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We present a framework to characterize terrestrial functions—surficial and bottom topographic re-
gions that are represented, respectively, as raster digital elevation models (DEMs) and digital bathy-
metric models (DBMs)—through analysis of flow fields that are simulated via geodesic morphol-
ogy. Characterization of such functions is done via a new descriptor. Computation of this new de-
scriptor involves the following steps: (i) basin in digital form representing topographic fluctuations
as an input, (ii) threshold decomposition of basin—that consists of channelized and nonchannel-
ized regions—into sets, (iii) proper indexing of these sets to decide the marker set(s) and its (their)
corresponding mask set(s), (iv) performing geodesic propagation that provides basic flow field
structures, and (v) finally providing a new basin descriptor—geodesic spectrum. We demonstrated
this five-step framework on five different synthetic and/or realistic DEMs and/or DBMs. This study
provides potentially invaluable insights to further study the travel-time flood propagation within
basins of both fluvial and tidal systems.

Copyright q 2008 S. L. Lim and B. S. D. Sagar. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Remote sensing technologies offer highly promising tools that can be efficiently employed to
generate digital topographies that include both surficial elevation and bathymetry. These tech-
nologies have flexibility in terms of repetitive coverage and can also be used at episodic in-
tervals to map the possible topographic zones. With such provisions, it is now possible to
study the morphodynamics of topographies. The two significant challenging steps involved
in understanding the basin morphodynamical processes include: (i) mapping topographies of
basins, bays, lakes, estuaries that are conspicuous at land-sea confluence using remote sensing
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technologies, and (ii) characterization of those digital topographies in both multiscale and mul-
titemporal modes. To address the latter step, a geodesic function of the basin, a new basin de-
scriptor, has been proposed in this paper. Hereafter, “basin” interchangeably refers to inland,
tidal, floodplain, coastal, and estuary regions, and digital topographies that include DEMs and
DBMs, and “topography” refers to both surficial and bottom topographies. High-resolution
DEMs and DBMs offer several advantages for modeling, simulation, and characterization of
various surficial and bottom topographic morphodynamical processes. A brief review on the
available approaches (i) to generate and/or map surficial and bottom topographies using sev-
eral remote sensing techniques and (ii) to characterize such digital topographic basins is given
as follows.

During recent past, a reasonably convincing success has been achieved in mapping the
topography and bathymetry of fluvial and tidal environmental zones essentially above mean
sea level, bays, estuaries, and certain shallow water regimes such as lakes, tidal inlets, and
basins, by employing remotely sensed data acquired through different mechanisms (e.g., Li-
dar, satellite altimetry, SAR interferometry, etc.). During the last decade, several researchers
addressed the topic of generation of topographic elevation maps and mapping of bathymetry
zones using remotely sensed data. With advent of interferometry techniques, it is now pos-
sible to generate high-resolution DEMs precisely by taking the advantages of various remote
sensing principles [1, 2]. In general, the techniques and/or mechanisms involved in acquir-
ing the images suitable for mapping bathymetry include spaceborne and airborne data [3].
Aircraft-based Lidar bathymetry has the advantage of gathering data more quickly than an
echosounder. IRS-1D LISS-III data have been used for bathymetric mapping purpose [4].
Geophysical Environmental Research (GER) Imaging Spectrometer was used to acquire hy-
perspectral data to map bathymetry remotely for the Hudson estuary waters [5]. Low-cost
airborne multispectral remote sensing system is designed and evaluated for shallow water
bathymetry purpose [6]. Eventually, bathymetric assessment system (BAS) is proposed for
bathymetric mapping in shallow seas using radar images integrated with echosounding data
[7]. It was reported that there exists a relationship between sea surface temperatures and
bathymetry. SSTs are usually warmer in shallow areas [8]. Landsat Thematic Mapper (TM)
data and ERS-1 SAR data have been systematically used to map lake bathymetry [9]. Pre-
liminary results of along-track interferometry (ATI) observations over the Tay estuary val-
idated with coincident in situ boat-based observations are presented [10]. Digital satellite
altimetric bathymetric grid of the ocean was generated by combining high-resolution ma-
rine gravity information with depth soundings collected over the past 30 years [11]. Hav-
ing mentioned this brief review on success of application of remote sensing technologies in
mapping both surficial and bottom topographies, it is realized that to great extent the to-
pographic mapping studies are established. Several applications were shown by employ-
ing DEMs and DBMs of multitemporal scales to address various problems of interest to re-
mote sensing and geoscientific communities. From characterization point of view, several re-
searchers proposed methods to partition the digital topographies into basins of varied orders
[12, 13]. These basin-wise digital topographies that include both surficial and bathymetry
zones are characterized via various techniques [14–18]. Important basin descriptors that can
be derived from DEMs include morphometry, hypsometry, cumulative area distribution, and
width function-based descriptors [19]. Other widely studied mathematical properties—in the
context of understanding the random functions of geophysical relevance (e.g., digital topogra-
phies such as DEMs and DBMs) include geomorphic width function, convexity measures
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of travel-time networks, granulometric indices, morphometry of nonnetwork spaces [20–
24].

Spatial resolution of DEMs and DBMs is an important aspect particularly to deal with
the processes involved in rather less-undulated terrestrial environments. Physical principles
and mechanisms that are involved in controlling the dynamics (e.g., flooding and morpho-
logical variations) in fluvial and tidal systems are different from each other. The two exam-
ples of less-undulated regions of significance include floodplain and tidal environments, in
which the regions are rather flat. If high-resolution DEMs and DBMs for these regions are
available, several physical processes involved in floodplain and tidal environments could be
modeled in an efficient manner. In basins, the flooding patterns follow simple propagation
that could be solved with image-based geodesic morphologic equations. Due to tide level
changes, in addition to flooding of time dependent tidal basins, understanding the time de-
pendent sediment dispersal on the flat surface is an interesting phenomenon, which requires
characterization of flow fields in discrete space. Simulations of basic flow fields within basin
have generated interest in recent past. By employing classical shallow water equations, ba-
sic flow fields are simulated in small tidal basins [25]. In this work, entire basin is assumed
flat, and the flow fields within which are simulated with simplified shallow water equa-
tions. In another study, sediment transport processes with flat and wavy bottom topographies
are evaluated under the flow fields induced by the propagation of a tidal wave by employ-
ing partial differential equations [26, 27]. Generation of flow fields in shallow water regimes
(e.g., floodplains and tidal environments) and coastal environments (e.g., bays, estuaries, la-
goons) is an important study, which further facilitates to quantify the morphologic organi-
zation of topographic zones. Shallow water regimes such as lakes, ponds, coastal, and flood-
plain regions are considered to have rather flat topography. Conversely, the topography of
fluvial basins, and bottom topography of several bays and estuaries (e.g., San Francisco Bay,
San Diego Bay, etc.) are significantly heterogeneous. Perhaps, the flow fields simulated for
shallow water regions, using simplified shallow water (hydrodynamic) equations [25], are
valid.

The objectives of this study are as follows:

(i) to provide a new geodesic spectrum-based basin descriptor by simulating flow fields
via alternative approach with an assumption that topography is wavy,

(ii) to characterize topography-dependent flow fields within a basin through geodesic
flow spectrum, and

(iii) to utilize the geodesic flow fields to derive probabilities and entropy values to char-
acterize the topographic regions of varied types.

Towards achieving these objectives, this paper is organized as follows. Section 2
discusses the general assumptions in the model and representation of basin as discrete func-
tion, and its decomposition into sets as well as certain basic mathematical (geodesic) morpho-
logical transformations. Section 3 explains the model assumptions and the approach followed
to index sets to simulate geodesic flow fields in basins. In Section 4, geodesic flow fields—
simulated by considering the successive threshold elevation regions (TERs, sets decomposed
from discrete functions) as marker and mask sets—are employed to derive probabilities and
entropy values to characterize the topographic regions of varied types. Results and discussion,
and concluding remarks are given, respectively, in Sections 5 and 6.
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2. Methodology

To accomplish the objectives, elevation-dependent flow fields are simulated via geodesic mor-
phologic transformations. Further, the probabilities of areas embedded between the successive
flow fields are estimated to quantitatively characterize the flow fields with TERs with respect
to their corresponding basin.

2.1. Model and motivation

The principle involved in simulating geodesic flow fields is flood propagation within a basin.
Geodesic propagation mimics the flood propagation within a basin. Floodwaters or the wa-
ter flow into higher elevation regions from the tidal inlets propagates from region with low-
est elevation to successive higher-elevation regions. Such propagation can be simulated by
following geodesic morphologic transformations and by considering the digital topographic
data (e.g., DEMs and DBMs) that can be derived as by-products of remotely sensed satel-
lite data sources. These flow fields facilitate a way to characterize basin topographies. These
flow field simulations are valid under the assumption that the river flow is weak in such a
way that extreme flood flow forcing dominates the weak river flow. For example, this as-
sumption is valid under the influence of neap/spring tidal cycles. The extreme tidal forc-
ing conditions are twofold: (i) when tidal forcing dominates the weak river flow, and (ii)
when river flow dominates the low tidal forcing. Under the circumstances that tidal or
flood forcing dominates the river flows, the tidal or flood water flows through the inland
basin.

From basin point of view, the propagation velocity of waterfront would vary with the
TERs. Basin with flat surface includes both channelized and nonchannelized regions with sim-
ilar elevations with reference to Mean sea level. Simulations of flow fields in such a flat basin
(e.g., see Figure 1(a)) can be achieved with ease by employing rather straightforward and sim-
plified shallow water equations [25]. In realistic case, channelized regions are the first level
topographic depressions that are relatively with lesser elevations than that of their correspond-
ing nonchannelized regions (see Figures 1(b) and 1(c)). It is intuitively true that the channel
network within the basin supports that the waterfront propagates at rapid state relatively with
that of nonchannelized regions, due to the fact that the nonchannelized region is relatively
with higher gradient. To support this valid argument, classification of the basin into zones
according to certain characteristics is required. These characteristics include the changes in
slope, bathymetry, soil characteristics, and roughness of the topography. Intuitively, it is also
true that the propagation would be uniform in nonviscous flat surface. Within the environment
with different viscous characteristics, modeling the waterfront propagation essentially requires
geodesic balls with different radii synchronising the changes in surficial characteristics.

2.2. Data

The three synthetic cases (see Figures 1(a)–1(c)) with varied internal topographic regions that
replicate the (i) flat, (ii) undulated without channels, and (iii) with channels conspicuous in
topography are considered. In reality, these three cases mimic, with the following assumptions,
topography of shallow water regimes (e.g., shallow lakes with flat bottom topography), bays
and estuaries, and basins of floodplains and tidal environments.
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Figure 1: Tidal basins with different assumptions: (a) flat tidal basin, (b) tidal basin with a channelized and
nonchannelized zones (multiple sets of topological significance), and (c) tidal basin with multiple sets, sets
indexed with even and odd indexes, respectively, refer to channelized and nonchannelized zones. (d)–(f)
3D mesh representations of three synthetic tidal basins shown in (a)–(c).

Case 1. Single inlet, from which the water propagates uniformly within the mask set (see
Figure 1(a)). With this assumption, oscillations in tidal levels and forcing influence the whole
tidal basin that is assumed to be flat. Typical unidirectional flow propagation patterns are
shown in Figure 6(a).

Case 2. Single inlet, from which the water would first flow into channelized regions of uni-
form elevation followed by inland region. Here, channelized set and inlets (see Figure 1(b))
are with different elevations. Nevertheless, in contrast to Case 1, flow fields in channelized sets
maintain orthogonality with the flow fields in nonchannelized sets. This is both physically and
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Tidal basin (f) in
discrete form

Threshold decomposition of (f) and isolation of
threshold sets into channel and non-channel sets

(inclusion relationship)

Indexing the sets with
even and odd indexes

Simulation of geodesic
propagation

Figure 2: Flowchart depicting various steps involved in modeling and simulation.

intuitively justified due to the fact that flow propagation in channelized zones precedes flow
propagation in nonchannelized regions.

Case 3. Single inlet and water flows alternatively into channel region and into inland until the
propagating waterfronts reach the basin boundary (see Figure 1(c)). Criteria followed to simu-
late flow fields—satisfying the fact that channelized and nonchannelized regions are relatively
with different mean elevations—include the following. Let M be the set of one channel, and it
makes an arborescence from the inlet point from which the water flows into channels and their
inlands which is therefore the base of the trunk of the tree. This tree is connected, by definition,
because we work on one channel set, where the water flow is coming up uniquely. Each branch
is assimilated to a segment (if not, we subdivide the branch into a short succession of segments
based on the following criteria (i) the mean elevation, (ii) width of segments, (iii) direction of
flow, and (iv) the depths by taking the structure of an ascending tree). Then disconnect each
branch, by removing its first point (that of the subdivision with the upstream branch). Then
compute the skeleton by zones of influence of the disconnected branches to obtain the non-
channelized zone associated with each branch (i.e., with each channel). It is similar to Figure 3.
Figure 2 depicts various steps involved in the simulations.

Besides these synthetic cases, DBM of parts of Central San Francisco Bay and DEM of
coastal Santa Cruz regions are considered.

(i) Central San Francisco Bay bathymetry data, acquired with multibeam system, have been
utilized here with permission from USGS. The coastal San Francisco Bay’s bathymetry—of
4 meter resolution and tide-corrected to mean low water level—has been acquired through
multibeam sonar system that provides echo sounders with 60 beams, collected in 1997 using
a Simrad EM 1000 multibeam swath mapping system [28, 29]. The region of interest in San
Francisco Bay area, of size 512 × 480 pixels, encompasses approximately from 37◦48′41′′N to
37◦51′34′′N, and from 122◦26′2′′W to 122◦29′28′′W.

(ii) Santa Cruz Digital Elevation Model. The 10 meters grid spacing digital elevation map
(DEM) of Santa Cruz, downloaded from San Francisco Bay Area Regional Database (BARD)
homepage [30], provided by USGS is used. At a scale of 1:24000, it is available as 7.5 min-
utes standard DEM format on Universal Transverse Mercator (UTM) projection on North
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Synthetic tidal basin shown in Figure 1(c)—that consists of channelized and nonchannelized
regions—after decomposing into sets. (a)–(i) sets representing channelized and nonchannelized regions
of which the mean elevations increase from S1 to S9. The sets with even- and odd-numbered indexes,
respectively, represent the zones occupied by channelized and nonchannelized regions.

American Datum of 1927 (NAD 27), in the unit of meters for elevation relative to the National
Geodetic Vertical Datum of 1929 (NGVD 29) [31]. The region of interest in Santa Cruz, of size
346 × 654 pixels, covers approximately from 36◦56′35′′N to 37◦00′00′′N, and from 122◦03′56′′W
to 122◦05′38′′W.

2.3. Techniques

2.3.1. Decomposition of basins/threshold elevation and/or depth zones

Basin is denoted as a function (e.g., see Figures 1(a)–1(c)) represented by a nonnegative 2D se-
quence f(m,n), which assumed J + 1 possible intensity values: j = 0, 1, 2, . . . , J . For 8 bit/pixel
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(a) (b) (c)

Figure 4: (a) Marker set Si (in red) and mask set Si+1 (in white), (b) after iterative dilations up to fourth
level superposed on the mask set Si+1, and (c) the dilated marker set for four iterations intersected with
mask set Si+1.

9 × 9
11 × 11

5 × 5

7 × 7

Figure 5: Octagonal symmetric structuring elements of various primitive-sizes ranging from 5×5 to 11×11.
These primitive sizes can be considered as B in the employed equations to simulate flow fields with various
velocities.

digital topographic data, J = 255. The function, f (basin) is discrete, defined on a (rectangular)
subset of the discrete plane Z2. The higher the intensity value is, the higher the topographic
elevation is, and vice versa. This digital topographic data consist of various bounded sets that
include inlet point, channelized and nonchannelized zones. By thresholding f at all possible
intensity levels, in other words topographic elevations 0 ≤ j ≤ J , we obtain threshold decom-
posed binary images or sets

fj(m,n) =

{
1, f(m,n) ≥ j,

0, f(m,n) < j.
(2.1)

Threshold sets, decomposed from basin, include both channelized and nonchannelized re-
gions that take values 0 and 1 (the pixels with 1 and 0 represented with white and black
shades denote, respectively, sets and their compliments). The sets (fj) form a sequence of sets
that characterize f entirely, and are such that for any threshold elevations j and j + 1 with
(j + 1) ≥ (j) ⇒ (fj+1) ⊆ (fj), for j ranging between 1 and J—as illustrated in Figure 10. From
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(a) (b)

(c)

Figure 6: (a) Flow fields with isotropic propagation, (b) isotropic flow fields, and orthogonality between
the flow fields of channelized and nonchannelized zones is obvious, and (c) flow fields within the tidal
basin.

the point of basin’s physiography, the elevations of inlet point(s) are lesser than that of the av-
erage elevation of successively decomposed channels, and basin’s inland. By employing sim-
ple logical difference between the successive threshold-decomposed sets, we further obtain
marker set(s) and its (their) mask set(s) according to [fj − fj+1 = Si]. Each threshold isolated
set denoted by Si is obtained via fj − fj+1, where j = 1, 2, . . . , J and i = 1, 2, . . . , J . We decom-
pose synthetic basin that consists of nine zones (see Figure 1(c)) into nine sets (see Figure 3)
by specifying threshold elevations (values). These nine decomposed sets are designated with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Result of simulation at different time instances. (a) inlet point or set S1 from which the water flows
into tidal basin, (b) water propagation from S1 (marker set) into mask set (S2), (c) flow fields propagating
from marker-set S2 into set S3—nonchannelized set or the influence zone of set S2—that acts as a mask set,
(d) set S4 the mask set that gets flooded due to the water flowing from the marker set S1 after sets S2 and S3
are completely flooded, (e) set S5—nonchannelized (influence) zone of set S4 gets flooded from the marker
set S4, (f) set S6 that acts as mask set to allow the water flows from the extreme tips of set S4, (g) set S7
the influence zone of the channelized set S6—here the mask set S7 would be progressively flooded from
the water flowing from the marker set S6, (h) channelized mask set S8 in which the water flows from the
extremities of set S6, and (i) mask set S9—influence zone of set S8—gets progressively flooded due to water
flowing from set S8 that acts as a marker set to fill the water in its corresponding mask set S9.

set-orders ranging from 1 to 9 (see Figure 3). The union of these sets (fj) and (Si) satisfies the
inclusion relationship [32] as shown in

f =
J∑
j=1

fj , f =
J∑
i=1

Si. (2.2)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8: (a) 3D view of remote sensing data of Central San Francisco Bay, (b) bathymetry of Central San
Francisco Bay, (c) bathymetry of inset of (c), (d) 3D view of Santa Cruz, and (e) Digital elevation map of
Santa Cruz, (f) flow field simulated on San Francisco Bay without considering bathymetry, (g) flow field
simulated on San Francisco Bay bathymetry by using octagon, and (h) flow field simulated on Santa Cruz
DEM by using octagon structuring element.

For simplified representation, we denote the subtracted sets thus obtained, respectively, with
Si, Si+1, Si+2, . . . , SJ , with i ranging from 1 to J (see Figure 3). Set S1 denotes the inlet point.
The set with immediate higher index acts as mask set to the marker set with preceding index.
For better understanding of threshold decomposition and isolation of sets, reader may refer to
Figure 10.

2.3.2. Geodesic propagation methods

We adopt geodesic morphological transformations [33]. James Sethian’s [34] level set theory
and Jean Serra’s [35] random sets and mathematical morphologic concepts offer various trans-
formations to simulate flow fields within basin with physical viability. To implement geodesic
transformations, we consider basin as a mask, and inlet point—through which water flows
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Figure 9: Probability of estimated area flooded at each discrete time step. The flow propagation for the 3
cases is simulated by using rhombus as structuring element, while flow fields for San Francisco Bay and
Santa Cruz are simulated with the use of octagon as structuring element. (a) case 1, (b) case 2, (c) case 3,
(d), San Francisco Bay, (e) Santa Cruz, and (f) cumulative probability for total area flooded.

into basin during the high flood—as a marker from which the flow propagates into the basin
as the flood-level increases. To implement geodesic propagation with uniform velocity within
a mask (set Si+1) with certain boundary conditions from the marker set (set Si), we employ (i)
morphological dilation iteratively on Si with a structuring element (B) of symmetric about the
origin, and of primitive size 5 × 5, (ii) logical intersection between the dilated marker Si and
mask Si+1 sets, and (iii) logical union of flow fields at respective discrete times.

2.3.2.1. The morphological dilation of S by B is defined as a transformation that combines
S and B using vector addition of set elements s and b, respectively, with s = (s1, . . . , sN) and
b = (b1, . . . , bN) being N-tuples of element coordinates. Then, the dilation of S by B is the set
of all possible vector sums of pairs of elements, one coming from S and the other from B. The
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Figure 10: Original image f has maximum intensity level j = 4. Threshold decomposed zones fj with
j = 1, 2, 3, 4, and 5 (J + 1) are, respectively, shown along with the isolated sets with index i ranging from
1, 2, . . . , j. The sets Si are isolated by fj − fj+1.
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(a) Morphological dilation of Si by B

(b) Minkowski addition of structuring templates of varied sizes

⊕

Si B
Si ⊕ B

∪ ∪ ∪ ∪

Si ⊕ B

⊕ ⊕

B1 B1 B1

B1 ⊕ B1 = B2

B2 ⊕ B1 = B3

Figure 11: (a) Morphological dilation and involved translates, and (b) square structuring templates of
varied sizes and their Minkowski additions.

dilation of S by B is defined as the set of all points si such that all translates of s by b (Bs)
intersects S, given by

S ⊕ B =
{
s : BS ∩ S

}
=
⋃
b∈B

Sb. (2.3)

Figure 11(a) illustrates this transformation with possible translates of s by b, the union of which
yields an expanded version of S. In this transformation −B = {−b : b ∈ B}, that is, B is rotated
180◦ about the origin. Instead of using a larger B to simulate propagation of flow with greater
velocity, with the use of smaller B repeatedly, one will get the same effect. The larger size
structuring element (B) shown in Figure 11(b) is mathematically represented as

B ⊕ B ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸
n

= nB. (2.4)

Iterative dilation for n times is represented as (S ⊕ nB). The role of symmetric B that func-
tions as an interface between S and uniform propagation is to simulate the effects of flow field
propagation.

2.3.2.2. To retrieve the flow fields at respective discrete time, logical intersection between
(Si ⊕ nB) and (Si+1) is employed:

(
Si ⊕ nB

)
∩
(
Si+1

)
, (2.5)

where nB is a symmetric structuring element with certain characteristic information, and
Si, Si+1, respectively, denote marker set and mask set (e.g., see Figures 4(a) and 5). The dis-
charges per unit width in x- and y-directions are specified in B. The number of required dila-
tions to simulate flow fields between the successive order-designated sets is velocity (size of
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primitive structuring element) and set (Si+1—with which the propagation pattern should in-
tersect) size dependent. The marker set should be included in the mask set. If the intersection
of mask set with which the flow field that should propagate from the marker set to mask set
produces an empty set, we should not consider such a mask set. Then, we have to proceed
further to consider mask set that is decomposed with the next higher threshold value. We take
Si and Si+1 as marker and mask sets if (Si ⊕ nB)∩ (Si+1)/=∅. If (Si ⊕ nB)∩ (Si+1) = ∅, we do not
choose Si and Si+1, respectively, as marker and mask sets. Instead, we check (Si ⊕ nB) ∩ (Si+2)
whether the intersection is nonempty set to consider Si and Si+2, respectively, as marker and
mask sets. If there are two marker sets with similar threshold value, we need to ignore one of
the marker sets that is fully surrounded by the mask set.

In a flat basin, where there is no distinction between channelized and nonchannelized
regions in terms of elevations (e.g., see Figures 1(a), 1(d)), the total flow field can be defined in
morphological terms as the intersections of gradients of successively dilated marker set with
the mask set. nth-time step gradient, δn(S), between the successively dilated marker set is
defined in

∂n(S) =
[(
Si ⊕ (n + 1)B

)
\
(
Si ⊕ nB

)]
, (2.6)

where, nB, (n + 1)B, respectively, denote forcing in terms of structuring element with different
sizes. The primitive structuring template of size 5 × 5 is considered as a unit to simulate flood
forcing. The flood flows into channel from the inlet point as time progresses. This progression
in the flow is simulated by B, by iterative dilations, and by means of B until idempotence; in
other words, until the intersection of gradient with mask set becomes an empty set. Alterna-
tively, one can write in terms of ∂n(Si), this positive integer N = max{n : �∂n(Si) ∩ Si+1/=∅}
such that {�∂n+1(Si) ∩ Si+1 = ∅}, for the flow for all n > N. This N depends on Si, Si+1, and
B. The flow field at nth discrete time step is defined as the line that is obtained by intersecting
the nth time-step gradient ∂n(Si) with the mask set (Si+1). The propagation of flow field after
nth time-step is simulated by intersecting the gradient—computed according to (2.5)—with
the mask set (Si+1). The progression in time, denoted with increments of n = 0, 1, 2, . . . ,N, is
related to the size of B. The larger the cumulative effect of flood forcing at successive discrete
time steps, the larger the size of the B. Then, the total flow field in the simplest Case 1 (see
Figures 1(a), 1(d)) can be achieved by (2.7). In order to visualize the flow fields within the
channelized and nonchannelized zones (or sets), a logical union operation is considered in the
respective governing equations:

TBflow =

J
N⋃
n≥0
i≥1

{[
δn(Si

)]
∩ Si+1

}
, (2.7)

where i = 1, 2, . . . , j, n = discrete time (with time effect of cumulative flood forcing increases),
and also n denotes the size of the structuring element and the discrete time, and the limit of
N is the iteration step at which the idempotence is reached. The increment in n defines the
increase in size of structuring element, in other words the cumulative flood forcing. The gra-
dients between the successively dilated sets are intersected with mask set Si+1. Once this pro-
cess reaches idempotence, the flow propagation simulation proceeds further in the succeeding
mask set Si+2.
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3. Simulations of geodesic flow fields

To study the morphodynamic problems in the coastal and tidal environments—where the
flow fields’ structure is greatly influenced by fluctuating tidal/flood forcing and river water
inflows—it is necessary to describe the spatiotemporal structure of the flow fields. The flow
field simulations are done here, with an input of digital topographic regions available in raster
format, by using proposed geodesic dilation-based algorithm. The term “flow field” refers to
any water frontline propagating towards immediate spatially distributed elevation regions.
The flow fields propagate from inlet point (initial marker) into channels along the medial axis
direction with greater velocity along the medial axis line than along the channel walls. In order
to justify this hydrodynamically viable assumption, we adopt a structuring element of octagon
in shape, symmetric about origin and of primitive size 5 × 5 (see Figure 5) to simulate flow
field propagation. However, the velocity variations can be imposed by tuning characteristics
of structuring element while changing the (i) medium from channelized set to nonchannel-
ized set, (ii) tidal forcing, (iii) elevation, (iv) spatial positions of source(s) of inlet(s), and (v)
direction of flow. Tide with exceeding velocity (forcing) inundates the tidal basin’s inland.
For instance, due to these factors, the geodesic ball that would be used to model propagation
within the channelized region would be relatively with larger radius compared to that of re-
quired radius of geodesic ball to model the water propagation in the nonchannelized regions.
A directional propagation is obtained when ball B is a unit segment in the direction of propa-
gation. If we use a digital disc for B (e.g., see Figure 5), the propagation is necessarily uniform.
One can alternate unit segment and unit disc if a mixture is required, but at the idempotent
limit the result will be that of the disc propagation.

Case 1. In a basin, with assumptions that channels and inlands are of same elevation, flow
fields propagating in unidirection can be simulated by following geodesic-based equations
(2.5) and (2.6). The flow of propagating water synchronizing the tidal/flood forcing is like
a sheet of water flowing on a flat surface from the inlet source. The gradients of such prop-
agating fronts (dilated versions) at discrete intervals are shown in Figure 6(a), where the
circular path and inlet set act respectively like the boundary conditions and flow propaga-
tion source. Flow field complexity depends not only on basin shape and general topogra-
phy/bathymetry, but also on the spatial organization of channels within basin. Flows in chan-
nels and nonchannelized regions of basins are simulated by following geodesic propagation
methods. The latter two cases are modeled based on the assumptions that the channels are
the first level zones that get affected by fluctuating tides/flood intensity and followed by non-
channelized regions that are relatively with less depth. Flow field propagation would be in
the channelized regions of lower threshold decomposed region (Si) first followed by in the
nonchannelized region of Si+1, eventually, in the channelized region of say S1, and then in
the nonchannelized region of S2, and so on. The flow propagation pattern in basin is cat-
egorized as (i) propagation in channelized region, and (ii) propagation in nonchannelized
zones.

Case 2. In this case, the propagation of flow fields in channelized sets is orthogonal to that
of corresponding nonchannelized sets. The geometric and spatial organizations of flow fields
within channelized regions are different from that of their corresponding nonchannelized re-
gions. Hence, the equations governing the flow fields are indexed-set dependent. For the sec-
ond case of flow field simulations, we consider (2.5)–(2.7), in which marker and mask sets
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are recursively changed in the fashion of ith and i + 1th sets, act respectively as marker and
mask sets.

Case 3. However, the flow fields in the basin’s inland propagate in the direction perpendicular
to that of channels. The channels, the first level zones that are affected by fluctuating stream
flow discharges and/or tides, and nonchannelized regions surrounding the channels are rel-
atively with different depths/heights. Flow fields’ directions and spatial complexity depend
not only on basin shape and general elevation structure, but also on the spatial organizations
of channels and inlands. For the third case of flow field simulations, we consider set with index
i = 1 as a marker and is allowed to geodesically propagate (e.g., see Figure 4) within the mask
set indexed with 2i. For simplified representation, we denoted the threshold decomposed sets
thus obtained (see Figure 3) as Si = S1, S2, S3, . . . , SJ with i ranging from 1 to J. This notation is
done to explicitly write the equations in such a way that the channels and their corresponding
inlands can be respectively represented with even and odd ith values. In the third case (see
Figures 1(c), 1(f), 3), certain sets are order designated as sets with indexes 2i (for i ranging
from 1 to J) denoting those sets that occupy channels. The width of channel with index 2i is
larger than that of 2(i + 1) and so on. Other sets that occupy nonchannelized zones are order
designated as sets with indexes (2i + 1). In turn, the relationship between order-designated
channelized and nonchannelized sets is in such a way that set with index 2i is surrounded by
set with index (2i + 1). Sets indexed with even and odd numbers, respectively, represent chan-
nelized and nonchannelized regions of subbasins. This distinction in indexing sets denoting
channelized and nonchannelized regions represented with even and odd numbers is shown
to simulate flow propagation in channelized and nonchannelized sets subsequently. This sep-
aration is physically acceptable as the directions of flow propagation are orthogonal to each
other. With this reordering of simple indexing, following equations are proposed to simulate
flow fields alternatively in channelized and nonchannelized regions by incrementing the set
indexes:

Cflow =
K⋃
n=0

{[
∂n

(
S1

)]
∩ S2i

}
, NCflow =

N⋃
n=0

{[
∂n

(
S2i

)]
∩ S2i+1

}
, when i = 1,

Cflow =
P⋃

n=K+1

{[
∂n

(
S1

)]
∩ S2i

}
, NCflow =

N⋃
n=0

{[
∂n

(
S2i

)]
∩ S2i+1

}
, when i = 2,

Cflow =
Q⋃

n=P+1

{[
∂n

(
S1

)]
∩ S2i

}
, NCflow =

N⋃
n=0

{[
∂n

(
S2i

)]
∩ S2i+1

}
, when i = 3,

Cflow =
N⋃

n=Q+1

{[
∂n

(
S1

)]
∩ S2i

}
, NCflow =

N⋃
n=0

{[
∂n

(
S2i

)]
∩ S2i+1

}
, when i = 4,

(3.1)

where, in channelized flow, n = 0 ≤ K ≤ P ≤ Q ≤ · · · ≤ N, and in nonchannelized flow
0 ≤ n ≤ N. The positive integers N, K, P, and Q are mask- and marker-sets’ size and shape
dependent. Under the changing i, N is variable from one cycle to another cycle, and 0 � K �
(K + n)� (P + n)� (Q + n)� · · · �N.

By following set of equations in (3.1), the basic flow fields are simulated for synthetic
basin (see Figures 1(c), 1(f)). The time sequential water-front propagation is simulated sys-
tematically according to following steps:
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Step 1. Inlet point or set S1 from which the water flows into basin.

Step 2. Mask set (S2) that would be flooded from the water flowing from S1 (marker set).

Step 3. Set S3—nonchannelized set of set S2—that acts as a mask set that gets flooded due to
the water propagates from marker set S2.

Step 4. Set S4—the mask set that gets flooded due to the water flows from the marker set S1

that already fills the set S2 and S3 completely.

Step 5. Set S5—nonchannelized set of set S4 gets flooded from the marker set S4.

Step 6. Set S6 that acts as mask set to allow the water flows from the extreme tips of set S4.

Step 7. Set S7 the mask set of channelized set S6—here the mask set S7 would be progressively
flooded from the water flowing from the marker set S6.

Step 8. Channelized mask set S8 in which the water flows from the extremities of set S6, and
mask set S9 of set S8—gets progressively flooded due to water flowing from set S8 that acts as
a marker set to fill the water in its corresponding mask set S9.

This is a recursive process—until the process reaches idempotence—in which the sets
with odd- and even-numbered indexes, respectively, represent the zones occupied by channel-
ized and nonchannelized regions. Direction-specific flow fields are obvious from Figures 6(b)
and 6(c). Characterization of these direction-specific flow fields separately in time sequential
mode would offer potentially innovative insights further to understand the relationships (i)
between the flow fields, and (ii) between the induced forcing and spatial organization of flow
fields. It is intuitively true that the evolution of flow fields, with increasing degree of forcing,
and their spatiotemporal organization can be better linked with time-dependent morpholog-
ical processes that occur due to time-dependent exogenic processes. In reality, however, the
velocity of flow fields in channelized zones is usually more than that of nonchannelized zones.
This variation in velocity is attributed to the fact that these two zones act like two different me-
dia with variations in surficial roughness characteristics, and minor topographic effects, and
depths. Hence, defining the size of the structuring element synchronizing the velocity charac-
teristics is an important task that needs to be addressed.

Central San Francisco Bay. The proposed framework has been implemented within a
part of Central San Francisco Bay bathymetry to generate flow fields using geodesic (marker-
mask) propagation. Permissions to use the images (see Figures 8(a) and 8(b)) have been
obtained from USGS team. The bathymetric data of Central San Francisco Bay (see Figures
8(b), 8(c)) (USGS data) mapped by using the high-resolution multibeam swath mapping
system is employed to test the framework proposed in this paper. A part essentially at the
mouth of the bay from which the tidal flow fields enter into bay is considered (blocked re-
gion in Figure 8(b)). This part has various depth zones ranging from the depth of −115 me-
ters to −14 meters. This bathymetric map that is available in grey-scale form, with darker
zones representing more depth than brighter zones being shallower, is converted broadly into
seven regrouped zones by following thresholding technique. The grey level ranges with the
depth ranges include 0–33 = (−115) to (−106 m); 34–59 = (−105) to (−91 m); 60–100 = (−90) to
(−68 m); 101–150 = (−67) to (−46 m); 151–201 = (−45) to (−27 m); 202–233 = (−26) to (−15 m);
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and 234–255 = (−14) to (0 m). By choosing threshold values from the upper limits of these
ranges, we decomposed the considered bathymetric image into threshold bathymetric zones
as S1, S2, . . . , S7 as we have chosen seven threshold grey values. Considering Si as marker set,
and Si+1 as mask set, flow fields are simulated in each of the threshold bathymetric zones ac-
cording to the algorithm detailed in Sections 2 and 3 (see Figure 8(g)).

Coastal Santa Cruz region. A minor basin of which the discharges are flowing into sea
and consist of elevation ranges between 1 and 263 meters is considered. This basin is fur-
ther decomposed into sets by choosing certain threshold ranges (see Table 1). By following
the framework implemented for previous cases, flow fields are generated for this minor basin
(see Figure 8(h)). In the dilation process, we have opted octagonal structuring template to sim-
ulate flow fields in both San Francisco Bay and Santa Cruz DEM cases (see Figures 8(g) and
8(h)). Basic details, such as the types of basins, the elevation ranges with corresponding grey
values, and ranges of threshold values employed to decompose the basins into sets, type of
structuring element used to generate geodesic flow fields, and number of flow fields generated
within each decomposed set, are given in Table 1.

4. Geodesic flow function analysis

4.1. Properties of geodesic flow fields in geophysical basin

For basins like simple Cases 1, 2, Central San Francisco Bay, and Santa Cruz region, for all n ≥ 1
and i ≥ 1,(

Si

)
⊆
[(
Si ⊕ nB

)
∩ Si+1

]
⊆
[(
Si ⊕ (n + 1)B

)
∩ Si+1

]
⊆ · · · ⊆

[(
Si ⊕NB

)
∩ Si+1

]
⊆
[
Si+1

]
⊆
[(
Si+1 ⊕ nB

)
∩ Si+2

]
⊆
[(
Si+1 ⊕ (n + 1)B

)
∩ Si+2

]
⊆ · · · ⊆

[(
Si+1 ⊕NB

)
∩ Si+2

]
⊆
[
Si+2

]
⊆
[(
Si+2 ⊕ nB

)
∩ Si+3

]
⊆
[(
Si+2 ⊕ (n + 1)B

)
∩ Si+3

]
⊆ · · · ⊆

[(
Si+2 ⊕NB

)
∩ Si+3

]
⊆ · · · .

(4.1)

For Case 3, when i = 1, and 0 ≤ K ≤ P ≤ Q ≤N:

Cflow =
(
S1

)
⊆
[(
S1 ⊕ kB

)
∩ S2i

]
⊆
[(
S1 ⊕ (k + 1)B

)
∩ S2i

]
⊆ · · · ⊆

[(
S1 ⊕KB

)
∩ S2i

]
⊆
[
S2i

]
;

NCflow =
[(
S2i ⊕ nB

)
∩ S2i+1

]
⊆
[(
S2i ⊕ (n + 1)B

)
∩ S2i+1

]
⊆· · ·⊆

[(
S2i ⊕NB

)
∩ S2i+1

]
⊆
[
S2i+1

]
.

(4.2)

When i = 2, and 0 ≤ K ≤ P ≤ Q ≤N:

Cflow =
[(
S1 ⊕KB

)
∩ S2i

]
⊆
[(
S1 ⊕ (K + 1)B

)
∩ S2i

]
⊆ · · · ⊆

[(
S1 ⊕ PB

)
∩ S2i

]
⊆
[
S2i

]
;

NCflow =
[(
S2i ⊕ nB

)
∩ S2i+1

]
⊆
[(
S2i ⊕ (n + 1)B

)
∩ S2i+1

]
⊆· · ·⊆

[(
S2i ⊕NB

)
∩ S2i+1

]
⊆
[
S2i+1

]
.

(4.3)

When i = 3, and 0 ≤ K ≤ P ≤ Q ≤N:

Cflow =
[(
S1 ⊕ PB

)
∩ S2i

]
⊆
[(
S1 ⊕ (P + 1)B

)
∩ S2i

]
⊆ · · · ⊆

[(
S1 ⊕QB

)
∩ S2i

]
⊆
[
S2i

]
;

NCflow =
[(
S2i ⊕ nB

)
∩ S2i+1

]
⊆
[(
S2i ⊕ (n + 1)B

)
∩ S2i+1

]
⊆· · ·⊆

[(
S2i ⊕NB

)
∩ S2i+1

]
⊆
[
S2i+1

]
.

(4.4)

When i = 4, and 0 ≤ K ≤ P ≤ Q ≤N:

Cflow =
[(
S1 ⊕QB

)
∩ S2i

]
⊆
[(
S1 ⊕ (Q + 1)B

)
∩ S2i

]
⊆ · · · ⊆

[(
S1 ⊕NB

)
∩ S2i

]
⊆
[
S2i

]
;

NCflow =
[(
S2i ⊕ nB

)
∩ S2i+1

]
⊆
[(
S2i ⊕ (n + 1)B

)
∩ S2i+1

]
⊆· · ·⊆

[(
S2i ⊕NB

)
∩ S2i+1

]
⊆
[
S2i+1

]
.

(4.5)



20 Discrete Dynamics in Nature and Society

Table 1: Details of synthetic and realistic digital topographies considered with their grey levels’ and cor-
responding elevation/or depth ranges, and entropy values estimated for each threshold elevation/depth
decomposed set of each digital topographic basin.

Case Type Dyn
range

No.
dec

Grey
value
range

Elevation
range (m) Used SE

No.
flow
field

Entropy

Case 1 Synthetic 0-1 1 0-1 0-1 Rhombus 113 2.014109

Case 2 Synthetic 0–3 3
0-1 0-1

Rhombus
97 0.335195

1-2 2 39 0.666177
2-3 3 46 0.987891

Case 3 Synthetic 0–7 8

0-1 0-1

Rhombus

108 0.174197
1-2 2 39 0.421361
2-3 3 67 0.136298
3-4 4 32 0.272975
4-5 5 90 0.164091
5-6 6 29 0.562372
6-7 7 14 0.122462
7-8 8 17 0.332124

SF-Bay Bathymetry 0–255 7

0–33 −115 to
−106

Octagon

34 0.048562

34–59 −105 to −91 146 0.593921
60–100 −90 to −68 57 0.365169

101–150 −67 to −46 57 0.604285
151–201 −45 to −27 23 0.304051
202–233 −26 to −15 56 0.321996
234–255 −14 to 0 22 0.120496

SC-Topo Topography 0–255 14

0-1 0-1

Octagon

60 0.084891
2–14 2–14 65 0.150806

15–34 15–35 36 0.163969
35–65 36–67 36 0.147204
66–85 68–88 32 0.131617
86–102 89–105 31 0.11603

103–124 106–128 35 0.190187
125–157 129–162 73 0.239391
158–182 163–188 27 0.288595
183–197 189–203 12 0.130263
198–212 204–218 17 0.129661
213–239 219–246 18 0.104142
240–252 247–260 11 0.078623
253–255 261–263 7 0.024073

4.2. Geodesic flow spectrum

Area of each TER (A[Si]) is estimated according to
∑

x,ySi(x, y), and area of all the TERs

(A[
∑J

i=1Si]) is estimated as
∑J

i=1, x,ySi(x, y). For simplicity, we write these areas, respectively, as
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A[Si] and A[
∑J

i=1Si]. A[(Si ⊕nB)∩Si+1] increases as n (cumulative effect of flood forcing after
nth-time step) increases, where A(·) denotes finite set of cardinality. These areas are normalized
by the area A[

∑J
i=1Si] of basin (f ). For a flat basin with no distinction in the mean elevations

of channelized and nonchannelized regions (e.g., see Figures 1(a), 1(d)), the cumulative area
flooded after nth time is estimated as A�(Si⊕nB)∩Si+1, where nB is a symmetric structuring el-
ement with certain characteristic information, and Si, Si+1, respectively, denote marker set and
mask set (e.g., see Figures 3 and 4(a)). Whereas, when the elevation distinction between the
channelized and nonchannelized regions (e.g., see Figures 1(c), 1(f)) is realized, the cumulative
area flooded in channelized region after nth time (iteration) is estimated as A�(S1 ⊕ nB) ∩ S2i.
Similarly, in the nonchannelized region, the area is estimated as A�(S2i ⊕ nB) ∩ S2i+1, where
i = 1, 2, . . . ,N, and the marker sets for flow field propagation simulations are the sets indexed
with 2i, and these sets are geodesically dilated with reference to the mask sets indexed with
(2i + 1). The area of f is estimated as A(f) =

∑
(x,y)f(x, y). These calculations for all the cases

are plotted as functions of time (see Figure 9(f)).
Geodesic flow spectrum is the area embedded between the successive flow fields. This

spectrum of decomposed elevation set (Si) with structuring element B of radius n denoted as
GSSi(n,B), and is defined as follows: GSSi(n,B) = A[(Si⊕(n+1)B)∩(Si+1)]−A[(Si⊕(n)B)∩(Si+1)].
Then, the probability is derived as follows: PSi(B) = GSSi(n,B)/A[

∑J
i=1Si], where i = 1, 2, 3, . . . , J .

The decomposed set-wise entropy with respect to total area of all the sets—decomposed from
the function—is defined as H/(Si, B) = −

∑N
n=0PSi(n,B) logPSi(n,B). Entropy values estimated by

considering the probabilities that are computed with respect to the whole basin are given in
the last column of Table 1. From this spectrum, a one-dimensional path support of different
TERs and adjacent TERs—morphological structures of the basins can be better understood. A
potentially valuable insights and links with instantaneous unit hydrography can be explored.
These functions provide general geodesic distribution pattern between the TERs. It is conspic-
uous that each geodesic function exhibits distinct pattern, which further explains that geodesic
function of each TER is someway similar to geomorphic width function.

5. Results and discussion

Areas embedded between the successive flow fields are divided by the total area of correspond-
ing threshold bathymetry zone to estimate the probability distribution values and further the
entropy values. In turn, the probability distribution values of each threshold bathymetry region
(TBR) are plotted as functions of discrete time steps to understand the rates of change in the ar-
eas between the flow fields of corresponding TBR (see Figures 9(a)–9(e)). From these plots, it is
obvious that the larger is the peak, the wider is the area embedded between the successive flow
fields. It is also observed that these probability distribution values, and hence entropy values
are marker-mask sets’ dependent. The geometric relationship between the marker and mask
sets as well as the structuring element’s characteristic information influences the general flow
fields’ spatial organization, which further affects the probabilities and entropy values. The rate
of change in the areas embedded between the flow fields, simulated from a single marker set,
is estimated in terms of probability distribution values. It is hypothesized that the zones with
abrupt changes in the probability patterns attribute to the fact that these zones support occur-
rence of unusual suspended sediment patterns, due to high degree of spatial complexity of the
flow fields. These zones as demarcated in the graph(s) further facilitate proper categorization
of either surficial or bottom topographic zones—in terms of zones that are prone to have varied
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degrees of sensitivities to perturbation from dominating inflows such as tidal flow, river flow,
and flow due to flooding and so forth.

Total area flooded after each cycle of geodesic propagation is estimated and plotted as
function of discrete time for all the five considered cases (see Figure 9(f)). It is obvious that the
rates of change in the flow fields’ pattern in the considered cases are different. Such variations
are attributed to the spatial and topographic complexities of basins. This analysis facilitates
new insights to explore links between general statistical measures (e.g., probabilities and en-
tropy values), and dynamics of sediment inflow patterns within each TBR and the morpho-
logical constitution of tidal and floodplain basins across times, since surficial process involves
therein is highly time dependent. In summary, we provide a framework, which can be tested
on any basin by using very high-resolution DEM/DBM data at different time periods (perhaps
during preflood or postflood times and low-tide or high-tide time periods) that generally re-
flect the surficial morphology of the floodplain or tidal basin as the process involved there is
time-dependent in contrast to that of basins in fluvial environment.

In cases where topography or bathymetry of basins is not available, and instead re-
mote sensing data is used, a simplified method of estimation of the flow fields within the
basin, neglecting the bathymetry, becomes helpful [25]. However, the flow fields simulated
by merely considering basin as flat surface would be directly determined by the boundary
of the basin alone. If one cross checks the flow fields simulated with an assumption that the
bottom topography is completely flat with that of the flow fields estimated from the topo-
graphic/bathymetric data, one realizes how the former is entirely dependent on the boundary
of the basin. In fact, the two flow fields are highly contrasting as shown in Figures 8(f) and
8(g). If topographic data of basin (or inlets, estuaries, and bays) are available at multitempo-
ral mode, the flow field can be simulated via geodesic method as proposed here to study the
spatiotemporal dynamics of the topography. Very high-resolution DEM (e.g., retrieved from
Shuttle Radar Topography Mission (SRTM)) provides subtle changes in topographic elevation.
Usually the elevation differences within floodplain environment and in tidal environment are
minor. However, the morphological variations within such environments are highly time de-
pendent. This time-dependent variations may synchronize the fluctuating hydrological flows
that are usually influenced due to flooding/tide patterns of the system. We provide a basic
framework to simulate flow fields via geodesic morphological concepts, which require prior
processing of basin to decompose it into thresholded sets and indexing them accordingly. This
prior processing could be done by simple image threshold decomposition procedures. Further-
more, this framework has been applied to generate flow fields on three simulated basins and
on two digital topographies of San Francisco Bay and Santa Cruz region. Space-time struc-
tures of flow fields in basins that occur due to changes in inflow patterns can be treated as a
coupled-dynamical system.

6. Conclusions

We proposed a framework, based on geodesic morphologic transformations, to characterize
discrete geophysical basins of surficial and bathymetric types. The three phases of the frame-
work include (i) decomposition of digital topographic basin into sets through thresholding
technique, (ii) generation of geodesic flow fields within each set successively, and (iii) esti-
mation of probabilities of areas being embedded between flow fields of each set and the suc-
cessive sets. We tested this three-phase framework on several synthetic and realistic digital
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topographic basins. Results derived include construction of geodesic basin functions that can
be treated as a new basin descriptor, which can be further linked with geomorphic width func-
tion. These geodesic functions depend on the (i) general structure of basin function, (ii) the
geometric organization, and their internal spatial relationships of TERs, and (iii) structure of
geodesic propagation (frontlines). These functions can be employed to obtain new insights into
modeling the sediment transport and deposition processes, morphologic processes that control
the morphologic development of basin function. This approach can be adopted in studies re-
lated to understanding of morphodynamical processes in a quantitative fashion when topogra-
phies of basins are available at higher spatial resolutions. This approach complements with
other existing geomorphometric techniques that provide quantitative treatment of the mor-
phology of basin-wise topographies. To provide main interpretation of these geodesic func-
tions of basin-wise topographies and relationships with other mathematical properties which
are widely studied in the context of studying the basin structure will be an open problem.

Appendix

In this appendix, we provide illustrations (see Figures 10 and 11) of basic details on (1) thresh-
old decomposition of digital topography and isolation of threshold sets, and (2) morphologi-
cal transformations in matrix forms. These illustrations are given for better understanding of
equations (2.1)–(2.4) and results shown in Figures 3–7. We also provide the list of symbols and
notations at the end of this Appendix.

Figure 10 depicts original image f which has maximum intensity level J = 4. Threshold
decomposed zones fj with j = 1, 2, 3, 4, and 5 (J + 1) are, respectively, shown along with the
isolated sets with index i ranging from 1, 2, . . . , J . The sets Si are isolated by fj − fj+1.

Figure 11 depicts matrix representation of morphological dilation and involved trans-
lates. Figure 11(a) illustrates this transformation with possible translates of si by b, the union
of which yields an expanded version of Si. In this transformation −B = {−b : b ∈ B}, that is,
B is rotated 180◦ about the origin. Here, while matching the first encountered set element at
location (1, 2) with reference to centre point of B, we check for exact overlap with all points
in B with all points. As for the first encountered set element, we see that there is a mismatch.
Then, the points of B that are not exactly matched with elements would be placed at locations
beyond the set elements. This can be better comprehended from the first translate shown in
Figure 11(a). Similarly, the second and further translates are shown. As at the third encoun-
tered element, the matching is exactly identified by means of B, there is no change observed in
the corresponding translate. The union of all these translates produces dilated version of Si by
B as illustrated in matrix form (see Figure 11(b)). Instead of using a larger B to simulate propa-
gation of flow with greater velocity, with the use of smaller B repeatedly, one will get the same
effect. The cumulative B, of which the diagrammatic representation is shown in Figure 11(b),
is mathematically represented in (4). Iterative dilations for n times are represented as (Si⊕nB).
The role of B that functions as an interface between Si and isotropic propagation is to simulate
the effects of flow field propagation.

List of symbols and notations

|Rd: Euclidean space
f : Function of basin represented as digital topographic image
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s, x, b: Points of |Rd

S,X, B: Subsets of |Rd

j: Index—representing threshold value—j = 0, 1, 2, . . . , J
i: Index—representing isolated threshold set—i = 0, 1, 2, . . . , J
J : Maximum nonnegative intensity (elevation) value
Sc: Complement of S in |Rd

Ss: S shifts by �os (o = origin of |Rd)⋃
,
⋂
, \: Logical union, logical intersection, and logical difference

⊆: Improper subset
⊂: Subset
S ∪X: Union of S and X
S ∩X: Intersection of S and X
S \X: Set difference of S and X
nB: nth-size structuring element symmetric w.r.t origin at center
1B: Primitive element with origin at center, and radius 1
NB: Largest size of structuring element
⊕:Dilation
S ⊕ B =

⋃
b∈BSb: Morphological dilation of S w.r.t. B

∂S: Boundary of S
Cflow: Channel flow
NCflow: Nonchannel flow
TBflow: Flow in the tidal basin
∅: Empty set
n: Iteration/cycle number (or radius of structuring element, where n = 0, 1, 2, . . . ,N)
N: Maximum iteration/cycle number required for transforming a set into the state of

idempotence
A(·): Finite set of cardinality
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