for T (t) associated with
f in L1(R+). This result provides convergence in the norm topology, as in the
discrete semigroup case quoted above. There are other significant results about the
asymptotic behaviour of C0-semigroups that are referred to the strong topology,
which is to say that they are given in terms of orbits.

Recall that if A is a general closed operator on a Banach space X with dense
domain D(A) the abstract Cauchy problem of first order for A is the differential
equation with initial value x

(1.1) u′(t) = Au(t), t ≥ 0; u(0) = x ∈ X.

When A satisfies the Hille-Yosida condition, then A is the infinitesimal generator
of a C0-semigroup T0(t) = etA and the solution u : [0,∞) → D(A) ⊆ X of (1)
is given by u(t) = T0(t)x. Thus the study of the limit limt→∞ T0(t)x reflects the
asymptotic behavior of the solution u of (1.1) at infinity. In this respect, a bounded
C0-semigroup (T0(t))t≥0 is said to be stable if limt→∞ T0(t)x = 0, x ∈ X. The
stability of a bounded C0-semigroup T (t) = etA on a Banach space was established
in [3] and [14] -under certain peripheral spectral assumptions on A- with different
proofs and independently one from each other. We refer to this stability result as
the Arendt-Batty-Lyubich-Vũ theorem.

Similarly to the discrete case, the boundedness of the semigroup can also be
replaced with a less restrictive condition. Namely, the Arendt-Batty-Lyubich-Vũ
theorem was extended by Vũ to semigroups of nonquasianalytic growth, in due
form; see [18] and the next section. For more information on asymptotic behaviour
and stability of operator semigroups we refer the reader to [4], [6] and [15].

Not all closed operators A generate C0-semigroups, but there is a class of them
which is still important in the study of abstract Cauchy equations. It is formed
by the generators of families -of bounded operators- so called n-times integrated
semigroups, for n ≥ 0 (see next section for the definition and some properties).
Let Tn(t) denote such a family, with generator A, where t runs over [0,∞). Then,
as before, the asymptotic behaviour of the solution u of the Cauchy equation for
A should be described in terms of the limit limt→∞ Tn(t)x, or ergodic versions of
it. However, it is still not entirely clear what should be an accurate version of the
Arendt-Batty-Lyubich-Vũ theorem in the setting of integrated semigroups. In [7],
El Mennaoui establishes a partial result like the above one, for uniformly bounded
once integrated semigroups with invertible generators.

In the present note, we extend El Mennaoui’s theorem to integrated semigroups
with non-quasianalytic growth and generator not necessarily invertible. For this,
we combine results and arguments of [7] and [18]. Doing so, we in fact find an
extension of the Arendt-Batty-Lyubich-Vũ theorem -and its extension by Vũ in
[17]- to integrated semigroups.

The organization of the paper is simple. After the introduction just written
above, Section 2 is devoted to definitions and a minimum of properties which seem
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necessary in order to understand the subject. We also state in Section 2 the main
theorem and its corollaries. Section 3 contains the proofs.

2. Preliminaries and statement of the main theorem

Let X be a Banach space and let B(X) be the Banach algebra of bounded
operators on X. Let n be a nonnegative integer. A closed operator on X with
domain D(A) is said to be the generator of an exponentially bounded n-times
integrated semigroup if there exist a family (Tn(t))t≥0 in B(X) and constants w ∈ R,
C ≥ 0 for which ‖Tn(t)‖ ≤ Cewt (t ≥ 0) such that

(λ−A)−1x = λn

∫ ∞

0

e−tλTn(t)x dt, �λ > w, x ∈ X.

When n = 0 the family T0(t) is a C0-semigroup and A is its infinitesimal generator;
see [4, Sections 3.2 and 8.3], [5] and references therein. Let σ(A), σP (A

∗) denote
the spectrum of A and the point spectrum of the adjoint operator of A, respectively.
Also, we denote by ρ(A) the resolvent set of A.

A positive measurable locally bounded function ω(t) with domain R or [0,∞)
is called a weight if ω(t) ≥ 1 and ω(s + t) ≤ ω(s)ω(t) for all s, t in its domain. A
weight ω on [0,∞) is called nonquasianalytic if∫ ∞

0

logω(t)

t2 + 1
dt <∞.

We assume additionally, as in [18], that lim inft→∞ ω(t)−1ω(s+ t) ≥ 1 for all s > 0.
Then one can define the function ω̃ on R given by

ω̃(s) := lim sup
t→∞

ω(t+ s)

ω(t)
, if s ≥ 0; ω̃(s) := 1, if s < 0.

Clearly, ω̃ is a weight function and ω̃(t) ≤ ω(t) for every t ≥ 0.
Recall that a bounded C0-semigroup (T0(t))t≥0 is said to be stable if

limt→∞ T0(t)x = 0 for all x ∈ X. The following is Vũ’s extension in [18] of the
original Arendt-Batty-Lyubich-Vũ theorem on stability (for ω(t) ≡ 1) in [3], [14].

Theorem 2.1. Let T0(t) be a C0-semigroup on a Banach space X with genera-
tor A such that supt≥1 ω(t)

−1‖T0(t)‖ < ∞ for a nonquasianalytic weight

ω : [0,∞) → [1,∞) for which ω̃(t) = O(tk) as t → ∞, for some k ≥ 0. Assume
that σ(A) ∩ iR is countable and σP (A

∗) ∩ iR = ∅. Then

lim
t→∞

ω(t)−1T0(t)x = 0 (x ∈ X).

It seems interesting to obtain stability type results for n-times integrated semi-
groups. In this direction, a general once integrated semigroup (T1(t))t≥0 is called

stable in [7, p. 363] when limt→∞ T1(t)x exists for every x ∈ D(A). Then it is
shown in [7, Prop. 5.1] that if a once integrated semigroup T1(t) is stable in the
above sense then A must be invertible. The following result is proved by O. El
Mennaoui in [7, Theorem 5.6]. It gives a version of the Arendt-Batty-Lyubich-Vũ
theorem for once integrated semigroups.

Theorem 2.2. Let A be the generator of a once integrated semigroup (T1(t))t≥0

such that supt>0 ‖T1(t)‖ < +∞. Assume that A is invertible, σ(A)∩iR is countable

and σP (A
∗) ∩ iR = ∅. Then there exists limt→∞ T1(t)x for every x ∈ D(A), with

lim
t→∞

T1(t)x = −A−1x (x ∈ D(A)).

Licensed to AMS.
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The purpose of this note is to extend Theorem 2.1 and Theorem 2.2 to n-
times integrated semigroups with nonquasianalytic growth, for every n ∈ N, in a
suitable way. We do not discuss here what could be the most accurate notion of
stability for integrated semigroups, but wish to remark the following fact. For a
general bounded C0-semigroup (T0(t))t≥0 its induced n-times integrated semigroup
is defined by

Tn(t)x =
1

(n− 1)!

∫ t

0

(t− s)n−1T0(s)x ds, t > 0, x ∈ X.

Then the derived estimate on (Tn(t))t≥0 which is to be expected from the integral
expression is supt>0 t

−n‖Tn(t)‖ <+∞ (so that for n = 1 it is supt>0 t
−1‖T1(t)‖ <+∞

instead of boundedness). Under such a condition a suitable behaviour of a n-
integrated semigroup Tn(t) at infinity would be limt→∞ t−nTn(t)x = 0, x ∈ X.

Our main result is as follows. In the statement, and throughout the paper, the
symbol “ ∼ ” in a(t) ∼ b(t) as t → ∞ means that limt→∞ b(t)−1a(t) = c > 0 as
t→∞.

Theorem 2.3. Let ω be a nonquasianalytic weight on [0,∞) such that ω̃ is
of polynomial growth at infinity. For a fixed natural number n let (Tn(t))t≥0 be a
n-times integrated semigroup on a Banach space X, with generator A, such that
sup{ω(t)−1‖Tn(t)‖ : t ≥ 1} < +∞.

Assume in addition that σ(A) ∩ iR is countable, σP (A
∗) ∩ iR = ∅. For every

μ > 0, we have:

(i) If ω(t)−1 = o(t−n+1) as t→∞, then

lim
t→∞

ω(t)−1Tn(t)A
n(μ−A)−2nx = 0, x ∈ X.

(ii) If ω(t) ∼ tn−1 as t→∞, then for all x ∈ X,

lim
t→∞

t−n+1Tn(t)A
n(μ−A)−2nx = − 1

(n− 1)!
An−1(μ−A)−2nx.

From the above result, we will obtain extensions of Theorem 2.1 and Theorem
2.2; namely, see Corollary 3.2 and Corollary 3.3.

3. Proofs

In order to establish Theorem 2.3 one needs to extend [18, Theorem 7] and [7,
Theorem 5.6]. Thus Proposition 3.1 below is a slight improvement of [18, Theorem
7], which is in turn an extension of the Arendt-Batty-Lyubich-Vũ theorem. The
case β(t) ≡ 1 in Proposition 3.1 appears in [3, Remark 3.3].

Proposition 3.1. Let Y be a Banach space and let (U(t))t≥0 ⊂ B(Y ) be a
C0-semigroup with generator L. Let β be a nonquasianalytic weight on [0,∞) such

that β̃(t) = O(tk) as t → ∞, for some k ≥ 0. Assume that there exists W ∈ B(Y )
such that U(t)W = WU(t) for all t ≥ 0 and ‖U(t)W‖ ≤ β(t) for t ≥ 0. If σ(L)∩iR
is countable and σP (L

∗) ∩ iR = ∅ then

lim
t→∞

1

β(t)
U(t)Wy = 0, y ∈ Y.
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Proof. The overall argument goes along similar lines as in [18, Theorem 7],
lemmata included, suitably adapted to the present situation.

Put q(y) := lim supt→∞ β(t)−1‖U(t)Wy‖, y ∈ Y . Then q is a seminorm on

Y such that q(y) ≤ ‖y‖ for all y ∈ Y . Moreover, q(U(s)y) ≤ β̃(s)q(y) for every
s ≥ 0, y ∈ Y , and so N := {y ∈ Y : q(y) = 0} is a U(t)-invariant closed subspace

of Y . Hence one can define a norm q̂ and an operator Û(t) on Y/N given for

y ∈ Y, t ≥ 0 by q̂(π(y)) := q(y) and Û(t)(π(y)) := π(U(t)y), respectively, where π is

the projection Y → Y/N . It is readily seen that (Û(t))t≥0 is a strongly continuous

semigroup in the norm q̂ on Y/N , such that q̂(Û(t)π(y)) ≥ q̂(π(y)) for every y ∈ Y
and t ≥ 0. Let (Z, ‖·‖Z) be the q̂-completion of Y/N , and let V (t) be the continuous

extension on Z of Û(t) for all t > 0. Then:

(a) ‖π(y)‖Z = lim supt→∞
1

β(t)‖U(t)Wy‖ for y ∈ Y . This is obvious.

(b) ‖V (t)‖Z→Z ≤ β̃(t), t ≥ 0. This follows by continuity and density from the

estimate q̂(Û(t)π(y)) ≤ β̃(t)q(y) ≤ β̃(t)q̂(π(y)), for every y ∈ Y , t ≥ 0.
Then one easily obtains that (V (t))t>0 is a C0-semigroup in B(Z).

(c) ‖V (t)z‖Z ≥ ‖z‖Z for all z ∈ Z: It follows also by continuity and density
since for y ∈ Y and t ≥ 0,

q̂(Û(t)π(y)) = lim sup
s→∞

β(t+ s)

β(t)

‖U(t+ s)Wy‖Y
β(t+ s)

≥ q̂(π(y)).

(d) V (t) ◦ π = π ◦ U(t) (t ≥ 0) and then one obtains that π(D(L)) ⊆ D(H)
and H ◦ π = π ◦ L on D(L), where H is the infinitesimal generator of
(V (t))t≥0.

(e) σ(H) ⊆ σ(L): By hypothesis, (U(t))t≥0 is of finite exponential type τ
whence

R(λ, L)y := −(λ− L)−1y = −
∫ ∞

0

e−λtU(t)y dt,

for y ∈ Y and λ ∈ C, �λ > δ > min{τ, 0}.
Similarly, (V (t))t≥0 is of exponential type 0 by (b), and therefore we

have for z ∈ Z and λ ∈ C, �λ > 0,

R(λ,H)z := −(λ−H)−1z = −
∫ ∞

0

e−λtV (t)z dt.

On the other hand since W commutes with U(t), t ≥ 0, one has that W
commutes with R(λ, L) for �λ > δ. Then q(R(λ, L)y) ≤ ‖R(λ, L)‖q(y)
for all y ∈ Y , which implies that N is R(λ, L)-invariant. Hence one

can define the bounded operator R̂(λ, L) on Z given by R̂(λ, L)(π(y)) :=
π (R(λ, L)y), y ∈ Y . Thus,

R̂(λ, L)π(y) = π (R(λ, L)y)

= −
∫ ∞

0

e−λtπ (U(t)y) dt

= −
∫ ∞

0

e−λtV (t)π(y)dt = R(λ,H)π(y)

where (d) has been applied in the last but one equality. Hence R̂(λ, L) =
R(λ,H), for �λ > δ. Now, for �λ > δ and any μ ∈ ρ(L), by using the
resolvent identity R(λ, L) − R(μ, L) = (λ − μ)R(λ, L)R(μ, L) on Y and
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its corresponding identity for R̂(λ, L) and R̂(μ, L) on Z, one readily finds

that there exists R(μ,H) with R(μ,H) = R̂(μ, L), see [18, p. 234]. Thus
μ ∈ ρ(H). Hence ρ(L) ⊆ ρ(H) as we claimed.

(f) σP (H
∗) ⊆ σP (L

∗). This is straightforward to see, using restrictions of
functionals; see [18, p. 234].

Now, suppose, if possible, that Z �= {0}. By (e), we have that σ(H) ∩ iR is
countable and then iR\σ(H) �= ∅. So, by (c) and [18, Lemma 2], the C0-semigroup

(V (t))t≥0 can be extended to a C0-group (Ṽ (t))t∈R such that ‖Ṽ (−t)‖Z→Z ≤ 1

(t > 0) and ‖Ṽ (t)‖Z→Z = O(tk), as t→ +∞. Also, σ(H) is nonempty by (b) and
[17, Lemma 5].

Then reasoning as in [18, Theorem 7] one gets σP (H
∗) ∩ iR �= ∅ whence

σP (L
∗) ∩ iR �= ∅ by (f) above. This is a contradiction and so we have proved

that Z = {0}. By (a) we get the statement. �

Proof of Theorem 2.3. Since ω is nonquasianalytic one has (0,∞) ⊆ ρ(A). Take
δ ∈ R such that μ > δ > 0 and for x ∈ X define

(3.1) ‖x‖Y := sup
t≥0

∥∥∥∥∥∥e−δt(Tn(t)A
n(μ−A)−nx+

n−1∑
j=0

tj

j!
Aj(μ−A)−nx)

∥∥∥∥∥∥ .
Note that A(μ−A)−1 = −I+μ(μ−A)−1 is a bounded operator onX and Tn(0) = 0,
so ‖ · ‖Y is a norm on X and there exists a constant Mδ > 0 such that

(3.2) ‖(μ−A)−nx‖ ≤ ‖x‖Y ≤Mδ‖x‖, x ∈ X.

Let Y be the Banach space obtained as the completion of X in the norm ‖ · ‖Y .
As in the proof of the Extrapolation Theorem [5, Theorem 0.2], there exists a
closed operator B on Y which generates a C0-semigroup (S(t))t≥0 ⊂ B(Y ) such
that D(Bn) ↪→ X ↪→ Y and A = BX where the operator BX is given by the
conditions D(BX) := {x ∈ D(B) ∩ X : Bx ∈ X}, BX(x) := B(x) (x ∈ X).
Moreover, σP (B

∗) ⊆ σP (A
∗), and also ρ(A) = ρ(B) with

(3.3) (λ−A)−1x = (λ−B)−1x, λ ∈ ρ(A) = ρ(B), x ∈ X;

see [5, Remark 3.1].
Let (Sn(t))t≥0 be the n-times integrated semigroup generated by B on Y , given

by

Sn(t)y :=
1

(n− 1)!

∫ t

0

(t− s)n−1S(s)y ds, y ∈ Y.

Then Sn(t)x = Tn(t)x for all x ∈ X and t ≥ 0. To see this, note that (Tn(t))t≥0 and
(Sn(t))t≥0 are of exponential type so one can rewrite (3.3) above in terms of the
Laplace transforms of (Tn(t))t≥0 and (Sn(t))t≥0 respectively, for �λ large enough.
Then it suffices to apply the uniqueness of the Laplace transform.
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From the above identification between Tn(t) and Sn(t), it follows by application
of (3.1) to Sn(t)x, x ∈ X, that

‖Sn(t)x‖Y = sup
s≥0

∥∥∥∥∥∥e−δs

⎛⎝Tn(s)
An

(μ−A)n
+

n−1∑
j=0

sj

j!

Aj

(μ−A)n

⎞⎠Sn(t)x

∥∥∥∥∥∥
X

= sup
s≥0

∥∥∥∥∥∥Tn(t)e
−δs

⎛⎝Tn(s)
An

(μ−A)n
+

n−1∑
j=0

sj

j!

Aj

(μ−A)n

⎞⎠x

∥∥∥∥∥∥
≤ ‖Tn(t)‖Y→Y ‖x‖Y

which is to say, by density, that ‖Sn(t)‖Y→Y ≤ Cω(t), for all t ≥ 0 and some
constant C.

Now, for t ≥ 0, by reiteration of the well known equality

S(t)y − y =

∫ t

0

BS(s)y ds, y ∈ D(B),

we have

S(t)y = Sn(t)B
ny +

n−1∑
j=0

tj

j!
Bjy, y ∈ D(Bn).

Hence, for every t ≥ 0 and y ∈ Y ,

(3.4) S(t)(μ−B)−ny = Sn(t)

(
B

μ−B

)n

y +
n−1∑
j=0

tj

j!

(
B

μ−B

)j

(μ−B)−(n−j)y

and therefore there exists a constant Cμ > 0 such that

‖S(t)(μ−B)−n‖Y→Y ≤ Cμω(t), t ≥ 0.

Then, by applying Proposition 3.1 with U(t) = S(t), B = L andW = (μ−A)−n,
we obtain

lim
t→∞

1

ω(t)
‖S(t)(μ−B)−ny‖Y = 0, y ∈ Y,

whence, by (3.2), (3.3) and (3.4),

0 = lim
t→∞

1

ω(t)

∥∥∥∥∥∥Tn(t)A
n(μ−A)−nx+

n−1∑
j=0

tj

j!
Aj(μ−A)−nx

∥∥∥∥∥∥
Y

≥ lim sup
t→∞

1

ω(t)

∥∥∥∥∥∥Tn(t)A
n(μ−A)−2nx+

n−1∑
j=0

tj

j!
Aj(μ−A)−2nx

∥∥∥∥∥∥
X

,

for every x ∈ X.
To finish the proof, notice that the assumptions in (i) imply

lim
t→∞

1

ω(t)

n−1∑
j=0

tj

j!
Aj(μ−A)−2nx = 0

whereas assumptions in (ii) entails
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lim
t→∞

1

ω(t)

n−1∑
j=0

tj

j!
Aj(μ−A)−2nx =

1

(n− 1)!
An−1(μ−A)−2nx.

�
Let us consider explicitly the case when the generator A is invertible, which

provides us with a generalization of the El Mennaoui result in [7, Theorem 5.6].

Corollary 3.2. In the setting of Theorem 2.3, assume also that A is invert-
ible. We have:

(i) If ω(t)−1 = o(t−n+1) as t→∞, then

lim
t→∞

ω(t)−1Tn(t)z = 0, z ∈ D(An).

(ii) If ω(t) ∼ tn−1 as t→∞, then

lim
t→∞

t−n+1Tn(t)z = − 1

(n− 1)!
A−1z, x ∈ D(An).

Proof. Let y ∈ D(An) = D(μ − A)n where μ ∈ (0,∞) ⊆ ρ(A). Then there
exists x ∈ X given by x := (μA−1 − I)n(μ − A)ny = A−n(μ − A)2ny. Thus we
have that for every y ∈ D(An) there is x ∈ X such that y = An(μ−A)−2nx. So it
suffices to apply Theorem 2.3 to prove (i) and (ii) of this corollary for y ∈ D(An),

and then, for z ∈ D(An), that supt>0 ω(t)
−1‖Tn(t)‖ <∞. �

Note that for n = 1, Corollary 3.2 (ii) is [7, Theorem 5.6].

Now we give a generalization of the Arendt-Batty-Lyubich-Vũ theorem for
integrated semigroups without assuming that A is invertible.

Corollary 3.3. In the setting of Theorem 2.3, assume part (i), that is,
ω(t)−1 = o(t−n+1) as t→∞, and also that A is densely defined. Then

lim
t→∞

1

ω(t)
Tn(t)x = 0, for all x ∈ X.

Proof. Fix μ ∈ (0,∞) ⊆ ρ(A). For every j ≥ 1, one has
D(Aj) = D((μ − A)j) = R((μ − A)−j), the range of (μ − A)−j . Hence since
D(A) is dense in X we have that (μ − A)−1 has dense image, so (μ − A)−j has
dense image; that is, D(Aj) is also dense in X.

Take y ∈ D(An). It follows from the above remark that there is (zj) ⊂ D(An)
such that limj→∞ zj = (μ − A)ny. Put yj := (μ − A)−nzj . Since
An(μ−A)−n = (−I+μ(μ−A)−1)n ∈ B(X) one has moreover that yj ∈ D(A2n), so

that yj = (μ−A)−2nξj with ξj in X, for each j. Hence lim
t→∞

ω(t)−1Tn(t)A
nyj = 0,

for every j, by Theorem 2.3(i). On the other hand,

‖Anyj −Any‖ = ‖An(μ−A)−n(μ− A)nyj −An(μ−A)−n(μ−A)ny‖
≤ ‖An(μ−A)−n‖‖zj − (μ−A)ny‖ → 0, as j →∞,

Altogether, we have lim
t→∞

ω(t)−1Tn(t)A
ny = 0 for every y ∈ D(An). Finally,

it is enough to use once again the density of D(An) in X and the fact that
supt>0 ω(t)

−1‖Tn(t)‖ <∞ to obtain the statement. �
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Remark 3.4. Let L1(R), L1(R+) be the usual convolution Banach algebras
on the real line R and the positive half-line R+, respectively. Suppose A is the
infinitesimal generator of a uniformly bounded C0-semigroup (T (t))t≥0 on X with
spectrum σ(A). Define S0 as the subspace of functions of L1(R+) which are of
spectral synthesis in L1(R) with respect to the subset iσ(A) ∩ R.

Let Θ0 : L
1(R+) → B(X) be the bounded Banach algebra homomorphism

defined by

Θ0(f)x :=

∫ ∞

0

f(t)T (t)x dt (x ∈ X, f ∈ L1(R+)).

Then Esterle, Strouse and Zouakia in [9] and Vũ in [17] prove, with different
methods, that limt→∞ ‖T (t)Θ0(f)‖ = 0 for every f ∈ S0. Moreover, it is shown in
[9] that, under the assumptions that σ(A) ∩ iR is countable and σP (A

∗) ∩ iR = ∅,
the subspace π0(S0)X is dense in X so one gets another different proof of the
Arendt-Batty-Lyubich-Vũ theorem.

We now consider a n-times integrated semigroup Tn(t) in B(X), with generator
A, such that

sup
t>0

t−n‖Tn(t)‖ <∞ and lim
t→0+

n!t−nTn(t)x = x (x ∈ X).

Let T (n)(|t|n) be the Banach space obtained as the completion of the Schwarz
class in the norm ‖f‖(n) :=

∫∞
−∞ |f (n)(t)| |t|n dt. In fact, T (n)(|t|n) is contained in

L1(R) and is a convolution Banach algebra. Its character space is R with Gelfand

transform equal to the Fourier transform f �→ f̂ . Moreover, T (n)(|t|n) is regular
on R. An element f of T (n)(|t|n) is said to be of spectral synthesis with respect

to a closed subset F of R if there exists (fj) ⊂ T (n)(|t|n) such that f̂j vanishes
in a neighbourhood of F for each j and limj→∞ ‖f − fj‖(n) = 0 (see [10]). Let

T (n)
+ (tn) be the restriction of T (n)(|t|n) on (0,∞), and let Sn denote the subspace

of functions of T (n)
+ (tn) which are of spectral synthesis in T (n)(|t|n) with respect to

the subset iσ(A)∩R. Define the Banach algebra homorphism Θn : T (n)
+ (tn)→ B(X)

given by

Θn(f) := (−1)n
∫ ∞

0

f (n)(t)Tn(t)dt, f ∈ T (n)
+ (tn).

Then, as an extension of the Esterle-Strouse-Vũ-Zouakia theorem, it is proven in
[10] that limt→∞ t−n‖Tn(t)Θn(f)‖ = 0 for every f ∈ Sn.

One can ask if the argument dealt with in [9] to deduce the Arendt-Batty-
Lyubich-Vũ theorem works for a n-times integrated semigroup Tn(t) as above; that
is, if Θn(Sn)X is dense in X whenever σ(A)∩ iR is countable and σP (A

∗)∩ iR = ∅.
This would give us

(3.5) lim
t→∞

t−nTn(t)x = 0, x ∈ X.

Unfortunately, the proof of that density is rather difficult and we only know
how to obtain (3.5) when σ(A)∩ iR is finite, see [11]. In any case, Corollary 3.3 is
more general.
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Departamento de Matemáticas e IUMA, Universidad de Zaragoza, 50009, Zaragoza,

Spain

Email address: pjmiana@unizar.es

Licensed to AMS.

https://www.ams.org/mathscinet-getitem?mr=915430
https://www.ams.org/mathscinet-getitem?mr=1008239
https://www.ams.org/mathscinet-getitem?mr=933321
https://www.ams.org/mathscinet-getitem?mr=1886588
https://www.ams.org/mathscinet-getitem?mr=1161416
https://www.ams.org/mathscinet-getitem?mr=2336713
https://www.ams.org/mathscinet-getitem?mr=1321079
https://www.ams.org/mathscinet-getitem?mr=697579
https://www.ams.org/mathscinet-getitem?mr=1273043
https://www.ams.org/mathscinet-getitem?mr=3029488
https://www.ams.org/mathscinet-getitem?mr=0004635
https://www.ams.org/mathscinet-getitem?mr=859138
https://www.ams.org/mathscinet-getitem?mr=932004
https://www.ams.org/mathscinet-getitem?mr=1409370
https://www.ams.org/mathscinet-getitem?mr=1087468
https://www.ams.org/mathscinet-getitem?mr=1144683
https://www.ams.org/mathscinet-getitem?mr=1220663


Contemporary Mathematics
Volume 743, 2020
https://doi.org/10.1090/conm/743/14966

Powers of operators: convergence and decomposition

W. Arendt and I. Chalendar

Abstract. We study the asymptotic behaviour of the powers of an operator
or a semigroup with respect to a triangular decomposition.

1. Powers of composition operators

In recent papers [2,3], we investigated convergence of powers of composition
operators.

What was surprising is the following result: whenever a composition operator T
on one of those Banach spaces X ↪→ Hol(D), that we investigated, has the property
that limn→∞ Tnf exists for all f ∈ X, then (Tn)n converges already uniformly in
L(X). More precisely we proved the following result.

Theorem 1.1. Let X be one of the Banach spaces:

• Hardy space Hp(D) with 1 ≤ p <∞
• weighted Bergman spaces Ap

β with β > −1 and 1 ≤ p <∞
• little Bloch space B0

• Bloch-type space Bα with α > 0
• standard weighted Bergman spaces of infinite order H∞

νp
with 0 < p <∞.

Let ϕ : D→ D be holomorphic such that f ◦ϕ for all f ∈ X. Consider the operator
T ∈ L(X) given by Tf = f ◦ ϕ. If Pf := limn→∞ Tnf exists in X for all f ∈ X,
then limn→∞ ‖Tn − P‖ = 0.

Of course, in general uniform convergence is much stronger than strong con-
vergence (think of a self-adjoint operator). Theorem 1.1 expresses a special and
remarkable property of composition operators.
We found a curious exception to this

“strong convergence implies uniform convergence”.

However it takes place on a quotient space and not exactly on a space which is
continuously embedded in Hol(D). Let us make things more precise.

Let D̃ := D/C1D be the Dirichlet space D modulo the constant functions. It is
a Banach space for the norm

‖[f ]‖D̃ =

∫
D

|f ′(z)|dA(z),
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where [ ] : D → D/1D denotes the quotient map.
Let ϕ ∈ D be a univalent map. Then it is not difficult to check that f ◦ ϕ ∈ D

if f ∈ D. Moreover, if f, g ∈ D and f − g = c is a constant, then f ◦ ϕ− g ◦ ϕ = c.
It follows that [f ◦ ϕ] = [g ◦ ϕ] and thus

C̃ϕ([f ]) = [f ◦ ϕ]

defines a linear operator on D̃.
This operator may also be obtained in a different way.

Let D0 := {f ∈ D : f(0) = 0}. Then D0 is a closed subspace of D. The mapping

S : D0 → D̃, Sf = [f ]

is an isometric isomorphism. Then Ĉϕ := S−1C̃ϕS is given by

(Ĉϕf)(z) = f(ϕ(z))− f(ϕ(0)).

Now let ϕ(z) = az+b
cz+d be a linear fractional map with ad − bc �= 0. Then ϕ has

two fixed points in C ∪ {∞}. One calls ϕ parabolic if they coincide. If in addition
ϕ(D) ⊂ D, the unique fixed point lies on the unit circle.

The spectrum of C̃ϕ on D0 has been investigated in [6] and [7]. Using these
results we obtained the following in [3].

Theorem 1.2. Let ϕ be a parabolic linear fractional self-map of D which is not
an automorphism of D. Then for all f ∈ D,

lim
n→∞

C̃n
ϕ([f ]) = 0,

but (C̃n
ϕ)n does not converge uniformly. Moreover, the operator Cϕ on D is not

power-bounded.

The space D̃ is not embedded into Hol(D), so Theorem 1.2 does not give a

counterexample against the phenomenon of Theorem 1.1. If we replace D̃ by the
isometric space D0, then D0 is embedded into Hol(D), but the operator is no longer
a composition operator. We continue to consider the situation of the quotient. This
gives rise to the following investigation.

2. Abstract decomposition

Theorem 1.2 is interesting from an abstract point of view. Let E be a Banach
space, T ∈ L(E) and F ⊂ E a closed subspace such that TF ⊂ F . Assume that F
is complemented, i.e., there exists a closed subspace G of E such that E = F ⊕G.
Then there exist unique operators T2 ∈ L(G) and S ∈ L(G,F ) such that

T (y + w) = (T1y + Sw) + T2w ∈ F ⊕G,

for y+w ∈ F ⊕G, where T1 = T|F . In other words, we represent T by a triangular
2× 2-matrix:

(1)

(
T1 S
0 T2

)
with respect to the decomposition E = F ⊕G.

It is interesting to compare the asymptotic behaviour of the powers of T with
the one of the powers of T1 and T2. Obviously if Tn converges uniformly (or
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strongly) as n→∞, the same is true for Tn
1 and Tn

2 as n→∞.

Recall that Tn → 0 uniformly as n → ∞ if and only if r(T ) < 1, where r(T )
denotes the spectral radius of T . This in turn implies that ‖Tn‖ ≤ crn (n ∈ N) for
some c ≥ 0, r ∈ (0, 1) as can be seen by the formula for the spectral radius.

Since σ(T ) = σ(T1) ∪ σ(T2), it follows that r(T ) < 1 if and only if r(Tj) < 1
for j = 1, 2. Thus ‖Tn‖ → 0 as n → ∞ if and only if ‖Tn

1 ‖ → 0 and ‖Tn
2 ‖ → 0 as

n→∞.

If we are interested in strong convergence, the following theorem describes
another situation which is less obvious.

Theorem 2.1. Let T ∈ L(E), F,G, T1, T2 and S be defined as in ( 1).

(a) If r(T1) < 1 and Tn
2 → P2 strongly as n→∞, then Tn converges strongly

to P as n→∞, where P is given by

P (y + w) =

∞∑
k=0

T k
1 SP2w, y ∈ F,w ∈ G.

(b) If r(T2) < 1 and Tn
1 → P1 strongly as n→∞, then Tn converges strongly

to Q as n→∞, where Q is defined by

Q(y + w) = P1y +
∞∑
k=0

P1ST
k
2 w, y ∈ F,w ∈ G.

Proof. By (1), it follows that

Tn =

(
Tn
1 Sn

0 Tn
2

)
,

where Sn =
∑n−1

k=0 T
n−1−k
1 ST k

2 . Thus we have to show that Sn converges strongly
as n→∞ in the two cases.
(a) Assume that r(T1) < 1 and Tn

2 → P2 strongly as n → ∞. Then there exist
c1 ≥ 0 and r ∈ (0, 1) such that ‖Tn

1 ‖ ≤ c1r
n. Let w ∈ G.

First case: Assume that P2w = w. Then T k
2 w = w for all k ≥ 0 and thus

Snw =

n−1∑
k=0

Tn−1−k
1 Sw =

n−1∑
k=0

T k
1 Sw →

∞∑
k=0

T k
1 Sw,

as n→∞, since the F is a Banach space and
∑∞

k=0 ‖T k
1 ‖‖Sw‖ <∞.

Second case: Assume that w ∈ kerP2. Then T k
2 w → 0 as k →∞. We show that

Snw → 0 as n→∞.
Let ε > 0. Choose m ∈ N such that ‖T k

2 w‖ < ε for all k ≥ m. Now choose
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n0 ≥ m+1 such that rn0−m ≤ ε. Letting c2 := supk∈N ‖T k
2 ‖ we obtain, for n ≥ n0,

‖Snw‖ ≤
∥∥∥∥∥
m−1∑
k=0

Tn−1−k
1 ST k

2 w

∥∥∥∥∥+

∥∥∥∥∥
n−1∑
k=m

Tn−1−k
1 ST k

2 w

∥∥∥∥∥
≤

m−1∑
k=0

c1r
n−1−k‖S‖c2‖w‖+

n−1∑
k=m

rn−1−k‖S‖ε

= rn−mc1c2‖S‖‖w‖
m−1∑
k=0

rm−1−k + ‖S‖ε
n−1−m∑
k=0

rk

≤ ε
1

1− r
‖S‖(c1c2‖w‖+ 1).

This proves the claim.
(b) Assume that r(T2) < 1 and that Tn

1 → P1 strongly as n→∞. Then there exist
c2 ≥ 0 and r ∈ (0, 1) such that ‖Tn

2 ‖ ≤ c2r
n for all n ∈ N. We show that

Snw →
∞∑
k=0

P1ST
k
2 w

as n→∞ and for all w ∈ G.
Write Sn = Un + Vn with

Un :=

n−1∑
k=0

Tn−1−k
1 P1ST

k
2 =

n−1∑
k=0

P1ST
k
2 and Vn :=

n−1∑
k=0

Tn−1−k
1 (Id− P1)ST

k
2 .

Then Un →
∑∞

k=0 P1ST
k
2 as n→∞.

Let w ∈ G. We show that Vnw → 0 as n→∞. Let c1 := supn∈N ‖Tn
1 ‖. Let ε > 0.

Choose m ∈ N such that

c1c2(1 + ‖P1‖)‖S‖‖w‖
rm

1− r
≤ ε

2
.

Since ‖Tn
1 (Id − P1)z‖ → 0 as n → ∞ for all z ∈ F , there exists n0 ≥ m + 1 such

that

‖Tn−1−k
1 (Id− P1)ST

k
2 w‖ ≤

ε

2m
for all k = 1, · · · ,m− 1 whenever n ≥ n0.
Let n ≥ n0. Then

‖Vnw‖ ≤
∥∥∥∥∥
m−1∑
k=0

Tn−1−k
1 (Id− P1)ST

k
2 w

∥∥∥∥∥+

∥∥∥∥∥
n−1∑
k=m

Tn−1−k
1 (Id− P1)ST

k
2 w

∥∥∥∥∥
≤ ε

2
+

n−1∑
k=m

c1r
k(1 + ‖P1‖)‖S‖c2‖w‖

≤ ε

2
+

rm

1− r
c1c2(1 + ‖P1‖)‖S‖‖w‖ ≤ ε.

This proves the claim. �

In Theorem 2.1 it is important to suppose that Tn
1 or Tn

2 converge uniformly
to 0 as n → ∞. It does not suffice to suppose that one of the two operators con-
verges uniformly to an arbitrary limit. Indeed, in Theorem 1.2 we have T1 = P1

(so Tn
1 = P1 converges uniformly as n→∞) and Tn

2 converges strongly as n→∞.
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Nevertheless Tn is not power-bounded.

One can reformulate Theorem 2.1 in the following way.

Corollary 2.2. Let E be a Banach space and F a closed subspace. Let

T ∈ L(E) be such that TF ⊂ F . Let T1 = T|F and define T̃ ∈ L(E/F ) by

T̃ ([x]) = [T (x)] (x ∈ E). Suppose that F is complemented and that

(a) r(T1) < 1 and T̃n converges strongly as n→∞,
or that

(b) r(T̃ ) < 1 and Tn
1 converges strongly as n→∞.

Then Tn converges strongly as n→∞.

Proof. By assumption, there exists a closed subspace G such that E = F⊕G.
Thus there exist S ∈ L(G,F ) and T2 ∈ L(G) such that

T (y + w) = (T1y + Sw) + T2w ∈ F ⊕G,

for all y ∈ F , w ∈ G. The operator T2 is similar to T̃ . Thus the claim follows from
Theorem 2.1. �

The operators T1 and T̃ play an important role in the theory of semigroups,
and in particular for studying the spectrum and asymptotic behaviour (see [10]).

Note that we have always

σ(T ) ⊂ σ(T1) ∪ σ(T̃ ),

even if F is not complemented. It follows that if Tn
1 → 0 uniformly and if T̃n → 0

uniformly, then Tn → 0 uniformly.
Another corollary of Theorem 2.1 describes the asymptotic behaviour of an op-

erator with respect to an upper-triangular decomposition with n closed subspaces.

Corollary 2.3. Assume that T ∈ L(E) with E = F1 ⊕ F2 ⊕ · · · ⊕ Fn, where
n ≥ 2 and Fk are closed subspaces of E such T (Fk) ⊂ F1 ⊕ · · · ⊕Fk for 1 ≤ k ≤ n.
In other words, with respect to the above decomposition of E, T has the form

T =

⎛⎜⎜⎜⎜⎜⎝
T1 A2

1 · · · · · · An
1

0 T2 A3
2 · · · An

2

0 0 T3 . . . . . .
...

...
. . . . . . . . .

0 0 0 0 Tn

⎞⎟⎟⎟⎟⎟⎠
where Tk is linear and bounded on Fk for 1 ≤ k ≤ n.
If there exists k0 ∈ {1, . . . , n} such that (Tn

k0
)n converges strongly to Pk0

and if
r(Tk) < 1 for all k �= k0, 1 ≤ k ≤ n, then (Tn)n converges strongly as n→∞.

Of course we can have a cheaper example showing that in Theorem 2.1 uniform
convergence of (Tn

1 )n and (Tn
2 )n to a limit different from 0 does not suffice to ensure

strong convergence of T . Take E = R and T =

(
1 1
0 1

)
. Then Tn =

(
1 n
0 1

)
is

not power-bounded as for our composition operator on D. But we may ask whether
power-boundedness of T suffices for strong convergence.
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Question: Let T ∈ L(E) be power-bounded, E a Banach space and F and G
closed subspaces of E such that TF ⊂ F and E = F ⊕G. Consider the matrix of
T corresponding to this decomposition(

T1 S
0 T2

)
.

If (Tn
j )n converges strongly as n → ∞ for j = 1, 2, does (Tn)n converges strongly

as n→∞ ?

We describe a situation where this is true. For this we recall the countable-
spectrum theorem.

Theorem 2.4 (ABLV-Theorem [4,9]). Let E be a reflexive Banach space and
T ∈ L(E) be a power-bounded operator. Suppose that

(2) σ(T ) ∩ T is countable and σp(T ) ∩ T ⊂ {1}.
Then (Tn)n converges strongly as n→∞.

We mention that this theorem should be seen in the context of a movement
in the eighties starting with the Katznelson–Tzafriri theorem [8] and a beautiful
contribution of Allan, O’Farrell and Ransford [1].

Now suppose that we are in the situation where

T =

(
T1 S
0 T2

)
on a reflexive Banach space where T is power-bounded and Tj (j = 1, 2) satisfies
(2). Then also T does so since

σ(T ) ⊂ σ(T1) ∪ σ(T2) and σp(T ) ⊂ σp(T1) ∪ σp(T2).

So the answer is ”yes” in this case.

3. Decomposition of semigroups of operators

The aim of this section is to study the asymptotic behaviour of semigroups
with respect to a given triangular decomposition.

Let E be a Banach space and T = (T (t))t>0 be a C0-semigroup on E.
Its growth bound is defined by

w(T ) := inf{w ∈ R : ∃M > 0, ‖T (t)‖ ≤Mewt for all t > 0}.
By [5, Prop. 5.1.1] one has:

(3) w(T ) = lim
t→∞

log ‖T (t)‖ = inf
t>0

log ‖T (t)‖ and

in particular, if ‖T (t0)‖ < 1 for some t0 > 0, then T is exponentially stable, i.e.

‖T (t)‖ ≤Me−εt

for some ε > 0 and M ≥ 0.

Suppose that T is a C0-semigroup on E. Then it is well-known that

r(T (t)) = ew(T )t, t ≥ 0,
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where r(T (t)) denotes the spectral radius of T (t). Now suppose that F is a closed
subspace of E such that T (t)F ⊂ F for all t ≥ 0.
Suppose that F is completed, i.e., there exists a closed subspace G such that E =
F ⊕G. Then T (t) has the following matrix representation:(

T1(t) S(t)
0 T2(t)

)
.

Here T1(t) = T (t)|F defines a C0-semigroup on F and it is easy to see that T2 is a
C0-semigroup on G.

Theorem 3.1. If

(a) w(T1) < 0 and limt→∞ T2(t)w exists for all w ∈ G or
(b) w(T2) < 0 and limt→∞ T1(t)y exists for all y ∈ F ,

then limt→∞ T (t)x exists for all x ∈ E.

We shall prove the theorem using the results of Section 2 via the following
proposition which we owe to Jochen Glück with many thanks.

Proposition 3.2. Let T be a C0-semigroup on E. If limn→∞ T (nτ ) =: Pτx
exists for all x ∈ E and τ ∈ Q ∩ (0,∞), then limt→∞ T (t)x exists for all x ∈ E.

Proof. It follows from the definition that Pt+s = PtPs and

P 2
t = Pt = PtT (t) = T (t)Pt

for all t, s ∈ Q ∩ (0,∞). It follows that Pnt = Pt for all t ∈ Q ∩ (0,∞).
Let M = sups∈[0,1] ‖T (s)‖, x ∈ E and ε > 0. There exists n0 ∈ N such that

‖T (n)x− P1x‖ < ε for all positive integers n ≥ n0.

Now, for t ≥ n0, there exist n ∈ N and s ∈ [0, 1) such that t = n+ s.
Obviously if t ≥ n0 and t ∈ Q ∩ (0,∞) it follows that s ∈ Q ∩ (0,∞) and

‖T (t)x− P1x‖ = ‖T (s)T (n)x− P1x‖
= ‖T (s)(T (n)x− P1x)‖
≤ M‖T (n)x− P1x‖ ≤Mε.

If t �∈ Q ∩ (0,∞), choose r > t with r ∈ Q ∩ (0,∞). Then

‖T (t)x− P1x‖ ≤ ‖T (t)x− T (r)x‖+ ‖T (r)x− P1x‖
≤ ‖T (t)x− T (r)x‖+Mε.

Letting r ↓ t, we find that ‖T (t)x− P1x‖ ≤Mε whenever t ≥ n0. �

Proof of Theorem 3.1. (i): Suppose that limt→∞ T2(t)w =: P2w exists for all
w ∈ G and that w(T1) < 0. Then r(T1(t)) < 1 for all t > 0. It follows from
Theorem 2.1 that limn→∞ T (nt)x exists for all x ∈ E and t �= 0. Now the claim
follows from Proposition 3.2.
(ii): The proof is similar to the proof of (i). �
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