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Despite the current advances in the treatment for prostate cancer, the patients often

develop resistance to the conventional therapeutic interventions. Therapy-induced

drug resistance and tumor progression have been associated with cellular plasticity

acquired due to reprogramming at the molecular and phenotypic levels. The

plasticity of the tumor cells is mainly governed by two factors: cell-intrinsic and

cell-extrinsic. The cell-intrinsic factors involve alteration in the genetic or epigenetic

regulators, while cell-extrinsic factors includemicroenvironmental cues and drug-induced

selective pressure. Epithelial-mesenchymal transition (EMT) and stemness are two

important hallmarks that dictate cellular plasticity in multiple cancer types including

prostate. Emerging evidence has also pinpointed the role of tumor cell plasticity

in driving anti-androgen induced neuroendocrine prostate cancer (NEPC), a lethal

and therapy-resistant subtype. In this review, we discuss the role of cellular

plasticity manifested due to genetic, epigenetic alterations and cues from the tumor

microenvironment, and their role in driving therapy resistant prostate cancer.

Keywords: prostate cancer, ADT, cellular plasticity, EMT, stemness, drug resistance, NEPC

INTRODUCTION

Prostate cancer (PCa) represents a highly heterogenous disease with diverse range of molecular
alterations defining its subclasses. These molecular alterations include somatic or germline
mutations, focal deletions, amplifications, and gene fusions that entail the intra- and inter-patient
heterogeneity and confer variable clinical outcomes. The major molecular subclasses include a
variety of gene fusions involving ETS family transcription factors, namely ERG, ETV1/4, FLI1, and
NDRG1; or RAF kinase rearrangements, upregulation of secretory protein SPINK1 and somatic
mutations in SPOP, FOXA1, and IDH1 (Tomlins et al., 2005, 2008; Palanisamy et al., 2010; Cancer
Genome Atlas Research, 2015; Bhatia and Ateeq, 2019). The androgen signaling plays a key role in
development and maintenance of the prostate gland (Cunha et al., 1987; Cooke et al., 1991), while
aberrant activation of this signaling has been linked to the initiation and metastatic progression of
PCa (Gelmann, 2002; Culig and Santer, 2014; Tan et al., 2015). Thus, drugs that target biosynthesis
of androgen or androgen receptor (AR) activity are often administered as the first line therapy
also known as androgen deprivation therapy (ADT). However, the disease inadvertently progresses
to an advanced stage, castrate-resistant prostate cancer (CRPC) (Cher et al., 1996; Gregory
et al., 2001; Chen et al., 2004; Grasso et al., 2012; Robinson et al., 2015). At CRPC stage, the
cancer cells bypass their dependency on the androgen signaling by various mechanisms such as
somatic mutations or amplification of AR gene, constitutively active splice variants (AR-V7 and
ARv567es), mutations in the ligand binding domain of AR (F877L and T878A), or activation
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of androgen-regulated genes via glucocorticoid receptor (Taplin
et al., 1995; Arora et al., 2013; Antonarakis et al., 2014).
The androgen biosynthesis inhibitor, abiraterone and next-
generation AR-antagonists, enzalutamide and apalutamide have
been developed for the clinic management of CRPC patients
(Scher et al., 2010; de Bono et al., 2011; Clegg et al., 2012).
Although, AR-targeting therapies prolong the overall survival
of the patients, nonetheless, resistance to these drugs often
prevail leading to disease progression to an aggressive stage, also
known as neuroendocrine prostate cancer (NEPC) (Aggarwal
et al., 2018). The mechanism to overcome the acquired resistance
toward anti-androgen therapy is frequently manifested by several
molecular and phenotypic changes resulting in transition of
androgen-independent CRPC to therapy-induced NEPC (Zou
et al., 2017; Aggarwal et al., 2018; Soundararajan et al.,
2018; Beltran et al., 2019). This dynamic transition provides
multifaceted advantages to the cancer cells to overcome therapy-
induced resistance and enable survival (Sun et al., 2012; Miao
et al., 2017; Stylianou et al., 2019).

Cellular plasticity represents the dynamic transition of a
cell between one state to another (Varga and Greten, 2017).
The term “plasticity” was introduced to define the extensive
reprogramming events happening in stem cells leading to
cellular differentiation (Blau et al., 1985). This is a bidirectional
process which involves changes both at the molecular and
phenotypic levels of a cell. The cellular plasticity has been a
key phenomenon that governs not only the developmental fate
of the organism, but also serves as a driving force behind
different malignancies, including PCa (Rothman and Jarriault,
2019; Yuan et al., 2019). During early embryonic development,
the cellular plasticity helps the stem or progenitor cells to
differentiate into different lineages while in the later stages of
life, it maintains stem cell populations and regulates tissue repair
(Wagers and Weissman, 2004). Several complex processes such
as transcriptional regulation or epigenetic alterations are known
to modulate the cellular identity and plasticity (Flavahan et al.,
2017). Mounting evidence suggests that the genes involved in the
embryonic development are frequently subverted or reactivated
during malignant transformation of cells (Kalluri and Weinberg,
2009; Dempke et al., 2017). These acquired molecular attributes
enable the tumor cells to elude the constraints of normal growth,
thereby assisting them to thrive and sustain, escape therapeutic
pressure and immune surveillance (Zou et al., 2017; Vitkin et al.,
2019; Yuan et al., 2019). Likewise, in PCa, cellular plasticity
aids the tumor cells to develop resistance against the targeted
therapies in several different ways, for instance, by undergoing
phenotypic conversions, cellular reprogramming and transition
from one cell lineage to another (Beltran and Demichelis, 2015;
Zou et al., 2017; Alumkal et al., 2020).

In this review, we discuss the importance of cellular
plasticity in conferring intra-tumoral heterogeneity and its
impact on disease progression and drug resistance. Further,
we attempt to delineate the implications of cell-intrinsic
and -extrinsic factors which govern the plasticity in tumor
cells. Finally, we also summarize the novel therapeutic
interventions used to target cellular plasticity in combating
prostate cancer.

INTRA-TUMORAL HETEROGENEITY AND
CELLULAR PLASTICITY

PCa exhibits high level of intra-tumor heterogeneity
characterized by distinct sub-populations of the cancer cells,
which is often a major confounding factor influencing disease
progression (Boyd et al., 2012; Yadav et al., 2018). This intra-
tumor heterogeneity offers a multifaceted advantage to the
PCa cells such as disease progression, tumor dissemination,
and driving resistance toward standard therapies such as
chemotherapy, radiation or hormone therapy (Marjanovic et al.,
2013). Two different models contributing to intra-tumoral
heterogeneity in PCa have been generally accepted. In the
clonal evolution model, tumors arise from a single cell of origin
triggered in response to sequential oncogenic hits (Liu et al.,
2009; Kreso and Dick, 2014). In cancer stem cell model, tumor
cells originate from the differentiation of a small population
of cancer stem cells (CSCs) or dedifferentiation of the existing
cancer cells into CSCs to promote tumor growth and progression
(Collins et al., 2005; Patrawala et al., 2006; Yadav et al., 2018). The
neoplastic transformation via either of the proposed pathways
give rise to genetically and phenotypically distinct cell types
within same tumor (Poli et al., 2018). This morphological
heterogeneity is responsible for the multifocality within the
prostate tumor of the same patient. The multifocality has been
reported in ∼50–90% of the PCa patients who underwent
radical prostatectomy, and has been linked with higher grade,
advanced stage and recurrence compared to unifocal prostate
adenocarcinoma (Djavan et al., 1999). Multifocal tumors exhibit
significant molecular heterogeneity in terms of copy number
alterations (CNAs), single-nucleotide variants (SNVs), genomic
rearrangements, and unique signatures of DNA damage and
transcriptional dysregulation (Beltran and Demichelis, 2015;
Boutros et al., 2015). Additionally, intra-tumoral variability
involving distinct DNA methylation and histone modification
patterns was found to be more pronounced in the advanced
stage PCa, suggesting association of epigenetic heterogeneity
with poor clinical outcome (Seligson et al., 2005; Bianco-Miotto
et al., 2010; Brocks et al., 2014). Thus, deciphering the molecular
basis of the intra-tumor heterogeneity may provide an insight for
better prognosis and the clinical management of PCa patients.

EPITHELIAL-MESENCHYMAL TRANSITION
MODULATES CELLULAR PLASTICITY IN
PROSTATE CANCER

The epithelial-mesenchymal transition (EMT) is the key
phenomenon in embryonic development, nonetheless, it plays
a pivotal role in maintaining tissue homeostasis as well as
cancer progression (Nauseef and Henry, 2011). This complex
process involves transition of a epithelial cell into a mesenchymal
phenotype, characterized by reduced cell-cell adhesion and
increased migratory properties (Lu and Kang, 2019). Moreover,
tumors often exhibit co-existence of a subpopulation of cells
in hybrid state harboring both epithelial and mesenchymal
phenotypes (hybrid E/M state), further aiding the cancer cells
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to metastasize from primary to distant secondary sites (Tsai and
Yang, 2013; Williams et al., 2019). During this reprogramming,
the cancer cells secrete an array of enzymes which break down
its attachment to the basement membrane followed by several
phenotypic changes such as reorganization of actin cytoskeleton,
leading to enhanced migratory and metastatic potential (Thiery
et al., 2009). Multiple clinical evidence has associated enhanced
mesenchymal features with high Gleason grade, shorter time to
biochemical recurrence and increased metastasis in PCa (Cheng
et al., 1996; Graham et al., 2008; Zhang et al., 2009; Figiel et al.,
2017).

Several transcription factors (TFs) associated with EMT
regulate cellular plasticity during embryonic development have
been identified as the oncogenic determinants in the neoplastic
transformation of prostate. For example, SRY-Box Transcription
Factor 9 (SOX9) enables transition of fetal prostate epithelial cells
into mesenchyme during embryogenesis and its high levels in
advanced stage PCa has also been reported (Wang et al., 2008).
Furthermore, Wnt/β-catenin signaling which is linked with the
initiation and progression of multiple cancers is also known to
regulate expression of Sox9 (Clevers, 2006). Another key feature
of EMT is the loss of adherens junction protein, E-Cadherin (E-
Cad), a tumor suppressor required for maintaining the epithelial
phenotype (Loh et al., 2019). Moreover, downregulation of
E-Cad via Notch signaling is also known to promote drug
resistance in PCa cells (Wang et al., 2017). In addition, zinc finger
proteins belonging to Snail family transcriptional repressors,
SNAI1 (SNAIL) and SNAI2 (SLUG), and zinc finger E-box-
binding homeobox 1 and 2 (ZEB1 and ZEB2) and Twist-related
protein 1 (TWIST1) are the key TFs involved in EMT, which
also downregulate E-Cad and upregulate various mesenchymal
markers, namely N-Cadherin (N-Cad), Vimentin (VIM) and
Fibronectin (Jennbacken et al., 2010; Zhu and Kyprianou, 2010;
Sun et al., 2012; Shiota et al., 2014; Zhifang et al., 2015; Miao
et al., 2017). In a recent study, a positive feedback loop has
been demonstrated between SOX4 and a scaffold protein Cullin
4B (CUL4B), wherein CUL4B induces the SOX4 expression
via PRC2-mediated silencing of miR-204 and in turn SOX4
positively regulates the transcription of CUL4B, leading to
enhanced proliferation and invasion of PCa cells. In addition,
the CUL4B+/SOX4+ subset of PCa patients show activation
of Wnt/β-catenin signaling pathway and are associated with an
aggressive disease and poor prognosis (Qi et al., 2019).

In PCa, the selection pressure imposed by ADT has been
well-known to potentiate EMT and stemness (Sun et al.,
2012; Tsai et al., 2018). Importantly, androgen deprivation in
mice implanted with human LuCaP35 prostate tumor induces
the increased expression of N-Cadherin (CDH2), VIM, ZEB1,
TWIST1, and SLUG. Notably, a bidirectional negative feedback
loop is generated between AR and Zeb1 which is involved in
androgen deprivation induced EMT (Sun et al., 2012). Moreover,
LNCaP cells treated with epigenetic drugs lead to upregulation
of ZEB1 and reduced AR levels, whereas siRNA mediated ZEB1
silencing leads to increased expression of AR (Sun et al., 2012).
Interestingly, enhanced expression of ZEB1 due to copy number
gain leads to direct transcriptional repression of miR-33a-5p
in PCa cells, and contribute to an increase in EMT, invasion,

migration and bone metastasis (Dai et al., 2019). Besides, miR-
33a-5p indirectly inhibits ZEB1 expression via targeting TGFBR1
and suppressing TGF-β signaling, thus forming an indirect
double-negative feedback loop. AR is also known to act as the
direct transcriptional repressor of SNAIL, and its upregulation
along with ZEB1/2, TWIST and Forkhead box protein C2
(FOXC2) has been reported as an adaptive response to androgen
deprivation (Miao et al., 2017). Intriguingly, tumor grafts
derived from PCa patients who underwent radical prostatectomy
following neoadjuvant ADT (6–8 weeks of flutamide or lupron)
exhibit mislocalization of E-Cad and elevated VIM expression
(Zhao et al., 2013).

Conversely, ZEB2, another critical mediator of EMT shows
AR mediated differential regulation in androgen dependent
vs. independent manner. In androgen-dependent LNCaP cells,
ZEB2 is positively regulated by AR and showed increased
expression upon androgen stimulation while reduced expression
in AR-silenced cells. In androgen-independent cell lines, such as
PC3 and DU145, ectopic expression of AR leads to upregulation
of miR-200a/miR-200b resulting in reduced expression of ZEB2
accompanied with diminished invasive potential (Jacob et al.,
2014). This context-dependent AR mediated regulation of ZEB2
may be due to the differences in the levels and types of co-
regulatory proteins which modulate AR activity as an activator
or repressor (Van De Wijngaart et al., 2012). In another study,
miR-145 has been shown to post-transcriptionally suppress the
expression of ZEB2 resulting in decreased invasion, migration
and stemness in PCa cells (Ren et al., 2014). Moreover, ZEB2
acts as a direct transcriptional repressor of miR-145 and its
downregulation in PC3 cells results in reduced bone invasion
in mouse models, suggesting a double-negative feedback loop
between ZEB2 and miR-145. Unlike SNAIL, which is an
AR repressed gene, the SLUG expression was found to be
upregulated by constitutively active AR signaling in a ligand-
independent manner. Additionally, SLUG also serves as a novel
co-activator of AR and enhances its transcriptional activity
even in the absence of androgens (Wu et al., 2012). Another
study has shown that siRNA-mediated AR silencing in PCa cells
promoted migration and invasion via C-C motif chemokine
ligand 2 (CCL2)-dependent STAT3 activation and subsequent
upregulation of EMT associated pathways (Izumi et al., 2013). In
a follow-up study, targeting pSTAT3–CCL2 signaling with C-C
chemokine receptor type 2 (CCR2) antagonists reversed the ADT
induced cell invasion and macrophage infiltration in transgenic
adenocarcinoma of the mouse prostate-C1 (TRAMP-C1) mouse
tumors (Lin et al., 2013). One possible explanation could be that
AR is known to directly regulate SPDEF (SAM pointed domain-
containing ETS transcription factor), a transcriptional repressor
of CCL2, and ADT leads to reduced SPDEF expression resulting
in elevated CCL2 levels (Tsai et al., 2018). Thus, the importance
of AR-signaling in EMT is context-dependent in PCa and needs
to be further delineated in order to understand the pathobiology
of this disease and develop effective therapeutic approaches.

While EMT helps with the initial dissemination of the
tumor cells, clinical manifestation of the metastases depends
upon mesenchymal-epithelial transition (MET), which is crucial
for the effective seeding and colonization of the disseminated
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tumor cells at the distant metastatic site (Nieto, 2013). For
instance, the cross-talk between the metastasized PCa cells and
stroma in liver show elevated expression of the E-Cad, possibly
due to MET induced cellular plasticity (Yates et al., 2007).
This dynamic transition through a spectrum of phenotypically
different states could potentially regulate the initial dissemination
of PCa cells followed by metastatic spread to the distant sites.
However, more evidence is required to support the notion of
EMT-MET axis in cellular reprogramming and may serve as a
promising therapeutic strategy in targeting disease progression
in prostate cancer.

STEMNESS IMPARTS CELLULAR
PLASTICITY IN PROSTATE CANCER

The CSCs constitute a small population of tumor cells which has
the potential to drive cancer progression, increased resistance
to conventional therapies and ability to disseminate to distant
organs (Soundararajan et al., 2018; Li and Shen, 2019). However,
the theory about the exact origin of CSCs is still debatable. It has
been suggested that CSCs are either derived directly from the
normal stem cells or produced as a result of de-differentiation
or trans-differentiation of the existing cancer cells (Friedmann-
Morvinski and Verma, 2014; Plaks et al., 2015).

The role of EMT in imparting stemness is much in contrast to
its significance in the normal embryonic development, wherein it
primarily governs the differentiation of stem cells into multiple
lineages (Wang and Unternaehrer, 2019). EMT promoting
transcription factors, such as ZEB1 is known to promote
stemness in PCa (Wellner et al., 2009; Orellana-Serradell et al.,
2018). Moreover, ectopic expression of platelet-derived growth
factor D (PDGF-D) in PC3 cells lead to morphological changes
associated with acquisition of EMT and increased clonogenicity
and sphere-forming abilities. These cells also show enhanced
expression of TFs associated with stemness such as Nanog, Oct4
and Sox2, Lin28B and members of polycomb repressor complex
2 (PRC2) (Kong et al., 2010). Moreover, human PCa derived
LuCaP35 xenografts when subjected to ADT show concomitant
higher expression of EMT as well as stem cell markers, namely
WNT5a and WNT5b (Sun et al., 2012). Although EMT is
known to promote tumorigenesis, a subpopulation of tumor cells
with epithelial phenotype are reported to have high metastatic
potential (Celia-Terrassa et al., 2012). Also, cells undergoing
EMT have increased invasive ability but diminished capacity
of establishing distant metastasis (Tsuji et al., 2008; Floor
et al., 2011). Furthermore, it has been demonstrated that a
subpopulation of cells with epithelial phenotype and high E-
Cad expression, also shows enhanced stemness and self-renewal
ability (Celia-Terrassa et al., 2012). Intriguingly, a recent study
has shown the tumor promoting role of E-Cad in invasive ductal
carcinomas of breast, wherein it promotes tumor growth and
metastases (Padmanaban et al., 2019). However, E-Cad has been
implicated majorly as a tumor-suppressor across multiple cancer
types, and its loss is directly involved in imparting various
oncogenic traits especially stemness and metastases (Frixen et al.,
1991; Berx et al., 1995; Guilford, 1999; Onder et al., 2008).

The CSCs express a broad range of cell surface markers which
distinguish them from the cells of other origins. For instance,
prostate CSCs (PCSCs) harbor expression of several cell surface
markers such as CD44+α2β1hiCD133+ (Collins et al., 2005).
The CD44+ cell population derived from multiple PCa cell
lines and xenograft tumors showed increased tumorigenic and
metastatic potential along with enhanced expression of stemness
promoting TFs factors namely, Oct-3/4, Bmi and β-catenin
(Patrawala et al., 2006). The CD44 is considered as a putative
marker for PCSCs and primarily expressed on the surface of basal
and rare neuroendocrine cells, whereas the luminal cells lack its
expression (Palapattu et al., 2009; Wang and Shen, 2011; Guo
et al., 2012). The pluripotent basal cells differentiate to luminal
and neuroendocrine cells, and hence been proposed to have high
tumorigenic potential and could serve as cells of origin in prostate
carcinogenesis (Goldstein et al., 2010; Taylor et al., 2012). It has
also been reported that luminal multilineage progenitor cells are
the cells of origin and basal cells transition to luminal cells in
order to promote tumorigenesis (Karthaus et al., 2014; Wang
et al., 2014). Further, ABCG2, a well-knownATP-binding cassette
transporter (ABC transporter) associated with drug efflux is
known to be highly expressed in PCSCs and drives resistance to
therapeutic agents (Huss et al., 2005).

Similar to EMT, the dedifferentiated PCSCs show inverse
correlation with AR signaling. For instance, PSA−/lo (PSA-
negative or low) cell population exhibits gene expression
profile similar to stem cells, harbors enhanced self-renewing
potential and resistance to ADT and chemotherapeutic agents
(Qin et al., 2012). The PCSCs isolated from AR-negative
DU145 cells show higher expression of CD44, CD24, integrin
α2β1, cellular reprogramming factor SOX2, and exhibit tumor-
initiating potential and self-renewal ability (Rybak et al., 2011;
Rybak and Tang, 2013). Similarly, a subpopulation of tumor
cells isolated from prostatectomy specimens express higher
levels of tumor-associated calcium signal transducer 2 (Trop2),
CD44, and CD49f, and show increased sphere-forming ability
and regeneration capability in mice (Garraway et al., 2010).
Conclusively, a consensus regarding a specific set of markers to
identify PCSCs is still lacking and in-depth study is warranted
to identify the defined markers for multipotent tumor progenitor
cells in order to develop better therapeutic strategies.

THERAPY-INDUCED CELLULAR
PLASTICITY AND DISEASE PROGRESSION

The cancer cells evade the drug induced therapeutic pressure
by modulating cellular plasticity which is one of the major
mechanisms posing significant challenges for PCa treatment
(Boumahdi and de Sauvage, 2019). The plasticity of the tumor
cells provides a survival advantage by developing alternate
adaptive pathways, independent of the targeted therapies. As
mentioned previously, ADT is administered as the standard
care for the treatment of men with prostate cancer. One of the
main mechanisms of eluding AR-targeted therapy or ADT is
the transdifferentiation of the AR-dependent PCa cells to AR-
independent neuroendocrine (NE)-like phenotype (Lin et al.,
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2014). Transdifferentiation is a process wherein a differentiated
cell type transitions to another lineage to evade the therapy-
associated drug pressure (Davies et al., 2018).

This transition process in response to therapy is often driven
by a distinct transcriptional or epigenetic reprogramming of the
tumor cells (Yuan et al., 2019). Recent evidence highlighted the
role of EMT and stemness as important driving factors for the
cellular plasticity during the neuroendocrine transdifferentiation
(Soundararajan et al., 2018). Several transcription factors
which are directly involved in regulating EMT are also key
players involved in neuroendocrine transdifferentiation. For
instance, overexpression of SNAIL imparts cellular plasticity
by downregulating the E-Cad expression and enhancing the
expression of neuroendocrine differentiation markers, namely,
ENO2 and CHGA (McKeithen et al., 2010; Barnett et al., 2011).
Similarly, neuroendocrine transdifferentiation of patient-derived
LTL331 xenograft model also exhibits higher levels of SNAI1 and
ZEB1 (Akamatsu et al., 2015).

The PCa cells have the ability to dedifferentiate into CSCs
exhibiting tumor-initiating potential with an invasive phenotype
and resistance to AR-antagonists. These reprogrammed cells
when exposed to androgens in culture showed reactivation
of the AR signaling, indicating the active dynamics of the
cellular plasticity in response to the external cues (Nouri et al.,
2017). The advanced neuroendocrine tumors such as small cell
NE-like carcinomas are often characterized to have stem cell-
like features (Ellis and Loda, 2015). Moreover, pluripotency
factors, SOX2 and SOX11 have also been implicated in AR-
independent NE-like tumors (Blee and Huang, 2019). Recent
evidence suggested that BRN2 co-regulates the transcriptional
landscape of the SOX2 and is essentially overexpressed in
NEPC patients (Bishop et al., 2017). The elevated levels of
EMT modulator ZEB1 also induces stem-cell like properties
in PCa cells along with concomitant upregulation of SOX2
(Li et al., 2014). Apart from the critical role of EMT and
CSCs in evading therapeutic pressure, several inherent factors
also play an important role in imparting resistance to the
therapy. For example, genetically engineered mouse (GEM)
model with inactivation of Pten and Tp53 failed to show any
response to abiraterone, and exhibited accelerated progression
to treatment-induced neuroendocrine differentiation (Zou et al.,
2017). A recent single-arm enzalutamide clinical trial revealed
that non-responders to enzalutamide treatment exhibits a basal
lineage, such as reduced AR transcriptional activity and a
neurogenic/stemness program, while a luminal lineage program
was activated in responders (Alumkal et al., 2020), indicating that
there is need to explore the specific factors that regulate de novo
enzalutamide resistance.

FACTORS GOVERNING CELLULAR
PLASTICITY

Cell-Intrinsic Factors
In the past decade, multiple independent studies unraveled the
diverse spectrum of molecular and other environmental factors
governing the PCa lineage plasticity. Dramatic differences in the

gene expression and copy number alterations has been reported
to co-exist between the prostate adenocarcinoma and the NEPC,
often within the same tumor foci (Beltran et al., 2011). Moreover,
comprehensive molecular characterization of the NEPC tumors
revealed the significance of divergent clonal evolution. Under the
influence of therapy, CRPC cells give rise to new clones owing to
epithelial plasticity, with distinct molecular profiles and genetic
aberrations. Initially, few molecular alterations occur that drive
and select clones for the cellular plasticity, followed by a series
of passenger alterations which may result in the emergence of
therapy-resistance NEPC (Beltran et al., 2016).

Most of the prostatic small cell carcinomas (SCC) harbor the
TMPRSS2-ERG gene rearrangement confirming its involvement
in the carcinogenesis. Although, TMPRSS2-ERG fusion is not
reported in the SCC of non-prostatic origins, such as lung
and urinary bladder, indicating that this genetic event can be
used as a molecular marker to establish the prostatic origin of
metastatic SCC (Guo et al., 2011). Of note, NEPC foci often
lack the expression of ERG protein in the tumors harboring
TMPRSS2-ERG fusion, which reaffirms the reduced or absent
androgen signaling. A classic example of this ambiguity is the
NEPC cell line model, NCI-H660 which harbors TMPRSS2-
ERG fusion, but lacks expression of ERG protein (Beltran et al.,
2011). Furthermore, ERG oncoprotein suppresses the expression
of NEPC related genes in PCa which is relieved upon inhibition
of AR signaling (Mounir et al., 2015).

The mutational landscape of NEPC patients has identified
the role of RB1 loss and mutated/deleted TP53 in the SCC
pathogenesis. In contrast to the CRPC-adenocarcinoma patients,
CRPC-NE patients showed reduced frequency of genomic
alterations associated with androgen receptor (AR), indicating
the selection of AR-independent clonal subpopulation during
NEPC progression (Beltran et al., 2016). Simultaneous aberration
in various tumor suppressor genes (RB1, TP53, and/or PTEN)
has been known to drive tumor plasticity in PCa (Aparicio
et al., 2016). For instance, knockdown of TP53 and RB1 using
short hairpin RNAs (shRNAs) in AR overexpressing LNCaP cells
resulted in the enhanced expression of basal and neuroendocrine
lineage markers thereby conferring resistance to anti-androgen
therapy (Aparicio et al., 2016).

Overexpression of Aurora kinase A (AURKA) and oncogene
N-Myc (MYCN) due to gene amplification was found in
NEPC cases, where both proteins cooperate in driving the
NE-transdifferentiation. Although, being located on different
chromosomes, the mechanism involved in their co-amplification
in NEPC remains unknown, but certainly hints toward their
usefulness as diagnostic markers for early intervention in the
high-risk population (Beltran et al., 2011). Interestingly, this
discovery formed the basis to use Aurora kinase A inhibitors for
the treatment of NEPC patients harboring AURKA amplification
(Beltran et al., 2019). Moreover, activated AKT1 and MYCN are
also known to drive the transformation of prostate epithelial
cells to adenocarcinoma and differentiation toNE-like phenotype
(Lee et al., 2016). MYCN in cooperation with PRC2 complex
member, EZH2 and other cofactors suppress the AR signaling
and PRC2 target genes (Beltran et al., 2011; Dardenne et al.,
2016; Lee et al., 2016). Apart from EZH2, other PRC1 containing
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proteins, such as members of CBX family have also been
shown to be dysregulated in patient-tumor derived xenografts
(PDX) and NEPC clinical samples, highlighting a role for
dysregulated Polycomb Group (PcG)-mediated silencing during
NE-transdifferentiation (Clermont et al., 2015).

Reduced expression of RE1 silencing transcription factor
(REST), a master negative regulator of neuroendocrine
differentiation accompanied with enrichment of the REST target
NE-associated genes has been reported in the NEPC clinical
samples (Lapuk et al., 2012). Interestingly, another member of
REST transcriptional repressor complex, PHD finger protein
21A (PHF21A) is differentially spliced in NEPC cases compared
to adenocarcinoma. PHDF21A loses the AT-hook domain which
is involved in the DNA binding via alternative splicing (Lapuk
et al., 2012). In LNCaP cells, androgen stimulation leads to
co-occupancy of REST on the AR occupied chromatin regions
and mediates transcriptional repression of a subset of genes.
Further, siRNAmediated REST silencing leads to upregulation of
genes associated with neuronal differentiation and maintenance
of NE phenotype (Svensson et al., 2013). Moreover, activation of
androgen signaling enhances REST protein levels by modulating
the activity of β-TRCP ubiquitin ligase. Importantly, Casein
kinase 1 (CK1) is known to phosphorylate REST and enhance
the β-TRCP activity leading to ubiquitin-mediated proteasomal
degradation of REST. Therefore, treatment of SPINK1-positive
22RV1 cells with CK1 inhibitor resulted in restoration of REST
protein levels, accompanied with reduced SPINK1 levels and its
oncogenic properties (Tiwari et al., 2020), thus emphasizing the
repressive role of REST protein in the regulation of SPINK1 and
disease progression toward NE-like phenotype.

Evaluation of the transcription factors involved in lineage
plasticity in prostate tumors showed SRY-box transcription factor
2 (SOX2) to be highly upregulated in tumors with altered TP53
and RB1 (TP53Alt, RB1Alt) compared to wildtype TP53 and
RB1 (TP53WT, RB1WT) tumors. Furthermore, SOX2 silencing in
the LNCaP cells overexpressing AR with inactivated RB1 and
TP53 reversed the increased expression of basal (CK5, CK14,
and TP63) and neuroendocrine (SYP, CHGA, and NSE) lineage
markers induced due to TP53 and RB1 loss (Mu et al., 2017).
Furthermore, the role of SOX2 has been reported in repressing
adenocarcinoma specific genes by enhancing the expression and
activity of lysine-specific demethylase 1A (LSD1/KDM1A) (Li
et al., 2019), highlighting the potential of SOX2 as a lineage
reprogramming factor in neuroendocrine prostate tumors.
Moreover, a neural specific transcript variant of LSD1 also known
as LSD1+8a, has been shown to be exclusively expressed in
NEPC tissue samples and patient-derived xenograft samples, and
LSD1+8a/SRRM4 co-upregulated gene signature was found to be
exclusively activated in aggressive NEPC patient tumors, that are
different from those regulated by the canonical LSD1 (Coleman
et al., 2020). A recent study reported Serine Peptidase Inhibitor,
Kazal type 1 (SPINK1) to be transcriptionally repressed by AR
and its corepressor REST, and androgen deprivation resulted in
its upregulation. Furthermore, SOX2 was shown to modulate
the expression of SPINK1 during the NE-transdifferentiation of
LNCaP cells (Tiwari et al., 2020). This study also confirmed the
role of SPINK1 in EMT, stemness and NE-transdifferentiation.

Additionally, a subset of NEPC patients exhibit elevated levels of
SPINK1, suggesting its role in the maintenance of the NE-like
phenotype (Tiwari et al., 2020).

Metabolic reprogramming plays a crucial role in cancer
progression and therapy-resistance (Hanahan and Weinberg,
2011). The ground-breaking discovery byWarburg suggested the
preference of aerobic glycolysis over oxidative phosphorylation
in cancer cells which primarily rely on the mitochondrial
oxidative phosphorylation for adenosine 5’-triphosphate (ATP)
generation. This resulted in the higher rate of glucose uptake and
lactate production in presence of oxygen (Vander Heiden et al.,
2009). Early clinical studies have shown that fluorodeoxyglucose
(FDG)-PET imaging which is based on increased glucose uptake
by cancer cells failed to detect naïve localized PCa (Effert et al.,
1996), but can detect the advanced stage small cell prostate cancer
(SCPC) (de Carvalho Flamini et al., 2010), highlighting the
metabolic differences underlying the adenocarcinoma and SCPC.
Moreover, the higher uptake of glucose has been associated with
the elevated expression of Glucose Transporter 1 (GLUT1) in
poorly differentiated hormone-independent PCa (Effert et al.,
2004). It has also been observed that PCa switch to aerobic
glycolysis only at the advanced stages of the disease progression
and correlates with poor clinical outcomes (Pertega-Gomes
et al., 2015). Of interest, the gene expression profile of NEPC
patients showed glycolysis and lactic acid production as the
most significantly upregulated pathways in these tumors (Choi
et al., 2018). It has been shown that higher expression of
the plasma membrane transporter monocarboxylate transporter
4 (MCT4) facilitated the enhanced secretion of lactic acid,
while antisense oligonucleotides mediated silencing of MCT4
led to reduced lactic acid secretion, glucose metabolism
and NEPC cell proliferation (Choi et al., 2018). Recently,
reduced PKCλ/ι has been reported in de novo and treatment-
related NEPC differentiation, which resulted in upregulated
mTORC1/ATF4/PHGDH and promoted serine biosynthesis,
leading to increased S-adenosyl methionine (SAM). Moreover,
higher mTORC1 activity, stronger nuclear ATF4 staining and
increased expression of PHGDH was also detected in NEPC
tumors compared to adenocarcinoma, suggesting the critical
role of mTORC1/ATF4/PHGDH metabolic axis in increased
cell proliferation and epigenetic reprogramming during NEPC
development (Reina-Campos et al., 2019).

Numerous factors have been shown to be involved in
maintaining the tumor cell plasticity (Table 1), however,
more comprehensive in-depth studies are required to
dissect the specific drivers which can be targeted for
therapeutic implications.

Cell-Extrinsic Factors
The external cues along with the cell intrinsic factors, such
as transcriptional and epigenetics regulation, are the key
determinants for the tumor heterogeneity in PCa patients
(Davies et al., 2018). The cell extrinsic factors constitute the
tumor microenvironment which dictates the process of cellular
plasticity in most of the malignancies including prostate (Yates,
2011). The concept of influence of microenvironment on tumor
cells was initially proposed by an English surgeon, Stephen Paget,
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TABLE 1 | An overview of key molecular drivers involved in cell plasticity in the pathogenesis of prostate cancer.

Molecular

drivers

Regulatory mechanism Phenotypic features References

EPITHELIAL-MESENCHYMAL TRANSITION (EMT)

CDH1 Downregulated by Notch signaling Silencing CDH1 (E-Cad) promotes PCa cell migration,

drug-resistance and metastasis

Wang et al., 2017; Loh

et al., 2019

SOX9 Regulated by Wnt/β-catenin signaling Enhances tumor cell proliferation and invasion Wang et al., 2008

ZEB1 Shows bidirectional negative feedback loop with AR Mediates androgen deprivation induced EMT Sun et al., 2012

ZEB2 Differential regulation by AR Potentiates cell invasion and migration Jacob et al., 2014

SLUG Androgen-responsive gene and AR coactivator Facilitates PCa cell growth in androgen-deprived conditions Wu et al., 2012

SNAIL Transcriptionally repressed by AR Plays a critical role in ADT induced epithelial-mesenchymal

plasticity

Miao et al., 2017

CCL2 Silencing AR elevates CCL2 levels and STAT3 signaling Promotes metastasis via macrophage recruitment Izumi et al., 2013; Tsai

et al., 2018

STEMNESS

ABCG2 Membrane transporter found on prostate cancer stem

cells

Maintain proliferative potential under hypoxic conditions, and efflux

androgens

Huss et al., 2005

CD44 Cell-surface marker found on AR-independent basal

prostate cells

CD44-positive PCa cells have high proliferative, clonogenic,

tumorigenic, and metastatic potential

Liu et al., 1997;

Patrawala et al., 2006

THERAPY-INDUCED CELLULAR PLASTICITY

SNAIL PEG10 regulates SNAIL expression via TGF-β signaling Elevated levels found in tumor after castration in xenografts model

and NEPC development

Akamatsu et al., 2015

ZEB1 Higher expression in castrated PTEN knockout mice and

NEPC models

Induce stem cell-like properties and promotes

androgen-independence in PCa

Li et al., 2014;

Akamatsu et al., 2015

SOX11 Upregulated in Pten and Trp53 inactivated mice model Abiraterone treatment of Pten/Trp53 inactivated mice lead to

neuroendocrine differentiation

Zou et al., 2017

BRN2 AR repressed gene and regulates SOX2 expression Key driver of aggressive tumor growth; higher levels found in

NEPC compared to CRPC and adenocarcinomas

Bishop et al., 2017

CELL-INTRINSIC FACTORS

AURKA Amplified and overexpressed in NEPC Functionally cooperate with N-MYC and drive neuroendocrine

phenotype

Beltran et al., 2011;

Lee et al., 2016

MYCN Amplified and overexpressed in NEPC Stabilizes AURKA, abrogates AR signaling, induces PRC2

silencing and serves as an oncogenic driver of NEPC

Beltran et al., 2011;

Dardenne et al., 2016;

Lee et al., 2016

EZH2 Highly expressed in advanced stage PCa and NEPC Transforms the epigenetic landscape of PCa and NEPC Varambally et al., 2008;

Beltran et al., 2011;

Clermont et al., 2015;

Dardenne et al., 2016

REST Downregulated in NEPC Transcriptional corepressor of AR and implicated in NEPC

development

Lapuk et al., 2012;

Svensson et al., 2013;

Tiwari et al., 2020

SOX2 Overexpressed in NEPC tumors consistent with RB1 and

TP53 alterations

Required for lineage plasticity and antiandrogen resistance

induced by inactivated RB1 and TP53

Bishop et al., 2017; Mu

et al., 2017

SPINK1 Transcriptionally repressed by AR and REST and

regulated by SOX2 in androgen deprived condition

Imparts cellular plasticity and maintenance of neuroendocrine

phenotype

Tiwari et al., 2020

PKCλ/ι Downregulated in NEPC Its loss promotes serine biosynthesis, resulting in metabolic

reprogramming to support cell proliferation and epigenetic

changes

Reina-Campos et al.,

2019

CELL-EXTRINSIC FACTORS

TGF-β Shows negative feedback loop with PMEPA1; cross talk

with CXCR4; acts via both SMAD-dependent and

independent pathways

Associated with PCa aggressiveness and bone metastasis Derynck and Zhang,

2003; Bhowmick et al.,

2004; Ao et al., 2007;

Fournier et al., 2015

IL-6 Secreted by aggressive PCa cells Elicits fibroblast activation and secrete MMPs Giannoni et al., 2010

BMP6 Secreted by PCa cells and show feedback loop with IL-6 Upregulates IL-6 expression from macrophages, leading to

neuroendocrine differentiation of PCa cells

Lee et al., 2011

IL-1 family

genes

Secreted by prostate epithelial cells Induce secretion of proinflammatory cytokines (CXCL-1,−2,−3

and IL-8) in stromal cells and facilitate cancer progression.

Kogan-Sakin et al.,

2009

SPINK1 Regulated by NF-κB and C/EBP upon DNA damage in

stromal cells

Serves as a senescence-associated secretory factor and a

non-invasive biomarker of therapeutically damaged tumor

microenvironment

Chen et al., 2018a
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who laid the foundation that the conducive microenvironment
is essential for the colonization of the disseminated tumor
cells, also known as the seed and soil theory (Paget, 1889).
The tumor microenvironment includes blood vessels, stromal
cells namely, cancer-associated fibroblasts (CAFs), endothelial
cells, neuroendocrine cells and infiltrating immune cells, growth
factors and chemokines secreted by either tumor cells or stromal
cells and many extracellular matrix proteins such as laminin,
fibronectin, and collagen (Yates, 2011). Apart from the dynamic
interaction between tumor and stromal cells, physical (elasticity
and stiffness) and biochemical properties (protein composition)
of the extracellular matrix (ECM), as well as access to nutrients
and oxygen also governs the cellular plasticity of the tumor cells
(Yates, 2011; Davies et al., 2018; Patel et al., 2019).

Among the different stromal cells, CAFs play a critical role
in modulating the plasticity of the cancer cells. The CAFs are
well-known to support tumor growth, resistance to therapy and
metastasis by creating a tumor-promoting microenvironment for
the cancer cells to proliferate, invade and evade the immune
suppression (Cirri and Chiarugi, 2011). Moreover, CAFs mainly
originate from the fibroblasts residing in tumor under the
influence of the transforming growth factor (TGF-β) secreted
by cancer cells (Massague, 2008; Bellomo et al., 2016). In
addition, stromal cells such as pericytes or inflammatory cells

may also transdifferentiate to CAFs via the process known
as mesenchymal-to-mesenchymal transition (MMT) under the
influence of TGF-β and other cytokines secreted in the tumor
microenvironment (Bellomo et al., 2016). Similar to cancer
cells, the CAFs also produce TGF-β which acts as an autocrine
and paracrine factor and regulates the reorganization of the
extracellular matrix and the interaction between tumor-stroma
(Erdogan and Webb, 2017). Moreover, CAFs isolated from
prostate carcinomas produce higher amounts of other cytokines
namely, pro-inflammatory cytokines, interleukin-6 (IL6) and
bone morphogenetic factor (BMP6), thereby promoting tumor
progression (Doldi et al., 2015). There is a reciprocal interplay
between CAFs and tumor cells, wherein tumor cells secrete IL6
and promotes CAFs to secrete matrix metalloproteases (MMPs)
which in turn remodels the ECM, and further induces secretion
of IL6 from tumor cells, thereby driving EMT. In addition,
CAFs promote tumor forming ability and stemness when co-
implanted with PCa cells in mice xenografts, and importantly,
these tumor-repopulating cells were found to be CD44-positive
and CD24-negative (Giannoni et al., 2010). The prostate stromal
cells are also known to secrete proinflammatory and cancer-
promoting chemokines such as CXCL-1, CXCL-2, CXCL-3,
and interleukin (IL)-8, which are the key regulators of cellular
plasticity, culminating in inflammation, and PCa progression

FIGURE 1 | Schematic representing the multifaceted role of cellular plasticity in progression of prostate cancer. Prostate tumor comprises of heterogenous cell

populations where both cell-intrinsic and -extrinsic factors confer cellular plasticity to enable transition between different cell fates by facilitating different mechanisms

like epithelial-mesenchymal transition (EMT), stemness and drug resistance. Prostate tumor cell plasticity imparts resistance toward androgen deprivation therapy

(ADT) during the progression of prostate adenocarcinoma (ADPC) to castrate-resistant prostate cancer (CRPC) stage, which may also transdifferentiate to

neuroendocrine prostate cancer (NEPC).
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TABLE 2 | Therapeutic interventions targeting key molecular drivers involved in the cellular plasticity of prostate cancer.

Inhibitor Target Mechanism of action Clinical trial and status References

Siltuximab

(CNTO 328)

IL6 Chimeric monoclonal antibody which

neutralizes IL6 and prevents STAT3 activation

NCT00401765;

Completed

Hudes et al., 2013

Lycopene IL6 Attenuates IL6 activity and abrogates STAT3

phosphorylation

NCT01949519;

Completed

Tang et al., 2011

Apitolisib

(GDC-0980)

PI3K and mTOR

kinase

Inhibits PI3K-AKT-mTOR signaling axis NCT00854152;

Completed

Dolly et al., 2016

CRLX101 HIF1α Nanoparticle drug-conjugate with

camptothecin, inhibits HIF1α and DNA

Topoisomerase I activity

NCT03531827; Active Tian et al., 2017; Chen

et al., 2018b

CPI-1205 EZH2 Cofactor-competitive inhibitor of wild type and

mutant EZH2 catalytic activity

NCT03480646; Active Taplin et al., 2019

GSK2816126 EZH2 Inhibits EZH2 activity and reduces global

methylation of H3K27me3 marks

NCT02082977; Terminated Yap et al., 2016

PF-06821497 EZH2 Selective inhibitor of EZH2 activity NCT03460977; Active Kung et al., 2018

ZEN003694 N-MYC Inhibits BET proteins and dysregulates

N-MYC-mediated transcriptional programming

NCT02705469;

Completed

Schafer et al., 2020

Alisertib

(MLN8237)

AURKA Inhibits interaction between AURKA and

N-MYC, thereby disrupts N-MYC mediated

signaling

NCT01799278;

Completed

Beltran et al., 2019

Rovalpituzumab

Tesirine (SC16LD6.5)

DLL3 Antibody–drug conjugate targeting DLL3 (a

Notch ligand)

NCT02674568;

Completed

Puca et al., 2019

FIGURE 2 | Schematic showing interplay between key molecular players involved in cellular plasticity in prostate cancer. Molecular markers associated with

epithelial-mesenchymal transition (EMT), cell-intrinsic factors and tumor microenvironment are deployed for imparting plasticity in prostate cancer cells. These EMT

and cell-intrinsic factors are regulated by cytokines and other growth factors released in the tumor microenvironment, which in turn are modulated by different

transcription factors, transcriptional/post-transcriptional events and dysregulated signaling pathways in the cancer cells.
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(Kogan-Sakin et al., 2009). The prostatic CAFs also produce
stromal glutamine as a result of epigenetic reprogramming
and contribute to NE-transdifferentiation (Mishra et al., 2018).
Interestingly, it has been known that genotoxic effect of chemo-
and radiation therapies prompt stromal cells to produce SPINK1
as a secretory factor, which induces EGFR-mediated signaling
and imparts chemoresistance in the adjacent prostate tumor cells
(Chen et al., 2018a).

Tumor associated macrophages (TAMs) are also known
to play important role in regulating cellular plasticity and
NE-transdifferentiation. For instance, BPH-1 cells when co-
cultured with THP-1 cells differentiated macrophages, led to
increased expression of mesenchymal markers, such as N-Cad,
Snail, and TGF-β2, and this phenotype was abrogated upon
incubating with anti-TGF-β2 neutralizing antibody (Lu et al.,
2012). Further, conditioned media collected from macrophages
induce expression of NE-marker and parathyroid hormone-
related peptide (PTHrP) in LNCaP and TRAMP-C2 cells. In
this feedback loop, BMP6 secreted from the PCa cells induce
production of IL6 from the macrophages, which in turn
stimulates the NE-transdifferentiation of PCa cells (Lee et al.,
2011).

Mounting evidence highlights the role of the physiochemical
properties such as hypoxia or oxidative stress as key regulators
of cellular plasticity in tumors. For instance, hypoxic stress
leads to the upregulation of Hypoxia-inducible factor 1-
α (HIF1α), which in cooperation with FOXA2, drives
mesenchymal reprogramming and NE-transdifferentiation
in PCa cells (Li et al., 2016). Another report indicates
that hypoxia leads to reduced expression of transcriptional
repressor REST, which in turn leads to hypoxia-induced
neuroendocrine differentiation, followed by activation
of associated AMPK pathway and autophagy (Lin et al.,
2016). Multi-disciplinary approaches such as mathematical
modeling and bioengineering tools, would allow fostering
a hypoxic niche for exploring the events and mechanisms
involved in adaptation of aggressive cancer behaviors,
and would provide cues to disrupt the signaling pathways
involved in crosstalk between cancer cells and tumor
microenvironment (Figure 1).

TARGETING CELLULAR PLASTICITY AND
ITS CLINICAL IMPLICATIONS

Current studies are focused on targeting the markers and
pathways involved in upholding the cellular plasticity in prostate
cancer. Previous investigations have recommended the use
of aurora kinase inhibitors in NMYC overexpressing prostate
cancer, wherein it disrupts the N-Myc-AURKA complex and
results in reduced tumor burden (Beltran et al., 2011; Dardenne
et al., 2016; Lee et al., 2016). However, recent phase II
clinical trials of AURKA inhibitor (NCT01799278), alisertib
used for the treatment of metastatic NEPC patients showed
efficacy in select cases (Beltran et al., 2019). Furthermore,
N-Myc has been shown to cooperate with EZH2 and play
critical role in changing the epigenetic landscape of AR and

N-Myc target genes during NEPC transition. Elevated levels
of N-Myc showed enhanced sensitivity to EZH2 catalytic
SET domain inhibitor GSK503 in mice harboring N-Myc
overexpressing 22RV1 xenografts (Dardenne et al., 2016). The
EZH2 inhibitor (CPI-1205) combined with enzalutamide or
abiraterone/prednisone are currently under phase Ib/II clinical
trials (NCT03480646) for the treatment of metastatic CRPC
cases. Recently, one of the homeobox transcription factors,
ONECUT2 has been shown to synergize with hypoxia signaling
in promoting NEPC transition. Importantly, hypoxia-activated
pro-drug TH-302 showed remarkable reduction of the tumor
growth in PDX models with higher levels of ONECUT2,
suggesting it as a promising treatment strategy for NEPC (Guo
et al., 2019). A recent study showed the therapeutic potential
of rovalpituzumab tesirine (SC16LD6.5) in NEPC cases with
higher expression of Delta-like ligand 3 (DLL3) (Puca et al.,
2019). There is no direct effective therapy for targeting cellular
plasticity, however, therapeutic modalities targeting the known
molecular drivers of NEPC using small molecule inhibitors
in combination with immune checkpoint inhibitors are under
development (Table 2).

CONCLUSION

Similar to other malignancies, in prostate cancer as well,
cellular plasticity is induced as a result of different contributing
factors and governs a diverse set of characteristics which
are involved in facilitating tumor dissemination, metastatic
spread to distant sites and conferring resistance toward
therapy (Figure 2). Despite the clinical benefits of ADT
for the treatment of PCa, emerging evidence has suggested
that ADT propels the cancer cells toward therapy-induced
resistance and emergence of aggressive AR-independent variants
of prostate cancer. Therefore, understanding the dynamics
of tumor cell plasticity during transition from androgen
responsive to androgen non-responsive state holds a prime
importance in targeting the PCa progression. Also, in order
to discover new therapeutic avenues enormous efforts are
required to explore the underlying mechanisms involved in
ADT mediated resistance or chemotherapeutic drug resistance
of cancer cells in the clinical spectrum of prostate cancer
stages. In conclusion, therapies against the cell plasticity, alone
or in combination with AR-antagonists might prove effective
for the clinical management of advanced stage CRPC or
NEPC patients.
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