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SMOOTH ENTRYWISE POSITIVITY PRESERVERS, A
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FUNCTION IDENTITIES
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To Roger A. Horn and the memory of Charles Loewner, with admiration

ABSTRACT. A special case of a fundamental result of Loewner and Horn [Trans.
Amer. Math. Soc. 136 (1969), pp. 269-286] says that given an integer n > 1,
if the entrywise application of a smooth function f : (0,00) — R preserves the
set of n X n positive semidefinite matrices with positive entries, then f and its
first n — 1 derivatives are non-negative on (0,00). In a recent joint work with
Belton—Guillot—Putinar [J. Eur. Math. Soc., in press|, we proved a stronger
version, and used it to strengthen the Schoenberg—Rudin characterization of
dimension-free positivity preservers [Duke Math. J. 26 (1959), pp. 617-622;
Duke Math. J. 9 (1942), pp. 96-108].

In recent works with Belton-Guillot—Putinar [Adv. Math. 298 (2016),
pp. 325-368] and with Tao [Amer. J. Math. 143 (2021), pp. 1863-1929] we used
local, real-analytic versions at the origin of the Horn—Loewner condition, and
discovered unexpected connections between entrywise polynomials preserving
positivity and Schur polynomials. In this paper, we unify these two stories via
a Master Theorem (Theorem A) which (i) simultaneously unifies and extends
all of the aforementioned variants; and (ii) proves the positivity of the first n
nonzero Taylor coefficients at individual points rather than on all of (0, c0).

A key step in the proof is a new determinantal / symmetric function calcu-
lation (Theorem B), which shows that Schur polynomials arise naturally from
considering arbitrary entrywise maps that are sufficiently differentiable. Of
independent interest may be the following application to symmetric function
theory: we extend the Schur function expansion of Cauchy’s (1841) determi-
nant (whose matrix entries are geometric series 1/(1 — ujvy)), as well as of
a determinant of Frobenius [J. Reine Angew. Math. 93 (1882), pp. 53—68]
(whose matrix entries are a sum of two geometric series), to arbitrary power
series, and over all commutative rings.
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1. INTRODUCTION AND MAIN RESULTS

Recently in [IL2LI4[15], novel connections were discovered between polynomials
acting entrywise that preserve matrix positivity and symmetric functions, specifi-
cally Schur polynomials. We explore these connections in greater depth, and prove
that Schur polynomials emerge naturally from differentiating determinants involv-
ing arbitrary sufficiently differentiable functions. To the best of our knowledge,
this intriguing connection between analysis and symmetric function theory is not
recorded in the literature. This is our Theorem [B] and as an application we prove
the Master Theorem [A] on functions acting entrywise that preserve positive semi-
definite matrices. We also apply it to provide a novel symmetric function identity
that subsumes modern results as well as classical ones by Cauchy and Frobenius —
see Theorem 2.1

1.1. Entrywise calculus and positivity: Notation and history. A real sym-
metric matrix A, x, is positive semidefinite if all its eigenvalues are non-negative
real numbers — equivalently, the quadratic form x — 27 Az, 2 € R" is non-negative
definite, i.e., takes values in [0,00). Given an integer n > 1 and a domain I C R,
let P,,(I) comprise the positive semidefinite n x n matrices with entries in 1. We
work only with domains I = (a,b) or [a,b) for 0 < a < b < 0.

A function f : I — R acts entrywise on a vector or a matrix A = (a;x) € I"™*" for
integers m,n > 1 via: f[A] := (f(a;x)). If f(z) = 2¥ is an integer power function,
we write f[A] = A°* for the entrywise power — i.e., the k-fold Schur/Hadamard
product — of A. Let 1,,x, denote the m x n matrix with all entries 1.

A question of significant interest in the analysis literature throughout the past
century is to understand the entrywise functiond] that preserve positive semidefi-
niteness, which we occasionally term positivity in the sequel. The first result in this
area is the Schur product theorem [25], which asserts that the set P, (I) is closed un-
der the entrywise product Ao B := (a;xb;k)7 ,—; if I is closed under multiplication.
Using that P, (R) is a closed convex cone, Pélya and Szegé [2I] observed the fol-
lowing immediate consequence of the Schur product theorem: if f(z) = >"77, cpa®
is a convergent power series on I and ¢ > 0 Vk, then f[—] preserves positivity on
P, (I). A celebrated result of Schoenberg [24], subsequently improved by Rudin [23],
shows that there are no other functions that preserve positivity in all dimensions
for I = (—1,1). These results are motivated by and have connections to metric
geometry, positive definite functions, harmonic analysis, and analysis of measures
on Euclidean space and on tori Similar results have been shown for I = (=p,p)
or (0,p) for 0 < p < oo, as well as for complex domains — in both one and several
variables — in the years since Schoenberg’s and Rudin’s work.

Schoenberg’s theorem has a challenging mathematical refinement that is strongly
motivated by modern-day applications in high-dimensional covariance estimation.
Namely: is it possible to classify the entrywise positivity preservers in a fized di-
mension n? This problem was resolved in 1979 by Vasudeva [26] for n = 2, but
remains open for every n > 3. In this paper, we focus on a necessary condition for
this to happen.

IWe refer to polynomials — and more generally, functions — that act entrywise on matrices as
entrywise polynomials/functions, respectively.

2See the surveys [3L4] for more on the classical and modern interest in entrywise positivity
preservers.
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1.2. The Horn—Loewner theorem and its variants. The focus of the present
paper is a fundamental result on entrywise preservers in fixed dimension n > 3.
This result can be found in Horn’s 1967 thesis, and Horn attributes it to Loewnerf3:

Theorem 1.1 (Necessary condition in fixed dimension, see [I1]). Suppose I =
(0,00) and f : I — R is continuous. Fix an integer n > 1 and suppose f[A] €
P.(R) VA € P,(I). Then,

fecr=n,  fP@)z0vrel, 0<k<n=3,

and f"=3) is a convex non-decreasing function on I. In particular, if f € C*~(I),
then f(k)(I) >0 forallz e ,0<k<n—1.

Theorem [[.1]is important for several reasons:

(1) To our knowledge, this 1967 result (together with its refinements, which we
will discuss) remains to this day the only known necessary condition for a
function to be an entrywise positivity preserver in a fixed dimension.

(2) Theorem [[I]is sharp in the number of non-negative derivatives of f on I.
We mention several such settings in Example Bl providing in each case
positivity preservers that work in dimension n but not n + 1.

(3) This fixed dimension result can be used to prove the dimension-free ver-
sion, i.e. Schoenberg’s theorem over I = (0, p) for 0 < p < oo; the proof
uses Bernstein’s theorem on absolutely monotonic functions. In turn, the
dimension-free version over (0, p) (first shown by Vasudeva [26]) can be
used to prove Schoenberg’s theorem over I = (—p, p) by using less sophis-
ticated machinery compared to Schoenberg or Rudin’s works. In fact this
approach has proved even more successful: in recent joint work [5], we first
showed a stronger version of Theorem [T} then using it, a strengthening of
Schoenberg’s theorem; and finally, multivariable analogues of these results.

In this paper, we are interested in strengthening Theorem [[.1] in multiple ways.
We begin by stating several refinements proved in the analysis literature — our main
result simultaneously extends all of these variants.

The first strengthening begins with the observation that the argument in the
proof of Theorem [[1] is entirely local. With this in mind, the domain of f can
be generalized to (0, p) for any 0 < p < co. Moreover, the continuity assumption
can be removed, in the spirit of Rudin’s strengthening [23] of Schoenberg’s theorem
[24]. Finally, Theorem [[T] uses only a special sub-family of matrices of rank at
most 2. Thus, in [BI0], the following was shown (we state only the stronger of the
two results):

Theorem 1.2 (See [5l Theorem 4.2]). Suppose that 0 < p < oo, I = (0,p), and
f:I—=R. Fizug € (0,1) and an integer n > 1, and define u := (1, ug, . .. ,ugfl)T.
Suppose that f[A] € Py(R) for all A € Pa(I), and also that f[A] € P,(R) for all
Hankel matrices A = al ,xpn + tuu”, with a € T and t > 0 such that a +t € 1I.
Then the conclusions of Theorem [IL1] hold.

Theorem subsumes Theorem [[.T] and the aforementioned examples (see Ex-

ample B3]).

3As the author has also observed in the Stanford Library archives, the argument in [II] was
outlined in a letter to Josephine Mitchell, written by Loewner on October 24, 1967.
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In this paper, we are interested in the case of smooth —i.e., infinitely differentiable
— functions f, from which the general case follows using a remarkable 1940 result
by Boas-Widder [6] (see Remark B77 which fixes a minor typo in their proof).
Thus, we henceforth work with smooth functions — in which case the assumption
in Theorem concerning Py (1) is no longer required; see [0 for details.

For smooth functions, one requires weaker assumptions, and reaches stronger
conclusions. Indeed, in [I] and [15], we showed:

Lemma 1.3. Let n > 1 and 0 < p < oo. Suppose that f(x) = 45, cpxt s
a convergent power series on I = [0, p) that is entrywise positivity preservindgd on
rank-one matrices in P, (I). Further assume that ¢,y <0 for some m/'.

(1) If p < o0, then ¢,y > 0 for at least n values of m < m/. In particular, the
first n nonzero Maclaurin coefficients of f, if they exist, must be positive.

(2) If instead p = 00, then ¢, > 0 for at least n values of m < m’' and at least
n values of m > m’. In particular, if [ is a polynomial, then the first n
nonzero coefficients and the last n nonzero coefficients of f, if they exist,
are all positive.

We further showed in [I5] that these conditions are sharp, in that every other
nonzero Maclaurin coefficient of f can be negative. The conclusions of Lemma T3]
are stronger than those of Theorem [LI] — albeit at ¢ = 0 and not at a > 0 —
and they also cover settings not covered in Examples B.It the case of all polyno-
mial preservers, not merely ones with the initial Maclaurin coefficients of orders
0,1,...,n—1.

1.3. The main theorems. We now propose a stronger version of the Horn—
Loewner theorem that addresses the positivity of the first n nonzero Taylor coeffi-
cients at a given point; and moreover, one that unifies Theorem [[.T]and Lemma [[.3]
which do not imply one another. This is our first main result; in the sequel, we
work with f smooth on [a,a + €), and we refer to f®)(at) as f*)(a).

Theorem A (Horn-Loewner master theorem). Let 0 < a < oo,e € (0,00),] =
[a,a+€), and let f: I — R be smooth. Fiz integersn > 1 and 0 < p < ¢ < n, with
p=0ifa=0, and such that f(x) has ¢ — p nonzero derivatives at x = a of order
at least p. Now suppose that

PEmy < Mpyp < - <Mg_q

are the lowest orders (above p) of the first ¢ — p nonzero derivatives of f(x) at
T =a.

Also fiz pairwise distinct scalars uq, ..., u, € (0,1), and let u := (uy,...,uy,)
If flalyxn + tuu”] € P, (R) for all t € [0,¢), then f%)(a) is non-negative for
0 § k < mg—1-

T

In particular, at p = 0 one obtains Corollary [[.4] for any a > 0, which strengthens
the conclusions of the Horn-Loewner Theorem [[.T] and of Theorem for smooth
functions:

Corollary 1.4. Suppose that a,e, I, f,n,u are as in Theorem [Bl If flal,xn +
tuu?] € P,(R) for all t € [0,¢), then the first n (or fewer) nonzero derivatives of
f(z) at x = a are positive.

4The results in [I5] are stated for I = (0, p), but this is equivalent to using [0, p) if f is a power
series.
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We make additional remarks about Theorem [Aland its special cases in Section [3
For now, we note that it achieves several objectives:

(1) It unifies and further extends all of the above Horn-Loewner type variants
— see Proposition 3.4 (hence, the term master theorem).

(2) Theorem [Alyields more precise information than the theorems stated above
over I = (0, p): about the derivatives of f at each individual point a > 0 in
the domain (rather than at all points at once). The hypotheses employed
are also local, which clarifies that Theorem [[T] is not merely local but in
fact a pointwise result.

(3) By Corollary [[4] another strengthening accounts for the zero derivatives
at every point a > 0 — and it is this strengthening, whose sharpness (for
a = 0) we showed in [I5] (see the discussion following Lemma [[3)).

(4) An additional strengthening is when a = 0 and p < oco. In this case,
Theorem [A] holds for all smooth functions, not merely real analytic ones as
in Lemma [[3[(1).

Theorem [Al is proved using a novel connection between analysis and symmetric
function theory — an explicit closed-form expression for the derivatives of a certain
determinant, which mixes calculus, matrix algebra, and symmetric function theory.
This is our second main theorem, and it shows how Schur polynomials arise nat-
urally in the entrywise calculus, from considering (Cauchy-type) determinants for
arbitrary sufficiently differentiable maps, not just polynomial maps as in [IL[I5] -
and at all ¢ € R (not just @ = 0 as in [I[I5]):

Theorem B. Fiz integers n > 1 and 0 < mg < mp < -+ < My_1, as well
as scalars € > 0 and a € R. Let M == mg+ -+ + m,_1 and let a function
f:la,a+€) = R be M-times differentiable at a for some fized € > 0. Fix vectors
u,v € R", and define A : [0,€') — R via:

A(t) :=det flal,xp + tuv’],

for a sufficiently small € € (0,¢). Then,

A () = Z (mo - M N )V(u)V(v)sm(u)sm(v) ﬂf(mk)(a),
sy 1101y e ey Tl —1 k=0

mk-M

where the first factor in the summand is the multinomial coefficient, and we sum

over all partitions m = (mp_1,...,mg) of M, i.e., M = mg+ -+ + mp_1 and
Mp—1 2 -+ 2 M.
In particular, A(0) = A'(0) = -+ = AN-1(0) = 0, where N = (3).

In Section 2} we explain another application of Theorem [B] to a symmetric func-
tion master identity — see Theorem 2] (in the ¢-adic topology; followed by Corol-
lary 241 in the real topology). We now explain the notation required in Theorem [Bl
Our notation differs from that in the literature [20].

Definition 1.5 (Schur polynomials, Vandermonde determinants).

(1) Given integers m, N > 1 and 0 < nj < nj < -+ < nly_y, a column-strict
Young tableau, with shape n’ := (n/y_;,...,n() and cell entries 1,2,...,m,
is a left-aligned two-dimensional rectangular array T' of cells, with n{ cells
in the bottom row, n cells in the second lowest row, and so on, such that:

e Each cell in T has integer entry j for some j € {1,2,...,m}.
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e Entries weakly increase in each row, from left to right.
e Entries strictly increase in each column, from top to bottom.
(2) Given variables uy, us, ..., u;, and a column-strict Young tableau T', define
its weight to be

wt(T) = Hufj,
j=1

where f; equals the number of cells in T with entry j.

(3) Given an increasing sequence of integers 0 < ng < --- < ny_1, define the
partitions/tuples
n:=(nyx_1,...,N01,N0), Npin == (N —1,...,1,0),
and the corresponding Schur polynomial over u := (uy, us, ..., un,)" to be

(1.1) sn(u) :== Zwt(T),
T

where T runs over all column-strict Young tableaux of shape n’ := n—ny,;,

with cell entries 1,2, ..., m. By convention, we set s,(u) := 0 if n does not
have pairwise distinct coordinates.
(4) Given a vector u = (uy,...,um,)T with entries in a commutative ring, we
define its Vandermonde determinant to be 1 if m = 1, and
1 Uq e fugn’il
1 Us . u;n‘_l
(1.2)  V(u):= H (up —uy)=det | . . . , ifm>1.
1<j<k<m o ’ :
1 Uy, N u7nn_1

The definition of Schur polynomials is due to Littlewood; notice that it holds over
the ground ring Z, and hence over any commutative unital ground ring. If m = N,
then this definition is equivalent [20] to Cauchy’s definition of Schur polynomials:

det(u™ | u®™ | ... | u"N )Ny = V(u)sa(u).

This is consistent with setting s,(u) = 0 if n has two equal coordinates, since the
left-hand matrix has two equal columns in that case.

Remark 1.6. From the proof of Theorem [B] — see the expression (2.I)) and the
discussion in the subsequent paragraph — it follows that if f is smooth and has at
most n — 1 nonzero derivatives at a, then A)(0) =0 Vm > 0.

Remark 1.7. A curious point is that since one takes derivatives in Theorem [B]
one might expect one axis to deal with derivatives, and the other to deal with the
(anti-)symmetry in one set of variables — but in fact, the final answer reveals the
determinant’s derivative to be (anti-)symmetric in both sets of variables u, v.

We close this section by returning to our starting point: the original work of
Loewner and Horn. We now explain how Theorem [B] extends a determinant com-
putation by Loewner (in a 1967 letter, see footnote 3 — and also found in Horn’s
1967 thesis and paper [I1]) in several ways:

(1) Loewner’s computation was for u = v; Theorem [Bl decouples the two vec-
tors u, v.
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(2) Loewner showed Theorem [Bl only for M < (5) (this is all that is required
to obtain the original conclusions of the Horn—Loewner Theorem [[T]). In
particular, Loewner showed that for M < (%) the derivative AM)(0) = 0
vanishes; this can be seen from Theorem [B] via the pigeonhole principle and
since $m(u) = 0 if m has two equal coordinates. Moreover, for M = (g),
there is a unique partition: M =041+ ---4 (n — 1), and for it the result
has a simpler form since the Schur polynomial factor is not manifested:
sm(u)? = 1.

(3) In Proposition 23] we generalize Loewner’s computation even further, to
work over any commutative ground ring.

2. THEOREM [B FROM ANY SMOOTH FUNCTION TO SCHUR POLYNOMIALS, TO
SYMMETRIC FUNCTION IDENTITIES

In this section we prove Theorem [B] and use it to extend classical symmetric
function identities by Cauchy and Frobenius, as well as modern variants in [I[15],
to a unifying master identity; see Theorem 211

Proof of Theorem [Bl. Let wy, denote the kth column of al,, ., +tuv?’; thus wy has
Jjth entry a+tu;vy. To differentiate A(t), we use the multilinearity of the determi-
nant and the Laplace expansion of A(¢) into a linear combination of n! monomials,
each of which is a product of n terms f(a+tu,vg). By the product rule, taking the
derivative yields n terms from each monomial, and one may rearrange all of these
terms into n clusters of terms (grouping by the column that gets differentiated),
and regroup using the Laplace expansion to obtain:

A(t) =Y det(flwi] | - | flwi—a] | vewo f'iwa] | flwira] | -+ | f[wal):
k=1

Now apply the derivative repeatedly, using this principle. By the Chain Rule,
AM)(0) is an integer linear combination of terms of the form

det(v]"u® o fm) [l q] | oo [ tu et o Mgl q])
= det(fm) (a)ooumo | oo | fUmmeD) (@)t ),

where 1,51 = (1,...,1)T € R, and mg + -+ - + m,,_1 = M with all mj, > 0.

From each such determinant, one may factor out the product Hz;é (mi) (q).
Now AX) (0) is obtained by summing the determinants corresponding to apply-
ing mg, my,...,my_1 derivatives to the columns in some order, for all partitions
m = (mp_1,...,mp) of M. We first compute the integer multiplicity of each such
determinant, noting by symmetry that these multiplicities are all equal. As we are
applying M derivatives to A (before evaluating at 0), the mg derivatives applied
to get (™) in some (fixed) column can be any of ( T]r\i ); now the my derivatives
applied to get f(™) in a (different) column can be chosen in (Mn_l:”o) ways; and so
on. Thus, the multiplicity is

(M)(M—m0> (M—mo—"'—an)_ M!
mo my M —1 N !

( " )
mo,mMi,...,Mnp-1
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The next step is to compute the sum of all determinant terms. FEach term
corresponds to a unique permutation of the columns o € S,, with say m,, 1
the order of the derivative applied to the kth column f[wy]. Using (21), the
determinant corresponding to o equals

n—1
[T 7 (@] - (<1)7 - det(@™ [ ™™ | - [ a0
k=0
n—1 n—1
= V(Wsm(u) [T £ (a) - (=1)7 J] v "
k=0 k=0

Summing this term over all ¢ € S, yields:

n—1 n—1
V(u)sm(u) H £ (q) Z (—1)7 T vy
k=0 oS, k=0
n—1
= V(u)sm(u) H f(m’“)(a) : det(vomﬂ | vomi | e ‘ Vomn71)
k=0

n—1
= V(Wsm(w) [T /(@) V(©)sm(v).
k=0
Now multiply by the (common) integer multiplicity to complete the proof. ([l

2.1. General power series determinants and Schur polynomials. We next
present a novel application of Theorem [Bl which unifies and extends classical and
modern determinantal identities. Begin by recalling an identity for Cauchy’s deter-
minant [7]: if B is the n X n matrix with entries (1 — ujvy) ™! := Zjv1>o(“jvk)M
for variables u;, vy and 1 < j,k < n, then

(2.2) det B =V()V(v) > sm()sm(v),

where the notation was explained in Definition [[LB] and the sum runs over all
partitions m with at most n parts. See [20, Chapter 1.4, Example 6] for a proof.
Usually this is written with infinitely many indeterminates u;,v;; we work with
UL,y ..., Un;VL,...,0U, by specializing the other variables to zero. See also [18, Section
5] and the references therein, as well as [12[13\[16/[I7,[19,20] for other such identities
involving symmetric functions.

In particular, one can apply to all entries of the matrix uv? power series other
than f(z) = 1/(1 —z) = > 50 M and then compute the determinant. For
instance, if f(x) has fewer than n monomials then f[uv’] is a sum of fewer than
n rank-one matrices, so it is singular. The case when f has precisely n or n + 1
monomials was crucially used in joint works [IL[I5], to study entrywise positivity
preservers. Another explicit formula — see (Z3]) — was shown by Frobenius [9] in

greater generality than (2.2). This formula also appears in Rosengren—Schlosser
[22, Corollary 4.7], with (1 — cx)/(1 — «) in place of 1/(1 — z) as in (22). In this
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case, one has:
(2.3)

det (1 — cujvk)n
L=wjvk / jeea
V)V ()1 — o) ( > smWsm(V)+(1-c) Y sm(u)sm(v)> .
m : mp=0 m : mo>0
With this background, we can state the master identity that extends Equa-
tions (Z2)) and (Z3)) from (1 — cx)/(1 — x) for a scalar/parameter ¢, to all power
series — including arbitrary polynomials — and with an additional ZZ°-grading:

Theorem 2.1. Fiz a commutative unital ring R and let t be an indeterminate. Let
f(t) = Y ps0 fart™ € R[[t]] be an arbitrary formal power series. Given vectors
u,v € R" for some n > 1, and with the notation in Definition [LL3, we have:

(2.4) det fltuvT] = V(u)V(v) Z tM Z sm(u)sm(v)ﬂfmk.
k=0

N[)(g) m=(my_1,...,mo) FM

All of the aforementioned examples are special cases of the ¢ = 1 case of Theo-
rem 211

Multiple approaches can be used to show Theorem 2T} we present one approach
and outline another. We begin by formulating Theorem [Bl in greater generality,
algebraically. Fix a commutative (unital) ring R and an R-algebra S. The first step
is to formalize the notion of the derivative, on a sub-class of S-valued functions.
This is more than just the commonly used notion of a derivation, so we give it a
different name.

Definition 2.2. Given a commutative unital ring R, a commutative R-algebra S
(with R C ), and an R-module X, a differential calculus is a pair (4, 9), where A is
an R-subalgebra of functions : X — S (under pointwise addition and multiplication
and R-action) that contains the constant functions, and 9 : A — A satisfies the
following properties:

(1) 0 is R-linear:
0y rifi=>_r0f;, Vrj€R, fj€A Vi
J J

(2) 0 is a derivation (product rule):

(3) O satisfies a variant of the Chain Rule for composing with linear functions:
ife € X,r € R,and f € A, then the function g : X — S, g(x) := f(2'+rz)
also lies in A, and moreover,

(0g)(x) =r- (0f)(a" + rz).

For example, the algebra of smooth functions from the real line to itself is a
differential calculus, with R =S5 =X =R and 0 = d/dx.

We can now state an algebraic generalization of Loewner’s calculations. The
proof is essentially the same as for Theorem [B], and is hence omitted.
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Proposition 2.3. Suppose R,S,X are as in Definition 2.2 with an associated
differential calculus (A, D). Fiz an integer n > 0, two vectors u,v € R"™, a vector
a € X, and a function f € A; and A : X — R via:

A(t) :=det flal, xn +tuv’], teX.

Then,
M n—1
M A)(0 = V Vv m m oM ,
@300= 5 (0 Vs [T
mb M k=0
where we sum over all partitions m = (my_1,...,mg) of M. In particular,

A(0x) = (98)(0x) = -+ = (33)712)(0x) = 0.

The algebra A is supposed to remind the reader of smooth functions. One
can instead work with an appropriate algebraic notion of M-times differentiable
functions in order to generalize Theorem [B] to a finite degree of differentiability.

Proposition [2.3] helps provide one approach to proving the master identity:

Proof of Theorem [21l. The idea is to apply Proposition to the differential cal-
culus
X =t R[[t]], S=A:=R]t],

where f(t) € A acts on g(t) € X by composition: f(g(t)). We set a = 0 here,
and the composition converges in the t-adic topology by choice of X. Since a = 0,
we have det f[tuv?] = A(t). The problem in proceeding thus is that one needs to
clear denominators and work with AM)(0g)/M! and f,,, = f™)(0g)/my!, the
Maclaurin coefficients of A and f respectively; but to work with these requires R
to have characteristic zero.

Thus, we begin by observing that the identity (2] is of a universal nature: if it
holds for the polynomial ring

R:Z[Xla"'aXvu Y17"'5Y7L7 ZOvzla"']

with u; = X, v =Yg, fmn = Zm Vj, k, m algebraically independent elements, then
one may specialize to any given ground ring R — or more precisely, to the subring of
R generated by 1, uy,..., Uy, v1,...,Vn, fo,f1,.... Hence we assume in the rest
of the proof that

R="2Z[uy,...,up, V1, Un, fo,f1,---]
with u;, v, fn being algebraically independent.
We first work over a slightly larger ring:
R :R®ZQ:Q[{U’]5U] i1 g] <n, fm tm oz O}]

In this setting, apply Proposition 23 with X := ¢t R'[[t]], S = A := R'[[t]], and
a = 0g/, and define 9 : A — A to be the usual derivative:

1o} Z thM = Z MthM71 (gM S ]’%7 VM 2 O)
M>0 M>1

One verifies that (A, d) is a differential calculus for the data (R, S, X).
We now prove the result over R’. Notice that A(t) = det f[tuv’] is a lin-
ear combination of finite products of elements of R’[[t]], hence lies in R'[[t]]. If
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At) = ZM}O Sart™, then by Proposition 23] one can compute each of its Maclau-

M
rin coefficients o € R’ via: o0y = w, and hence each of its Taylor—

Maclaurin polynomials as well. Taking limits in the ¢-adic topology, and recalling
from Proposition 2.3 that dy; = 0 for M < (g), we compute:

(0M2)(0r)
Alty= Y M2
M>(3) M!
n—1 M /
S V@V smwism(v) T L0

M>(3) h=0

Y

and this concludes the proof for R’ = Q[u1,...,un, V1,---,Vn, fo, f1,---]-

While we just showed the identity (2.4) over R’, here both sides of ([24) belong
to R[[t]], where R = Z[{uj,v; : 1 < j < n, fmn :m > 0}]. By our discussion on
universality, the result follows for a general commutative unital ring. |

We also sketch an alternative approach to proving Theorem 2l via matrix
calculus. In the t-adic topology, f(t) = limar—co f<ar(t), where fear(t) is the Mth
Taylor-Maclaurin polynomial of f for M > 0, given by f<am(t) = Zn]\f:o fmt™.
But for f<ar we have an explicit matrix factorization:

ng[tuvT]
1 uy e ’U,{V[ fO 0 0 1 v e ’U{VI T
1 Uo e uéw 0 f].t e 0 1 Vo e ’UéVI
1w, - uM 0 0 - fyutM 1 v, - oM

and hence one can compute det f<p[tuv?] via the Cauchy-Binet formula. Now
take the t-adic limit and rearrange terms to deduce via the t-adic continuity of the
determinant function:

n—1
(2.5)  det fltuv?] = V(u)V(v) > S (Wsm(V) [T frnit™,

k=0

0<mo<m <--<mMmp_1

where m = (my,_1,...,mg). But this sum equals the right-hand side of (24]).

We conclude this section by returning to the real topology and working again
over R. As Theorem 2] holds in the t-adic topology, it is natural to ask about
the convergence of the series ([2.4) as a real function. This indeed holds, as a
consequence of Theorem [Bt

Corollary 2.4. Fiz scalars € > 0 and a € R, and vectors u,v € R" for some
integer n > 0. If f : [a,a + €) = R has the power series expansion

flx) = ZfM(x—a)M, x € la,a+e), fu €R,
M>0

and we define A(t) := det flal, xn +tuv?] for sufficiently small t, then A(t) equals
the right-hand side of Equation 24) for sufficiently small t.

Proof. If f has a power series expansion around/near a, then so does A near 0,
since it is a linear combination of finite products of f-values near a. Thus A (real
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analytic near 0) can be recovered from its Maclaurin coefficients by repeating the
same computation as in the proof of Theorem 2.l The Maclaurin coefficients of A
are computed in Theorem [Bl (Il

3. HORN-LOEWNER MASTER THEOREM [Al ADDITIONAL REMARKS, AND PROOF

Finally, we return to the Horn—Loewner Theorem [[LT] and its variants. The goal
of this section is to prove our Master Theorem [Al however, we begin by filling in
the details omitted in the Introduction.

One reason why the Horn-Loewner Theorem [I] (and its variants) was significant
was because it is sharp in the number of non-negative derivatives. We now provide
several examples of this phenomenon.

Example 3.1.

(1) If one restricts to the class of power functions f(x) = 2® — with « possibly
non-integral — then FitzGerald and Horn [8] showed that such entrywise
preservers of positivity on P,((0,00)) correspond precisely to a € ZZ° U
[n — 2,00) — note that the case of a € ZZ° follows immediately from the
Schur product theorem [25]. Thus if &« € (n —2,n — 1), then f(z) = z*
satisfies Theorem [T} moreover, f(™) is negative on I = (0, 00), showing
that Theorem [[T]is sharp.

(2) Let I = (—p,p) or [0,p) with 0 < p < oco. If one restricts to polyno-
mial functions f(x) =3, cxz® acting on I, then in [I] we showed that
for any scalars cg,...,c,—1 > 0, there exists ¢, < 0 such that f(z) =
> i ckx® preserves positivity on P, (I); moreover, f™(0) = n! ¢, < 0,
hence f(™) () < 0 for z > 0 small. This has two consequences: first,
it produces the first examples of polynomials / power series with a neg-
ative coefficient that preserve positivity in a fixed dimension. Moreover,
this produces polynomial functions (the previous example produces power
functions) that preserve positivity in dimension n but not n + 1.

(3) Suppose that I = (0,00). In [15], we constructed polynomials of the special
form Ziio cpx® with ¢, < 0 < ¢, for all k # n, which entrywise preserve
positivity on P, ((0,00)). These are the first examples with negative co-
efficients, and in particular, the first polynomial examples that work over
P,.(I) but not over P, (I). Proposition provides an explicit family of
such polynomials — in fact, the simplest such family — when n = 2. This is
followed by a remark about all polynomials of the special form above when
n = 2; the case of general n > 2 is in [I5].

Proposition 3.2. For e > 0, define f.(v) =1+x —ex®> + 2> + 2% If0<e < %,
then f.[—] preserves positivity on Pa([0, 00)).

In particular, such entrywise polynomials f.[—] preserve positivity on Py ((0, 00)),
but not on P3((0, p)) for any 0 < p < oo, by Lemma [[3]

Proof. We first claim that f. is positive on (0, 00) if € < 2. This follows by adding
the inequalities 2% < 1 4+ z* and 22 < x + 3, for any = > 0.

Next suppose that u = (uj,u2)T € (0,00)? is a column and A = uul €
PP2((0, 00)) has rank one. We claim that f.[A] is positive semidefinite if 0 < & < .
By relabelling indices and continuity, it suffices to show this for 0 < u; < wus.
First note that all entries of f.[uu’] are non-negative, by the preceding paragraph.
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Next, we apply (Z3) — with n =2, v =u,t =1, and f = f. — to compute the
determinant:
(3.1) det f.[uu”]

1

= V(u)2 Z S("kﬂj)(u)2 —¢€ Z S(M, "7) —¢€ Z S("wM )

0<j<k<3 §=0
where, for ease of exposition, we define and work with
(32) (no,nl,M,ng,ng) = (0,172,3,4).

To show that det f.[uu”] is non-negative, we employ bounds on Schur polyno-
mials in two variables. Given integers 0 < j < k, notice that

k,J J ok
UgU7 — UpU i k—j—1 k—j—2 k—j—1
Sk (Ut uz) = 221 = (wquo) (us 77 Hus 7 Pug 4 Ul =,
Ug — U7
If 0 < u1 < ug as above, then the largest among the k— j monomials here is uluk L
SO
(3.3) wub < Sk, (w1, u2) < (k — PudubL VO <up <ug, 0<j<k.

(See [I5] Proposition 3.1] for the corresponding bounds on general Schur polyno-
mials.) In particular, dividing @1I) by V(u)? > 0 and using ([B.3)), we have:

det 5 T n; ne— min(n; max(n; —
et fe[uu’] ST w22 e 3T (M — )2l M) 2 mextny A2,

2 1
V(u) 0<j<k<3 0<5<3
We claim that the right-hand side is non-negative when 0 < ¢ < %. This is
equivalent to showing that if 0 < w; < ug, then
3 ( _n‘)2u2min(nj,M) 2 max(n;,M)—2
5_1 }10:Z(M—TLJ)2 > EO<]<3 J 1 5 Ug
n; 2(np—1)
j=0 Eo<j<k<3 1 Ug

For this, it suffices to show that each monomial u2 min(n; ’M) 2 max(ng,M)=2 ; in the nu-

merator is bounded above by the sum in the denommator. We claim more strongly
that each such monomial is bounded above by one summand in the denominator.
This is because for each j, there exist indices ¢ # k in {0,1,2,3} \ {4} such that
n; < M < ng. Now for instance if j = 1, then

2ny, 2M—2 {u%nou2(n1 D ifus < 1,

Uy~ Ug < oan, 2(ns—1) .
uy" s , ifug 21,

and similarly for the other three summands.

This shows the result for all rank-one matrices in P2((0,00)). For the gen-
eral case, we use the extension principle [I5, Theorem 3.5], which says that if
f:(0,00) = R is a continuously differentiable function such that f[—] preserves
positivity on rank-one matrices in P,((0,00)) and f’[—] preserves positivity on
P,,—1((0,00)) for some n > 2, then f[—] preserves positivity on IP,,((0,0)). Via this
result, it suffices to show that f.[—] preserves positivity on P1((0,00)) if 0 < £ < 5.
But this follows by noting that

Hl@)al = £1@) > Fipole) > 1= ) 20, va>0.
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Thus if 0 < e < %, then f.[—] preserves positivity on Py((0,00)), so on Py([0, 00))

by continuity. (Il
Remark 3.3. In this remark, we consider the more general family of polynomials
fo(2) = g™ + cpy 2™ —ex™ 4 cpya™? + cpaa™, e >0,

where 0 < ng <ny; < M < ny < ng are integers, and ¢, € (0, 00) are fixed scalars.

If

-1
3

(3.4) 0 <e<ego:=min{c,, :0<j <3} Z(M —n;)? ,
j=0

then we claim that f.[—] preserves positivity on P2([0,00)). Here we outline the
argument when it differs from the proof of Proposition 3.2, mainly due to the
integers m; > 0 being arbitrary.

The first reduction is to the case when all ¢,, = 1. Note that for any positive
semidefinite matrix A, x,, one has f.[A] — g.[A] € P,,, where g.(v) := min;c,; -
Z?:o 2™ — exM. This is because A°"% € P, for all j, by the Schur product
theorem [25]. Thus if the result holds for (min;c¢,,) 'g-(z) — with the bound
el > Z?:O(M —n;)? — then the result holds for f. as desired.

Thus, suppose that ¢,;, = 1Vj and f.(z) = 2" +2™ — exM 4 272 4 2™ akin to
its special case in Proposition Now ¢y < %, so the same arguments as in the
preceding proof show: (i) f-(x) > 0if 0 < e <2 and z > 0; and (ii) f-[—] preserves
positivity on rank-one matrices in Po((0,00)), if 0 < € < g9. The final step — as
in the preceding proof — is to use the extension principle, and here we claim the
stronger assertion: he,(z) 1= nix™ = MegzM—1 +noz™2~1 > 0Vz > 0. To prove
this, it suffices to multiply by = > 0 and show that ni(z™ + z2"2) > Meoz™. This
would follow from Mey < nq, which in turn follows from the sub-claim that

20M —n1)> > M/ny, where M >n;+1, ng>1.

This sub-claim is proved by considering the function h(z) := 2(x — n1)? — nj'a
on [ny1,00). Note that h'(z) > 0 for x > ny + 1/(4nq1), so h(M) > h(ny + 1) =
l—n;t>0. 0

Our next observation explains why we call Theorem [A] a master theorem: it
encompasses all of the previously known versions.

Proposition 3.4. Theorem [Al specializes to all results stated prior to it, for f
smooth.

Proof. We first show how Theorem [A] implies Theorem (which in turn implies
Theorem [[T]). Since f is smooth, by the discussion following Theorem we may
disregard the hypothesis concerning Py (7). Choose any a € I = (0, p), and set

€:=p—a, p=q:=mn, uy = uf "t Vk € [1,n).

Theorem now follows from Theorem [A] for smooth f.

Next we show how Theorem [Al implies a stronger version of Lemma [[3(1) —
for smooth functions, not merely power series. Set a = 0 and suppose that f has
N < oo nonzero derivatives at @ = 0. Let [ := min(n, N) and denote the smallest
I of these orders of derivatives by mg,...,m;_1. Now set € :== p, p:=0, q = [.
It follows by Theorem [A] that the first [ nonzero Maclaurin coefficients of f(z) at
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x = 0 are non-negative, hence positive as desired. This shows the result — and with
a smaller test set used here than in Lemma [[3{(1).

Finally, we show how Lemma[L3|2) follows from Theorem[Al By Lemma [L3](1),
it suffices to consider only the coefficients of degree > m’. Thus, suppose that the
assumptions of Lemma [[3[2) hold, and yet ¢,,» < 0 is not followed by n positive
coeflicients of higher degree. First, if ¢,  is followed by infinitely many negative
coefficients of higher degree, then f(z) < 0 for > 0. But then f[z1l,,x,] € P,(R),
contradicting the hypotheses.

Thus ¢, is followed by finitely many nonzero higher-order coefficients. Without
loss of generality, we may redefine m’ to be the highest degree coefficient that is
negative; thus,

d 1-1
) ’
fz) = g Cn, ™+ ™ E Cm, T,
j=0 k=0

where 0 <ng < -+ <ng <m' <my_; <--- < mg are integers. Now define

-1 d

’ .

g(x) == g L N R A E Cp, @™
k=0 j=0

In other words, g(x) = 2™ f(1/x) for > 0. We claim that g(x) entrywise preserves
positivity on rank-one matrices uu? € P,((0,00)). Indeed,

gluu™] = (wu”)? o fl(uu®)* = [u™ () o fluH (u )T,

and this is positive semidefinite by the Schur product theorem and since u°~! &
(0,00)™ as well. But this reduces us to the previous case of Lemma [[3[(1), which
follows from Theorem [A] and implies that g has at least n positive coefficients of
degree lower than z™o—m"  Therefore | > n, contradicting the assumption. |

Remark 3.5. For completeness, we briefly discuss what happens if one tries to
weaken the smoothness hypothesis in Theorem [Al The way that Horn/Loewner
originally proved Theorem [Tl was to appeal to a result of Boas and Widder [6] by
using mollifiers, that is, convolving f with ¢(«/§) for § > 0 and a certain smooth
function ¢ : (—1,0) — (0, 00). We now explain why it is not possible to repeat this
argument for Theorem [A] outside of the setting of the Horn-Loewner setting p = n.

Indeed, suppose p < n, which we may take to mean m, > p < n. To repeat the
mollifier argument would at least involve changing the hypothesis

flalpxn +tuu?] € P, (R), Vi,

from each fixed a, to all a belonging to an interval J’. But now if we want f (gp ) (a) =
0, then assuming that f is nice enough (e.g., if f, f',..., f® are bounded on J’),
we compute:

- [ 5 fP(a-we(5) =0.

From this and since f®) > 0 on I for p < n (by Theorem [L1)), it follows that f(?)
vanishes on some interval J containing a, hence so does f() for all > p. But this
does not reconcile with f(™»)(a) # 0 for m, > p.

Given Theorem [Al and the discussion in Remark [3.5] we next observe that the
original non-pointwise Theorem [[.T], as well as its strengthening in Theorem [L.2],
admits a small generalization: the domain need not begin at 0.
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Corollary 3.6. Theorems [L1l and hold for every open subinterval I C (0,00).

This result is equivalent to the formulation for I = (0, 00), and this equivalence
is immediate. Indeed, if I = (r,s) with 0 < r < s < 00), then one works instead
with the function g : (0,s —r) = R, g(x) := f(x 4+ r), and this reduces the result
to Theorems [[.T] and respectively.

Our final remark, before proving the Master Theorem [A] addresses a classical
result by Boas and Widder:

Remark 3.7. As discussed in [5,[10,11], the Horn-Loewner theorem for general
functions — on all open intervals (0, p) for 0 < p < oo — in fact follows from its
smooth version, using mollifiers and a 1940 result by Boas and Widder. Here we
record a minor typo in Boas and Widder’s proof of their (rather remarkable!) main
result in [6]. The authors begin the proof of [6 Lemma 13] by claiming that if
I C R is an open interval and f : I — R is continuous and has non-negative
forward differences of order k > 3, then f’ is monotonic. However, this is not true
as stated: for any k > 3, the function f(x) = 23 satisfies these hypotheses on
I =(-1,1), but f’ is not monotone on I.

We now explain how to fix this issue. One has to claim instead that f’ is
piecewise monotone on I. This claim follows by applying in turn [6, Lemmas 9, 4,
and 11]. The piecewise monotonicity then suffices to imply the existence of f’(z+)
at every point in I, and the remainder of the proof of Lemma 13 in [6] goes through
verbatim.

3.1. Proof of the Master Theorem [Al We conclude the paper by using Theo-
rem [B] to show the Horn—Loewner Master Theorem [Al Definition B8 which may
seem somewhat opaque at first glance, will feature in the proof.

Definition 3.8. Let a € R and € € (0,00). Define I := [a,a + €) and suppose
f I — R is smooth. We say that a tuple of integers

0<mg < - <my_1
is admissible for these data if, for all tuples (lg,...,l,—1) of non-negative integers
such that ), I < >, my, at least one of the following three possibilities holds:
(1) The lj are not pairwise distinct.
(2) There exists k such that f()(a) = 0.
3) {loy.- yln—1} ={mo,...,mn_1}.

Notice that this definition is independent of ¢ > 0. We now characterize all
admissible tuples of each given length:

Lemma 3.9. Given a € R, € > 0, an integer n > 0, and f : [a,a+¢€) — R smooth,
an integer tuple 0 < lp < -+ < l,—1 s admissible for these data if and only if:

(1) FEither f has at most n — 1 nonzero derivatives at a; or
(2) If the integers 0 < mg < -+- < my_1 denote the n lowest-order nonzero
derivatives of f(x) at x = a, then either lj, = my Vk or Y, Ly <>, my.
In particular, given a, e, f,n, there are either finitely many length n admissible tu-
ples, or every length n tuple of pairwise distinct non-negative integers is admissible.

The tuple my =k, 0 < k < n was used in Loewner’s determinant computation
and proof of Theorem [[.1] and this tuple is easily seen to be admissible. As dis-
cussed in the discussion following Remark [[.6], in this special case the argument is

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HORN-LOEWNER THEOREM; SYMMETRIC FUNCTION IDENTITIES 2233

somewhat less involved and the underlying use of admissibility is not revealed; but
this subtlety is made clear in the proof of Theorem [Al

Proof. Clearly if f has at most n — 1 nonzero derivatives at a, then every integer
tuple 0 < g < -+ < l,—1 forms an admissible tuple, by the pigeonhole principle.

Now suppose that f(™¥)(a) # 0 for all 0 < k < n — 1, and the my, are min-
imal with this property, as well as pairwise distinct. One checks that the my
form an admissible tuple. For any tuple (mj},) such that Y, mj > >, my but
{mf,...,m,_1} # {mo,...,mp_1}, we can choose I := my, in Definition B.§ to
verify that (m},) is not admissible.

Finally, if >, mj, < >, ms, then we claim that (mj) is an admissible tuple.
Indeed, choose any tuple (I;) of pairwise distinct integers I > 0 with >, I <
YoMy < >, my. Then conditions (1), (3) in Definition 3.8 fail to hold, so condi-
tion (2) holds by the minimality of the my. O

Finally, we have:

Proof of Theorem [Al At the outset, set
mo:=0, ..., my_1:=p-—1

Notice that it suffices to show that f(m’*')(a) > 0 for 0 < k < g — 1. The remaining
derivatives at = a of f(z) of order < my_1 lie in [p, mg—_1]\ {mp,...,mq—1}, and
hence are zero by the choice of the my.

The second observation is that the given test set of n X n matrices contains as
principal submatrices a corresponding test set of ¢ x ¢ matrices. Hence we may
restrict to the leading principal ¢ X ¢ submatrices of the given test set, and work
with only this reduced test set. In other words, we may assume without loss of
generality that ¢ = n.

Having made these reductions, we prove the result. For each 0 < § small enough,
define f5(x) := f(z) + 6xP~! with = € I. For the data a > 0, any € > 0, and f;
with any § > 0, note by Lemma [B9(2) that the tuple (my) is indeed admissible,
since the my, denote the orders of the first n nonzero derivativesd of fs(x) at © = a.

Now given a, t and the vector u as in the theorem, define A(¢) := det fs[lal,xn +
tuu”] as in Theorem [B] (i.e., replacing f,v by fs5,u respectively). Then A(t) > 0
for t > 0, by the hypotheses and using the Schur product theorem for zP~!. From
this we obtain:

0< lim At)

S m =5 where M :=mqg+ -+ my_1,
—

provided this limit exists.

We now claim that A(0) = A’(0) = --- = AM=1)(0) = 0, so that one can com-
pute the limit using L’Hépital’s rule. Indeed, going through the proof of Theorem[B],
if we choose any tuple (I;) of non-negative integers, the determinant ([21]) vanishes if
any two I, are equal, or if f(*)(a) = 0. Thusif >_, I < >, mx, then the admissibil-
ity of the tuple (my) (shown above) implies that {lg,...,l,—1} = {mo,...,mp_1}.

5In the original proof in [I1] for p = ¢ = n, Horn/Loewner use fs(z) := f(z) + éz™; but for
their purposes they could just as well have used any power > n — 1. As the present proof reveals,
in order to examine the coefficients of nonzero derivatives of order up to n — 1, the optimal power
to use in the original Horn—Loewner setting would be n — 1.
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In particular, A®)(0) = 0 for all 0 < L < M, by Theorem [Bl Continuing the
computation,

A0 A0
e A |

where the equalities are by L’Hopital’s rule, and by Theorem[Bland the admissibility
of m. In particular, the right-hand side here is non-negative. Since u has distinct
coordinates, we can cancel all positive factors to conclude that

n—1

(8.5) [1 7 (@ >o.
k=0

Notice that for n = 1, this proves the inequality, by sending § — 0%.

We now prove the result by induction on n = q. For the induction step, we know
that f(mk) (a) = 0for 0 < k < n—2, since the given test set of nxn matrices contains
as leading principal submatrices a corresponding test set of (n—1) X (n—1) matrices.
There are now two cases. If a = 0, then with § = 0 and 0 < k < n — 2, we have
fém")(O) > 0 as was just discussed, so we may divide and obtain f(™n-1)(0) > 0,
as desired.

If instead a > 0 and § > 0, then

£57™ (@) = f (@) + 6 plp — 1)+ (p = my - D)a? T,

and this is positive for 0 < k < n—2 by the induction hypothesis. (Here we consider
separately the cases 0 < k < p and k > p.) Hence by (33,

FOm) @) = fOmn) (@) + 1pey 6 omn 1! 20, VO<S <1,
and it follows that f(™n-1)(a) > 0. O
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