
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332865436

Iterated Watersheds, A Connected Variation of K-Means for Clustering GIS
Data

Article  in  IEEE Transactions on Emerging Topics in Computing · April 2019
DOI: 10.1109/TETC.2019.2910147

CITATIONS

4
READS

58

5 authors, including:

Some of the authors of this publication are also working on these related projects:

9-th International Conference on Advances in Pattern Recognition (ICAPR 2017) @ Indian Statistical Institute with Proceedings by IEEE. View project

SciBase View project

Sampriti Soor
Indian Statistical Institute

2 PUBLICATIONS   8 CITATIONS   

SEE PROFILE

Aditya Challa
Indian Statistical Institute

21 PUBLICATIONS   57 CITATIONS   

SEE PROFILE

Sravan Danda
Birla Institute of Technology and Science Pilani

21 PUBLICATIONS   57 CITATIONS   

SEE PROFILE

B. S Daya Sagar
Indian Statistical Institute

123 PUBLICATIONS   758 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Laurent Najman on 22 July 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332865436_Iterated_Watersheds_A_Connected_Variation_of_K-Means_for_Clustering_GIS_Data?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332865436_Iterated_Watersheds_A_Connected_Variation_of_K-Means_for_Clustering_GIS_Data?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/9-th-International-Conference-on-Advances-in-Pattern-Recognition-ICAPR-2017-Indian-Statistical-Institute-with-Proceedings-by-IEEE?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SciBase?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sampriti-Soor?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sampriti-Soor?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Statistical_Institute?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sampriti-Soor?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aditya-Challa?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aditya-Challa?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Statistical_Institute?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aditya-Challa?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sravan-Danda?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sravan-Danda?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birla-Institute-of-Technology-and-Science-Pilani?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sravan-Danda?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/B-S-Daya-Sagar?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/B-S-Daya-Sagar?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Statistical_Institute?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/B-S-Daya-Sagar?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laurent-Najman?enrichId=rgreq-5638f1d10fb31e4326b3608e017ee0d7-XXX&enrichSource=Y292ZXJQYWdlOzMzMjg2NTQzNjtBUzo3ODM0MjE2OTM1MDE0NDFAMTU2Mzc5MzY5NTM1Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


�>���G �A�/�, �?���H�@�y�k�y�e�j�k�R�y

�?�i�i�T�b�,�f�f�?���H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�k�y�e�j�k�R�y�p�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�R ���T�` �k�y�R�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�A�i�2�`���i�2�/ �q���i�2�`�b�?�2�/�b�- �� �*�Q�M�M�2�+�i�2�/ �o���`�B���i�B�Q�M �Q�7
�E�@�J�2���M�b �7�Q�` �*�H�m�b�i�2�`�B�M�; �:�A�a �.���i��

�a���K�T�`�B�i�B �a�Q�Q�`�- ���/�B�i�v�� �*�?���H�H���- �a�`���p���M �.���M�/���- �" �.���v�� �a���;���`�- �G���m�`�2�M�i �L���D�K���M

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�a���K�T�`�B�i�B �a�Q�Q�`�- ���/�B�i�v�� �*�?���H�H���- �a�`���p���M �.���M�/���- �" �.���v�� �a���;���`�- �G���m�`�2�M�i �L���D�K���M�X �A�i�2�`���i�2�/ �q���i�2�`�b�?�2�/�b�- ��
�*�Q�M�M�2�+�i�2�/ �o���`�B���i�B�Q�M �Q�7 �E�@�J�2���M�b �7�Q�` �*�H�m�b�i�2�`�B�M�; �:�A�a �.���i���X �A�1�1�1 �h�`���M�b���+�i�B�Q�M�b �Q�M �1�K�2�`�;�B�M�; �h�Q�T�B�+�b �B�M
�*�Q�K�T�m�i�B�M�;�- �A�M�b�i�B�i�m�i�2 �Q�7 �1�H�2�+�i�`�B�+���H ���M�/ �1�H�2�+�i�`�Q�M�B�+�b �1�M�;�B�M�2�2�`�b�- �A�M �T�`�2�b�b�- ���R�y�X�R�R�y�N�f�h�1�h�*�X�k�y�R�N�X�k�N�R�y�R�9�d���X
���?���H�@�y�k�y�e�j�k�R�y�p�k��

https://hal.archives-ouvertes.fr/hal-02063210v2
https://hal.archives-ouvertes.fr


1

Iterated Watersheds, A Connected Variation of
K-Means for Clustering GIS Data

Sampriti Soor, Student Member, IEEE, Aditya Challa, Student Member, IEEE, Sravan Danda, Student
Member, IEEE, B. S. Daya Sagar, Senior Member, IEEE and Laurent Najman, Senior Member, IEEE

Abstract —In this article, we propose a novel algorithm to obtain a solution to the clustering problem with an additional constraint of
connectivity. This is achieved by suitably modifying K-Means algorithm to include connectivity constraints. The modi�ed algorithm
involves repeated application of watershed transform, and hence is referred to as iterated watersheds. Detailed analysis of the
algorithm is performed using toy examples. Iterated watersheds is compared with several image segmentation algorithms. It has been
shown that iterated watersheds performs better than methods such as spectral clustering, isoperimetric partitioning, and K-Means on
various measures. To illustrate the applicability of iterated watersheds - a simple problem of placing emergency stations and suitable
cost function is considered. Using real world road networks of various cities, iterated watersheds is compared with K-Means and
greedy K-center methods. It is observed that iterated watersheds result in 4 - 66 percent improvement over K-Means and in 31 - 72
percent improvement over Greedy K-Centers in experiments on road networks of various cities.

Index Terms —Graph Clustering, K-Means, E-governance, Watersheds,

F

1 INTRODUCTION

I N digital age new approaches for effective and ef�cient
governance strategies can be established by exploiting

the vast computing and data resources at our disposal. In
several cases, the problem of ef�cient governance translates
to �nding a solution to an optimization problem. A typical
example is where several cases are framed in terms of
clustering problem. The problem of clustering is - Given a
set of objects, partition the set into clusters such that objects
belonging to the same cluster are similar to each other,
while objects belonging to different clusters are dissimilar
to each other. There exists several possible solutions to the
clustering problem (See [1], [2] for a comprehensive list of
methods). The most commonly used method is that of K-
Means[3]. This operates by minimizing the sum of dissimi-
larities within a cluster. By assuming that each object to be
clustered is denoted by a data point, let V = f x i g denote
a set of all data points. Also assume that the dataset must
be clustered into k clusters. K-Means solves the following
optimization problem.

minimize
X

x 2 V

d(x; M (x))

subject to jf M (x)jx 2 Vgj = k
(1)

where, M (x) 2 f c1; c2; � � � ; ck g denotes the center of the
cluster to which x belongs, jSj indicates the cardinality of
the set S, and d(:; :) denotes a dissimilarity measure. The
problem of obtaining a global minima to (1) is in general NP-
Hard. In particular, it was shown in [4] that the optimization
problem in (1) is NP-Hard, if the data points are assumed to

Sampriti Soor, Aditya Challa, Sravan Danda and B.S.Daya Sagar are with
the Systems Science and Informatics Unit, Indian Statistical Institute,
Bangalore, Karnataka, India 560059. E-mail: sampreetiworkid@gmail.com,
aditya.challa.20@gmail.com, sravan8809@gmail.com, bsdsagar@isibang.ac.in
Laurent Najman is with Université Paris-Est, LIGM (UMR 8049), CNRS,
ENPC, ESIEE Paris, UPEMLV, F-93162 Noisy-le-Grand, France. E-mail:
laurent.najman@esiee.fr

be in the euclidean space and dissimilarity measure is taken
to be the euclidean distance. K-Means provides an algorithm
to approximate the minima.

In several practical applications, a solution to the prob-
lem of clustering is required to have additional properties.
One such property is that of "connectivity". For example,
consider the problem of image segmentation, which is
equivalent to the clustering problem. It is usually the case
that a cluster (object or a part of it) in an image is expected
to be "spatially connected". In Fig. 1(a), the object is a loop
at the center of the image. K-Means algorithm does not
necessarily preserve connectivity as shown in Fig. 1(b). A
much better clustering in this case is presented in Fig.1(c).

In this article, we describe an algorithm similar to that of
K-Means, which preserves connectivity. To allow for math-
ematical formalization, a graph structure is assumed. That
is, we assume that apart from the set V , there exists a set
E � V � V , which gives the adjacency relation between two
points. The elements of the setE are referred to as edges. A
subset S � V is said to be connected if, for any two points
x; y 2 S, one can reach y from x with a series of edges.
The formal de�nitions are given in Section 2. Adapting the
optimization problem in (1) to include connectivity of the
resultant clusters, we have the optimization problem as in
(2).

minimize
X

x 2 V

d(x; M (x))

subject to jf M (x)jx 2 Vgj = k

f xjM (x) = ci g is connected for all i

(2)

The aim of this article is to propose an ef�cient algorithm
to approximate the minima of optimization problem (2),
and analyze it on several cases. Such an algorithm could
have several applications. Several problems related to e-
governance and e-administration can be phrased as the
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(a) (b) (c)

Fig. 1. Example Illustrating that K-Means does not preserve connectivity.
(a) Example grey scale image. (b) Clusters obtained using K-Means
on the greyscale values of (a). (c) Clusters obtained using adapted K-
Means algorithm as proposed in this article. This �gure is also shown in
[5].

optimization problem in (2). The following describes a few
such problems -

� Zonation Problem: One of the most common prob-
lems faced during governance is that of splitting the
entire set into zones. For instance consider the rail-
way zonation problem, where stations are grouped
under various zones for easy administration. In sev-
eral of these problems, it is also the case that one
requires connectivity of the zones. This can be solved
using the optimization problem in (2). For the rail-
way zonation problem, each railway station can be
thought of a vertex and two adjacent stations are
connected by an edge. Then a solution to the opti-
mization problem in (2) gives a zonation in which
zones are connected.

� River Linking: Another problem of importance is
that of the river linking. Since the cost of linking
rivers is huge, one can use the optimization problem
(2) to identify which rivers to link to obtain the least
cost.

� Facility Allocation: One of the common problems
occurred is that facility allocation - Identify the cities
in which the facilities must be located to minimize
the costs of running the facilities. This problem is
NP-Hard. Optimization problem in (2) can be used
to �nd an approximate solution to this.

� Analysis of Geo-Spatial data: Apart from the above
problems, a solution to (2) can be used to visualize
geo spatial data as well. For instance, assume n
entities trading among each other. Taking the vertex
set to be the entities and edges among the entities if
the trade is non-negligible, the optimization problem
in (2) can be used to cluster the entities to visualize
closely knit blocs with high trade among themselves.

In this article, we describe an algorithm that imitates the
K-Means algorithm while preserving connectivity. In Sec-
tion 2, we review the relevant literature required for the rest
of the article. In Section 3, the proposed algorithm, which we
call iterated watersheds, is presented. We provide a detailed
analysis of the algorithm using various toy examples as well
as using the problem of image segmentation in Section 4 .
In Section 5, we then apply this algorithm to identify the
`ideal' locations for emergency facilities using road network
datasets taken from [6].

A related work to the one presented in this article is
given in [7], where the author used topographical distances
to classify the pixels of an image. The work presented
here can be seen as a generalization of [7] to general edge
weighted graphs with any type of monotonically increasing
distance functions, and with a much wider range of appli-
cations such as road networks.

2 REVIEW OF RELEVANT L ITERATURE

The proposed algorithm in next section combines concepts
from K-Means as well as watersheds from Mathematical
Morphology (MM). Accordingly, we review the relevant
concepts in this section.

2.1 K-Means

K-Means is perhaps the most widely known classic algo-
rithm for clustering [3]. See [2] for more details. Firstly, pick
k random points as centers from V , k being the required
number of clusters. The algorithm consists of repeating the
following steps iteratively until convergence.

(a) Assign each of the points in V to one of the k centers
based on the measured(:; :). This gives a partition of V .

(b) For each of the classes in the partition obtained from
previous step, calculate the new center of this class.
Thus, we have k new centers. Go to (a) using the new k
centers.

There exists several explanations to explain why the
above algorithm works. One of the explanations involves
the expectation-maximization (EM) algorithm [8]. Step (a)
can be interpreted as - Given the centers, identify the
labelling which minimizes the cost in problem (1). This is
known as a maximization step. Step (b) involves identifying
the centers given the labelling of the points, also known
as expectation step. Thus, K-Means closely follows the EM
algorithm, and is identical to it if the data follows Gaussian
distribution. In the next section, this similarity is exploited
to propose an algorithm to get approximate optimum of
problem (2).
Remark: K-Means algorithm is also used in other clustering
methods as well. Spectral clustering uses K-Means as the
�nal step for labelling [9]. Spectral clustering has been
shown to be similar to Kernel K-Means(K-Means which uses
a kernel to calculate the distance) [10]. Thus, in this article
we compare our method with spectral clustering and classic
K-Means.

2.2 Watersheds and IFT

Assume that G = ( V; E; W) denotes an edge-weighted
graph, where V denotes the set of vertices, E � V � V ,
denotes the set of edges, andW : E ! R+ denotes the
edge weight assigned to each edge. These edge weights
can be obtained as a restriction of the measure d(:; :). Let
e = ( e0; e1) denote an edge. Then,

W (he0; e1i ) = d(e0; e1) (3)

A path � = hx = x0; x1; x2; � � � ; xn = yi between two
vertices x and y is a sequence of edges -(x0; x1); (x1; x2) � � � .
Two vertices x and y in V are said to be connected if there
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exists a path between them. A subset of vertices,X � V , is
said to be connected if any two points in X are connected.
If the whole set of vertices, V , is connected, then the graph
is said to be connected.

Watershedsis a morphological transformation which can
be used to segment images [11]. It uses the principle of
steepest descent to assign each of the vertices to a unique
minima. And each vertex is assigned a cluster based on the
minima. That is, vertices which are assigned to the same
minima belong to the same cluster. This concept has been
adapted to edge weighted graphs in [12], [13], where quasi-
linear algorithm was proposed to calculate the watersheds.

Ef�cient algorithm for computing watersheds is pro-
posed in [14], known as the Image Foresting Transform(IFT).
Intuitively, the algorithm proceeds by computing the short-
est paths between any two points in V . To measure the cost
of a path � , assume that there exists a function f , path-cost
function, that assigns a cost for each path � . Examples of
such functions are the additive cost function

f sum (�: hs; ti ) = f sum (� ) + W (hs; ti ) (4)

or the pass value functiongiven by

f max (�: hs; ti ) = max f f max (� ); W(hs; ti )g (5)

Here �: hs; ti indicates the concatenated path obtained by
adding the edge (s; t) to the path � .
Remark: For the IFT algorithm to return shortest paths, it
is required that the path cost function f be monotonically
incremental (MI), that is (a) f (�: hs; ti ) � f (� ) and (b)
f (� 1) � f (� 2) if and only if f (� 1:hs; ti ) � f (� 2:hs; ti ). The
path cost functions in (4) and (5) both satisfy this criterion.
Another possible path cost function is

f comb (� ) = ( f max (� ); f sum (� )) (6)

where f comb (� 1) < f comb (� 2) if (i) f max (� 1) < f max (� 2) or
(ii) f max (� 1) = f max (� 2) and f sum (� 1) < f sum (� 2). This
is also known as dictionary ordering, which can be useful in
certain situations as well.

In the rest of the article, additive cost function is used
unless mentioned otherwise. We review the IFT algorithm
below for completeness. This is later used to ef�ciently
partition the graph given the seeds.
Input: Edge weighted graph G = ( V; E; W), set of source

points S, and initial labels of the source points.
Output: Labelling of all the vertices in V, L .

1: For all vertices x 2 V , initialize - (i) L(x) = Null if x is
not labelled else, L(x) is the label. (ii) Cost Map, Csuch
that C(x) = 0 for all x labelled and 1 otherwise.

2: Initialize a priority Queue Q and insert all x to Q for
which C(x) < 1 .

3: while Q is not empty do
4: Pick the element with least cost from Q, say s0.
5: for eachs1 � s0 (adjacent to), and C(s1) > C(s0) do
6: Compute cost C0 of the path � (s0):hs0; s1i , where

� (s0) denotes the optimal path to s0.
7: if C0 < C(s1) then
8: Update C(s1), L(s1) and value of s1 in Q.
9: end if

10: end for
11: end while
12: return L
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Fig. 2. Example illustrating the boundary vertices. Vertices are shown
in grey. Edge weights are as given near the corresponding edge. The
bounding box indicates the connected subgraph. Vertices in blue-bold
correspond to the boundary vertices for this subgraph.

2.3 Calculating the center of the cluster

One of the steps in K-Means algorithm is to calculate the
center of the cluster (Expectation Step). There exists several
methods to calculate the center depending on the domain of
the data. A few such methods are discussed here.

1) If the data belongs to a space where it is possible to
calculate averages, such as Euclidean space, then the
center can be obtained by taking the averages. How-
ever, this center usually would not belong to the data.
Hence, the closest point to the average of the data is
taken as the center.

2) If the domain to which data belongs does not have
any speci�c structure, then the center of the connected
subgraph, C, can be de�ned as

x � = arg min
x 2 C

max
y2 C

d(x; y) (7)

The naive approach of computing the center of each
cluster is the Floyd-Warshall algorithm [15]. Distances
between all possible pairs of vertices is �rst calculated,
and they are used to calculate the center. The cost of
this operation is O(jCj3). There also exists faster GPU
versions of the algorithm as well [16].

3) Alternatively, one can use the distances between the
boundary points and the remaining points to compute
the center. This reduces the complexity signi�cantly. We
say a vertex x, belonging to a subgraph C, is a boundary
vertexif it is adjacent to a vertex in V nC. An illustration
is given in Fig. 2.

3 ITERATED WATERSHEDS

Recall that the problem of clustering that preserves con-
nectivity is framed as the following optimization problem.
Assume that k clusters are required and the set E � V � V
is given according to which the connectivity is de�ned.

minimize
X

x 2 V

d(x; M (x))

subject to jf M (x)jx 2 Vgj = k

f xjM (x) = ci g is connected for all i

(8)



4

where, M (x) 2 f c1; c2; � � � ; ck g. Here, one needs to �nd the
centers ci as well as the map M , which assigns each vertex
in V to a center.

As a �rst step, we slightly modify the optimization
problem in (8), by de�ning dissimilarity measure dW (:; :)
as

dW (x; y) = min
� 2 �( x;y )

f (� ) (9)

where �( x; y) denotes the set of all paths between x and y.
The optimization problem is then rephrased as

minimize
X

x 2 V

dW (x; M (x))

subject to jf M (x)jx 2 Vgj = k

f xjM (x) = ci g is connected for all i

(10)

The following reasons justify this modi�cation:

1) We say that dW is equivalent to d, if, given any two
pairs of points (x1; x2) and (y1; y2), we have

dW (x1; x2) � dW (y1; y2) , d(x1; x2) � d(y1; y2)
(11)

In these cases, we have that solving optimization prob-
lem in (8) is equivalent to solving optimization problem
in (10). Thus, under a relatively minor condition, we
have that these optimization problems are equivalent.
A straightforward instance of such an equivalence is
that when using a complete graph and dW = d.

2) In the most general case, it is seen that graphs con-
structed by using the k-nearest neighbors re�ect the
structure of the data. For instance, this property is
exploited for dimensionality reduction in [17]. In such
cases, one can make an argument for solving optimiza-
tion problem in (10) is more suitable than solving the
optimization problem in (8).

The algorithm to optimize the problem in (10), and to
calculate the clusters is now described. We refer to this as
the Iterated Watersheds algorithm.
Input: Edge weighted graph G = ( V; E; W), number of

clusters k.
Output: Labelling L : V ! f 1; 2; � � � ; kg

1: Pick k random vertices from V - f c1; c2; � � � ; ck g.
2: Initialize Ci  f ci g for all i.
3: while convergence is not reacheddo
4: Using IFT algorithm, assign each vertex x to its near-

est centerci (say). Ci  Ci [ f xg.
5: Compute the centers of eachCi .
6: end while

Intuitively, each of the two steps of the iterated water-
sheds algorithm is similar to expectation and maximization
steps of the K-Means algorithm. Thus, the above algorithm
can also be considered a variant of K-Means which pre-
serves connectivity.

This algorithm has the following properties:
Property 1: At the end of each iteration, the clusters Ci are
connected.

This is due to the fact that IFT algorithm calculates the
distances via paths on the graphs, and hence each vertex is
connected to the center it is assigned to. It follows that, two
vertices assigned to the same center are hence connected.

Property 2: Given the centers f c1; c2; � � � ; ck g, the IFT algo-
rithm minimizes the cost

X

x 2 V

dW (x; M (x)) ; (12)

where M (x) denotes the center to which x is assigned. This,
once again, follows from the property of the IFT algorithm
which assigns each vertex to its nearest center.

Relation with Kernel K-Means

A related technique to the algorithm above is the Kernel
K-Means [10], where instead of calculating the distances
d(a; b) as in K-Means, it uses a transformation � to calcu-
late d(� (a); � (b)) . Intuitively, Kernel K-Means distorts the
distances, which allows the method to identify non-convex
clusters. Iterated watersheds can also be intuitively seen as
distorting the distance measurements by considering dis-
tance along the edges. Hence, iterated watersheds is closely
related to kernel K-Means.

The main difference is, instead of using the transforma-
tion � , the above method uses an edge weighted graph and
the shortest distance on it to calculate the distance. Thus,
iterated watersheds calculate the distances without using
explicit kernels.

In [10], the authors mention that the kernel K-Means
algorithm is similar to the spectral clustering [9], and by
extension it can be seen that iterated watersheds is similar to
spectral clustering as well. Thus, in this article we compare
the results with spectral clustering techniques, along with
related isoperimetric partitioning and K-Means technique.

The main advantage of iterated watersheds over spectral
clustering is that - solving for eigenvectors can be numer-
ically unstable in several cases. This does not matter for
iterated watersheds.

4 ANALYSIS AND ILLUSTRATIONS

In this section we analyze and illustrate the behavior of the
algorithm by using a few experiments.
Implementation Notes:

(i) The iterated watersheds algorithm is compared mainly
with spectral clustering algorithm, since both can be
identi�ed as adaptation of K-Means.

(ii) As with K-Means, iterated watersheds must also be
repeated with several different initializations to make
sure that all objects are identi�ed. Each result of the
iterated watersheds presented here is taken from the
best of 10 repetitions.

(iii) Since, several experiments are based on data in Eu-
clidean space, the nearest vertex to the average is taken
to be the new center.

4.1 Time Complexity of Iterated Watersheds

Assuming that the number of clusters required is much
lesser than the data size,k << n , step (4) of the algorithm
takes linear time to label all the vertices. Time complexity of
step (5) of the algorithm depends on the method of �nding
the centers. Using the nearest vertex to the average, step (5)
takes linear time as well. This is veri�ed empirically in Fig.
3.
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Fig. 3. Example illustrating the time complexity. It can be seen that the
iterated watersheds scales linearly with size. The dataset considered is
“make_blobs” in sklearn [18] with number of centers = 2 and standard
deviation = 1.25.
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Fig. 4. Example to illustrate the working of iterated watersheds. (a) - (d)
uses the make blobs dataset [18]. (a) shows the original data/classes.
(b) indicates the result obtained using K-Means. (c) shows the result
obtained using iterated watersheds on the complete graph. (d) shows
the result obtained using iterated watersheds with a constrained con-
nectivity. (e) - (h) uses the make circles dataset [19]. (e) shows the
original data/classes. (f) indicates the result obtained using K-Means.
(g) shows the result obtained using iterated watersheds on the complete
graph. (h) shows the result obtained using iterated watersheds with
a constrained connectivity. Note 1: The results of iterated watersheds
using complete graph and K-Means match. Note 2: When the con-
nectivity is constrained, iterated watersheds obtained clusters closer to
groundtruth.

In case of step (5), if the algorithm uses Floyd-Warshall to
compute the center, then the time complexity increases ex-
ponentially. Using only the distances from boundary points,
reduces the complexity depending on the data structure. In
one extreme case of complete graph, this is equivalent to
Floyd-Warshall, while for images/spatial data this would
take only linear time.

4.2 Comparison with K-Means

Recall that the motivation of iterated watersheds was by
taking the K-Means cost function and adding an additional
constraint of connectivity to the problem. Thus, when con-
sidering a complete graph, one has that all vertices are
adjacent to each other. Hence, in this case the results from
K-Means and iterated watersheds algorithm should match.
This is veri�ed in Fig. 4.

When the connectivity is constrained, that is not all
edges are considered, iterated watersheds is expected to per-
form on par with K-Means. This is re�ected in comparison
of the results in Fig. 4(f) and Fig. 4(h).

TABLE 1
Evaluation on Weizman datasets. The number of clusters is taken to be
2 for Weizman 1-Object dataset and 3 for Weizman 2-Object dataset.
Gaussian similarity with parameter � varied over f 1:; 2:; 3:; 5:g is used

for Spectral Clustering and Isoperimetric partitioning. Only the best
results among these parameter values are considered.

Method AMI ARI F CA

1-
O

bj
ec

t

Iterated
Watersheds 0.2467 0.3126 0.7880 0.8329

Spectral
Clustering 0.1674 0.1568 0.6889 0.8697

Isoperimetric
Partitioning 0.0712 0.0600 0.7772 0.7666

K-Means 0.1811 0.2043 0.6684 0.8143

2-
O

bj
ec

t

Iterated
Watersheds 0.3675 0.3742 0.7478 0.8964

Spectral
Clustering 0.2716 0.2636 0.7576 0.8963

K-Means 0.2390 0.2099 0.5876 0.8873

4.3 Analysis using Image Segmentation

In this section, the proposed iterated watersheds is com-
pared with other clustering methods on the problem of
image segmentation. The results in this section are only
used for better understanding of the performance and not to
portray state-of-art results. In the next section, we shall see
the main application of the proposed algorithm. The code to
generate the results in this section and the next can be found
in [20].

The problem of image segmentation is de�ned as - Given
an image I , identify the subset of pixels assigned to the
objects within the image. An edge weighted graph is con-
structed from the image as follows - each pixel is assigned a
vertex, adjacent pixels are connected giving a 4-adjacency
graph, and the weights are taken to be difference in the
RGB values. The domain of image segmentation is useful
for analysis of clustering methods, since several labelled
datasets are available. Thus, image segmentation datasets
- Weizman 1-Object and 2-Object datasets [21] are used for
analysis.

To evaluate the iterated watersheds, the following meth-
ods are used for comparison - (i) Spectral clustering is
considered since both iterated watersheds and spectral clus-
tering can be interpreted as kernel K-Means as discussed
in Section 2. (ii) Since, iterated watersheds are developed
by adapting K-Means, simple K-Means is also used for
comparison. (iii) Isoperimetric partitioning [22], a method
related to spectral clustering is also considered. However,
since isoperimetric partitioning partitions the image into
two segments, only results on Weizman 1-Object results are
considered.

Four evaluation metrics are considered - (i) Adjusted
Mutual Information (AMI) [23] that calculates the mutual
information adjusted for chance. (ii) Adjusted Rand Index
(ARI) [24] that computes rand index adjusted to chance. (iii)
F-Score(Fr in [25]) computes the harmonic mean of preci-
sion and recall. Precisiondenotes the ratio to the number of
pairs of pixels, which have been predicted to have the same
label indeed does in the groundtruth. Recall denotes the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5. Sample illustrative results on Weizman 1-Object Dataset. (a),(e),(i),(m) - Original Images. (b),(f),(j),(n) - Groundtruth images. (c),(g),(k),(o) -
Segments obtained by iterative watersheds. (d),(h),(i),(p) - Segments obtained using spectral clustering.

(a) (b) (c) (d)

Fig. 6. Sample illustrative results on hyperspectral data. (a) Slice of the Pavia University hyperspectral image. (b) Predicted cluster of (a) using
iterated watersheds. (c) Slice of the Salinas hyperspectral data. (d) Predicted clusters of (c) using iterated watersheds.
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(a)

(b) (c)

(d)

Fig. 7. Results on Mumbai Road Network Dataset. (a) Shows the complete road network in Mumbai. (b) Clustering obtained by the iterated
watersheds algorithm considering the number of clusters as 16. (c) The centers of each of the clusters in (b) shown as blue dots. (d) The �nal cost
after converging for varying number of clusters.
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TABLE 2
Comparison of Iterated Watersheds with K-Means and Greedy K Centers on road network datasets.

City Number
Centers

Iterated
Watersheds

K Means K Centers

Cost % Im-
provement Cost % Im-

provement

M
um

ba
i

3 72065.43 78660.29 8.38 105022.57 31.38

6 45424.89 64684.32 29.77 100682.75 54.88

9 34447.86 52245.34 34.07 73536.33 53.16

12 30329.42 42162.63 28.07 62578.70 51.53

15 28107.24 32336.66 13.08 58229.78 51.73

H
yd

er
ab

ad

3 68570.63 109640.46 37.46 107685.94 36.32

6 53022.46 62337.99 14.94 107112.82 50.50

9 45730.64 47932.50 4.59 112123.11 59.21

12 40298.87 47502.13 15.16 105458.64 61.79

15 35929.86 42816.08 16.08 102670.83 65.00

C
he

nn
ai

3 48618.69 144552.29 66.37 101894.35 52.29

6 34292.08 39070.15 12.23 100403.69 65.85

9 29105.73 34281.59 15.10 103995.35 72.01

12 25520.35 30471.39 16.25 55257.34 53.82

15 23736.54 26208.00 9.43 54228.99 56.23

B
en

ga
lu

ru

3 119816.38 219508.02 45.42 142934.18 16.17

6 88490.71 100132.84 11.63 135937.67 34.90

9 71256.02 77997.34 8.64 133889.24 46.78

12 62615.27 74549.43 16.01 127551.37 50.91

15 54755.50 63490.12 13.76 122551.30 55.32

C
al

cu
tta

3 21292.91 22532.27 5.50 40004.75 46.77

6 15060.60 15752.89 4.39 39098.16 61.48

9 12481.05 14292.80 12.68 37887.34 67.06

12 11033.54 12306.89 10.35 37938.90 70.92

15 10054.31 10709.78 6.12 32125.65 68.70

D
el

hi

3 58807.18 66272.17 11.26 100154.08 41.28

6 41037.44 47832.93 14.21 101074.01 59.40

9 33267.61 39463.66 15.70 64516.95 48.44

12 28281.70 33253.71 14.95 58961.44 52.03

15 25635.58 31785.57 19.35 51452.49 50.18

number of pairs of pixels, which have the same labels both
in the groundtruth and in the prediction [25]. (iv) Clustering
Accuracy [26] is computed by assigning each cluster, the
class label with largest intersection with groundtruth. These
results are shown in Table 1. Iterated watersheds perform
as well as other methods across several measures, with the
main gain shown in measures AMI and ARI. Compared to
simple K-Means, iterated watersheds perform better since
iterated watersheds consider the connectivity of the graph.
Spectral clustering and isoperimetric partitioning penalize
the smaller size of the clusters. This implies a tendency of
these algorithms to combine pixels from adjacent regions.
However, iterated watersheds do not penalize the size of
the clusters. Images in Fig. 5(o) and Fig. 5(p) illustrate this
effect. Also K-Means and spectral clustering do not ensure
connectivity of the components (as can be seen Fig. 5(p)),
while iterated watersheds ensure that the components are

connected.
Recall that the time complexity of spectral clustering is

approximately O(n3=2) [27]. However, the algorithm de-
scribed here can be achieved in linear time. In summary,
compared to spectral clustering, we have that iterated wa-
tersheds provides equivalent or better results with lesser
time complexity.

For completeness, results on some slices on hyperspec-
tral data are shown in Fig. 6. Observe that, while the
algorithm can predict the high level structure, it could not
identify small structures in the data.

5 ANALYSIS OF ROAD NETWORK

As an application of the proposed algorithm, we consider
the following problem - Given a road network, identify
the `ideal' points to establish emergency stations. The main
responsibility of an emergency station is to reach the point of
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incident as fast as possible. An ideal solution to the problem
would have the following properties -

1) The distance from the point of incident to the emer-
gency station must be as less as possible to allow for
quick reaction time.

2) The number of emergency stations must be as less as
possible to reduce the cost of establishment.

To obtain a solution, we start with constructing an edge
weighted graph from the data, G = ( V; E; W). The set of
vertices V indicates the reference points in the city under
consideration. These reference points are used to calculate
the distance, and response time. Also, we assume that a
location of the emergency station would belong to this set.
In this case, we have considered the vertices to be all the
junction points in the graph. An alternate is to consider
points within, say 1 kilometer, of each other. However, the
approach remains the same.

The edge set E consists of tuples (x; y) such that x
and y are connected by a road and there exists no other
vertex between them. The edge weights W are taken to be
distances between the end points. In case, information is
available, one can consider the time taken to travel from
one to another as well.

Using the construction as above, observe that the prob-
lem can be restated as �nding a set of points f c1; c2; � � � ; ck g,
such that X

x 2 V

d(x; M (x)) (13)

where M (x) denotes the nearest emergency station to x
and d(:; :) denotes the road distance. Observe that M (x)
belongs to f c1; c2; � � � ; ck g. Also, the set f x j M (x) = ci g
is connected for all i . Thus, this is equivalent to optimiza-
tion problem in (10). And hence, iterated watersheds are
applicable here. To identify the ideal number of stations, the
number is increased and the �nal cost is observed. The ideal
number of stations is at the point where the reduction in cost
does not justify the cost of establishing another emergency
station.

Here, we consider road networks of several cities taken
from [6]. Figure 7(a) represents the road network of Mum-
bai. Figure 7(b) shows a clustering obtained, when the
number of clusters is taken as 16. Figure 7(c) shows the
corresponding centers for the best result obtained. The cost
reduction with increase in number of emergency stations is
plotted in Fig. 7(d).

To illustrate the performance of iterated watersheds, we
consider two other approaches to solve this problem -

� K-Means is used to cluster the given dataset to
obtain the centers - the proposed spots for emergency
stations. Each of the other points is assigned to its
nearest emergency station, and the cost is taken as a
sum of all these distances.

� Note that the problem proposed here is equivalent to
the K-center problem which is NP-Hard. Greedy K-
Center is an approach which greedily picks the cen-
ters farthest from the already selected set of centers.
See [28] for detailed analysis.

Table 2 shows the results obtained by various meth-
ods. The cost is computed using (13). Also, shown are

the percentage improvement of iterated watersheds over
other methods. From this, one can conclude that iterated
watersheds perform better than baseline solutions. This can
majorly be attributed to the fact that iterated watersheds
can exploit the inherent graph structure compared to K-
Means and Greedy K-Center methods. To corroborate this,
observe that as the number of clusters are increasing, it-
erated watersheds reduce the cost uniformly. On the other
hand, K-Means and Greedy K-Center methods do not lead
to uniform reduction in the cost. However, as noted before,
when a complete graph is considered there would not be
any difference between iterated watersheds and K-Means.

6 CONCLUSION AND FUTURE WORK

Several problems for ef�cient governance - zonation, river
linking, facility location, visualization of GIS data, can be
formulated as a clustering problem with an additional con-
straint that the clusters be connected. In this article, we
propose a novel method to obtain these clusters, referred to
as Iterated Watersheds. It is shown that iterated watersheds
extend the classical K-Means by considering the additional
constraint of connectivity which is common in several real
life problems. This has been empirically veri�ed as well
by using results on complete graph, in which case iterated
watersheds match with K-Means.

To analyze the proposed clustering algorithm, we con-
sider the image segmentation problem since numerous la-
belled datasets are available. Iterated watershed is com-
pared to spectral clustering, isoperimetric partitioning and
K-Means on Weizman 1-Object and 2-Object datasets. It
is shown that iterated watersheds outperform these tech-
niques on a few measures, and fare comparably good on
others.

However, as the main application area of the proposed
algorithm is for clustering problems occurring in gover-
nance, we consider the road network dataset. A simple
problem of placing emergency stations and suitable cost
function is considered. Using real world road networks of
various cities, iterated watersheds approach is compared
with K-Means and greedy K-center methods. It is observed
that iterated watersheds result in 4% � 66% improvement
over K-Means and in 31%� 72% improvement over Greedy
K-Centers in experiments on road networks of various cities.
This illustrates that the proposed algorithm can ef�ciently
cluster with constrained connectivity. This experiment also
illustrates that the proposed algorithm can be widely used,
thanks to its customizability.

In future we expect the current algorithm to be used
on other datasets as well. For instance, one of the main
problems of governance is understanding the root cause
behind certain behavior. It is vital in such cases to visualize
spatially distributed variables. Iterated watersheds can be
used to cluster the space into signi�cant `zones' based on
these variables and help in better visualization. Such appli-
cations constitute the future work. On the theoretical side,
we hope to improve the algorithm for �nding the center of
the connected subgraph. The code is available at [20].
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