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ARTICLE

A variational pan-sharpening algorithm to enhance the 
spectral and spatial details
Rajesh Goginenia, Ashvini Chaturvedia and Daya Sagar B Sb

aDepartment of Electronics & Communication Engineering, National Institute of Technology Karnataka, 
Surathkal, India; bSystems Science and Informatics Unit, Indian Statistical Institute-Bangalore Centre, 
Bangalore, India

ABSTRACT
Pan-sharpening is a remote sensing image fusion technique that gen-
erates a high-resolution multispectral (HRMS) image on combining 
a low resolution multispectral (MS) image and a panchromatic (PAN) 
image. In this paper, a new optimisation model is proposed for pan- 
sharpening. The proposed model consists of three terms: (i) a data 
synthesis fidelity term formulated on inferring the relationship 
between source MS image and fused image to preserve the spectral 
information, (ii) a total generalised variation-based prior term to inject 
the significant spatial details from PAN image to pan-sharpened image, 
and (iii) a spectral distortion reduction term that exploits the correlation 
between multispectral image bands. To solve the resultant convex 
optimisation problem, an efficient and convergence guaranteed opera-
tor splitting framework based on the alternating direction method of 
multipliers (ADMM) algorithm is formulated. Finally, the proposed 
model is experimentally validated using full-resolution and reduced- 
resolution data. The pan-sharpened outcomes exhibit the potential of 
the proposed method in enhancing the spatial and spectral quality.
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1. Introduction

High-resolution multispectral (HRMS) images are immensely useful for a variety of remote 
sensing applications like environmental monitoring, change detection (Hussain et al. 
2013), land-use classification (Chen et al. 2017) and land-use extraction (Li et al. 2016). 
The physical and technological constraints restrict the satellite sensors to capture the 
scenes and subsequently act as a barrier in generating images with high spatial and rich 
spectral information. Most of the earth observation satellites like, QuickBird, IKONOS, and 
WorldView provide a high-resolution panchromatic (PAN) image and a low-resolution 
multispectral (MS) image with several bands. The desired HRMS image can be realised by 
the fusion of PAN and MS images, and a conventional mechanism that combines the 
complementary spatial and spectral features is popularly known as Pan-sharpening (PS).

The objective of the pan-sharpening process is to produce a fused image with the 
spatial characteristics of the PAN image while maintaining spectral consistency with the 
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low-resolution MS image. Various pan-sharpening methods have been proposed in the 
last three decades (Xu et al. 2014, Vivone et al. 2015, Ghassemian 2016, Ma et al. 2019), and 
can be grouped into three categories as component substitution (CS) methods, multi- 
resolution analysis (MRA) methods, and sparse representation (SR) based techniques.

The basis of CS methods relies upon the transformation of MS image on to space where 
it is decomposed into its constituent spatial and spectral components and subsequently 
replacing so obtained spatial component with PAN image. Following which invoking the 
inverse transformation produces the pan-sharpened image. Intensity-hue-saturation (IHS) 
(Tu et al. 2001, Ling et al. 2007), adaptive IHS (AIHS) (Rahmani et al. 2010), principal 
component analysis (PCA)(Chavez et al. 1991), Gram–Schmidt (GS) transform (Laben and 
Brower 2000), GS adaptive (GSA) (Aiazzi et al. 2007), band dependent spatial detail (BDSD) 
are few of the important CS-based methods. The CS methods are known for outcomes 
having salient features as higher spatial quality (Zhou et al. 2014) and less computational 
complexity. The difference in the spectral response of PAN image and MS image bands 
leads to colour distortion in CS class of methods.

The MRA methods are based on extracting the spatial details from PAN image using 
diversified transforms like wavelets, Laplacian pyramid (LP), curvelets, contourlets, and so 
on. The pan-sharpened image is obtained by injecting the spatial details derived from the 
PAN image into low-resolution MS bands. The hypothesis of MRA-based methods is 
widely designated as Amélioration de la Résolution Spatiale par Injection de Structures 
(ARSIS) (Ranchin et al. 2003). The well-known MRA methods are wavelet (Amolins et al. 
2007), additive wavelet luminance proportional (AWLP) (Otazu et al. 2005), modulation 
transfer function based (Aiazzi et al. 2006), contourlet (Saeedi and Faez 2011) and so on. 
The MRA-based methods are recognised for preserving the spectral features compared to 
the CS-based methods, though MRA methods yield spatial artefacts.

In the recent past, sparse representation (SR) models have been explored as 
a prominent scheme for pan-sharpening. The first successful attempt made by Li and 
Yang (Li and Yang 2011) adapted the SR theory for pan-sharpening by constructing 
a random patches dictionary. The SR-based pan-sharpening methods can be categorised 
depending upon how the dictionary construction mechanism takes place. The two 
significant classes are; PS methods in which dictionary is synthesised using the source 
PAN and MS images (Jiang et al. 2012, Li et al. 2013, Cheng et al. 2014) and other class in 
which the dictionary is generated utilising the PAN image and its low-resolution version 
(Zhu and Bamler 2013, Jiang et al. 2014, Vicinanza et al. 2015). In addition to this, for the 
mixed PS methods, the principle of MRA combined with SR yields impressive results 
(Cheng et al. 2015, Imani and Ghassemian 2017, Gogineni and Chaturvedi 2018). A single 
compact dictionary learned from HRMS images is used for pan-sharpening (Ayas et al. 
2018) to further reduce the complexity in SR-based methods. The utmost concern in the 
SR model-based methods is designing an appropriate dictionary. Usually, the process of 
dictionary construction by a conventional training mechanism is computationally expen-
sive. Further, the capability of the dictionary in sparse coding of source image patches is 
an issue of considerable significance and must be addressed appropriately to develop an 
efficient pan-sharpening algorithm.

The performance of CS, MRA, and the SR-based pan-sharpening methods is limited in 
accomplishing a fused outcome while balancing a trade-off between spatial detail 
enhancement and spectral information retention.
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Recently, variational methods (Duran et al. 2017) have been evolved as a prominent 
and attractive alternative for pan-sharpening of multispectral images. The primary con-
cern in the variational model-based pan-sharpening mechanism is to construct objective 
energy functional with efficient and reliable prior terms. Further, the pan-sharpened 
outcome is obtained using the energy functional minimisation. The first variational pan- 
sharpening method, named as pan plus multispectral images (P+XS) was proposed by 
Ballester et al. (Ballester et al. 2006). The energy functional is composed of three prior 
terms, two of these prior terms are defined from the remote sensing image formation 
model. The third term is based on the geometric information contained in the PAN image. 
However, P+XS method results in blurring artefacts. The formulation of P+XS has moti-
vated the development of many variational pan-sharpening methods, such as alternate 
variational pan-sharpening (AVWP) (Möller et al. 2012), a nonlocal variational model (NVM) 
(Duran et al. 2014) and a novel variational model for pan-sharpening based on the 
decomposition of source images into the constituent cartoon and texture components 
(Lotfi and Ghassemian 2018). In view of discrete formulation, pan-sharpening methods 
have been proposed based on total variation (TV) as a regulariser (Palsson et al. 2014, He 
et al. 2014). Recently, dynamic gradient-based sparsity is exploited for geometric consis-
tency and the method is named as dynamic TV (DTV) (Chen et al. 2014). To instigate the 
feature of sparse representation and to enhance the fidelity of fused image, l1-based 
regularised term is used for pan-sharpening (Chen et al. 2018). Most of these variational 
methods are able to mitigate the spectral distortion. However, these methods induce 
spatial artefacts like blocks and blurring in the resultant images. In addition to spectral 
enhancement, a comprehensive model is required to preserve the essential spatial 
information as well in the fused image.

Over the last few years, deep learning (DL) methods have attracted research community 
interest and found its applications in various remote sensing paradigms. The representa-
tional capability of convolutional neural networks (CNN) in image processing applications, 
particularly for pan-sharpening of multispectral images has been proven in recent research. 
An effective PS method based on deep neural networks (DNN) is proposed in (Huang et al. 
2015). The relationship between LR and HR image patches is mapped by the feed-forward 
functions. To reconstruct the HRMS image, an impressive back-propagation algorithm is 
used that trains the entire formulated DNN. Masi et. al (Masi et al. 2016) proposed a PS 
method, based on three-layer CNN. This method is simple and competent in preserving the 
textural features. A fast training CNN (Scarpa et al. 2018) is developed to overcome the 
problem of insufficient data through a target-adaptive tuning phase.

The objective of the pan-sharpening process is to maintain a balanced trade-off 
between the spatial and spectral information in the fused image. In this paper, a new 
variational PS method is proposed to inject the most vital spatial features of PAN image 
into HRMS image, while preserving the essential spectral details. The main contributions 
of this paper are listed as follows:

(i) A new total generalised variation (TGV) based prior term is proposed to precisely 
inject the geometric features of PAN image like edges and texture information into the 
pan-sharpened image. Further, TGV reduces the artefacts and preserves the higher-order 
smoothness in the fused image.

(ii) By exploiting the correlation between MS image bands, a new spectral distortion 
minimisation term is designed.

INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION 3



(iii) A data fidelity term is adapted from the image formation model to efficiently inject the 
spectral details from the source MS image to the pan-sharpened image. According to the 
image formation model, the LRMS image is considered as a decimated and blurred version of 
the HRMS image. Under these baseline assumptions, a data generative term is formulated.

(iv) Based on the alternating direction method of multipliers (ADMM), an efficient 
operator splitting framework is formulated to solve the proposed model.

The rest of the paper is organised as follows: A summary regarding total generalised 
variation (TGV) and spectral angle mapper (SAM) is presented in Section 2. The proposed 
variational model for pan-sharpening and subsequently, to solve it an optimisation 
method is illustrated in section 3. Section 4 presents the experimental results and analysis 
highlighting the state of key performance measures. Section 5 concludes the paper.

2. Preliminaries

This section presents a necessary mathematical framework of total generalised variation 
(TGV) and spectral angle mapper (SAM).

2.1. Total generalised variation (TGV)

Total Variation (TV) has been extensively used as a regulariser in image processing 
applications such as denoising, restoration, and reconstruction. Since TV deals with only 
first-order derivatives, it leads to undesirable blocky and oil painting artefacts in the 
resultant image. Total Generalised Variation (TGV) is a generalised version of TV, having 
the higher-order derivatives. (of order greater than or equal to two). TGV better preserves 
higher-order smoothness, edges, and eliminates the artefacts in the reconstructed image 
(Bredies et al. 2010).

Let Ω � R d be a bounded domain, Ck
c Ω; SymkðR dÞ
� �

be the space of compactly 
supported symmetric tensor fields and α¼ ðα0;α1; . . . ::αk� 1Þ> 0 are fixed positive real 
valued parameters. Then, TGV of order k is defined as: 

TGVk
αðuÞ ¼ sup

ð

Ω
udivkvdxjv 2 Ck

c Ω; SymkðR dÞ
� �

;

�

divlv
�
�

�
�
1
� αl; l ¼ 0; . . . ; k � 1

o
;

(1) 

where SymkðR dÞ is assumed as the space of symmetric tensors on R d and v are defined as 
bounded vector fields. TGVk

α is referred as total generalised bounded variation of order 

k with a weight vector α 2 R k. For k = 1, α0 ¼ 1 and thus the seminorm TGVk
α coincides 

with the bounded variation seminorm.
The space bounded generalised variation (BGV) can be defined as 

BGVk
αðΩÞ ¼ u 2 L1ðΩÞjTGVk

αðuÞ<1
n o

;

uk kBGVk
α
¼ uk k1 þ TGVk

αðuÞ:
(2) 

BGV spans the set of functions of order k with a weight vector α which are the generalised 
version of bounded variations. TGVk

α is a seminorm on the normed space BGVk
α, where the 

space BGVk
αðWÞ is independent of α.

4 R. GOGINENI ET AL.



When k = 2, Sym2ðR dÞ is the space Sd�d that spans all symmetric d� d matrices and 
models a set of bilinear forms which are usually symmetric. Specifically, the second-order 
TGV (with k = 2) can be expressed as: 

TGV2
αðuÞ ¼ sup

ð

Ω
udiv2wdxjw 2 C2

c Ω; Sd�d
� �

; wk k1 � α0; divwk k1 � α1

� �

; (3) 

where the divergences can be defined as: 

ðdivwÞh ¼
Pd

j¼1

@whj

@xj
; 1 � h � d; div2w ¼

Pd

h;j¼1

@2whj

@xh@xj
: (4) 

TGV is a convex function and the polynomials of the order less than k-1, the value of the 
semi-norm, TGVk

α is zero.

2.2. Spectral angle mapper (SAM)

Given two spectral vectors, in which v ¼ fv1; v2; . . . :; vNg be the pixel vector of multi-
spectral bands associated with an original image and v̂ ¼ fv̂1; v̂2; . . . :; v̂Ng be the pixel 
vector of the corresponding fused bands, respectively. Let N be the number of bands 
present in the image. The spectral angle mapper, SAM is determined as the spectral angle 
between the two vectors (Alparone et al. 2015) as 

SAMðv;v̂Þ ¼ arccos
hv;v̂i
jjvjj2jjv̂jj2

� �

(5) 

SAM is generally averaged over the entire image. If the two images used for comparison 
are spectrally equal then the SAM value is zero, this optimal value is true in an idealistic 
scenario and it indicates the absence of spectral distortion; however, there exists 
a possibility of radiometric distortion.

3. Proposed variational model

The proposed variational pan-sharpening model consists of three terms to cater the 
following objectives: (i) To preserve the spectral information, (ii) to enhance the spatial 
details and (iii) to reduce the spectral distortion. The terms are designed to attain a pan- 
sharpened image having desired spatial and spectral features with reference to the given 
PAN and MS images. The First term is adapted from the conventional remote sensing 
image formation model, which can be treated as a data synthesising fidelity term. The 
fidelity term enforces spectral information preservation. To retain the requisite geometric 
structures and to impart the spatial information from PAN image to HRMS image, TGV- 
based spatial details preserving term is designed. To reduce the spectral distortion in the 
fused image, the correlation information among MS bands is exploited. The spectral 
distortion index, namely, SAM is utilised to design an inter-band correlation term.

There exists a significant difference between the first and third terms in the proposed 
model. The first term enables the spectral detail transfer in a holistic manner from MS 
image into the fused image and does not concern with the correlation among the MS 
bands, whereas the third term is designed based on the definition of quality metric, 
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namely, spectral angle mapper (SAM). The SAM-based term exploits the correlation 
between the MS image bands so as to reduce the spectral distortion.

3.1. Data synthesising fidelity term

The remote sensing image formation model is presented abstractly that prepares an 
underlying theme for the data synthesising fidelity term:

The source image consists of a PAN image (P 2 RM�N) and Yj; ðj ¼ 1; 2::BÞ be the LRMS 
image with B bands with each band of size m� n pixels, where m ¼ M=4andn ¼ N=4. The 
spatial resolution of PAN image is four times that of the MS image. The pan-sharpened image 
obtained post fusion process is ’B’ band HRMS image (X ¼ ðX1;X2; . . . :;XBÞ) maintaining the 
spatial resolution of the PAN image having the size of M� N pixels for each band. Let 
eY¼ ðeY1;eY2; . . . ::;eYBÞ be the up-sampled LRMS image and has the same size as PAN image, P.

The source images P, Y, and the pan-sharpened image X are vectorized for computa-
tional purposes. Following the well-established remote sensing image formation model, 
the low-resolution MS image bands can be treated as decimated and blurred variants of 
the corresponding HRMS image bands. 

Yi¼ GXi þ νii ¼ 1; 2 . . . :B: (6) 

where G ¼γiH is the matrix representing blurring, the sensor integration function, and the 
spatial subsampling. Let γi is the blur filter for ith band, and H is the decimation matrix. The 
blur filter for each band is realised based on the modulation transfer function (MTF) of the 
band with its respective cut-off frequency. The decimation matrix, H ¼ 1

16 :I4 �

ðIn � 1T
4�1Þ � ðIm � 1T

4�1Þ
� �

is of (4mn� 4MN) size to perform the downsampling operation 

and νi is an additive Gaussian noise matrix for ith band. The operator � denotes Kronecker 
product. I4 is an identity matrix of size 4� 4 and 14�1 is a 4� 1 vector with all entries as unity.

Hence, to preserve the spectral details of the LRMS image, the data synthesising fidelity 
term can be formulated as: 

J1ðXÞ ¼
1
2

XB

i¼1

jjYi � GXijj
2
2 (7) 

where ’I’ denotes the number of constituent spectral bands of LRMS/HRMS images.

3.2. Spatial details preserving term

To inject the vital geometric features like edges and rich texture information of the PAN 
image into the pan-sharpened image, TGV is adapted as regulariser in the proposed 
algorithm.

The TGV has been used in the reconstruction of images acquired from different 
modalities like medical images, fusion of visible and infrared images, etc. In addition to 
the features that are recovered by the TV, the regularisation using TGV predominantly 
refrains the typical artefacts like oil painting effects.

TGV2 (Bredies and Valkonen 2011) can be reformulated as: 
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TGV2
αðuÞ ¼ min

u2BGV2
α Ωð Þ;r2BD Ωð Þ

α1

ð

Ω
Ñu � rj j þ α0

ð

Ω
ε rð Þj j; (8) 

With BGV ¼ fu 2 Ω=TGVk
αðuÞ<1g is called the space of bounded generalised variation 

of order k, with weight vector α, where r are the vector fields of bounded deformation, i.e. 
their distributional symmetrised derivative εðrÞ is a measure and Ñu represents the 
gradient of vector u.

In order to solve the energy function efficiently using the minimiser called Alternating 
direction method of multiplier (ADMM), the discretized version of TGV2 is developed in 
(Bredies et al. 2010). 

TGV2ðuÞ ¼min
r

α1jjÑu � rjj1 þ α0jjεðrÞjj1 (9) 

Here, Ñu ¼
@xu
@yu

� �

and εðrÞ ¼ 1
2 ½Ñrþ ÑrT� denotes symmetrised derivative. In the pro-

posed method, r represents the processed image. In order to efficiently solve the Eq.9, the 
directional derivative Ñu is approximated with Du. Where D ¼ ðD1;D2Þ. Hence, 

εðrÞ ¼
D1r1

1
2 ðD2r1 þ D1r2Þ

1
2 ðD2r1 þ D1r2Þ D2r2

� �

(10) 

where the finite forward differences in x and y directions are measured by the circulant 
matrices D1 and D2, respectively. Based on the reformulation of TGV, the spatial difference 
between HRMS image and PAN image is expressed as: 

J2ðXÞ ¼α1

XN

i¼1

jjDðXi � PÞ � rjj1 þ α0jjεðrÞjj1 (11) 

The performance eminence of TGV over the conventional TV in preserving textures, 
edges, and reducing staircase effects has been presented experimentally for different 
imaging modalities in (Knoll et al. 2011, Guo et al. 2014a).

3.3. Inter-band correlation preserving term

The prime objective behind acquiring a pan-sharpened image is to make it pragmatic for 
applications such as classification, recognition, and detection. Ideally, the distortion index 
called Spectral Angle Mapper (SAM) value should be close to zero so as to attain the 
optimum correlation between spectral bands of MS image. SAM is zero if the two spectral 
vectors corresponding to the images X and Y are parallel.

Under this assumption; to preserve the correlation between the MS image bands, 
a hypothesis is presented in the proposed method. The ratio of any two different spectral 
bands of HRMS image (X) should be equal to that of MS bands (~Y), 

Xi

Xj
¼
eYi

eYj
; 1 � i; j � B:; i�j: (12) 

This constraint can be formulated as: 

XieYj � XjeYi¼ 0i; j ¼ 1; 2 . . . B:; i�j: (13) 
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An energy term, J3ðXÞ is defined to preserve the desirable correlation information 
between multispectral bands. Further, J3ðXÞ also reduces spectral distortion. 

J3ðXÞ ¼
XB

i¼1

XB

j¼1

jjXieYj � XjeYijj
2
2: (14) 

On combining three prior terms, J1ðXÞ;J2ðXÞ and J3ðXÞ, the cost functional JðXÞ for the 
proposed pan-sharpening algorithm is formulated as: 

JðXÞ ¼ 1
2

PB

i¼1
jjYi � GXijj

2
2 þ α1

PB

i¼1
jjDðXi � PÞ � rjj1 þ α0jjεðrÞjj1þ

λ
2

PB

i¼1

PB

j¼i
jjXieYj � XjeYijj

2
2

(15) 

where λ is a regularisation parameter, and its chosen value determines the relative 
contribution of inter-band correlation term.

3.4. Optimisation method

The proposed formulation given in Eq.(15) can be efficiently solved by the alternating 
direction method of multipliers (ADMM) (Gabay and Mercier 1975). ADMM solves the 
linearly constrained separable convex function of the form, 

min½θ1ðx1Þ þ θ2ðx2Þ�subjecttoA1x1 þ A2x2¼ b (16) 

x1 2 ϕ1 and x2 2 ϕ2:

θ1 : <n1 ! < and θ2 : <n2 ! < are closed proper convex functions; ϕ1 � <
n1 and ϕ2 �

<n2 are closed convex sets; A1 2 <
l�n1 and A2 2 <

l�n2 are given matrices and b 2 <l is a given 
vector. The Lagrangian is defined as Lðx1;x2; tÞ = θ1ðx1Þ þ θ2ðx2Þ þ

β
2 jjA1x1 þ A2x2 � b � tjj22, 

t is the scaled Lagrange multiplier and β is a positive parameter. ADMM solves Eq. (16) in an 
iterative manner, and the process initialises with x2

0 ¼ 0 and t0 ¼ 0 as follows: 

x1
kþ1¼ argminx1 Lðx1;x2

k;tkÞ

x2
kþ1¼ argminx2 Lðx1

kþ1;x2;tkÞ

tkþ1¼tk þ βðb � ðA1x1
kþ1 þ A2x2

kþ1ÞÞ

The pan-sharpening model described in Eq.(15) consists of a non-smooth l1 term and can 
be amended by introducing auxiliary variables as 

r ¼ r1

r2

� �

s ¼ s1s3

s3s2

� �

The model presented in Eq.(15) is solved for each Xi value and can be presented as 

minXi;P;v;s
1
2
jjYi � GXijj

2
2 þ

l
2

XB

i¼1

XB

j¼i

jjXieYj � XjeYijj
2
2 þ α1jjvijj1 þ α0jjsjj1 (17) 

subjected to vi¼ DðXi � PÞ � r, s =εðrÞ.
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The terms jjvjj1ðjjsjj1Þ are the sum of l2-norms (Frobenius norm) of all 2� 1 vectors 
(2� 2 matrices).

The application of ADMM (Guo et al. 2014b) results in the following parameters 
estimation: 

vnþ1¼ argmin
v
jvjj1 þ

μ1

2
jjv � ðDðX � PÞn � rnÞ � ð~vnÞjj

2
2 (18) 

snþ1¼ argmin
s
jjsjj1 þ

μ2

2
jjs � εðrnÞ � ð~snÞjj

2
2 (19) 

ðXnþ1
i ;Pnþ1Þ ¼ argmin

Xi;P

1
2 jjYi � GXijj

2
2 þ

l
2

PB

i¼1

PB

j¼i
jjXieYj � XjeYijj

2
2

þα1
μ1
2 jjv

nþ1 � ðDðXi � PÞ � rÞ � ð~vnÞjj
2
2

þα0
μ2
2 jjs

nþ1 � εðrnÞ � ð~snÞjj
2
2

(20) 

~vnþ1¼~vn þ μðDðXi � PÞnþ1
� vnþ1Þ (21) 

~snþ1¼~sn þ μðεðrnþ1Þ � snþ1Þ (22) 

During each cycle of iterations from Eq.(18) to Eq.(22), Eq.(20) is a differentiable optimisa-
tion problem.

The v and s estimation subproblems specified in Eq.(21) and Eq.(22) can be solved 
using shrinkage operators as:

v-subproblem: 

vnþ1¼ shrink1ðDðXi � PÞn � rn þ~vn;
1

μ1
Þ (23) 

where 

shrinkaða;
1

μ1
Þ ¼

a
jjajj2

:maxðjjajj2 �
1

μ1
; 0Þ (24) 

s-subproblem: 

snþ1¼ shrinkbðεðrnÞ þ~sn;
1

μ2
Þ (25) 

where 

shrinkbðb;
1

μ2
Þ ¼

b
jjbjjF

:maxðjjbjjF �
1

μ2
; 0Þ (26) 

To obtain the solution of the differentiable part and the convergence analysis of ADMM 
algorithm with the comprehensive investigation, one can refer (Guo et al. 2014b).

4. Results and analysis

In this section, the proposed variational model for pan-sharpening is compared with some 
state-of-the-art methods at reduced-scale and full-scale: IHS (Tu et al. 2001) as the classical 
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CS-based method; AWLP (Otazu et al. 2005), MTF-GLP (Aiazzi et al. 2006) as the classical 
MRA-based methods; SR-LD (Li et al. 2013), SR-CD (Ayas et al. 2018) as the sparse 
representation-based methods; AVWP (Möller et al. 2012), DTV (Chen et al. 2014) and 
V-L1 (Chen et al. 2018) as the representative variational methods; PNN (Masi et al. 2016) 
and PNN plus (Scarpa et al. 2018) as deep learning-based methods.

To implement IHS, AWLP, and MTF-GLP methods, executable codes are available in the 
software package.1 Three dictionaries are learned adaptively from the source images and 
the optimal size is considered as 1024 for each dictionary for the implementation of SR-LD 
method. The classical K-SVD algorithm is used to train the dictionaries with overlapped 
patches from the source PAN and MS images. The number of iterations during training is 
set as 25. The SR is implemented over the learned dictionary and the remaining para-
meters are taken as described in (Li et al. 2013). To achieve the pan-sharpened outcome 
with robust spatial and spectral features the dictionary size is selected as 2048 atoms in 
the SR-CD method implementation, and the number of iteration in the training phase is 
set as 25. The remaining parameters are considered as specified in (Ayas et al. 2018).

For the comparison purpose, the implementation of variational methods considers the 
optimal values for all the parameters to yield the best possible results. To validate the 
effectiveness of the proposed method, the visual and quantitative assessments are performed 
on IKONOS, Pléiades, and QuickBird sensor datasets. The resolution ratio between MS and PAN 
images is four for all the experimental datasets. All the methods are implemented in MATLAB 
R2013a, on a personal computer with intel CPU @3.10-GHz and 8-GB RAM.

The MATLAB package for PNN and PNN plus methods is available in Github.2 The 
number of iterations in the PNN method is selected as 10. These two methods are 
implemented in MATLAB 2018a using deep learning toolbox.

4.1. Parameters selection

To implement the proposed algorithm in an efficient manner, several parameters need 
to be selected carefully. The regularisation parameters for TGV are selected to maintain an 
appropriate balance with the data synthesising fidelity term and inter-band correlation 
term. The image features are lost if more priority is given to the TGV term, whereas less 
priority results in residual noise in the fused image. The crucial regularisation parameter λ 
is tuned to give the best adaptation outcome between SAM and ERGAS. The value of λ 
influences the spectral quality of the fused image. The evolution characteristics of the 
parameter λ versus SAM and ERGAS for the datasets used in the reduced-scale evaluation 
are shown in Figure 1. Figure 2 presents the variation of Q4 and full-scale metrics Dl and 
Ds with respect to the variation in λ. Based on these observations, λ value is set as 0.9 
x 10� 3 for all the experiments. The quantitative results do not show any noticeable change 
for the variations in α0 and α1. Hence, the other regularisation parameters are selected as 
α0¼ 10� 2; α1¼ 10� 3. The remaining parameters are set as μ1¼ 10� 3; μ2¼ 10� 5, since 
these parameters do not effect the spatial and spectral indices much. To maintain the 
balance between performance and complexity of the proposed algorithm, the number of 
iterations for the algorithm is selected as 25. Further, regulation of these parameters may 
produce better results; however, the currently selected parameters yield consistent 
results.
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4.2. Reduced-resolution assessment

Since the reference high-resolution MS image is not available, Wald’s protocol (Wald 
et al. 1997) is adapted to evaluate the quality of the fused image. The source images are 
down-sampled by a factor, which is equal to the resolution ratio between PAN and MS 
images and the original MS image is treated as a reference image. A considerable number 
of indices have been developed for spatial and spectral distortions of the pan-sharpened 
image. In this paper, root mean square error (RMSE), spectral angle mapper (SAM), Erreur 
Relative Globale Adimensionnelle de Synthése (ERGAS), correlation coefficient (CC), and 
Universal Image Quality Index (UIQI) or Q-index (Q4) are used as quality metrics.

The PAN and MS images produced by IKONOS are of 1-m and 4-m resolutions, 
respectively. The size of images for experimentation is considered as 256 � 256 pixels. 
The visual outcomes of different methods for the IKONOS dataset at reduced-scale are 
presented in Figure 3. The corresponding quality metrics are reported in Table 1. Figure 3 
(a and b) shows the PAN and MS images used for the experimental validation. Figure 3(c) 
presents the up-sampled MS image and termed as EXP. From the pan-sharpened images, 
it is observed that the IHS method yields an outcome with spectral distortion in the form 

Figure 1. Evolution curves of SAM and ERGAS at reduced-scale against the variation in parameter λ (a) 
SAM Vs. λ (b) ERGAS Vs. λ.

Figure 2. Evolution curves of Q4 (at reduced-scale), full-scale metrics against the variation in para-
meter λ (a) Q4 Vs. λ (b) Dl, Ds Vs. λ.

INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION 11



of inconsistent colour and the AVWP method produces spatial and spectral distortions. 
The SR-CD, MTF-GLP, and AWLP methods exhibit fine spatial details. The evaluation of the 
outcomes of variational methods indicates a slight colour distortion. The outcomes of DTV 
and V-L1 methods are moderately good as these methods are able to preserve the sharp 
edges present in the original PAN image. The deep learning-based methods (PNN, PNN 
plus) show significant enhancement in visual results. The comprehensive perception 
manifests that the proposed method preserves fine spatial details than the other reported 
methods. For improved visualisation of spatial details, a part of the image is zoomed 
(encircled in a red box) and shown at the bottom left corner for every image. From Table 1, 

Figure 3. IKONOS dataset and experimental results by different methods (a) PAN image (b) Reference 
MS image (c) EXP (up-sampled MS image) (d) IHS (e) AWLP (f) MTF-GLP (g) AVWP (h) SR-LD (i) DTV (j) 
V-L1 (k) SR-CD (l) PNN (m) PNN plus (n) Proposed method.
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comparative analysis yield that the proposed method outperforms over all the reported 
methods for all the quality metrics considered. The second-best optimal value of perfor-
mance measures is indicated with an underline.

The Pléiades3 dataset is collected by an aerial platform of an urban area of Toulouse 
(France). The resolution of the four MS bands is 60 cm and the corresponding high- 
resolution PAN image was simulated from the available green and red channels. The size 
of the images used for the implementation of pan-sharpening methods at the reduced- 
resolution is 300 � 300 pixels. Figure 4(b) shows the MS image covering an urban area, 
resampled to match the size of the PAN image. Figure 4(a) shows the corresponding PAN 
image. The visual outcomes of EXP, IHS, AWLP, MTF-GLP, AVWP, SR-LD, DTV, V-L1, SR-CD, 
PNN, PNN plus, and the proposed method are shown in Figure 4(c)-(n), respectively. The 
IHS method suffers from spectral distortion in the regions containing grass. It can be seen 
from Figure 4(g) that the AVWP method is unable to offer finer spatial resolution. The 
AWLP method and SR-based methods better preserve the colour in various regions of the 
fused image. It is observed from the results that AWLP, MTF-GLP, DTV, and SR-CD produce 
relatively enhanced visual quality. The visual outcomes of PNN and PNN plus methods 
exhibit noticeable improvement in preserving the requisite geometric features. The 
proposed method is superior in reducing the colour distortion and retaining the sharp 
spatial details than the other reported methods. Besides, the quantitative results for the 
Pléiades dataset are presented in Table 2. The proposed method achieves optimal values 
for all the metrics used in evaluation except for SAM. The obtained values of the 
performance measures validate the efficiency of the proposed method.

4.3. Full-resolution assessment

QuickBird produces the PAN and 4-band MS images at 0.7-m and 2.8-m spatial resolu-
tion, respectively. The QNR protocol (Alparone et al. 2008) is used for quantitative 
evaluations. Figure 5 presents another set of pan-sharpening results at full-resolution 
obtained from the QuickBird dataset. The quality metrics, namely, spectral distortion 
index (Dl), spatial distortion index (Ds) and QNR are reported in Table 3.

Table 1. Reduced-resolution quality metrics for IKONOS dataset.
Method Q4 SAM RMSE ERGAS CC

EXP 0.8251 5.6492 16.3371 5.1386 0.7917
IHS 0.8627 5.3537 15.6392 4.4137 0.8458
AWLP 0.9158 5.0845 15.1156 3.6324 0.9214
MTF-GLP 0.9231 5.1427 15.1093 3.5937 0.9276
AVWP 0.8885 5.2175 15.9173 4.5273 0.8721
SR-LD 0.8754 5.5146 16.1183 4.6259 0.8735
DTV 0.9237 4.6842 14.4131 3.6521 0.9283
V-L1 0.9314 4.7163 14.3275 3.7128 0.9351
SR-CD 0.9342 4.5739 14.9748 3.8862 0.9363
PNN 0.9318 4.6957 14.5306 3.7262 0.9354
PNN plus 0.9367 4.5781 14.3286 3.6643 0.9358
Proposed 0.9418 4.4753 14.1126 3.5861 0.9389

Note: The bold values represents optimal values for each quality metric
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Figure 5(a and b) displays the full-resolution PAN and up-sampled MS images, respec-
tively, of size 512 � 512 pixels. The outcomes of IHS, AVWP, and V-L1 exhibit slight colour 
change and blurring artefacts in the red coloured soil and highway portion of the image. 
The conventional AWLP and MTF-GLP outcomes preserve the spectral information. The 
outcome of the DTV method shows minute blocking artefacts. The pan-sharpened out-
comes of SR-LD and SR-CD methods exhibit acceptable sharpness in preserving spatial 
details. The outcomes of PNN and PNN plus methods appear quite similar to the original 
MS image. The sharp features are retained by the fused outcomes of deep learning (PNN, 

Figure 4. Pléiades dataset and experimental results by different methods (a) PAN image (300 � 300) 
(b) Reference MS image (c) EXP (up-sampled MS image) (d) IHS (e) AWLP (f) MTF-GLP (g) AVWP (h) SR- 
LD (i) DTV (j) V-L1 (k) SR-CD (l) PNN (m) PNN plus (n) Proposed method.
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PNN plus)-based methods. Moreover, the proposed method yields less spectral distortion 
and retains sharp edges over the other methods. The smaller value of Dl and Ds indicates 
less spectral distortion and spatial distortion, respectively. The higher value of QNR 
indicates enhanced global quality of the fused image. The proposed method offers the 
optimal values for Dl, Ds and QNR as reported in Table 3. Hence, the overall performance 
and efficacy of the proposed method are demonstrated by both the visual outcomes and 
quantitative results.

4.4. Reduced versus full-resolution quality assessment

Another dataset from QuickBird sensor is used to better demonstrate the efficiency of 
the proposed method at different resolutions. The original dataset considered is of size 
1024 � 1024 pixels for PAN image and 256 � 256 pixels for MS image. The reduced 
and full-scale visual results for QuickBird dataset are presented in Figs.6 and 7, 
respectively.

For full-scale experimentation, QNR protocol is employed. The MS image is up-sampled 
to the resolution of PAN image, and the experimentation is performed on 1024 � 1024 
sized source (PAN and MS) images.

One method from each category; IHS from CS, AWLP from MRA, SR-LD (with multiple 
dictionaries) and SR-CD (single compact dictionary) from SRbased, DTV from variational 
and PNN from deep learning-based methods are used for comparison. Three quality 
metrics, namely ERGAS, SAM, and Q4 at reduced resolution and QNR at full resolution 
are used for quantitative evaluation.

For fair visualisation of details both the image sets are displayed with the same size. 
The corresponding quality metrics are estimated and given in Table 4. For reduced-scale 
experiments, Wald’s Protocol is used. The PAN and MS images are down-sampled by 
a ratio of four. Further, the MS image is up-sampled to the size of the PAN image and the 
original MS image is used as a reference image for comparison. The size of the source 
images for reduced-scale is 256 � 256 pixels.

The visual outcomes at reduced-scale are displayed in Figure 6. Figure 6(a and b) 
indicates the PAN and MS images used for experimentation, respectively. Figure 6(c) 
represents the reference MS image. Figure 6(d)-(i) presents the outcomes of different 

Table 2. Reduced-resolution quality metrics for Pléiades data set.
Method Q4 SAM RMSE ERGAS CC

EXP 0.7841 4.6853 13.7956 5.9562 0.8257
IHS 0.8495 4.9357 13.4531 5.1048 0.8573
AWLP 0.9413 4.4138 12.4176 3.5182 0.9587
MTF-GLP 0.9478 4.1735 12.3362 3.3174 0.9564
AVWP 0.9247 5.1123 12.4175 3.7293 0.9381
SR-LD 0.9483 4.3352 11.9731 3.4832 0.9653
DTV 0.9571 4.2673 10.9318 3.4536 0.9617
V-L1 0.9583 4.2759 10.6572 3.4369 0.9776
SR-CD 0.9654 4.0381 10.4729 3.4371 0.9743
PNN 0.9592 4.2463 10.5483 3.4376 0.9648
PNN plus 0.9648 4.0246 10.3875 3.4296 0.9765
Proposed 0.9673 4.1736 10.2358 3.4152 0.9782

Note: The significance of underline is the second optimal value for each quality metric.
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methods used for comparison. Figure 6(j) represents the outcome of the proposed 
method. The outcomes of SR-based methods, PNN and the proposed method are 
comparable in spatial and spectral qualities. The full-scale experiments presented in 
Figure 7 follow the order of quality as results at reduced scale. The proposed method 
and PNN methods achieve better pan-sharpening quality than the CS- and MRA-based 
methods.

The quality metrics corresponding to the visual results shown in Figures 6 and 7 are 
presented in Table 4. The visual outcomes and the quality metrics obtained at different 
scales approve that the proposed method is insensitive to the scale and evaluation 

Figure 5. QuickBird dataset and experimental results by different methods (a) PAN image (512 �
512) (b) up-sampled MS image (c) IHS (d) AWLP (e) MTF-GLP (f) AVWP (g) SR-LD (h) DTV (i) V-L1 (j) SR- 
CD (k) PNN (l) PNN plus (m) Proposed method.
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Table 3. Full-resolution quality metrics for QuickBird data 
set.

Method Dλ Ds QNR

EXP 0 0.1457 0.8544
IHS 0.0410 0.0576 0.9037
AWLP 0.0406 0.0480 0.9135
MTF-GLP 0.0372 0.0414 0.9229
AVWP 0.0428 0.0507 0.9087
SR-LD 0.0356 0.0513 0.9149
DTV 0.0338 0.0481 0.9197
V-L1 0.0315 0.0489 0.9211
SR-CD 0.0298 0.0453 0.9262
PNN 0.0301 0.0461 0.9252
PNN plus 0.0287 0.0416 0.9308
Proposed 0.0283 0.0409 0.9319

Note: The bold values represents optimal values for each quality 
metric

Figure 6. QuickBird dataset and experimental results by different methods at reduced-scale (a) PAN 
image (256 � 256) (b) up-sampled MS image (c) Reference MS image (d) IHS (e) AWLP (f) SR-LD (g) 
DTV (h) SR-CD (i) PNN (j) Proposed method.
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methodology. The quality metrics support the visual results and confirm that the 

Figure 7. QuickBird dataset and experimental results by different methods at full-scale (a) PAN image 
(256 � 256) (b) up-sampled MS image (c) IHS (d) AWLP (e) SR-LD (f) DTV (g) SR-CD (h) PNN (i) 
Proposed method.

Table 4. Quality metrics for QuickBird dataset (reduced-scale and full-scale).
Reduced-Scale Full-Scale

ERGAS SAM Q4 Dλ Ds QNR

IHS 4.3262 4.5631 0.7835 0.0449 0.0535 0.9040
AWLP 4.2839 4.4124 0.8094 0.0425 0.0517 0.9079
SR-LD 4.1190 4.2371 0.8136 0.0397 0.0503 0.9119
DTV 3.9865 4.1791 0.8165 0.0372 0.0497 0.9149
SR-CD 3.7548 4.1017 0.8247 0.0358 0.0473 0.9186
PNN 3.7763 4.1126 0.8265 0.0342 0.0485 0.9190
Proposed 3.6240 4.1010 0.8352 0.0339 0.0479 0.9198

Note: The bold values represents optimal values for each quality metric
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proposed method performs considerably better than other methods in spectral distortion 
reduction.

4.5. Comparison of algorithms execution time

The efficiency of all the considered methods is evaluated in terms of algorithm execution 
time measured in seconds. The average execution time is measured for the outcomes 
presented in Figures 3, 4, 5. The CS and MRA methods are recognised for relatively low 
execution time. It can be observed from Table 5 that IHS, AWLP, and MTF-GLP methods 
consume the least execution time among all the considered methods. Since the dictionary 
training process is computationally laborious, obviously the SR-based methods demand 
longer execution time. For the implementation of PNN and PNN plus methods (using 
MATLAB, CPU based), the number of iterations are considered as 10. The execution time is 
proportional to the amount of training data used and the number of iterations. The 
analysis based on these factors is out of scope for this paper. Hence, for fair comparison, 
the execution time for deep learning-based methods is not included in the list. The 
execution time for all the other considered methods is reported in Table 5. The proposed 
method is not as computationally efficient to the other reported variational methods like 
AVWP, DTV, and V-L1. However, the proposed method reduces the blocking artefacts and 
preserves spectral information at the cost of computational time.

From the perspective of accuracy and convergence speed, Figure 8 presents the 
relative error versus the iteration count for the proposed method. The relative error is 
evaluated as 

relativeerror ¼
jjXk � Yjj
jjYjj

(27) 

where Xk is the pan-sharpened image obtained at kth iteration and Y is the reference MS 
image. The relative error attains the least possible value for all the datasets after 25 
iterations. The visual and quantitative results approve that the proposed method is 
superior to the methods, namely, AVWP, DTV, and V-L1 in terms of maintaining a trade- 
off between spatial and spectral qualities. From the execution time perspective, the 
proposed method is efficient than the reported SR-based methods.

5. Conclusion

In recent years, the variational scheme emerges as an attractive alternative for the 
pan-sharpening of multispectral images. This paper proposed a variational pan- 

Table 5. Average execution time comparison of different meth-
ods (in seconds).

Method Time(sec.) Method Time(sec.)

EXP 0 SR-LD 1486.0617
IHS 0.0119 DTV 39.7352
AWLP 0.1935 V-L1 116.2947
MTF-GLP 0.1385 SR-CD 652.3795
AVWP 95.3526 Proposed 218.6472
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sharpening model based on total generalised variation and inter-band correlation. 
The conventional total variation-based geometric terms result in a staircase effect in 
the pan-sharpened image. This work investigates a second-order TGV-based spatial 
difference term to reduce the geometric structural difference between HRMS image 
and PAN image. Further, the inter-band correlation term, inferred from spectral angle 
mapper (SAM) is used to reduce the spectral distortion. Moreover, an efficient opti-
misation algorithm called ADMM with an operator splitting framework is utilised to 
solve the proposed pan-sharpening model. For the comprehensive performance 
evaluation of the proposed scheme, the experiments are performed on reduced and 
full-resolution data. Furthermore, the proposed method is competitive with most of 
the SR, variational and deep learning-based methods and leads to satisfactory results 
compared to AVWP, DTV, V-L1, CNN, and CNN plus methods. The proposed work can 
be further extended to reduce the execution time and to exploit more reliable prior 
terms to efficiently characterise the relation between source and fused images.

Notes

1. http://openremotesensing.net/kb/codes/pansharpening/.
2. https://github.com/sergiovitale/pansharpening-cnn-matlab-version.
3. http://openremotesensing.net/knowledgebase/a-critical-comparison-among- pan-

sharpening-algorithms/.
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