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Abstract. We prove that certain possibly non-smooth Hermitian metrics are Griffiths-
semipositively curved if and only if they satisfy an asymptotic extension property.
This result answers a question of Deng–Ning–Wang–Zhou in the affirmative.

1. Introduction

The positivity of the curvature Θ of the Chern connection of a Hermitian holo-
morphic vector bundle (E, h) over a complex manifold M plays an important role in
algebraic geometry through extension problems. For a line bundle, there is only one
notion of positivity, namely, the curvature being a Kähler form. For a vector bundle,
there are several competing inequivalent notions, of which the most natural are Grif-
fiths positivity (〈v,

√
−1Θv〉 is a Kähler form) and Nakano positivity (the bilinear form

defined by
√
−1Θ on T1,0M⊗ E is positive-definite). A famous conjecture of Griffiths

[14] asks whether ample vector bundles (OE(1) over P(E) admits a positively-curved
metric) admit Griffiths-positively curved metrics. The conjecture is still open. How-
ever, a considerable amount of work has been done to provide evidence in its favour
[1, 4, 7, 9, 13, 16, 22, 23, 25, 29].

In the Kähler case, Demailly–Paun [8] proved a Nakai–Moizeshon–type criterion
to characterise Kähler classes. Despite the assumptions and conclusions involving
smooth objects, their proof used singular objects like positive currents and singular
Kähler potentials. A similar phenomenon might play a role in the study of the
Griffiths conjecture and hence it is fruitful to study singular Hermitian metrics on
vector bundles. This topic has also been well-studied [5, 28, 3, 2, 17, 24, 27, 20] and
seems to hold some surprises. For instance, even if a bundle is Griffiths-positively
curved (in a certain sense), the curvature may not exist as a current (Theorem 1.3 in
[28]).

In the quest for alternate characterisations of these notions of positivity, and defin-
ing similar notions for singular metrics, the following definition [11] involving the
asymptotics of L2-extension constants has proved to be a useful measure of positivity
[12, 10, 11, 18, 19].

Definition 1.1. Let E be a holomorphic vector bundle over an n-dimensional complex
manifold X. A singular Hermitian metric h is said to satisfy the multiple coarse L2-
extension property if the following hold.
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(1) For every open subset D ⊂ X and every holomorphic section s : D → E∗|D
that is not identically zero, the function ln ‖s‖2h∗ is upper-semicontinuous.

(2) Consider any cover of M by relatively compact Stein trivialising coordinate
neighbourhoods of the form (Ω′′ ⊂ M, z, {ei}) and a subcover of Stein open
subsets Ω′ b Ω b Ω′′. Then, for every integer m ≥ 1 there exists a constant
Cm satisfying the following conditions:

(a) Subexponential growth: lim
m→∞

ln Cm

m
= 0.

(b) Controlled extension: If p ∈ Ω′ and a ∈ Ep with ‖a‖h < ∞, for every integer
m ≥ 1, there exists a holomorphic extension fm : Ω→ E⊗m of a⊗m (that is,
fm(p) = a⊗m) satisfying

(1.1)
∫

Ω′
‖ fm‖2h⊗m

(
√
−1∂∂̄|z|2)n

n!
≤ Cm‖a‖2m

h(p).

We note that in the definition above, a⊗m
∈ SmEp. It turns out (Lemma 2.2) that

the metric on SmE induced from E is actually the same as the metric induced by an
orthogonal projection from E⊗m. This observation motivates the following generali-
sation of Definition 1.1 : A singular Hermitian metric h is said to satisfy the general
multiple coarse L2-extension property if it satisfies Definition 1.1 with fm(p) being
any given element of SmEp, i.e., if bm ∈ SmEp then there exists a holomorphic section
fm : Ω→ SmE such that fm(p) = bm and

(1.2)
∫

Ω′
‖ fm‖2h⊗m

(
√
−1∂∂̄|z|2)n

n!
≤ Cm‖bm‖

2
Smh(p) ,

where Cm satisfies subexponential growth.
For the remainder of this paper, unless specified otherwise, an integral over a

coordinate chart is understood to be an integral with the Euclidean volume form,
similar to (1.1).

Remark 1.2. The definition given in [11] differs slightly from Definition 1.1 in two
(minor) aspects. Firstly, the definition in [11] is for general Finsler metrics. Secondly,
the controlled extension property in our definition requires control over the extension
(to a set Ω) on a smaller set Ω′.

We recall that a singular Hermitian metric h is said to be Griffiths-semipositively
curved if whenever u is a local holomorphic section of E∗, the function |u|2h∗ is a
plurisubharmonic (psh) function [28]. (It turns out that this definition is equivalent
to ln |u|2h∗ being psh.) In [12] (Theorem 6.4), it was proved that multiple coarse L2-
extension implies Griffiths semipositivity. Since the proof is local, it is easily seen
to apply even to our definition. A question was raised as to whether it completely
characterises Griffiths semipositivity. We answer that question in the affirmative.
Slightly more strongly:

Theorem 1.3. Let h be a singular Griffiths semipositively curved Hermitian metric on a
holomorphic vector bundle E over a complex Hermitian manifold (X, ω). Let h0 be a fixed
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smooth background metric on E. If ln det(hh−1
0 ) is bounded on compact sets, then (E, h)

satisfies the general multiple coarse L2-extension property. Moreover, one can choose a uniform
extension constant C = Cm that is independent of m.

Remark 1.4. If h is continuous, it trivially meets the requirements of Theorem 1.3. If
instead, 0 ≤

√
−1∂̄∂ ln(det(h)) ≤ Cω, then ln(det(h)) and − ln(det(h)) are quasi-psh

and hence satisfy the hypotheses of Theorem 1.3.

Remark 1.5. The main point of Theorem 1.3 is that, while typically Nakano semipos-
itivity produces extension theorems, this theorem merely needs Griffiths semiposi-
tivity.

It is interesting to know whether our result can be improved to general singular
Hermitian metrics. However, seeing that det(h) seems to play an important role,
we are pessimistic about such a result. There are other positivity notions for vector
bundles like MA-positivity, for instance [26]. It might be fruitful to explore a similar
extension/estimate-type characterisation for such notions as well.
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lowship grants SB/SJF/2019-20/14 and DST/SJF/MS/2019/3 from SERB and DST (Govt.
of India). We are grateful to the anonymous referee for useful suggestions to improve
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2. Proof

We first prove Theorem 1.3 for smooth Hermitian metrics.

Proposition 2.1. Let h0 be a smooth background metric. If h is a smooth Hermitian metric,
then Griffiths semipositivity implies the general multiple coarse extension property. Moreover,
if hν is a family of such smooth Hermitian metrics and there exists a constant K such that
1
K det(h0) ≤ det(hν) ≤ K det(h0), then the extension constants Cm depend only on K, h0, and
the chosen coordinate trivalising charts.

Proof. Consider a point p ∈ Ω′ b Ω b Ω′′ and bm ∈ SmEp. We want to extend bm to a
holomorphic section in Ω with L2-estimates in Ω′. Let εm > 0 be a sequence of real
numbers. The new metric h̃εm := he−εm|z|2 is strictly Griffiths-positive on Ω.

We recall that the symmetric group Sm acts on E⊗m which decomposes into irre-
ducible representations. The metric h̃εm induces an Sm-invariant metric on E⊗m. The
fixed point set is SmE and hence we decompose E⊗m = SmE⊕V. Note that V is stable
under the action of Sm.

Lemma 2.2. The subbundle SmE is orthogonal in the induced metric to V.

Proof. Indeed, suppose x ∈ SmEq, y ∈ Vq (for some q). Then m!〈x, y〉 =
∑

g∈Sm
〈g ·x, y〉 =∑

g∈Sm
〈x, g−1

· y〉 = 〈x, y0〉where y0 =
∑

g∈Sm
g−1
· y is in Vq as well as in the fixed-point

set SmEq. Hence, y0 = 0 and so is 〈x, y〉. �
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Endow Ω with the Euclidean metric. Since E is trivial over Ω, we pretend that
det(E) is a trivial bundle. Let r be the rank of E. At this point, suppose hν is a family
of smooth Hermitian metrics as in the statement of the proposition, and let εm = 1

m .
We drop the subscript ν for the remainder of the proof.

A result of Demailly–Skoda [9] shows that if (E, h) is Griffiths-positively curved,
then E⊗det(E) with the induced metric is Nakano-positively curved. This result was
generalised in Theorem 7.2 of [21] which states that the induced metric on SmE⊗det(E)
is Nakano-positively curved for all m ≥ 1.

By the Ohsawa–Takegoshi theorem for vector bundles, there exists a universal
constant C (whose optimal value can be computed [15]) and an extension fm of bm
such that

(2.1)
∫

Ω

‖ fm‖2Smh̃εm
det(h̃εm) ≤ C‖bm‖

2
Smh̃εm (p)

det(h̃εm).

By Lemma 2.2, ‖b‖Smh = ‖b‖h⊗m if b ∈ SmE. Note that

‖ fm‖2Smh̃εm
det(h̃εm) = ‖ fm‖2Smhe−mεm|z|2 det(h)e−rεm|z|2 = ‖ fm‖2Smhe−(1+ r

m )|z|2 det(h).

Rewriting (2.1),

inf
Ω

det(h0)e−(r+1)|z|2

K

∫
Ω

‖ fm‖2Smh ≤

∫
Ω

‖ fm‖2Smhe−(1+ r
m )|z|2 det(h)

≤ C‖bm‖
2
Smh(p)e

−(1+ r
m )|z(p)|2K sup

Ω

det(h0).

Hence, we are done. �

Now we prove Proposition 2.1 in greater generality. Let p ∈ Ω′ and bm ∈ SmEp.
Proposition 6.2 of [28] implies that the duals of the convolutions of the dual metric
with mollifiers ρν, i.e., hν = ((h∗) ∗ ρν)∗ of h (where 0 < ν ≤ 1), increase to h pointwise
as ν→ 0+ and are Griffiths-semipositively curved. Choose ν ≤ ν0 to be small enough
that the convolutions are defined on Ω2δ, where Ω2δ b Ω′′ is a 2δ-neighbourhood of
Ω for some fixed small δ > 0. By Theorem 7.2 of [21], SmE⊗det(E) equipped with the
metric induced from hν is Nakano-semipositively curved.

Since 0 < ν ≤ ν0, by the monotonicity of hν, we see that 1
L ln(det(h0)) ≤ ln(det(hν0)) ≤

ln(det(hν)) ≤ ln(det(h)) ≤ L ln(det(h0)) for some constant L independent of ν. Hence
we may use Proposition 2.1 to conclude that there exist extensions fm,ν of bm on Ω2δ
such that ∫

Ωδ

‖ fm,ν‖2h⊗m
ν0
≤

∫
Ωδ

‖ fm,ν‖2h⊗m
ν
≤ C‖bm‖

2
h⊗m
ν (p) ≤ C‖bm‖

2
h⊗m(p)

where C is a constant independent of m and ν. Henceforth, all such constants will
be denoted by C. Therefore, fm,ν is uniformly bounded (independent of ν) in L2(Ωδ).
The sub-mean value property shows that it is pointwise bounded in Ωδ/2. Cauchy’s
estimates show that ‖ fm,ν‖C3(Ωδ/3) is bounded above by some Km (uniformly in ν).
Thus, by the Arzela–Ascoli theorem, there is a sequence νi → 0 such that fm,νi → vm
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in C2(Ωδ/4). The limit vm is a holomorphic extension of bm over Ω. Fixing ν0, by
uniform convergence of fm,νi , we see that∫

Ω′
‖vm‖

2
h⊗m
ν0
≤ C‖bm‖

2
h⊗m(p).

By the monotone convergence theorem,∫
Ω′
‖vm‖

2
h⊗m ≤ C‖bm‖

2
h⊗m(p).

Thus, the general multiple coarse L2-extension property is met and the proof of
Theorem 1.3 is complete. �
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