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Abstract

Fractal-skeletal based channel network (F-SCN ) model, which describes how the boundary of
the basin constrains the channel network evolution, produces a channel network pattern that
obeys Horton’s laws. The statistical features of this model conform well with real networks.
For this F-SCN that depends on general shape of the initiator-basin, generating mechanism
and rule, and the nature of skeletonization process, the estimation of fractal dimension (D) is
LogRB/LogRL. The estimated D, 1.76 is approximated to the observed value, 1.8.

1. INTRODUCTION

The corrugations in the basin outline can be vi-
sualized as topographic undulations. These un-
dulations can be treated as the crenulations that
are the flow paths of streams. It implies that the
number of crenulations in the top most contour in

the catchment is equal to the number of first order

stream segments. After flowing to certain distance,

two first order streams join to form a second order

stream, the flow path of which is another crenula-

tion, wider than that of the previous lower order

crenulation. There will be less number of higher
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order channels than the lowest or lower orders, and
also the crenulations. The two tributary branches
arising at a stream segment bifurcation often dif-
fer in width, length and angle, leading to a highly
heterogeneous structure. Although the basin shape
is nearly the same, with a change in resolution,
the existing stream orders in the small scale map
will change in the corresponding large scale map.
Hence, the process of stream order designation will
be disturbed with a change in scale. If there are Ω
orders in a basin of small scale, obviously Ω + n (n
being scale-dependent) orders will be identified in
the corresponding basin of larger scale.

One of the prevalent patterns of fractal trees is
channel networks.1 In the pattern of channel net-
work, a channel continues to branch over many
generations, and each of the smaller scale stream
segments when magnified resemble the channel net-
work as a whole. This property is termed “self-
similarity.” The stream network between trunk
stream and twigs exhibits this property. The com-
plex structure of the channel network sets the query
why tributaries extend and bifurcate the way they
do. The geometric pattern of such a stream net-
work can be viewed as a “fractal” with a frac-
tional dimension,1 which can be employed as the
basis of comparison of river basins. The quan-
titative expression of the drainage basin plays a
consequential role in comprehending hydrological
responses. To understand hydrological responses,
several river network models that have originated
from several concepts such as stochastic approach,
invasion percolation theory, random theory, diffu-
sion equations, cellular automata, diffusion limited
aggregation (DLA) approach, an advective diffusion
approach, and fractal-skeletal based theory have
been developed in the last decade.2–19

Since the existing morphological skeleton within
the fractal river basin is similar to the channel net-
work pattern, this model is termed as a fractal-
skeletal based channel network (F-SCN ) model.
However, this short note is an extension of the au-
thors works. In the earlier work, a fractal relation
of a morphological skeleton has been shown.18 In
the later works,19 a deterministic approach has been
followed to establish relationships among morpho-
metric parameters of the F-SCNs where the regular
sided initiator-basins (4 < N <∞, N being a num-
ber of sides of the polygon) have been considered.
However, the present paper deals with F-SCNs
in a triangular initiator-basin to test whether the
F-SCN follows Horton’s laws, and to compute

the fractal dimension by considering two morpho-
metric quantities, namely bifurcation and length
ratios. The organization of this short note is
as follows. Section 2 deals with certain basic math-
ematical morphological transformations that are
needed to extract channel network and the Horton’s
laws of stream number and length. In Sec. 3, F-SCN
model is described, and a case study with results is
furnished in Sec. 4.

2. MORPHOLOGY AND
HORTON’S LAWS

2.1 Mathematical Morphology

Certain important transformations from the field
of mathematical morphology such as erosion, di-
lation and opening transformations are presented.
Mathematical morphology20 based on set theoretic
concepts is a remarkable approach in the analy-
sis of geometric properties of different structures.
The discrete binary image, M , is defined as a
finite subset of Euclidean two-dimensional space,
IR2. The geometrical properties of M , which
contained fractal basin (set) and non-fractal zone
(set complement), were subjected to morphologi-
cal functionals by means of a defined sub-image
that is here by termed as a structuring element
(S). Constraints that correspond to the four prin-
ciples of the theory of mathematical morphology,20

such as invariance under translation, compatibility
with change of scale, local knowledge and the up-
per semi-continuity, are important in morphological
transformations — erosion to contract, dilation to
expand and cascade processes performed by means
of structuring element. M and S are sets of Eu-
clidean space with elements m and s, respectively;
m = (m1, . . . , mn) and s = (s1, . . . , sn) being n-
tuple elements, morphological set transformations
can be performed on M by means of S. The two
basic morphological transformations, namely dila-
tion and erosion can be performed based on the
Hit or Miss principle.20 The dilation [Eq. (1)] and
erosion [Eq. (2)] of M by S are defined as the set of
all points m that the translated Sm intersects and
contains in M . Ensuing are the mathematical and
diagrammatic (Figs. 1 and 2) representations of
these transformations.

Dilation: Let M and S be sub-images of Euclidean
plane, IR2. The dilation of an image, M , with
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Fig. 1 Diagrammatic representation of morphological dilation process.
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Fig. 2 Diagrammatic representation of morphological erosion process.

structuring element, S, is defined as

M ⊕ S = {m : Sm ∩M} =
⋃
s∈S

Ms . (1)

Figure 1 shows the sequential steps involved in the
process of dilation of M by means of a structuring
element. A bounded S (Fig. 1), a circle in four-
connectivity grid, that possesses a designed shape

that is thought of a probe of M was used as a struc-
turing element. All translates of M by S during di-

lation process are also digrammatically represented
in Fig. 1.

Erosion: Let M and S be sub-images of Euclidean
plane, IR2. The erosion of an image, M , with
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structuring element, S, is defined as

M 	 S = {m : Sm ⊂M} =
⋃
s∈S

Ms . (2)

Erosion of set M by structuring element S is dia-
grammatically shown along with all the translates
in Fig. 2.

As structuring element S = Š, Minkowski’s
addition and subtraction are equivalent to morpho-
logical dilation and erosion, respectively. The con-
sidered structuring element S = Š in the present
study. Two consecutive erosions and dilations can
be respectively represented as (M	S)	S = M	S2

and (M ⊕ S) ⊕ S = M ⊕ S2. The erosion followed
by dilation is called opening transformation. How
these basic morphological transformations are em-
ployed to extract channel networks [Eqs. (7) and
(8)] from a simulated fractal basin are elucidated
both mathematically and diagrammatically.

2.2 Horton’s Laws of River Networks

In the geomorphological analysis of river networks,
scaling properties are defined by Horton’s laws,21–23

and Strahler’s22 stream ordering yields the bifur-
cation stream number, and the stream length ra-
tios. Horton’s laws of channel network composition,
stated in terms of Strahler’s ordering technique, is
considered here. A system of ordering that recog-
nizes the existence of hierarchy among the sepa-
rate segments is therefore assumed to represent the
structure of channel networks. This postulates that
source channels are of order 1, and when two chan-
nels of order i and j merge, a channel of order ω is
formed, with

ω = max{i, j, Int[1 + (1/2)(i + j)]} (3)

where function Int[ ] denotes the integer part. Fol-
lowing Eq. (3), when two channels of equal order
join, a stream of the next order is formed, and when
two streams of different orders join, the continuing
channel retains the order of the higher-order chan-
nel. Horton’s laws are described to appreciate their
application in the F-SCN model. These empirical
laws of stream numbers, and stream lengths23 state
that the bifurcation ratioRB, and the stream length
ratio RL are constant for homogeneous river basins.
Estimates of these ratios can be obtained from the
slopes of the straight lines resulting from logarith-
mic plots of the transformed values of N(ω, Ω), and
L(ω, Ω), versus order ω, for ω ranging from 1 to Ω.

Bifurcation ratio (RB) is the ratio of number of
stream segments of a given order N(ω − 1, Ω) to
the number of streams to the next highest order,
N(ω, Ω).

N(ω − 1, Ω)

N(ω, Ω)
= RB ω = 2, . . . , Ω . (4)

Stream length ratio (RL) is the ratio of mean length
of segments of order ω, L(ω, Ω) and mean length of
segments of the immediate lower order, L(ω−1, Ω).

L(ω, Ω)

L(ω − 1, Ω)
= RL ω = 2, . . . , Ω (5)

where N(ω, Ω) is the number of streams of order
ω in a basin of order Ω(N(Ω, Ω) = 1); L(ω, Ω) is
the average length of stream order ω; RB and RL
are Horton’s bifurcation and length ratios, respec-
tively. These two standard morphometric quanti-
ties expressed in Eqs. (4) and (5) are directly used
to compute the fractal dimension (D) of the river
network24 as follows:

D = LogRB/LogRL . (6)

3. FRACTAL-SKELETAL BASED
CHANNEL NETWORK
(F-SCN) MODEL

The river network pattern is determined due to
boundary constraints. The river network paths
can be defined as the union of all possible crenula-
tion points that belong to successive erosion front-
lines of the basin. From the cartographic point of
view, crenulations are the protrusions that can be
seen in a topographic contour as Λ- and V-shaped
portions. These protrusions are the crenulations
through which the river network flows. Hence, any
basin outline needs to be simulated keeping this as-
pect in view. The basin outline should possess these
crenulations. The number of crenulations increase
with increasing resolution. However, it is a known
fact that the area of the basin does not change with
the change of scale. Hence, a typical generating
mechanism that preserves the area as constant with
increasing iterative process is employed to simulate
the basin at different scales. Although the basin
area does not change, the length of internal abstract
structure, which is referred to as channel network
in this paper, varies with succession of scale change.
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To generate a model that conforms to the nat-
ural river basin, at least in statistical sense, it is
essential to have the broad outline of the basin
in the form of a polygon (i.e. an initiator), and
the generating mechanism which transforms the ini-
tiator as a fractal basin. Generating mechanism
needs to be designed by considering the following
conditions.

(a) Area of the basin should be constant under
succession of change in scale.

(b) The basin outline should possess increasing
number of crenulations with increasing number
of iterations.

(c) With iterative process to simulate basin
outlines, the basin outlines should not self-
intersect.

(d) The length of river network should increase with
increasing iteration.

The generating mechanism plays an important
role while transforming the initiator as a fractal
basin. Homogeneous and heterogeneous channel
network patterns result respectively by symmetric
generator with non-random rule, and either sym-
metric or asymmetric generator with random rule.
Also, the characteristics of the network depend on
the overall shape of the initiator-basin. Asymmet-
ric fractal basins arise due to asymmetric outline
of the initiator, and due to generating mechanism
as well as the adopted rule to transform the initia-
tor as fractal basin. The accuracy in simulation of
stream network depends on the generating mech-
anism, which includes the deterministic quantities
like bifurcation ratio, stream length ratio and an-
gle of divergence, the concept of skeletonization,
and the rule (either random or non-random). This
model has two sequential phases.

3.1 Fractal Basin Generation

To generate fractal basins with fractal dimensions
ranging from 1 to 2 in two-dimensional space, one
begins with two shapes: (1) broad outline of the
basin as polygon, an initiator-basin, and (2) a gen-
erator. The latter is an oriented broken line made
up of N equal sides of length r.1 Each stage of the
construction begins with a broken line and consists
in replacing each straight interval with a copy of
the generator, reduced and displaced to have the
same end points as those of the interval being re-

placed. In all cases, D = LogN/Log(1/r). Step
0 is to draw the segment of length (0, 1), which is
one side length in the initiator-basin. Step 1, is to
draw the kinked curves each made up of N inter-
vals superposable upon the segment. Step 2, is to
replace each of the N segments used in step 1 by
a kinked curve obtained by reducing the curve of
step 1 in the ratio r(N) = 1/r. One obtains all to-
gether N2 segments of length 1/(r)2. Iterating this
process adds further details. This process of gener-
ating fractal basin is based on the principle involved
in the generation of Koch curves by considering the
bounded initiator-basin. The boundary of the frac-
tal basin possesses many crenulations referred to
as supremums and infemums of which the connec-
tivity network of the former is considered as flow
path of the stream network. These crenulations in
the outline of the fractal basin, and in the succes-
sive erosion frontlines determine the whole channel
network pattern.

3.2 Channel Network Extraction

Channel network, a line thinned caricature that
summarize the shape, size, orientation and connec-
tivity of the basin can be extracted from the fractal
basin. Components of such networks include tra-
ditional characteristics of shape in two-dimensional
space. The channel network, CH(M), of a fractal
basin, (M), viewed as a subset of IR2 (Euclidean
space), can be defined mathematically as

CHn(M) = (M 	 Sn)\{[(M 	 Sn)	 S]⊕ S}
n = 1, 2, . . . , N (7)

CH(M) =
N⋃
n=0

CHn(M) (8)

where CHn(M) denotes the nth channel subset of
fractal basin (M). In the above expression, sub-
tracting from the eroded versions of M , their open-
ing by S retains only the angular points, which are
the channel points or subsets in this model. The
union of all such possible channel points produces
F-SCN. The structuring element (S) used in this
channel network extraction from the simulated frac-
tal basin is rhombus type. The diagrammatic rep-
resentation of the steps involved in Eqs. (7) and (8)
has been shown in Fig. 3.
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Fig. 3 (a) Structuring element, (b) hypothetical basin, (c) eroded basin, (d) erosion of eroded basin, (e) opening of eroded
basin, (f) channel subsets of order zero, (g) channel subsets of first order, and (h) channel network of a hypothetical basin
shown in (b).

In other words, this algorithm is aimed to ex-
tract the set of all the centroids of the maximal
disks that can be inscribed inside the basin, with a
condition that the disk is maximal if it is not prop-
erly contained in any other disk totally included in
the basin. Hence, a maximal disk must touch the
boundary of the basin at least at two different points
of the basin outline. The union of these centroids
of the maximal disks inscribable in a fractal basin
is F-SCN.

4. CASE STUDY, RESULTS
AND CONCLUSIONS

The simulations have been carried out by consider-
ing a triangular initiator-basin (Fig. 4) with ver-
tices at the bottom as outlet, and a generating
mechanism shown in Fig. 5. Keeping the four con-
ditions in view, a generating mechanism, which
is akin to Koch generator, is defined (Fig. 5) to
transform initiator-basin as a fractal basin. The
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Fig. 4 A triangular initiator basin. Fig. 5 A generating mechanism.

(a) (b)

(c) (d)

Fig. 6 (a), (b) and (c) Fractal basins after respective iterations. (d), (e) and (f) An evolutionary sequence of F-SCNs
after respective iterations.
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(e) (f)

Fig. 6 (Continued )
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Fig. 7 Statistical results of F-SCNs from triangular initiator-basin. (a) The log of the number of channel segments of a
given order plotted against that order, and (b) the log of the average length of channel segments of a given order plotted
against that order. Horton’s laws state that a natural drainage basins will yield a linear relation on each graph.

simulated fractal basin outline, at different resolu-
tions, possesses crenulations of various orders. To
extract the morphological skeleton, which is re-
ferred to as channel networks, from the fractal basin
by extracting all possible crenulations from all pos-
sible erosion frontlines of the fractal basin, a set
of simple morphology-based equations described in
Sec. 2.1, have been applied to generate F-SCNs
from the fractal basins [Figs. 6(a)–(c)] thus simu-
lated. An evolutionary sequence of F-SCNs is given
in Figs. 6(d)–(f). In this model, the study of bound-
ary constrained growth of drainage is given em-

phasis. It is observed that the competition among
the sub-networks is due to the dominance of a few
major stream systems. Furthermore, the organiza-
tion of the channel networks appears more expedi-
tiously relative to the total number of possible iter-
ations. By the third iteration, the maximum order
of the networks (Ω = 7) has been established, and
under subsequent iterations the lower order chan-
nels occupy more space. As opined by Rodriguez-
Iturbe et al.15 in the context of developing a frame-
work of river basin morphology based on OCNs
and in the present F-SCN model, the boundary of
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the basin clearly forces the development of channel
networks. Figure 6(f) bears a striking qualitative
resemblance to the natural channel networks. Sim-
ilar to the patterns of headward erosion seen in
nature, F-SCN growth produces headward evolv-
ing channel patterns with increasing number of
iterations. The dependencies of number and
mean length of channels on order number for
F-SCNs after third iteration are plotted. A linear
relationship [Figs. 7(a) and (b)] is observed in both
the plots, which indicates that the F-SCNs follow
Horton’s laws.

The variation of the channel density with in-
creasing number of iterations also indicates that the
F-SCN is Hortonian. Using Eqs. (4) and (5),
the bifurcation ratio (RB) and the stream length
ratio (RL) are computed as 2.74 and 1.78, respec-
tively. The computed value of the fractal dimension
from Eq. (6) is 1.76 which is near to the observed
value 1.8.

The F-SCN model produces channel networks
that bear a strong resemblance to real networks,
evolve headward through time, and yields a frac-
tal dimension of 1.76 that is less than the frac-
tal dimension value of 2 for space-filling channel
networks. As the considered initiator-basin is of
triangular type, and the generating mechanism
maintains the constancy of the area during the suc-
cession of changes, and the channel network pat-
tern that arises is of the dendritic type. The
mechanism involved is analogous to the mechanism
operating in a natural drainage system. More nat-
ural channel networks may be simulated by con-
sidering either asymmetric generating mechanism
with a random rule or irregular initiator-basin, or
both, and the varied characteristic information of
the structuring element (S). The characteristic in-
formation of structuring element plays a vital role in
the skeletonization process that extracts the chan-
nel networks from the simulated fractal basin at a
specific scale. The potential applications of fractals
to develop algorithms for modeling drainage mor-
phogenesis can be studied. The utility of this ap-
proach is that one can explore developmental and
morphogenic hypothesis with varying initiator, gen-
erator specifications, structuring element charac-
teristics, skeletonization process and the involved
rule to transform the initiator by a generator as a
fractal basin.
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