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Digital elevation models (DEMs) are very useful for terrain characterization. We

apply a morphological approach to characterize 14 sub-basins decomposed from

interferometrically generated DEMs of Cameron Highlands and Petaling regions

of Peninsular Malaysia. Physiographically, these two regions possess a distinct

geomorphologic set-up as they belong to region with higher and lower altitudes,

respectively. Fourteen sub-basins are extracted from the DEMs, and pattern

spectra by opening and closing of these sub-basins relative to flat discrete binary

patterns (square, octagon and rhombus) are computed. Pattern spectra are used

to compute probability size distribution functions of both protrusions and

intrusions that are conspicuous in topography, based on which shape-size

complexity measures of these sub-basins are estimated by means of average

roughness and size. Furthermore, fractal dimensions of channel networks derived

from these 14 basins are computed by applying the box-counting method.

Comparisons between shape-size complexity measures and fractal dimension are

carried out.

1. Introduction and motivation

Toward characterization of terrain from the point of its morphologic complexity,

processing of digital elevation models (DEMs) derived from remotely sensed

data has received notable attention. With the advent of interferometry techniques,

it is possible to generate high spatial resolution DEMs with excellent accuracy

(Graham 1974, Zebker and Goldstein 1986). DEM data are analysed in order to

understand several characteristics of geoscientific interest in spatio-temporal

mode (e.g. Turcotte 1997, Montgomery 2001, Stark and Stark 2001, Sagar and

Tien 2004, Tay et al. 2005). These interests lie primarily in the fields of hydrology,
geomorphology, geology, geophysics, ecology and environment.

With powerful computers and high-resolution DEMs, complex surficial charac-

teristics of terrain can be analysed by using advanced mathematical concepts.

Most terrain characterization techniques are mainly feature based and emphasize the
spatial organization of specific features, that are essentially decomposed from terrain

models or topographic maps, such as surface water bodies, unique connectivity

networks (Sagar et al. 2003), watershed basins, mountain objects etc. Morphometry,

fractal and allometric scaling analyses of these features provide various characteristics

in a quantitative manner. Conventional morphometry-based network quantities are
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7 proposed by Horton (1945), and further significantly substantiated by Langbein

(1947) and Strahler (1957). These topological quantities have been considered as the

bases to compute scaling dimensions of basins and networks (e.g. Turcotte 1997,

Rodriguez-Iturbe and Rinaldo 1997, Sagar and Tien 2004).

Roughness indexes have been shown to be informative tools for terrain analyses.

The roughness of terrain reflects numerous geophysical parameters (e.g. basin

characteristics, distributions of crenulations and degree of erosivity) and is useful for

understanding basin-wise geomorphic process associated with exogenic processes.

Earlier works on characterization of terrain through estimation of roughness

indexes were done for geological and geomorphologic research (Strahler 1964, Stone

and Dugundji 1965, Daniels et al. 1970, Franklin 1987, Nikora 2005). Other

roughness measures that have been used include sigma-t (Ackeret 1990), ‘roughness

index’ (Fatale et al. 1994) and fractal dimension (Goodchild 1980, Cherbit 1991).

Most of the Earth’s scale invariant topography and bathymetry are best modelled

using fractal statistics (Turcotte 1997). Many researchers have carried out spectral

analyses of topography (e.g. Gilbert 1989, Dubuc et. al. 1989, Turcotte 1997).

Despite the monumental significance and usefulness of the spectral and fractal

analyses for topographic description, it has little to offer in quantifying the shape

and size content of topography possessing geometrical structure. Hence, quantita-

tive analysis of surficial roughness has proven difficult because of its morphological

complexity. Mathematical morphology (Matheron 1975, Serra 1982) is unquestion-

ably one of the best approaches to quantify the shape and size content of basin-wise

topography. In our earlier work (Tay et al. 2005), a simple framework based on

mathematical morphological transformations is proposed to compute the complex-

ity measures of DEMs. In the current paper, we show application of this

morphology-based granulometric framework in deriving basin-wise terrain char-

acteristics through shape-size complexity measures for Cameron Highlands and

Petaling sub-basins. DEMs are delineated into meaningful basin-units of different

shapes with varied degrees of complexities in their spatial forms. Furthermore,

additional roughness index owing to both protrusions and intrusions of terrain is

also derived and comparisons are carried out with fractal dimensions of the

networks computed through the box-counting approach.

2. Methodology

2.1 Basic definitions and notations of mathematical morphology

DEMs are represented by function, f, where f(x,y) (e.g. figure 1) is a function on Z2

and B [figure 1(f)] is a structuring element (SE) of primitive size. The erosion

(dilation) of f by B replaces the value of f at a pixel (x, y) with the minima (maxima)

of the values of f over a structuring template B. We represent these grey level

morphological transformations as

f7Bð Þ x, yð Þ~ min
i, jð Þ[B

f xzi, yzjð Þf g ð1Þ

f+Bð Þ x, yð Þ~ max
i, jð Þ[B

f x{i, y{jð Þf g ð2Þ

where fi and › denote symbols for erosion and dilation respectively. The grey

scale erosion and dilation transformations are illustrated in figures 1(a) and (b).

3364 L. T. Tay et al.
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The grey level opening (f 0 B) and closing (f N B) are cascades of erosion and

dilation processes, as shown in equations (3) and (4) below

f 0Bð Þ~ f7Bð Þ+B½ � ð3Þ

f .Bð Þ~ f+Bð Þ7B½ � ð4Þ

Figure 1. Greyscale morphological and logical transformations. (a) Erosion, (b) dilation,
(c) opening, (d) closing, (e) subtraction of opened image from original image and (f)
structuring templates required to generate multiscale effect. For this example DEM, area
A fð Þ~

P

x, yð Þ
f x, yð Þ~0 232, and A[(f 0 B0)2(f 0 B1)]50 49.

Granulometric analyses of basin-wise DEMs 3365
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Subsequently, multiscale opening (f 0 Bn) and closing (f N Bn) can be per-

formed by increasing the size (scale) of the structuring template Bn, where n50, 1,

2,…, N. These multiscale opening and closing of f by B are represented respectively

as

f 0Bnð Þ~ f7Bð Þ7B7 . . .7B½ �+B+B+ . . .+Bf g~ f7Bnð Þ+Bn½ � ð5Þ

f .Bnð Þ~ f+Bð Þ+B+ . . .+B½ �7B7B7 . . .7Bf g~ f+Bnð Þ7Bn½ � ð6Þ

at scale n50, 1, 2,…, N.

Performing opening and closing iteratively by increasing the size of B transforms

the DEM into lower resolutions correspondingly. Multiscale opening and closing of

DEM by Bn effect spatially distributed elevation regions in the form of smoothing

of contours to various degrees. The scale refers to size of SE. The bigger the SE, the

larger the scale. The larger the scale, the more is the information loss from DEM,

and hence the images possess lower resolution at the higher degree of scaling. The

shape and size of B control the shape of smoothing and the scale respectively. These

basic notations and transformations can be better understood by referring to

figure 1.

2.2 Granulometry

Both protrusions and intrusions are computed using granulometry approach. The

protrusions, information is derived by subtracting each opened version from the

preceding level of opened version [equation (7)]. On the other hand, intrusions,

information is obtained by subtracting the closed version from its succeeding level

[equation (8)]. This information is named as the pattern spectra (Maragos 1989) of f

relative to B for different size n

PSf zn, Bð Þ~A f 0Bnð Þ{ f 0Bnz1ð Þ½ �, 0ƒnƒN ð7Þ

PSf {n, Bð Þ~A f .Bnð Þ{ f .Bn{1ð Þ½ �, 1ƒnƒK ð8Þ

where PSf( + n, B) and PSf(2n, B) are the pattern spectra of foreground

and background portions of f relative to B respectively, and a(x)–b(x) is the

point-wise algebraic difference between the two functions a(x) and b(x) [e.g.

figure 1(e)].

The difference between the area of nth level opened basin and the area of n + 1th

level opened basin (where n ranges from 0 to N) is divided by the area of the original

basin, A(f) to get the probability function at nth level, ps(n, f). In the same way, the

difference between the area of nth level closed basin and the area of n21th level

closed basin (where n ranges from 1 to K) is divided by A(f N BK)–A(f N B0) to get

the probability function at nth level, ps(2n, f). This descriptive procedure is

mathematically expressed as

ps n, fð Þ~ A f 0Bnð Þ{A f 0Bnz1ð Þ
A f 0B0ð Þ , n~0, 1, 2, . . . , N ð9Þ

where 0(ps(n, f)(1.

3366 L. T. Tay et al.
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ps {n, fð Þ~ A f .Bnð Þ{A f .Bn{1ð Þ
A f .BKð Þ{A f .B0ð Þ , n~1, 2, . . . , K ð10Þ

where 0(ps(2n, f)(1.

The probability function is the ratio between the area of the region that is

obtained from algebraic difference between contiguous levels of opened (closed)

basin and the total foreground (background) area of basin. These filtered features of

f are a variety of crenulations that protrude above or intrude below f. A larger value

of ps(n, f) (or ps(2n, f)) infers that a larger amount of features protrude above (or

intrude below) f.

Based on the probability size distribution functions of these distributed

protrusions and intrusions, average size (AS(f/B)) and average roughness (H(f/B))

of foreground are estimated by incorporating probability function relative to B as

follows

AS f =Bð Þ~
XN

n~0

nps n, fð Þ ð11Þ

H f =Bð Þ~{
XN

n~0

ps n, fð Þlog ps n, fð Þ ð12Þ

To compute similar measures of background of f, we consider ps(2n, f) of

background portions of f estimated based on equation (10). To estimate the average

roughness of basin owing to both foreground and background components, we

employ the following equation:

H f =Bð Þ~{
Xn

n~{K

PSf n, Bð Þ
�

A(f .KB)
� �

log PSf n, Bð Þ
�

A f .KBð Þ
� �

ð13Þ

2.3 Fractal analysis

One of the important parameters used in fractal analysis is the fractal dimension

(Feder 1988), which is also a widespread indicator of surface roughness. Fractal

dimensions describe the space-filling property of the foreground objects in the image

and it can be estimated through the box-counting method. The two-dimensional

plane of the image is partitioned with a grid of squares of size r. The number N(r) of

square-grids that are traversed by foreground objects is counted. Using these

parameters, fractal dimension of the foreground objects is computed as

D~ lim
r?0

logN

log 1=rð Þ

It is implemented by changing the value of r, and computing the corresponding

N values. Estimation of the fractal dimension, D is done through the linear

approximation of points (log N, log(1/r)) and this corresponds to the best-fit slope

of the plot of log N versus log(1/r).

Granulometric analyses of basin-wise DEMs 3367
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We employed intereferometrically derived topographic synthetic aperture radar

(TOPSAR) DEM of Cameron Highlands region situated between 101u159–

101u209 E. longitudes and 4u319–4u369 N. latitudes, and the Petaling region situated

between 101u379300–101u409 E. longitudes and 2u599300–3u029 N. latitudes of

Malaysia (figure 2) for terrain feature characterization. Cameron Highlands region

is located in the eastern part of Perak state in Peninsular Malaysia. The physical

relief of this area is rough where it comprises a series of mountainous forest at

altitudes between 400 m and 1800 m. The Petaling region is located in the southern

part of Selangor state in Peninsular Malaysia. This region is a relatively flat terrain

with highest altitude of 215 m. Cameron Highlands DEM encompasses an area of

9006900 pixels with resolution of 10 m while Petaling DEM encompasses an area

of 7506800 pixels with resolution 5 m. Figures 3 (a) and (b) show their three-

dimensional shaded relief images. The height accuracy of TOPSAR DEMs has been

shown to be 1 m root mean square (rms) in flat areas, 3 m rms in the mountain areas

and 2 m rms overall (Madsen et. al. 1995). Based on the extracted channel networks,

seven sub-basins are demarcated from Cameron Highlands DEM [figure 3(c)],

and seven from Petaling DEM [figure 3(d)]. Figures 3(e) and (f) show the extracted

channel networks of Cameron Highlands and Petaling regions respectively. The

Cameron sub-basins are high altitude basins, whereas the sub-basins of Petaling

belong to a relatively lower altitude region. The elevation ranges of Cameron basins

are significantly higher than that of Petaling basins (table 1). All these 14 basins

belong to two different major basins of these two physiographically distinct regions.

Before initiating granulometry analysis, the networks and sub-basins extracted from

the DEMs are analysed and compared with the topographic map. The extracted

Figure 2. Location maps of Cameron Highlands and the Petaling region of Malaysia.

3368 L. T. Tay et al.
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networks from the DEMs are structurally synchronizing with that of topographic

maps.

For these 14 sub-basins in both DEMs, we compute the shape-size complexity

measures via granulometries, and compared these values with fractal dimensions of

basin-wise networks computed through the box-counting method (Feder 1988).

Figure 4 shows a flowchart depicting the step-wise procedures followed in this

Figure 3. (a) Three-dimensional shaded relief image of TOPSAR DEM of Cameron
Highlands, Malaysia; (b) three-dimensional shaded relief image of TOPSAR DEM of
Petaling, Malaysia; (c) seven delineated sub-basins in different colours of Cameron
Highlands DEM; (d) seven delineated sub-basins in different colours of Petaling DEM; (e)
and (f) stream networks extracted from Cameron Highlands and Petaling DEMs, respectively.

Granulometric analyses of basin-wise DEMs 3369
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investigation. Table 1 provides the basic measures for the 14 decomposed basins

such as basin areas, maximum and minimum elevation heights in metres, elevation

ranges, relief ratio and maximum number of iterations needed for multiscaling with

respect to square, octagon and rhombus structuring elements. We calculate the

maximum number of iteration, Nmax based on the size of the basin and shape of the

structuring element. For a basin of size X columns6Y rows, the maximum possible

size of structuring element (square) is 26X if X is greater than Y or 26Y if Y is

greater than X. The maximum possible iteration, Nmax is then derived from the

maximum size of structuring element.

Local foreground and background in the DEM represent higher and lower local

elevations respectively. Granulometries by opening and closing of DEM generate

DEMs at multiple scales, where various sizes of protrusions and intrusions from

foreground and background structures are filtered out respectively. We perform

multiscale opening and closing on sub-basins of Cameron Highlands and Petaling

by means of symmetric square, octagon and rhombus templates [figure 1(f)]. The

three symmetric templates used are referred as SEs, which play an important role in

the granulometric analysis. Illustrations of specific resultant multiscale basin at

multiple scales can be seen in figure 5. We observe a large flat plateau [figure 5(a)–

(c)] and flat sinks [figure 5(d)–(f)] shaped like Bn at large scales n of the opening

(f 0 Bn) and the closing (f N Bn), respectively.

We compute basin-wise areas of protrusions and intrusions, from Cameron

Highlands and Petaling sub-basins, that are filtered out at respective scales to

estimate the probability functions [equations (9) and (10)]. By incorporating

these probability functions computed for each basin by means of three different

morphological structure rules, we estimated the shape-size complexity measures

(average sizes and average roughness) for both foreground and background of all

14 sub-basins. These shape-size complexity measures show apparent discrimina-

tion among the 14 sub-basins. These scale independent measures rely on topologic

Table 1. Basic measures of basin size, height and maximum number of iteration for all 14
basins.

Basin
number
N

Basin size
(No. of
pixels)

DEM height
Maximum number

of iteration

Max
(m)

Min
(m)

Max–min
(m)

Relief
ratio Square Octagon Rhombus

1 105400 1280.1 540.6 739.5 0.422 170 227 340
2 137463 1596.5 591.8 1004.7 0.371 208 277 415
3 131517 1695.9 587.4 1108.5 0.346 214 285 427
4 107625 1594.5 570.5 1024.0 0.358 188 250 375
5 89300 1745.2 503.0 1242.2 0.288 190 254 380
6 60520 1667.7 483.4 1184.3 0.290 178 238 356
7 36814 929.6 475.9 453.7 0.512 117 156 233
8 134400 208.0 54.3 153.7 0.261 210 280 420
9 57950 155.7 50.7 105.0 0.325 153 204 305
10 48000 193.5 48.7 144.8 0.251 160 214 320
11 68800 192.7 40.7 152.0 0.211 160 214 320
12 72000 215.7 32.9 182.8 0.152 180 240 360
13 72500 153.2 31.7 121.5 0.207 145 194 290
14 42000 169.1 27.6 141.5 0.163 150 200 300

3370 L. T. Tay et al.
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and geometric criteria and they can be considered as the indicators to under-

stand the complexity of surface owing to size distributions of its protrusions/

intrusions.

Average roughness quantifies the shape-size complexity of f by means of its

surface roughness due to their protrusion and intrusion distribution averaged over

all depths that B reaches. We normalize average roughness index with log(Nmax)

so that the normalized index is in the range of zero to one, where Nmax is the

maximum possible iteration needed for morphological opening (closing) to

convert the basin image to become totally black (white) or minimum (maximum)

(table 1). If both intrusions and protrusions are considered, overall roughness

index is derived using equation (13) with respect to the three structuring elements.

The overall roughness index is normalized with log(26Nmax). Figure 6 illustrates

the average size and normalized average roughness of the foreground and

background for the 14 sub-basins whereas the overall roughness indexes are shown

in figure 7.

In order to obtain the fractal dimension for the 14 sub-basins, the channel

networks for the DEM are extracted [e.g. figures 3(e) and (f)]. Fractal dimensions of

these networks are computed by using the box-counting method where extracted

Figure 4. Flowchart depicting the sequential steps adapted in this investigation.

Granulometric analyses of basin-wise DEMs 3371
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networks of both DEMs are considered as foreground objects. The number N(r) of

square-grids (size r) that are traversed by network elements is counted. Fractal

dimensions of the networks of these 14 sub-basins are computed through the linear

Figure 5. Basin 1 of Cameron Highlands is taken as an example to show the basin images at
multiple scales generated via closing and opening. Basin 1 is located at the northern part of
Cameron Highlands region, with a size of 3.1 km (east to west)63.4 km (north to south). (a–
c) DEM at multiple scales generated via opening by means of rhombus, octagon, and square,
respectively; (d–f) multiscale DEMs generated via closing by means of rhombus, octagon, and
square, respectively.

3372 L. T. Tay et al.



D
ow

nl
oa

de
d 

B
y:

 [M
ul

tim
ed

ia
 U

ni
ve

rs
ity

, M
el

ak
a]

 A
t: 

06
:3

3 
30

 A
ug

us
t 2

00
7 

Figure 6. Mean size and roughness values vs basin number. (a–b) average size values computed, for foregrounds and backgrounds of 14 basins by means of
square, octagon and rhombus, and (c–d) normalized mean roughness values computed for foregrounds and backgrounds of fourteen basins by means of
square, octagon and rhombus.
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approximation of graph (log N, log(1/r). This estimation corresponds to the best-fit

slope of the plot (log N versus log(1/r). The best-fit fractal dimensions for the

networks extracted from these basins are given in table 2 and figure 7. The fractal

dimension values explain the space-filling characteristics of networks. The higher

the dimension, the higher is the network density or space-filling property, and vice

versa.

4. Results and discussion

The considered three primitive templates [figure 1(f)] used to perform granulometric

analysis are square (25 elements), octagon (21 elements) and rhombus (13 elements)

in the order of decreasing number of elements. Iterative openings and closings are
performed by means of these three templates on 14 basins until the basins become

completely dark (grey value 0) and completely bright (grey value 255) respectively.

Figure 7. Fractal dimensions and overall roughness measures versus basin number.

Table 2. Fractal dimensions for the 14 sub-basins.

Basin Fractal dimension (via box counting)

1 1.5141
2 1.5506
3 1.5814
4 1.4692
5 1.4519
6 1.4776
7 1.3192
8 1.3140
9 1.2398
10 1.2445
11 1.1817
12 1.2946
13 1.1706
14 1.1721

3374 L. T. Tay et al.
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or brighter depends on the size, shape, origin, orientation of considered primitive

template to perform multiscale openings or closings, and also on the size of the

basin and its physiographic composition. More opening/closing cycles are needed

when structure element rhombus is used, and it is followed by octagon and

square.

It is obvious from figures 6(a) and (b) that mean size values of foreground and

background regions of DEM computed for these sub-basins are highest when

rhombus structuring element is used, and it is followed by octagon and square.

Generally, mean size values depend on the total size of protrusions and intrusions

filtered via granulometric analyses. Estimated average sizes of protrusions

(intrusions) are also dependent on the probing rule. For instance, the larger

average size values of protrusions are obtained for basins 1, 2, 3 and 4, and

intrusions for basins 2, 4, 5 and 8 by means of rhombus template. These average

size values by means of octagonal and square-type rules have not followed exactly

the trend like the values computed by means of rhombus. Hence, average size of

the basin, which is scale independent, is shape dependent.

On the other hand, mean roughness indicates the shape-content of the basins.

Higher mean roughness for a basin with respect to a particular structuring element

indicates higher value of surface roughness within the basin boundary, relative to

that structuring element. The average roughness values in normalized scale are

computed by considering the ratio between average roughness values [equation (12)]

and the Nmax (table 1) in logarithm scale. A clear distinction is obvious between the

Cameron and Petaling basins [figure 6(c)]. Generally, roughness values of Cameron

basins are significantly higher than that of Petaling basins. The ranges of normalized

roughness values for foreground (background) by means of square are 0.88–0.91

(0.84–0.89) for Cameron basins and 0.74–0.85 (0.79–0.83) for Petaling basins. These

ranges are significantly different from that of octagon and rhombus. Relatively,

Petaling basins possessing lower normalized average roughness values than that of

Cameron highlands basins. All Petaling basins, of which the normalized average

roughness values ranging from 0.66–0.85 (foreground) and 0.73–0.83 (background)

depict the basins are relatively more smooth than that of Cameron basins with

roughness values of 0.81–0.91 (foreground) and 0.73–0.89 (background) for all three

structuring elements used. The overall roughness indexes (owing to both protrusions

and intrusions) estimated with respect to square for the seven Cameron basins range

between 0.89 and 0.91 clearly depicting the distinction with Selangor basins, for

which these values range between 0.80 and 0.85 (figure 7). All the Cameron basins,

being high altitude basins, possess greater relief differences than Petaling basins

(table 1). It has been shown that a change in the characteristic information of the

probing template shows different shape–size complexity measures. Influences of

structuring elements on each basin depend on the shape of the SE. As long as the

shape of SE is geometrically similar to basin regions, the average roughness result

possesses lower analytical values. If the topography of basin is very different from

the shape of SE, high roughness results are produced which indicate that the basin is

rough relative to that SE. In general, all basins are more rugged relative to square

shape as highest roughness index are derived when square is used as SE.

The unique networks that reflect the general characteristics of surface mor-

phology, are characterized via fractal concepts. The fractal dimensions of the basin-

wise channel networks extracted from DEMs also show clear distinction between

Granulometric analyses of basin-wise DEMs 3375
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7 these two regions (table 2). Relatively, Petaling sub-basins have a sparser network

as compared with the intricate networks of Cameron highlands sub-basins. These

complexities are better reflected from the fractal dimension values that range

from 1.31–1.58 for Cameron basins, and 1.17 – 1.31 for Petaling basins. These

observations are supporting to infer those Petaling basins, being low lying basins,

possess different geomorphic set up while comparing with that of Cameron basins,

which are higher altitude basins. Fractal dimensions of the abstract structures of

concave zones that are conspicuous in DEMs have not followed exactly the similar

trends of any of the three roughness values (derived using three different SEs), which

are shape dependent. Specifically, higher fractal dimension value of the network

indicates higher space-filling characteristics of the networks.

Significant differences between the values for two distinct physiographic regions,

derived via granulometric analysis of foreground and background regions and

fractal analysis of networks of basins, are observed. These significant variations are

due to the physiographic, geomorphic, geophysical and geologic distinctions. The

terrain complexity measures derived granulometrically are scale-independent, but

strictly shape-dependent as evident from figure 6. In geomorphology, many pro-

cesses are linked with geometric, topologic, and morphologic organization of the

system. The shape-dependent complexity measures that are sensitive to record the

variations in basin shape, topology, and geometric organization of hillslopes provide

potentially valuable insights as compared to that of fractal dimension values. This

framework further facilitates the process of classifying the watersheds based on

these geometrically and topologically significant shape-size based measures.

5. Conclusions

Two popular methods, namely granulometry (frequency of distribution of pro-

trusions and intrusions), and fractal analysis of networks are employed to

characterize basin-wise morphology. The basic difference between these two

methods lies in the media employed. Derivations of granulometry-based complexity

measures are based on sub-watersheds in a spatially distributed elevation model,

where the basins are considered as discrete sub-functions at multiple scales that are

simulated via opening and closing transformations. On the other hand, fractal

dimension of the geophysical channel network represented in binary form is derived

through the box counting method. Both granulometry and fractal techniques are

tested on sub-basins of various sizes and shapes decomposed from DEMs of two

distinct geomorphic regions. Granulometry-based measures provide shape–size-

based content, unlike spectral content that is usually computed based on Fourier

spectral analysis. These complexity measures are unique, and scale invariant.

Terrain classification can be implemented using these measures and fractal

dimension for lower-order sub-basins that are hierarchically decomposed from

higher-order basins. The granulometry-based basin-wise measures have more

practical applications due to the shape-dependent property, which has more direct

implications to explore possible links with the geomorphic processes involved.

Future works on the derivation of direction-specific roughness values is possible

with the use of specific SE and topographic signatures in certain direction. Besides,

open problems in exploring the links between these basin-wise values and field

based results are potential future works.

3376 L. T. Tay et al.
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