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Abstract

Set theory based morphological transformations have been employed to decompose a binary fractal by means of

discrete structuring elements such as square, rhombus and octagon. This decomposition provides an alternative ap-

proach to estimate fractal dimensions. The fractal dimensions estimated through this morphological decomposition

procedure by employing different structuring elements are considerably similar. A color-coding scheme is adapted to

identify the several sizes of decomposed non-overlapping disks (DNDs) that could be fit into a fractal. This exercise

facilitates to test the number–radius relationship from which the fractal dimension has been estimated for a Koch

Quadric, which yield the significantly similar values of 1.67± 0.05 by three structuring elements. In addition to this

dimension, by considering the number of DNDs of various orders (radii) and the mean diameter of disks (MDDs) of

corresponding order, two topological quantities namely number ratio (RB) and mean diameter ratio (RL) are computed,

employing which another type of fractal dimension is estimated as logRB

logRL
. These results are in accord with the fractal

dimensions computed through number–radius relationship, and connectivity network of the Koch Quadric that is

reported elsewhere.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Planar shapes can be decomposed into regular shapes of several sizes. For instance, a square shape can be

decomposed into shapes such as circle, rhombus, and octagon of various sizes. This decomposition facilitates a pro-

cedure to estimate the dimensions, akin to fractal dimension, through a power-law relationship between size or radius,

and number of decomposed and disconnected shapes at a given threshold value. The power law relationship is rep-

resented as Eq. (1).
* Co

E-m

0960-0

doi:10.
Nð6 SnÞ � ðrÞD ð1Þ
where, N , r, and D respectively represent the number of decomposed non-overlapping disks (DNDs) that are smaller

than the structuring element of size Sn, radius and the fractal dimension. In addition to this power-law based fractal

dimension, topological quantities, where the two basic measures such as number of DNDs and mean diameter of disks

(MDDs) of corresponding orders provide another method to estimate fractal dimension. The fractal dimensions that

could be derived from these two methods are treated as unique, since only the internal region of the shape is considered.
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In other words, if the shape of which the dimension is to be estimated is in binary format, for instance shape with 1s,

and its background with 0s, only the region with 1s will be considered by leaving the region with 0s. Mathematical

morphological transformations have been earlier applied to estimate fractal dimensions [1–4]. The application of

mathematical morphological transformations has been shown to deal with the fractal related studies [5–12]. In what

follows in this paper includes basic introduction on mathematical morphology that is required to implement the

decomposition procedures, morphological decomposition of fractal, and an alternative procedure to estimate fractal

dimension, and the obtained results.
2. Morphological transformations

The discrete binary fractal, M , is defined as a finite subset of Euclidean two-dimensional space, lR2 that can admit

values of 1 and 0. Basic morphological transformations such as dilations and erosions are defined as set transformations

that expand and contract a set. These transformations [13] can be visualized as working with two images. The image

being processed is referred to as M and other image being a structuring template (S). Each S possesses a designed shape

that can be thought of as a probe of M . To estimate the dimension through morphological decomposition procedure,

one can consider a probing rule with which the M under study can be decomposed. The probing rules include various

structuring templates (Fig. 1). The four basic morphological transformations include dilation, erosion, opening and

closing are mathematically represented as Eqs. (2)–(5). Dilation and erosions of M by a structuring element S are the

union and intersection of the translates M�s of M where s sweeps S [13]. S is assessed to be a compact set having a finite

number of points. Thus, only finite number of translations of M are required. A brief description of dilation/erosion

procedure follows: For the fractal M , the structuring element S, and the result, three image bit planes are required

respectively. The image plane M is shifted in parallel to the result plane according to the s to S. The result plane holds
the parallel OR or AND of the shifted version of the image bit plane. After all the points of S have been covered, it will

contain the dilation or erosion respectively of the original image. The mathematical representations of these two basic

transformations are shown in Eqs. (2) and (3).
Dilation : M � S ¼ fm : Sm \M 6¼ ;Þ ¼ [s2SMs ð2Þ

Erosion : M � S ¼ fm : Sm � MÞ ¼ \s2SMs ð3Þ
In other words, dilation and erosion transformations respectively combines and subtracts M and S using vector

addition and subtraction of set elements m and s, respectively, m ¼ ðm1; . . . ;mN Þ and s ¼ ðs1; . . . ; sN Þ being N -tuples of

element co-ordinates. Then, the dilation and erosion of M by S are respectively the set of all possible vector sums and

subtractions of pairs of elements, one coming from M and the other from S. This dilation of M by S is defined as the set

of all points m such that all translates of m by s ðSmÞ intersects M as shown in Eq. (2). The erosion transformation of M
by S is defined as the set of points m such that the translated Sm is contained in M , and is expressed as in Eq. (3). By

employing these two transformations, opening and closing are defined respectively as Eqs. (4) and (5). The dilation

followed by erosion is called closing transformation. Cascade of erosion–dilation is called opening transformation.
Opening : M � S ¼ ðM � SÞ � S ð4Þ
By duality, the closing of M by S comes from dilation first and then erosion.
Closing : M � S ¼ ðM � SÞ � S ð5Þ
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Fig. 1. Discrete structuring elements (a) square, (b) rhombus, and (c) octagon in IR2.
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Fig. 2. Diagrammatic representation of basic morphological transformations (a) erosion, (b) dilation, (c) opening, and (d) closing.
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In Eqs. (2)–(5), M is a fractal shape, m and s are set elements respectively, m1; . . . ;mn ¼ m and s1; . . . ; sn ¼ s; Sm is

translates of all m points by S, and �, �, �, � respectively denote Minkowski’s addition, subtraction, and symbols for

opening and closing. Definition of the morphological transformations, which appear in (2)–(5) can be found in [13]. The

Minkowski’s addition and subtraction are similar to morphological dilation and erosion respectively under the con-

dition that S ¼ bS . These transformations can also be carried out according to the multiscale approach [14] in which the

cascades of erosion–dilation and dilation–erosion are defined with respect to the structuring element S with scaling

factor n. In this approach, the size of the structuring template will be increased from iteration to iteration as shown in

Eq. (6).
Sn ¼ S � S � S � � � � � S|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ntimes

ð6Þ
Fig. 2 depicts the diagrammatic representation of these morphological transformations that are used in the discrete

morphological decomposition procedures described in Section 3.
3. Morphological decomposition: fractal dimension

To estimate the fractal dimension [15] of a fractal, a procedure, based on morphological decomposition that includes

systematic use of multiscale opening and simple logical operators is adapted. Morphological decomposition of a fractal

in to a union of disks is performed in the following way. The set of maximum inscribable disks in the fractal (M), that

have the maximum radius, is found. This identified set, the first level, of decomposed fractal (or) conveniently we termed

it as nth order decomposed DNDs. The ðn� 1Þth order DNDs is obtained in the following way. The nth order DND is

subtracted from the M . Then the set of the maximum inscribable DNDs in the remaining of the fractal, that have the

maximum radius, is found. This set is the second level of decomposed fractal, (or) ðn� 1Þth order DNDs. The first and
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second level sets of the DNDs are subtracted from M , and the procedure is repeated until the reminder of M becomes

empty set. This entire decomposition procedure is described in a mathematical way by following Eq. (7).
M2 ¼ M1 nM1 � Sn
M3 ¼ M2 nM2 � Sn
Mn ¼ Mn�1 nMn�1 � Sn and Mnþ1 ¼ Mn nMn � Sn
*

SN
n¼0 Mn ¼ M and * Mnþ1 ¼ /

MDecomp ¼ ðM � SnÞ [ ðM1 � SnÞ [ ðM2 � SnÞ [ � � � [ ðMn�1 � SnÞ
* Mn 	 Mn�1 	 � � � 	 M3 	 M2 	 M1 	 M

9>>>>>>>=
>>>>>>>;

ð7Þ
After performing n times of multiscale opening on M , which is subjected to estimation of fractal dimension, the opened

M needs to be subtracted from the original M . This can be achieved by simple logical operation, which is represented as

the symbol ðnÞ. If nþ 1 times are required to vanish a set M , n times of multiscale openings need to be performed to

decompose M and successively achieved subtracted portions of the shape. On each subtracted portion, nþ 1 times of

multiscale opening should vanish the respective M . Number of subtracted portions that may appear while decomposing

M depends on its size and shape, and of the structuring template with its characteristic information. Morphological

decomposition gives the possibility to represent a fractal as union of simple objects. Each of these object is completely

described by the locus and the radius of the corresponding disks. To have a better understanding of the superficially

simple morphological transformations, various steps involved in morphological decomposition, and the subsequent

procedures to estimate fractal dimensions through a number–radius relationship (1) and topological quantities (8)–(11),

have been shown in flowchart (Fig. 3). The implementation of sequential steps involved in decomposing the shape is

also diagrammatically depicted (Fig. 4).
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Fig. 3. Flowchart showing the sequential steps.



Fig. 4. A square shape that is decomposed by means of a rhombus structuring element.
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3.1. Dimension based on two topological quantities

By employing the two topological quantities such as N(DNDs) and MDDs, number ratio (RB) and MDD ratio (RL)

can be computed by Eqs. (8) and (9).
RBðn;NÞ ¼ Number of DNDðn;NÞ
Number of DNDðnþ 1;NÞ ; n ¼ 1; 2; . . . ;N � 1 ð8Þ

RLðn;NÞ ¼ MDD of Sðn;NÞ
MDD of Sðn� 1;NÞ ; n ¼ 2; 3; . . . ;N ð9Þ
Eqs. (10) and (11) are to compute RBðNÞ and RLðNÞ.
RBðNÞ ¼
PN

n¼1 RBðn� NÞ
N � 1

ð10Þ

RLðNÞ ¼
PN

n¼1 RLðn;NÞ
N � 1

ð11Þ
By considering RBðNÞ and RLðNÞ computed by considering DNDs and MDDs for the three structuring elements, fractal

dimensions ðDÞ can be computed by following Eq. (12).
D ¼ logRB

logRL

ð12Þ
Fig. 5. Binary Koch quadric fractal.



Fig. 6. Fractal decomposition (a, b, c) by means of square, rhombus and octagon respectively, (d, e, f) the transition lines between the

color-coded decomposed regions.

568 P. Radhakrishnan et al. / Chaos, Solitons and Fractals 21 (2004) 563–572



Table 1

Fractal dimensions estimated from number–radius power-law relationship

Primitive structur-

ing template

Cycle no./radius Cumulative number

of DNDs (N (6 S))
Log(r) LogN (6 S) Fractal dimension

(D)

Square 42 1 1.623249 2.782473 1.6726

27 5 1.431364 2.49693

15 9 1.176091 2.09691

13 12 1.113943 1.929419

12 13 1.079181 1.826075

11 16 1.041393 1.732394

10 17 1 1.716003

8 26 0.90309 1.414973

7 52 0.845098 1.230449

6 54 0.778151 1.20412

5 67 0.69897 1.113943

4 85 0.60206 1.079181

3 125 0.477121 0.954243

2 314 0.30103 0.69897

1 606 0 0

Rhombus 63 1 1.799341 1.908485 1.6199

40 5 1.60206 1.812913

22 6 1.342423 1.78533

21 7 1.322219 1.681241

20 8 1.30103 1.612784

15 12 1.176091 1.322219

11 21 1.041393 1.079181

10 41 1 0.90309

9 48 0.954243 0.845098

7 61 0.845098 0.778151

6 65 0.778151 0.69897

5 81 0.69897 0

Octagon 26 1 1.414973 2.502427 1.6754

15 5 1.176091 1.892095

8 9 0.90309 1.763428

6 13 0.778151 1.579784

5 21 0.69897 1.322219

4 38 0.60206 1.113943

3 58 0.477121 0.954243

2 78 0.30103 0.69897

1 318 0 0
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Fig. 7. Fractal plots between number of decomposed portions and radius of the structuring elements (a) square, (b) rhombus, and (c)

octagon.
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Table 2

Fractal dimensions estimated through two topological quantities

Structuring

element

Order-wise no. of DNDs Order-wise MDDs RB RL logRB= logRL

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Square 292 189 68 41 8 4 1 2 4 8 15 28 54 84 2.8513 1.870 1.6725

Rhombus 33 27 13 7 1 8 16 32 64 126 3.0390 1.9921 1.6127

Octagon 240 56 12 8 1 4 18 27 61 104 4.6130 2.4910 1.6754
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4. Results and conclusion

As a sample study to implement the framework thus described in the previous section, a Koch Quadric [15] binary

fractal is considered. The geometrical properties of M and its complement (M c) are subjected to the morphological

functions explained briefly earlier. This fractal of size 512· 512 (Fig. 5) is decomposed into simpler non-overlapping

shapes, of several sizes, by employing discrete square, rhombus, and octagon structuring elements. The fractal after

decomposition by means of these structuring elements has been color-coded for better understanding, and shown in Fig.

6(a), (b), (c) respectively. These color-coded DNDs of all orders, achieved respectively by these structuring elements,

and the interfaces between the different orders of these DNDs are shown in Fig. 6(a)–(f). The number of decomposed

patterns of square, rhombus, and octagon of respective sizes has been given in the Table 1. The smaller the size of the

primary pattern that is used to decompose the fractal, the larger the number of cycles that the fractal is required to be

decomposed. Hence, it is apparent that the number of cycles is more while decomposing with rhombus, and followed by

square and octagon. This is due to the fact that the size of the primary structuring element of octagon is larger than that

of square, and of rhombus. The sequence of cycles can also be visualized as growth stages of fractal. The number–radius

power-law relationship is shown for the fractal that is decomposed with these structuring templates. The power-law

relationship represents Nð6 SnÞ � ðrÞD. The power exponent D stands for the fractal dimension. The D is estimated from

the graphs plotted between the logarithms of radius and the number of decomposed portions of all sizes as 1.67 with all

the three structuring elements. The graphical plots are given in Fig. 7. The fractal dimension estimated from the

number–radius power law relationship yields the considerably similar values of 1.67 (Table 1) with all the three different

structuring elements. However, the fractal dimension estimated by box dimension method yields the value of 1.72,

whereas the box counting dimension for the boundary of the same fractal is estimated as 1.5.

After redistributing the total DNDs of all size categories of M , that are decomposed by means of discrete square,

rhombus, and octagon structuring elements, the total number of orders (N ) yield respectively 7, 5, and 5. The mean

diameters of the corresponding disks are also estimated from the number of cycles performed in each level of

decomposition. Number of DNDs existing in between the redistributed successive levels of decomposition with cor-

responding orders is computed. By employing these two topological quantities, number ratio (RB), and MDD ratio (RL)

are computed by following Eqs. (8)–(11). By considering RBðNÞ and RLðNÞ computed by considering DNDs and MDDs

for the three structuring elements, fractal dimensions (D) are also computed by following Eq. (12). The results are given

in Table 2. These results are in accord with the fractal dimensions computed through number–radius relationship, and

connectivity network of the Koch Quadric that is reported elsewhere. Method of estimating fractal dimension through

morphological decomposition is most appropriate to characterize pore structures or porous media [16]. For instance, a

section containing pore and grain regions, to estimate the fractal dimension of the pore, this method decomposes only

pore region without considering the grain part.

A new fractal dimension estimation technique is proposed. It is based on mathematical morphology and it can

decompose binary fractals into a union of simple disks. This method, based on morphological decomposition is unique

in the sense that it considers the topological region rather than its geometric boundary.
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