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Abstract—Hyperspectral images (HSI) consist of rich spatial
and spectral information, which can potentially be used for
several applications. However, noise, band correlations and high
dimensionality restrict the applicability of such data. This is
recently addressed using creative deep learning network archi-
tectures such as ResNet, SSRN, and A2S2K. However, the last
layer, i.e the classification layer, remains unchanged and is taken
to be the softmax classifier. In this article, we propose to use a
watershed classifier. Watershed classifier extends the watershed
operator from Mathematical Morphology for classification. In its
vanilla form, the watershed classifier does not have any trainable
parameters. In this article, we propose a novel approach to train
deep learning networks to obtain representations suitable for
the watershed classifier. The watershed classifier exploits the
connectivity patterns, a characteristic of HSI datasets, for better
inference. We show that exploiting such characteristics allows the
Triplet-Watershed to achieve state-of-art results in supervised
and semi-supervised contexts. These results are validated on
Indianpines (IP), University of Pavia (UP), Kennedy Space Center
(KSC) and University of Houston (UH) datasets, relying on simple
convnet architecture using a quarter of parameters compared to
previous state-of-the-art networks.

The source code for reproducing the experiments and sup-
plementary material (high resolution images) is available at
https://github.com/ac20/TripletWatershed_Code,

Index Terms—Hyperspectral Imaging, Watershed, Triplet
Loss, Deep Learning, Classification

I. INTRODUCTION

YPERSPECTRAL imaging has several applications

ranging across different domains [1]]. It has seen applica-
tions in earth observations [2]], and land cover classification [3]]
etc. Hyperspectral datasets have rich information both spatially
and spectrally. However, spectral and spatial correlations make
a lot of such information redundant. One can obtain efficient
representations using techniques such as band selection [4]], [S]]
subspace learning [6]], [[7] multi-modal learning [8|] low-rank
representation [9].

Large number of bands, spatial and spectral feature cor-
relations and curse of dimensionality make Hyperspectral
image classification challenging. Conventional approaches use
hand crafted features with techniques such as scale-invariant
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feature transform (SIFT) [10] sparse representation [[11]] princi-
pal component analysis [[12] independent component analysis
[13]. Classic approaches to classification such as support
vector machines (SVM) [2f], neural networks [14] and logistic
regression [[15] aimed at exploiting the spectral signatures
alone. Using spatial features have been extremely useful to
obtain better representations and higher classification accura-
cies [16]-[18]], which the classic approaches ignore. Multiple
kernel learning [[19]-[21]] use hand-designed kernels to exploit
the spectral-spatial interactions. Deep learning approaches,
especially CNNs, have been adapted to exploit the spectral-
spatial information. [22]] proposes a 3D-CNN feature extractor
to obtain combined spectral-spatial features. [23]] adapts CNN
to a two-branch architecture to extract joint spectral-spatial
features. [24] used 3D volumes to extract spectral-spatial
features, which may be improved using multi-scale approaches
[25]. Spectral-spatial residual network (SSRN) proposed in
[26] uses residual networks to remove the declining accuracy
phenomenon. Residual Spectral-Spatial Attention Networks
(RSSAN) [27] exploit the concept of attention to improve
on SSRNs. [28] proposes Attention-Based Adaptive Spectral-
Spatial Kernel Residual networks (A2S2K) by exploiting adap-
tive kernels. [29]] uses graph convolution networks and [30]]
uses capsule networks. Most of these approaches tackle the
problem of Hyperspectral image classification by considering
novel architectures. Another prominent direction of research
focusses on using unlabelled data for improving classification
accuracies, referred to as semi-supervised learning. In [31]],
[32] the authors use hyperspectral data for improving inference
on multispectral data. In [29] the authors propose a semi-
supervised approach to exploit multi-modal data for better
inference. Graph Convolution Networks (GCN) have also been
used to obtain state-of-art results on hyperspectral classifica-
tion as evidenced by S2GCN [33]] and DC-GCN (Dual Clus-
tering GCN) [34]. Other approaches include local constraint-
based sparse manifold hypergraph learning (LC-SMHL) [35],
self-adaptive manifold discriminant analysis (SAMDA) [36],
DLPNet [37] and adaptive residual convolutional neural net-
work (ARCNN) [38].

In this article, we take a different route to propose a
novel classifier based on the watershed operator. Watershed
operator from Mathematical Morphology [39]], [40] has been
widely used for image segmentation, and, in particular, for
Hyperspectral images [41]], [42]]. In [42], the authors combine
(by majority voting) several watersheds computed on gradients
of different bands. They observe that class-specific accuracies
were improved by using the spatial information in the classifi-
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TABLE I
OVERALL ACCURACY (OA) VS NUMBER OF PARAMETERS. OBSERVE
THAT THE PROPOSED METHOD HAS VERY LESS NUMBER OF PARAMETERS
BUT OUTPERFORMS THE CURRENT STATE-OF-THE-ART APPROACHES. IP
INDICATES INDIAN PINES DATASET. UP DENOTES UNIVERSITY OF PAVIA
DATASET AND KSC INDICATES THE KENNEDY SPACE CENTRE DATASET.

# params 1P UP KSC
A2S2K [28] 370.7K 98.66 99.85 99.34
SSRN [26] 364.1K 98.38  99.77 99.29
ENL-FCN [50] 113.9K 96.15 99.76  99.25
ResNet34 [51] 21.9M 9244 9738 79.73
Triplet-Watershed 87.6K 99.57 9998  99.72

cation for almost all the classes, a result that we are going to
confirm in the present paper. To our knowledge, watersheds
have not been used in conjunction with current state-of-art
neural networks in the context of hyperspectral images. We
propose a novel approach to achieve this in the current article.

In [43]] the watershed operator is adapted to edge-weighted
graphs. It is shown there that the watershed is closely related
to the minimum spanning tree (MST) of the graph. Watersheds
have also been highly successful as a post-processing tool
for image segmentation [44]]-[46]]. In [47] the authors learn
a representation suitable for MST-based classification. In [48]]
the authors learn a representation suitable to mutex-watershed,
a different version of the watershed.

Departing from images, in our previous work [49] we have
proposed to use the watershed operator as a generic classi-
fier. We showed that it obtains a maximum margin partition
similar to the support vector machine. We further showed that
ensemble watersheds obtain comparable performance to other
classifiers such as random forests. In this article we propose a
novel approach, simple and efficient, called Triplet-Watershed
to learn representations (also known as embeddings) suitable
for the watershed classifier.

Why watershed classifier? Previous work on hyperspectral
image classification, as discussed above, establish that one
must use both spatial and spectral aspects to obtain good
classifiers. They achieve this with creative approaches to
design neural networks such as adaptive kernels, attention
mechanism, etc. However, most of these still use conventional
softmax classifier. The watershed classifier naturally uses
spatial information for inference. Thus, it allows us to use
simpler networks for representation. Table [[| shows the overall
accuracy scores obtained by our approach and other state of
art methods. It also shows the number of parameters used.
Observe that Triplet-Watershed parameters are just 25% of
those of the current state-of-art (A2S2K) approach.

The main contributions of this article are the following.

(i) We propose a novel approach, namely the Triplet-
Watershed, to learn a representation suitable to the wa-
tershed classifier. This representation is referred to as
watershed representations in the rest of the article.

(ii) The Triplet-Watershed achieves state-of-art results on the
hyperspectral datasets with very simple networks, using
much fewer parameters than the previous state-of-the-art
approaches as described in table [I|

Fig. 1. Illustration of maximum margin for support vector machines (SVM)
[49]. The key observation is - The margin is defined as the minimum distance
between the training point labelled 0 and what would be labelled 1 after
classification. And vice versa. The aim of the (linear) SVM classifier is to
obtain a decision boundary that maximizes the margin. This can be extended
to obtain a maximum-margin partition on an edge-weighted graph. Using (@),
a solution of this is provided by the watershed classifier.

(iii)) The same Triplet-Watershed approach can be used for

both supervised and semi-supervised tasks without any

modification, still leading to state-of-the-art results com-
pared to previous approaches.

The framework used here to obtain representations is not

restricted to watershed classifiers. It can be extended to

use with other classifiers such as random forest or k-

nearest neighbours as well, although watershed results

outperform other classifiers on our datasets.

(v) The main insight of our paper is that enforcing spatial
connectivity (achieved thanks to the watershed classifier)
during the training is a relevant constraint for hyperspec-
tral classification.

@v)

Overview: Section [l reviews the watershed classifier and
the required terminology for the rest of the article. In sec-
tion |lII| we design the neural net (NN) and the training proce-
dure to learn watershed representations. Section provides
empirical analysis.

II. WATERSHED CLASSIFIER

The watershed classifier is defined on an edge-weighted
graph. We follow the exposition as given in [49]. G =
(V, E,W) denotes the edge-weighted graph. Here V' denotes
the set of vertices, E' denotes the set of edges which is a subset
of VxV and W : E — RT denotes the edge weight assigned
to each edge. We assume that the edge weights are all positive
in this article.

The (two-class) classification problem on the edge-weighted
graph is stated as - Let X, X1 C V denote the labelled subset
of vertices labelled 0 and 1 respectively. Classification problem
requires a partition of V' = MyUM; with MoNM; = (). With
an additional constraint that Xy C My and X; C M;. Here
My denotes all the vertices labelled O after classification and
M7 denotes all the vertices labelled 1. We also assume there
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Fig. 2. Figure illustrating the watershed boundaries [49]]. Observe that in all
these cases the boundary is in-between the classes. Also, it is in the middle of
the zero density (no points exist) regions. This maximizes the margin between
the boundaries and the classes. This is consistent with the maximum margin
principle of SVM.

(a) Original Graph

(b) Intermediate Step

(c) Watershed Labels

Fig. 3. Illustrating the watershed classifier. Let (a) denote the edge-weighted.
The two distinct colours indicate two different classes. No colour indicates
that the vertex is not yet labelled. (b) denotes the graph obtained by adding
edges with weight 1. Each vertex is given a label accordingly. (c) denotes
the graph obtained by adding the edges with weight 2 and Propagating the
labels. Observe that all the points are now labelled and hence the algorithm
terminates.

exists a dissimilarity measure p(z,y) between two vertices
z,y € V. This measure extends to subsets as

X.Y)= mi 1
p(X,Y) xer;(n;leyp(:c,y) (1)

)

where X, Y are arbitrary subsets of V. Observe that there exist
several partitions of V = My U M; which satisfy the above
conditions. Of these partitions, we only use the Maximum
Margin Partitions, i.e the partitions which maximize

min{p(Xo, M1), p(X1, Mo)} 2

This follows from the maximum margin principle of support
vector machines (SVM). From figure |1} a key observation can
be made - The margin for the SVM is the minimum distance
between training point labelled 0 and what would be labelled 1
after classification. And vice versa. Linear SVM tries to obtain
the boundary to maximize this margin. This can be extended
to the edge-weighted graphs using (2).

The Watershed Classifier is defined by considering the
dissimilarity measure to be

min max W(e) 3)

p(x, y) = pma;c(l’,y) - mell(z,y) e€m

where 7 denotes a specific path between z,y. II denotes the
set of all possible paths. p,q, is sometimes referred to as pass
value.

If each edge-weight indicates the height of the correspond-
ing edge, then p,,q.(z,y) indicates the minimum height one
has to climb to reach y from z. When the points belong to
a Euclidean space, the edge weight is given by Euclidean
distance. That is, the edge weight indicates the distance
between the points. Hence, piaq(z,y) would indicate the
minimum “jump” one has to make to reach y from z. Thus, the
boundaries (in cases where the classes are separable) would
be along the low-density regions between classes. This is

illustrated in Figure 2] In all the cases, the boundary is between
the classes such that we have the maximum margin. This is
consistent with the maximum margin principle of SVM.

Remark: One can replace the pass value in with several
other measures, leading to different classifiers. Detailed analy-
sis of replacing pass value with other measures is out of scope
for the present article and may be considered for future work.
For instance, using the Image Foresting Transform (IFT) [52]
leads to a classifier similar to the one proposed in [53]]. Few
such techniques are discussed in [49].

Given the edge-weighted graph, the Watershed algorithm
extends the Maximum Margin Partition principle to several
classes and obtains the labels using the UNIONFIND data
structure. This is described in algorithm [I}

Algorithm 1 Watershed clustering algorithm [49]]

Input: edge-weighted graph G = (V,E,W). A subset of
labelled points V; C V.

Qutput: Labels for each of the vertices L

1: Sort the edges E in increasing order w.r.t W.

2: Initialize the union-find data structure UF,

3: for e = (ey, ey) in sorted edge set E do

4:  if both e, and e, are labelled then

5: do nothing

6

7

8

9

else
UF.union (e, e,)
Assign same label for e, and e,,.
. end if
10: end for
11: Label each vertex of the connected component using labels
V.
12: return Labels of the vertices.

Observe that step (10) is possible since each connected
component would have exactly one unique label. One can see
that watershed clustering is a semi-supervised algorithm, in
the sense that it propagates the known labels to points with
unknown label.

To illustrate the watershed classifier consider the simple
edge-weighted graph in figure The two distinct colours
indicate two classes. No colour indicates that the vertex is
not yet labelled. In the first step, the least edge-weight is
1. Adding all these edges (thick edges in figure [3b) gives 4
distinct components. Each component is labelled according to
the label present within the component. In case there exists
no label, then label assignment is not yet carried out. We then
add the edges with weight 2, and label the points accordingly.
Observe that there are no more unlabelled points and hence
the algorithm terminates.

In practice, it has been observed that ensemble techniques
improve the robustness of watershed classifier. This is achieved
using only a subset of labelled points and only a subset of
features and taking the weighted average. Details can be found
in [49]]. We refer to these two approaches as single watershed
classifier and ensemble-watershed classifier.
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Fig. 4. Schematic of learning representations for the watershed classifier.
Using a generic neural network we obtain the representation for the dataset.
These representations are fed into the watershed classifier to obtain the labels
using the seeds. Using the labels and the representation, we use triplet loss to
compute the loss and also for obtaining the parameters for the neural network.
Observe that the watershed classifier needs to be computed at every epoch.
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III. LEARNING REPRESENTATIONS FOR THE WATERSHED
CLASSIFIER

The previous section described how one can obtain the
labels using the watershed classifier. In [49], it was shown
that this compares reasonably well to other classifiers such as
SVM, random forests, etc. However, observe that this classifier
has no trainable parameters. In this section, we develop an
approach to train a neural network for learning representations
suitable to the watershed classifier.

A key observation is - Watershed classifier reduces the
distances within each component and increases the distance
across components. This leads to the schematic in figure
First, we use a generic neural network to obtain the
representations for the dataset. These representations, along
with a subset of labelled points, are used with the watershed
classifier to obtain the labels. Using these labels, we obtain
a metric-learning loss to decide if two pixels are either in
the same component (same label) of the watershed or in two
different components (different label). More precisely, we use
triplet loss [54], [55] to learn the watershed representation.
For training, this cost is minimized using standard autograd
packages such as pytorch.

Why schematic in figure[|learns watershed representations?
Triplet loss function uses {(anchor, postive, negative)} triplets
for computation of the cost. It compares an anchor-input to
a positive-input and a negative-input. The distance from the
anchor-input to the positive-input is minimized, and the dis-
tance from the anchor-input to the negative-input is maximized
using the cost

min{d(anchor, positive) — d(anchor, negative) + o}, (4)

where {*}; denotes the function max{0, *}. By enforcing the
order of distances, triplet loss models embed in the way that
a pair of samples with the same label are smaller in distance
than those with different labels. When watershed labels are
used to obtain {(anchor, postive, negative)} triplets, this leads
to representations that are compatible with the watershed
classifier.

Remark (Supervised vs Semi-Supervised) : Recall that the
watershed classifier uses a subset of training points (referred
to as seeds) to obtain the labels of other training points.
These labels are then used to the train the network with
triplet loss. However, in the case of semi-supervised learning,
unlabelled data is also available at train time. These points can
be labelled and be used to train the network. In this article we

use the semi-supervised approach, randomly choosing some
seeds for the watershed classifier that iteratively propagates
their labels to their most resembling neighbours, obtaining the
connected components. Hence, the combination of watershed
clustering and triplet loss ensures that points with the most
resembling representations are indeed clustered together, in
the same connected component.

Training Dynamics

To summarize the entire training procedure of Triplet-
Watershed, at each epoch

1) Obtain the representations for all the points using the
neural network.
2) We consider a randomly chosen subset of labelled points

as seeds

3) Propagate the labels to all points using the watershed
classifier

4) Use the watershed labels to generate

{(anchor, positive, negative)} triplets
5) Use the triplet loss to train the neural network.

Few obvious questions follow - (a) When would the training
converge? (b) What is the steady-state obtained?

Note that the training would converge when there would

be no further improvement in the triplet-loss. At this stage,
the out-of-box scord!] of the watershed classifier would not
improve as well. This implies that - all pairs of points with
the same labels and within the same component have similar
representation. Hence, we obtain 100% out-of-box accurac
with watershed classifier.
Remark (Overfitting): Traditional machine learning advices
against reaching 100% training accuracy as the models might
be overfitting. However, recent deep learning trends point to
the contrary. Several deep learning models can indeed fit
random data with 100% accuracy [56]. It is still an open
question to understand the generalization ability of these
models. However, few observations point to the inductive bias
[57] as the reason behind good generalization. In our case, the
inductive bias is dictated by the graph constructed from the
data.

Also, note that during training we use a single watershed
classifier. While, at inference, we use an ensemble-watershed
classifier. This ensures robustness during inference.

Remark (Complexity): Two main steps can be identified
in the above procedure - (i) Obtaining a representation of
the points and (ii) Propagating the labels using watershed.
Time complexity for obtaining the representation is dictated
by matrix multiplications with the neural network. This can
easily be parallelized using GPU. Empirical study of the time
taken for this is discussed in the following section. Table
shows the actual time taken for both training and evaluation.
Propagation of labels is done using binary partition trees and
can be performed in quasi-linear time [58]]. We use the routines
available at [59] for implementation.

' Accuracy on the training data excluding the seeds
2Here we assume that there exists at least one seed per component



IV. EMPIRICAL ANALYSIS

In this section, we explore the application of the watershed
classifier to the hyperspectral image classification task. We use
the standard evaluation metrics for comparison:

(i) Overall Accuracy (OA): it measures the overall accuracy
across all samples, not considering the class imbalance.
(i) Average Accuracy (AA): it measures the average accu-
racy across the classes and
(iii) Kappa Coefficient (x): it measures how well the estimates
and groundtruth labels correspond, taking into account
agreement by random chance.

Four datasets are used for comparison.

o Indian Pines (IP) : Gathered by the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS [60]) sensor
over the test site in North-western Indiana. This data set
contains 224 spectral bands within a wavelength range
of 0.4to 2.5 x 107% meters. The 24 bands covering
region of water absorption are removed. The image spatial
dimension is 145 x 145, and there are 16 classes not all
mutually exclusive.

+ Kennedy Space Centre (KSC) : The Kennedy Space
Center (KSC) data set was gathered on March 23, 1996 by
AVIRIS [60] with wavelengths ranging from 0.4 to 2.5 x
1075 meters. 176 spectral bands are used for analysis
after removal of some low signal-to-noise ratio (SNR)
bands and water absorption bands. 13 classes representing
the various land cover types that occur in this environment
are defined for the site.

o University of Pavia (UP) : Acquired by the ROSIS [61]
sensor during a flight campaign over Pavia, northern Italy.
The number of spectral bands is 103 for Pavia University
and is of size 610x 610 pixels. The ground truth identifies
9 classes.

¢ University of Houston (UH) : This dataset was ac-
quired over the University of Houston campus and the
neighbouring urban area. This dataset was captures with
a spatial resolution of 2.5m and with 144 spectral
bands in the 380 nm to 1050 nm region. This has 15
groundtruth classes. The dataset can be obtained from
https://hyperspectral.ee.uh.edu/?page_id=45qﬂ

We preprocess the datasets using principal component analysis
(PCA) [62] to obtain orthogonal components. We use 200
principal components for IP, 176 for KSC, 103 for UP and
144 for UH datasets. The train/test split is obtained randomly
using 10% for training and 90% for testing.

Graph Construction: Note that the watershed classifier

is defined on edge-weighted graphs. This is constructed as
follows

« The set of vertices V is taken to be the set of all the pixels
in the dataset ignoring the {labels = 0} class. Since, these
points do not have any groundtruth labels.

o The edge set F is taken to be the union of 4-adjacency
edges induced by the vertex set V (on the image) and
edges obtained by EMST (Euclidean Minimum Spanning
Tree [63]) for Indianpines (IP), University of Pavia (UP)
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Fig. 5. Neural Network architecture used for obtaining the representations.
The architecture is composed of 3 convolution layers followed by a fully
connected layer to get the representation. Batch normalization is performed
before each layer for efficient training. The number of parameters is 87K.

and Kennedy Space Centre (KSC), and K-Neighbour
edges with k=50 for University of Houston (UH) dataset.
The EMST and K-Neighbour edges are obtained by
considering the top 32 principal components.

« Given a representation obtained thanks to the neural
network, the edge weights are computed using Euclidean
distance. This representation (and hence the edge weights
themselves) is updated at every epoch during training,
while the edge set itself is never updated.

An illustration of the graph construction procedure is pro-
vided in appendix

In all the experiments we use the neural net architecture as
shown in figure E} We consider a patch (11 x 11 x #Bands)
around each pixel of the input hyperspectral image, suitably
padded with Os. We use 3 conv2d layers and a fully-connected
layer to obtain the representation. These representations are
then used for watershed classification and training. All models
are trained using stochastic gradient descent (SGD) with cyclic
learning rates [[65]. We use 40% of the training data as seeds
for the watershed classifier. The default weight initialization
by pytorch [66] is used. We use 64 as the dimension for
the representations. All accuracies are reported in the format
mean x 100% = stdev to be consistent with [28]]. The code is
available at |https://github.com/ac20/TripletWatershed_Code.

Remark on evaluation: Different kind of evaluations of
possible - Random train/test split or Patch-based evaluation
as proposed in [[67]. Here we use the former since - (i)
Patch-based evaluation does not recommend using connectiv-
ity patterns, while watershed classifier is designed to exploit
such patterns, (ii) Irrespective of the evaluation procedure,
we remain consistent with baseline methods (A2S2K, SSRN).
Hence, the observations in this article still remain valid.

A. Supervised Classification

Firstly, we provide the results of Triplet-Watershed for
supervised classification. We compare our approach with
standard baselines (SVM [2|] and Random Forest [[64]), and
also with the two recent state-of-art methods SSRN [26]
and A2S2K [28]. Tables show the results (OA,
AA, k) obtained. The train test splits per class are de-
scribed in these tables. Note that Triplet-Watershed outper-
forms existing state-of-art A2S2KResNet [28]] and other ap-
proaches in several aspects. This can be attributed to the
fact that - Triplet Watershed exploits the connectivity pat-
terns (edges within the pixels) in the dataset to propagate
labels. Other approaches treat each pixel as a separate entity
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TABLE II
OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(k) VALUES ON INDIANPINES (IP) DATASET USING 10% OF SAMPLES FOR
TRAINING.

Classic approaches Deep-Learning approaches

Class  Train Test RF [64] SVM |2] Ensemble-Watershed [49] SSRN [26] A2S2K [28] Triplet-Watershed
1 4 42 28.46 + 0.061 51.22 £+ 0.190 41.43 £+ 0.2079 57.78 + 0.423 97.56 + 0.034 100.00 + 0.0000
2 142 1286 56.63 + 0.024 81.22 4+ 0.037 81.07 & 0.0202 98.37 £ 0.012 98.62 + 0.010 98.62 + 0.0151
3 83 747 48.42 £+ 0.013 65.82 + 0.013 71.49 + 0.0250 97.47 £ 0.010 98.58 + 0.006 100.00 + 0.0000
4 23 214 33.49 + 0.025 57.75 £ 0.041 45.70 £ 0.0327 99.12 £ 0.010 98.29 + 0.014 100.00 + 0.0000
5 48 435 85.21 4+ 0.025 90.04 + 0.014 92.78 + 0.0286 97.79 £ 0.013 99.02 + 0.003 97.98 + 0.0254
6 73 657 92.64 + 0.027 96.25 + 0.006 98.57 £ 0.0033 98.50 £ 0.010 98.71 + 0.010 99.97 + 0.0006
7 2 26 2.67 + 0.038 73.33 £ 0.019 99.17 £ 0.0167 66.67 + 0.471 93.10 + 0.097 100.00 + 0.0000
8 47 431 97.67 £ 0.015 97.98 + 0.006 98.14 + 0.0075 96.45 £ 0.029 98.83 + 0.016 100.00 + 0.0000
9 2 18 9.26 £ 0.094 50.00 £ 0.045 37.50 £ 0.1854 56.25 + 0.418 74.26 + 0.038 100.00 + 0.0000
10 97 875 60.91 + 0.047 73.87 £ 0.018 85.81 + 0.0227 98.33 £ 0.009 98.21 + 0.016 99.75 £ 0.0040
11 245 2210 87.88 + 0.019 82.90 + 0.012 86.68 + 0.0105 99.08 + 0.005 99.09 + 0.001 99.61 + 0.0054
12 59 534 41.26 £ 0.030 7491 + 0.043 69.51 + 0.0182 98.46 £+ 0.009 98.37 + 0.013 99.89 + 0.0022
13 20 185 90.09 + 0.040 96.94 + 0.021 99.35 + 0.0079 100.0 £ 0.000 99.80 + 0.002 100.00 + 0.0000
14 126 1139 95.46 + 0.014 93.82 £ 0.010 92.59 + 0.0085 98.63 £ 0.010 99.22 + 0.007 100.00 + 0.0000
15 38 348 41.11 £ 0.029 60.42 + 0.044 54.48 + 0.0396 99.24 + 0.005 97.86 + 0.013 100.00 + 0.0000
16 9 84 79.37 + 0.030 91.27 £ 0.054 79.29 + 0.1163 95.63 £ 0.062 95.93 + 0.057 98.10 £+ 0.0267

OA 1018 9231 72.98 + 0.006 82.00 4+ 0.006 83.75 + 0.0076 98.38 + 0.004 98.66 + 0.004 99.57 + 0.0026
AA 59.41 + 0.005 77.36 £+ 0.019 77.10 £ 0.0228 91.11 £ 0.080 96.59 + 0.003 99.62 + 0.0029

0.6862 £ 0.007

0.7941 + 0.007

0.8143 £ 0.0086

0.9815 £ 0.005

0.9848 £ 0.005

0.9951 £ 0.0030

OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(k) VALUES ON UNIVERSITY OF PAVIA (UP) DATASET USING 10% OF SAMPLES

TABLE III

FOR TRAINING.

Classic approaches

Deep-Learning approaches

Class  Train Test RF [64] SVM |2] Ensemble-Watershed [49] SSRN [26] A2S2K [28] Triplet-Watershed
1 663 5968 91.11 + 0.007 94.30 &+ 0.008 94.34 £+ 0.0032 99.85 + 0.001 99.91 + 0.000 100.0 £ 0.000
2 1864 16785 98.11 + 0.003 97.65 + 0.002 95.24 £+ 0.0051 99.98 + 0.000 99.99 + 0.000 100.0 £ 0.000
3 209 1890 67.71 + 0.014 81.26 £+ 0.018 69.39 £+ 0.0151 99.68 + 0.003 99.88 + 0.001 99.8 + 0.004
4 306 2758 88.20 £ 0.006 94.63 + 0.004 78.69 £ 0.0058 99.92 + 0.001 99.95 + 0.001 99.96 + 0.001
5 134 1211 98.93 + 0.002 99.20 + 0.002 87.46 + 0.0110 99.94 + 0.000 100.0 + 0.000 100.0 £ 0.000
6 502 4527 72.14 + 0,022 90.58 + 0,008 61.37 &+ 0.0111 99.95 + 0.001 99.91 £ 0,001 99.99 + 0.001
7 133 1197 75.69 + 0.017 85.71 £+ 0.011 75.49 £ 0.0295 100.0 £ 0.000 100.0 £ 0.000 100.0 £ 0.000
8 368 3314 89.64 + 0.013 88.20 £ 0.003 74.65 + 0.0044 98.28 + 0.015 98.88 + 0.006 99.97 + 0.001
9 94 853 99.77 £ 0.002 99.84 £+ 0.001 99.77 £+ 0.0015 99.39 + 0.003 99.78 + 0.003 100.0 £ 0.000

OA 4273 38503 90.41 + 0.001 94.19 + 0.002 86.13 £+ 0.0023 99.77 + 0.001 99.85 £+ 0.001 99.98 + 0.001

AA 86.81 £ 0.002 92.38 + 0.003 81.82 £ 0.0039 99.66 + 0.001 99.81 £ 0.001 99.97 + 0.001
K 0.8710 + 0.002  0.9229 + 0.002 0.8136 + 0.0030 0.9969 + 0.001  0.9981 =+ 0.001 0.9998 + 0.001

TABLE IV

OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(k) VALUES ON KENNEDY SPACE CENTRE (KSC) DATASET USING 10% OF
SAMPLES FOR TRAINING.

Classic approaches Deep-Learning approaches

Class  Train Test RF [64] SVM |2] Ensemble-Watershed [49] SSRN [26] A2S2K [28] Triplet-Watershed
1 76 685 94.79 + 0.012 95.43 + 0.023 96.23 £ 0.0085 99.95 £ 0.001 99.95 + 0.001 100.0 + 0.0000
2 24 219 81.58 + 0 047 83.71 + 0.012 89.59 + 0.0247 100.0 + 0.000 98.68 + 0.019 100.0 + 0.0000
3 25 231 86.09 + 0 020 7841 £ 0.218 83.98 £+ 0.0341 99.66 £ 0.005 98.72 + 0.012 100.0 + 0.0000
4 25 227 71.22 + 0.061 27.17 £ 0.173 69.60 + 0.0406 91.22 + 0.047 94.27 + 0.042 96.56 + 0.0423
5 16 145 47.59 £ 0.060 22.99 + 0.170 65.52 + 0.0474 100.0 + 0.000 94.46 + 0.050 99.86 + 0.0028
6 22 207 48.22 £+ 0.014 36.89 + 0.078 53.33 £ 0.0526 98.45 £ 0.022 99.82 + 0.003 99.52 + 0.0000
7 10 95 79.43 £ 0 096 87.94 + 0.027 85.05 &+ 0.0234 95.42 £ 0.050 99.61 + 0.005 100.0 + 0.0000
8 43 388 78.61 £ 0.054 70.19 £ 0.073 91.24 + 0.0297 99.80 £ 0.003 100.0 + 0.000 99.90 £ 0.0000
9 52 468 89.46 £+ 0.011 85.33 + 0.021 93.08 + 0.0193 100.0 + 0.000 100.0 + 0.000 100.0 + 0.0000
10 40 364 88.43 £+ 0.034 78.88 + 0.069 92.64 + 0.0150 100.0 + 0.000 100.0 + 0.000 100.0 + 0.0000
11 41 378 95.58 + 0.014 93.81 + 0.008 94.44 + 0.0261 100.0 + 0.000 100.0 + 0.000 100.0 + 0.0000
12 50 453 82.63 &+ 0.032 86.98 + 0.009 86.98 + 0.0119 100.0 + 0.000 100.0 + 0.000 99.21 + 0.0159
13 92 835 99.60 + 0.002 100.0 & 0.000 99.69 + 0.0022 100.0 + 0.000 100.0 + 0.000 100.0 + 0.0000

OA 516 4695 86.17 + 0.004 81.27 4+ 0.008 89.54 + 0.0038 99.29 £ 0.004  99.34 + 0.0008 99.72 £ 0.0023
AA 80.25 £+ 0.004 72.90 £ 0.021 84.72 £+ 0.0038 98.80 £+ 0.008  98.88 £ 0.0018 99.62 + 0.0032

0.8459 + 0.004

0.7909 £ 0.009

0.8834 £ 0.0042

0.9921 +£ 0.004

0.9927 £ 0.001

0.9969 + 0.0026




TABLE V

OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(k) VALUES ON UNIVERSITY OF HOUSTON (UH) DATASET USING 10% OF
SAMPLES FOR TRAINING.

Classic approaches

Deep-Learning approaches

Class Train Test RF [64] SVM [2] Ensemble-Watershed [49] SSRN [26 A2S2K [28] Triplet-Watershed
1 125 1126 82.52 + 0.0000  82.33 + 0.0000 93.68 + 0.0279 99.66 + 0.0012  99.79 + 0.0021 98.99 + 0.0080

2 125 1129 83.30 & 0.0011  83.36 £ 0.0000 81.97 £ 0.0191 99.96 £+ 0.0004  100.0 £ 0.0000 100.0 £ 0.0000
3 69 628 97.62 £+ 0.0000  99.80 £ 0.0000 99.90 £+ 0.0013 100.0 £ 0.0000 100.0 & 0.0000 100.0 £+ 00000
4 124 1120 91.41 £ 0.0027  98.95 + 0.0000 74.27 £ 0.0240 99.66 £+ 0.0046  99.17 £ 0.0095 100.0 £ 0.0000
5 124 1118 96.49 £ 0.0020  98.76 £ 0.0000 82.15 £ 0.0214 100.0 £ 0.0000  100.0 & 0.0000 100.0 £ 00000
6 32 293 99.30 £ 0.0000  97.90 £ 0.0000 92.22 4+ 0.0613 100.0 £ 0.0000 100.0 & 0.0000 99.43 + 0.0080
7 126 1142 75.09 £+ 0.0020  77.42 £ 0.0000 69.63 £+ 0.0272 99.10 + 0.0119  98.98 + 0.0088 99.65 + 0.0050
8 124 1120 33.04 £+ 0.0020  60.30 £ 0.0000 78.25 £ 0.0242 99.38 &+ 0.0016  99.72 + 0.0038 96.25 + 0.0338
9 125 1127 69.31 4+ 0.0042  76.77 £+ 0.0000 52.56 4+ 0.0159 99.30 + 0.0052  98.47 £ 0.0101 97.96 + 0.0145
10 122 1105 44.11 + 0.0034  61.29 + 0.0000 63.66 £+ 0.0207 94.85 + 0.0152  94.90 £ 0.0178 100.0 £ 0.0000
11 123 1112 70.20 £ 0.0020  80.55 £ 0.0000 56.83 £+ 0.0379 99.23 + 0.0075  99.42 + 0.0040 99.07 £+ 0.0131
12 123 1110 54.81 £+ 0.0036  79.92 £ 0.0000 54.77 £+ 0.0319 98.76 + 0.0028  99.46 £ 0.0033 99.64 + 0.0000
13 46 423 60.23 £+ 0.0129  70.87 £ 0.0000 06.52 4+ 0.0130 99.90 + 0.0013  99.01 £ 0.0101 98.74 + 0.0089
14 42 386 99.32 £+ 0.0019  100.0 £ 0.0000 94.15 £+ 0.0089 98.63 + 0.0193  100.0 £ 0.0000 100.0 £ 0.0000
15 66 594 97.25 +£ 0.0017  96.40 £+ 0.0000 98.55 £+ 0.0051 100.0 £ 0.0000 100.0 & 0.0000 100.0 £+ 00000
OA 73.02 £+ 0.0004 81.86 £ 0.0000 72.50 £ 0.0030 99.10 &+ 0.0013  99.12 + 0.0030 99.25 + 0.0039
AA 76.93 £+ 0.0004  84.31 £ 0.0000 73.27 £ 0.0046 99.23 + 0.0016  99.26 + 0.0020 99.32 + 0.0031
Kappa 71.01 £ 0.0003  80.42 £ 0.0000 70.22 £+ 0.0033 99.03 £+ 0.0015  99.05 + 0.0033 99.19 + 0.0042

(UP) DATASET USING SEMI-SUPERVISED

TABLE VI
OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(k) VALUES ON INDIANPINES (IP) DATASET USING SEMI-SUPERVISED
APPROACHES.

Class  Train Test S2GCN [33]] SSRN [26] DC-GCN [34] Triplet-Watershed
1 30 16 100.0 £ 0.0000 93.24 £+ 0.0263 100.00 £ 0.0000  100.00 = 0.0000
2 30 1398 84.43 £ 0.0250 76.63 £ 0.0596 91.28 £ 0.0360 91.69 + 0.0194
3 30 800 82.87 £ 0.0553 68.78 £+ 0.0753 92.88 £ 0.0396 95.25 4+ 0.0610
4 30 207 93.08 £+ 0.0195 87.64 + 0.0249 98.11 £ 0.0151 100.00 £ 0.0000
5 30 453 97.13 £+ 0.0134 86.72 £+ 0.0154 95.54 £+ 0.0339 98.63 + 0.0171
6 30 700 97.29 £+ 0.0127 92.05 £ 0.0182 98.67 £+ 0.0104 100.00 £ 0.0000
7 15 13 92.31 £ 0.0000 95.66 4+ 0.0051 100.00 £ 0.0000  100.00 + 0.0000
8 30 448 99.03 £ 0.0093 95.90 £ 0.0297 100.00 £ 0.0000  100.00 £ 0.0000
9 15 5 100.00 £ 0.0000  100.00 £ 0.0000 100.00 £ 0.0000  100.00 &+ 0.0000
10 30 942 93.77 £+ 0.0373 82.42 + 0.0324 91.91 £ 0.0378 98.22 + 0.0232
11 30 2425 84.98 £ 0.0282 82.23 + 0.0288 91.79 £+ 0.0379 94.43 + 0.0229
12 30 563 80.05 £ 0.0517 69.09 £ 0.0436 90.17 £ 0.0554 99.08 + 0.0185
13 30 175 99.43 £ 0.0000 95.78 £+ 0.0075 99.65 £ 0.0027 100.00 £ 0.0000
14 30 1235 96.73 £ 0.0092 86.52 + 0.0243 99.73 £ 0.0066 99.87 + 0.0026
15 30 356 86.80 £ 0.0342 73.12 £+ 0.0528 99.94 £+ 0.0016 100.00 £ 0.0000
16 30 63 100.00 £ 0.0000 86.21 £ 0.0130 100.00 £ 0.0000 99.37 £ 0.0078

OA 89.4 4+ 0.0108 88.34 £+ 0.0173 94.65 £+ 0.1210 96.74 + 0.0194
AA 92.9 + 0.0104 85.75 £ 0.0069 96.85 £ 0.0040 98.53 + 0.0098
K 0.880 £ 0.012 0.866 + 0.019 0.944 + 0.014 0.9627 + 0.0221
TABLE VII
OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND KAPPA(k) VALUES ON UNIVERSITY OF PAVIA
APPROACHES.

Class  Train Test S2GCN [33] SSRN [26] DC-GCN [34] Triplet-Watershed
1 30 6601 92.78 £+ 0.0379 98.80 £ 0.0110 92.85 £+ 0.0351 99.56 + 0.0088
2 30 18619 87.06 + 0.0447 98.45 £ 0.0054 97.53 £ 0.0140 100.00 £ 0.0000
3 30 2069 87.97 £ 0.0477 77.05 £+ 0.1024 97.94 £+ 0.0118 99.85 + 0.0084
4 30 3034 90.85 £ 0.0094 83.02 £ 0.0907 94.57 £+ 0.0109 99.99 + 0.0003
5 30 1315 100.00 £ 0.0000  99.96 + 0.0009 99.49 £+ 0.0068 100.00 £ 0.0000
6 30 4999 88.69 £ 0.0264 87.03 £ 0.0626 98.57 £+ 0.0278 99.99 + 0.0001
7 30 1300 98.88 £ 0.0108 83.92 £ 0.0897  100.00 &+ 0.0000  100.00 £ 0.0000
8 30 3652 89.97 + 0.0328 88.41 £ 0.0463 96.00 + 0.0277 92.15 £ 0.1560
9 30 917 98.89 £ 0.0053 99.97 £ 0.0004 97.51 £ 0.0140 100.00 £ 0.0000
OA 89.74 + 0.0170 92.81 £ 0.0190 96.87 4+ 0.0111 99.20 + 0.0129
AA 92.80 £ 0.0047 90.73 £ 0.0226 97.16 £+ 0.0076 98.95 + 0.0165

0.8665 £ 0.020

0.9059 + 0.024

0.9677 + 0.012

0.9894 + 0.0170
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Fig. 6. Overall Accuracy (OA) vs % training data. We observe that Triplet-Watershed outperforms other approaches even at small sizes of training data for
Indianpines and University of Pavia Dataset. IP denotes Indianpines dataset, UP denotes University of Pavia dataset, KSC denotes Kennedy Space Centre

dataset and UH denotes University of Houston dataset.

TABLE VIII
COMPARISON OF TRIPLET-WATERSHED WITH TRIPLET-RANDOM-FOREST
AND TRIPLET-K-NEAREST-NEIGHBORS. REPLACE WATERSHED
CLASSIFIER WITH RANDOM FOREST AND KNN CLASSIFIER TO
UNDERSTAND THE IMPORTANCE OF WATERSHED CLASSIFIER.

TABLE X
TRIPLET-WATERSHED: ACCURACY VS EMBED DIMENSION. NOTE THAT
DIFFERENCES ACROSS VARIOUS EMBEDDING DIMENSIONS ARE NOT

SIGNIFICANT.
Dimension KSC IN UP UH
16 99.53 £ 0.0031  99.45 4+ 0.0025  99.95 £ 0.0002  98.74 £ 0.0034
32 99.70 £ 0.0029  99.72 £ 0.0010  99.97 £ 0.0003  98.73 +£ 0.0018
64 99.54 £+ 0.0017  99.67 £ 0.0011  99.98 £ 0.0001  99.25 + 0.0039
128 99.72 £ 0.0004  99.84 + 0.0009  99.97 £ 0.0001  98.87 £ 0.0025

Triplet-Watershed Triplet-RF Triplet-KNN
IN 99.57 £ 0.0026  91.46 &+ 0.011  90.86 + 0.013
UP 99.98 + 0.001 98.06 £+ 0.007  99.62 + 0.000
KSC  99.72 £ 0.0023 87.80 £ 0.039  82.38 £ 0.031
UH 99.25 + 0.004 89.02 £ 0.018  96.15 £ 0.0086
TABLE IX

MEAN AVERAGE PRECISION (MAP) SCORES FOR THE REPRESENTATIONS.
OBSERVE THAT TRIPLET-WATERSHED OBTAINS BETTER
REPRESENTATIONS THAN COMPETING APPROACHES ON ALL DATASETS.

Triplet-Watershed ~ A2S2K [28]  SSRN [_26]
IN 0.9819 0.9713 0.9135
UP 0.9970 0.9821 0.9703
KSC 0.9822 0.9837 0.9846
UH 0.9821 0.9799 0.9692

which would not exploit this observation. Other approaches
treat each pixel as a separate entity which would not ex-
ploit this observation. Simple Ensemble-Watershed results are
shown in the tables as well. Classification maps for Triplet-
Watershed along with competing approaches are shown in

TABLE XI
RUN-TIMES (IN SECONDS) OF TRIPLET-WATERSHED AND OTHER
APPROACHES. OBSERVE THAT THE RUNNING TIME OF
TRIPLET-WATERSHED IS COMPARABLE TO OTHER APPROACHES.

Time(s)  Triplet-Watershed =~ A2S2K [28] SSRN [26]

IN Train 520.56 829.23 779.33
Test 3.77 10.55 11.44

UP Train 791.22 2582.31 1964.66
Test 46.23 47.33 33.02

KSC Train 978.25 757.46 535.20
Test 1.58 8.37 5.84

UH Train 1460.15 947.73 1145.38
Test 8.74 11.55 7.85

figures B[9OJTOJT1] High resolution stand-alone images can also
be found in https://github.com/ac20/TripletWatershed_Code/
tree/main/img/classification_maps.


https://github.com/ac20/TripletWatershed_Code/tree/main/img/classification_maps
https://github.com/ac20/TripletWatershed_Code/tree/main/img/classification_maps

(e) A2S2K-IP

(i) SSRN-IP () SSRN-UP

-

(2) A2S2K-KSC

R

(k) SSRN-KSC () SSRN-UH

Fig. 7. T-SNE Scatterplot of the various representations obtained. All approaches provide well-separated clusters, relatively compact. Table [[X] however shows
that triplet-watershed achieves a better precision (MAP score). IP denotes Indianpines dataset, UP denotes University of Pavia dataset, KSC denotes Kennedy

Space Centre dataset and UH denotes University of Houston dataset.

(a) GT

(b) Triplet-Watershed

(c) SSRN

(d) A2S2KResNet

Fig. 8. Classification maps for Indianpines (IP) dataset. The main differences with respect to groundtruth have been highlighted. As one can observe, the

number of errors of Triplet-Watershed is small compared to SSRN and A2S2K.

B. Semi-Supervised Classification

We compare the Triplet-Watershed with three recent state-
of-art semi-supervised approaches - S2GCN [33]], SSRN [26]]
and DC-GCN (Dual Clustering GCN) [34]. We consider 30
samples for training if the class size is greater than 30 and
15 if the class size is less than 30. Tables show the
results obtained. Observe that, once again, Triplet-Watershed
obtains the state-of-art in several aspects.

C. Evaluation of Representation

Recall that accuracies in tables for Triplet-Watershed
use ensemble watershed classifier. However, ensemble wa-
tershed exploits the connectivity patterns in the data. We
now try to understand how well watershed representations
compare with representations obtained by other approaches.
Qualitatively, we use the TSNE [[68] plots as in Figure [7]
Note that there does not exist any major differences except
that within a class, A2S2K and SSRN have “clumps” points
while Triplet-Watershed has a uniform density. Quantitatively
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(a) GT (b) Triplet-Watershed (c) SSRN (d) A2S2KResNet

Fig. 9. Classification maps for Kennedy Space Centre (KSC) dataset.The main differences with respect to groundtruth have been highlighted. As one can
observe, the number of errors of Triplet-Watershed is small compared to SSRN and A2S2K.

(a) GT (b) Triplet-Watershed (c) SSRN (d) A2S2KResNet

Fig. 10. Classification maps for University of Pavia (UP) dataset.The main differences with respect to groundtruth have been highlighted. As one can observe,
the number of errors of Triplet-Watershed is small compared to SSRN and A2S2K.

(a) GT (b) Triplet-Watershed

(c) SSRN (d) A2S2KResNet

Fig. 11. Classification maps for University of Houston (UH) dataset.The main differences with respect to groundtruth have been highlighted. As one can
observe, the number of errors of Triplet-Watershed is small compared to SSRN and A2S2K.



TABLE XII
TRIPLET-WATERSHED: ACCURACY VS PATCH SIZE.

7 9 11 13

IN OA  99.72 £ 0.0021
AA  99.72 £ 0.0024

K 0.9968 £ 0.0024

UP  OA  99.96 + 0.0008
AA  99.93 £ 0.0012

K 0.9994 £ 0.0010

99.56 £ 0.0021
98.57 £ 0.0180
0.9949 + 0.0023
99.98 £ 0.0002
99.96 £ 0.0005
0.9997 + 0.0003

99.63 £ 0.0017
99.82 + 0.0012
0.9958 £ 0.0020
99.99 £ 0.0002
99.98 £ 0.0004
0.9999 =+ 0.0002

99.63 £ 0.0022
99.75 £ 0.0009
0.9957 £ 0.0025
99.98 £ 0.0002
99.96 £ 0.0005
0.9997 + 0.0003

KSC OA  99.77 £ 0.0023 99.96 £+ 0.0010 99.96 + 0.0010 99.96 £+ 0.0010
AA  99.55 £ 0.0050 99.95 £ 0.0010 99.95 + 0.0010 99.95 £ 0.0010
K 0.9975 £ 0.0025  0.9995 £ 0.0010  0.9995 + 0.0010  0.9995 + 0.0010
UH OA 9822 + 0.0024 98.78 £ 0.0014 99.25 4 0.0011 99.23 + 0.0031
AA  98.28 £ 0.0038 98.89 £ 0.0015 99.32 £ 0.0013 99.26 £ 0.0031
K 0.9807 £ 0.0026  0.9868 & 0.0015  0.9919 £ 0.0012  0.9915 £ 0.0034

we use the mean average precision (MAP) over all points. The
computation procedure is as follows:
1) Given a data point x, we order all other data points {y; };
using an inverse function of distance, exp(—distance).
2) Labels are assigned based on whether the points {y;};
belong to the same class as xj or not with class label 1
and 0 respectively.
3) Average precision (AP) computes the area under the
precision-recall curve.
4) The AP scores are averages over all points {zy}i to
obtain the MAP score.
This procedure is as suggested in [69] to evaluate represen-
tations. The results are shown in Table [X] Observe that the
watershed outperforms the current state-of-art techniques.

D. Ablation Study

We now study the importance of various aspects of Triplet-
Watershed for the accuracies.

1) Accuracy vs % training data: Figure E] shows the plots
of overall accuracy (OA) vs % training data. For IP and UP
datasets, it can be seen that Triplet-Watershed outperforms
other approaches even at small sizes of training data. This can
be attributed to the fact that the watershed classifier propagates
the information to unlabelled nodes, which is in turn used
for training. (See Figure [). For optimal performance, the
watershed classifier requires at least one labelled node per
component. In cases of very small training data and many
components, Triplet-Watershed does not perform well. This is
the case for the KSC dataset at 2% and 3% training data, as
shown in Figure[6] Detailed analysis of the underperformance
of Triplet-Watershed at low train sizes for Kennedy Space
Center (KSC) and University of Houston (UH) dataset can
be found in appendix

2) Replacing Watershed With Other Classifiers: To illus-
trate the importance of the watershed classifier in the training
pipeline (Figure [, we replace it with Random Forest (RF)
classifier and K-Nearest Neighbors (KNN) classifier with
k =5, referring to these as Triplet-Random Forest and Triplet-
K-Nearest-Neighbors. The results are shown in Table
Firstly observe the dramatic improvement of accuracies with
respect to vanilla classifiers (Tables V). Also, observe
that Triplet-Watershed outperforms the other techniques. This,
once again, is attributed to the fact that watershed exploits the
observation that classes in the groundtruth consist of connected
components.

Remark: Both Random Forest (RF) and K-Nearest Neigh-
bors (KNN) are considered for this experiment since the
labels generated by these are not differentiable with respect
to the input representations. This property is shared with
the watershed classifier. However, Multi-layered perceptron
(MLP) and Support vector machines (SVM) obtain labels
using specific costs and are indeed differentiable with respect
to their input representations. Hence, the latter approaches are
not considered for comparison.

3) Accuracy vs embed dimension: Table [X]shows the effect
of embedding dimension on accuracy. Observe that there does
not exist any significant trend with respect to the embedding
dimension. We use 64 as the default embedding dimension.

4) Accuracy Vs Patch Size: Recall that one of the hyper-
parameter of the approach is patch size - The size of the
window around the pixel. Table | X1I| shows the results obtained
by varying the patch sizes across different datasets. Observe
that larger window size implies more information for inference
and hence scope for better inference. Thus, as a rule of thumb,
larger window size obtain better results. But, it also implies
higher computational requirement. However in several cases
increasing the window size beyond a threshold would not
lead to significant improvements. For example, in table IN
and UP datasets do not show much improvement with larger
window sizes. UH dataset improves with larger window size,
but no significant improvement is obtained by increasing the
window size from 11 to 13.

V. CONCLUSION

In this article, we proposed a novel approach to train for
the watershed classifier. We refer to this as Triplet-Watershed.
We show that the watershed classifier exploits the connectivity
patterns in the datasets. This leads to huge performance gains
compared to other approaches which use simple softmax
classifier. We prove this empirically by comparing Triplet-
Watershed with existing state-of-art deep learning approaches
such as A2S2K [28]], SSRN [26] and also classic approaches -
RF [64] and SVM [2]]. We also compare the current technique
with semi-supervised approaches such as S2GCN [33]] and
DC-GCN [34]. In each case, we achieve better accuracy while
using a quarter of the parameters of the previous state-of-the-
art approaches.

APPENDIX A
CONSTRUCTING THE GRAPH ON HSI

Here, we illustrate the process of constructing the graph on
HSI dataset. Figure considers a simple hypothetical image
with the groundtruth classes as shown. Figure shows the
graph obtained using the following steps:

(i) Firstly, only points with groundtruth available, i.e
{labels # 0} are considered. This can be trivially ex-
tended to other points depending on requirement. These
points constitute the vertex set.

(i) The edge set is obtained by taking the union of - (a)
4 adjacency edges denoted by colour black and (b)
“other” edges which span across components. These
“other” edges are constructed using Euclidean Minimum
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Fig. 12. Constructing the graph on HSI data. (a) shows a simple toy HSI
data with groundtruth classes. Note that class O implies that groundtruth is
not available. (b) illustrates the graph constructed by considering only points
with {labels # 0} as vertices. 4-adjacency edges (black) along with other
edges (red) spanning across components are considered. These “other” edges
are constructed using techniques such as Euclidean Minimum Spanning Tree
(EMST) or K-Neighbors graph.

Spanning Tree (EMST) for IP, UP, and KSC datasets.
For UH dataset these edges are constructed using K-
Neighbors graph with k=50.

The two main principles for selecting the graph are - (i)
We require each label-induced subgraplﬂsuch that the number
of connected components are as few as possible and (ii) We
also require the number of edges to be as few as possible.
Both these act against each other and the right combination is
obtained through trial and error.

APPENDIX B
TRIPLET-WATERSHED AT SMALL TRAIN SIZES

Note that from figure @ at low train sizes (2% and 3%,
Triplet-Watershed performs better than A2S2KResNet and
SSRN on IP, UP datasets. While, Triplet-Watershed is slightly
inferior to A2S2KResNet and SSRN on KSC, UH datasets. In
this section we analyze and explain this in detail.

There are two main reasons for the different behaviours of
Triplet-Watershed at high (10%) and low (2%, 3%) train sizes
- (i) At low train sizes, not all components within the data are
covered and (ii) There aren’t enough points near the boundary
to allow for better separation. To understand this better, we
perform a post-hoc analysis on UH and IP datasets.

For each label, (both groundtruth and prediction) we con-
sider the subgraph induced by the vertice{] of the given
label. In this subgraph, we count the size of each connected
component. Table shows these values for UH/IP datasets,
for groundtruth labels, and labels predicted for 10% and 2%.
Both the above phenomenon can be observed in table

(i) Observe that for several classes in UH dataset, there exists
small components for UH (example : class 1 with 178
points) which are not represented when only 2% of the
data is considered for training. While, this happens for
IP dataset (class S5, 147 points), it is relatively low in
magnitude. This partly explains why we achieve better

4Given a graph G = (V, E,W), the subgraph induces by a subset of
vertices V/ C V is given by G’ = (V/, E/,W). Here E' = {(ez,ey) €
E such that e;, e € V'}

5See footnote

results at 10% train size. And also why IP performs better
at 2% train size comparatively.

The other main reason is - Boundaries are not sufficiently
represented at 2% train size. As an example of this,
consider class 13 for UH dataset which has a single
component 469 points. At 2% train size, this component
splits into small components. However, at 10% train size,
the component is preserved. This is due to insufficient
boundary information at 2% train size. Moreover, as can
be intuitively expected, this happens when there is a
relatively high standard deviation within the class.

(i)

The above observations explain the behaviour of Triplet-
Watershed at low train sizes.
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