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A fractal-skeletal based channel network (F-SCN) model is proposed. Four regular sided
initiator-basins are transformed as second order fractal basins by following a specific
generating mechanism with non-random rule. The morphological skeletons, hereafter
referred to as channel networks, are extracted from these fractal basins. The morphometric
and fractal relationships of these F-SCNs are shown. The fractal dimensions of these fractal
basins, channel networks, and main channel lengths (computed through box counting
method) are compared with those of estimated length—area measures. Certain morpho-
metric order ratios to show fractal relations are also highlighted.
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1 INTRODUCTION

The stream network is an example of a structure
having multiple complexity. Accurate morphologi-
cal description of such a complex structure using
mathematical models is difficult. Mandelbrot
(1982) was the first to present stream network,
which possesses statistical self-similarity, as a
fractal. In the stream network, the high degree of
geometrical organization conveys several orders of
magnitude in size from the trunk stream to minor
twigs. The number of branching orders varies
depending on the physiographic set-up of the stream
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basin. Within the basins, the pattern of stream

network is geologically determined which reveals

the potential applications of fractals to develop

algorithms for modelling drainage morphogenesis.
The aim of this study is twofold.

e To establish that the generated fractal-skeletal
based channel networks (F-SCNs) with a center
as an outlet (glory hole), follow morphometric
and fractal relations that are established/pro-
posed in the context of river networks, and to
show that F-SCNs follow Horton’s laws of
river networks.
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e To find out the converging points of fractal
dimensions of the fractal basins and their
corresponding channel networks.

The scheme of this paper is to first present the
Horton’s laws, and various fractal relations pro-
posed with various river network models. The
second section discusses the F-SCN model. Certain
mathematical morphological transformations that
are needed to implement the skeletonization con-
cept to extract channel network from the generated
fractal basin is presented. In the third section,
fractal relations of F-SCNs thus generated were
verified to test the plausibility of the model to
ensure that the model produced a network with
properties that are of Hortonian system.

Structure of the Network Model

To characterise the channel network, the morpho-
metric procedures proposed by Horton (1945) and
Strahler (1957) are employed. The Strahler’s
ordering technique was adopted to designate the
orders of channel network to compute certain
important dimensionless ratios like bifurcation
ratio (Rg), channel length ratio (Rp), and area
ratio (Ra).

Strahler’s Stream Ordering

The order of the stream ranges from 1 to n. All
finger tips are designated as first order streams.
Two first order segments unite to form a second
order branch. A third order is formed by joining
two second order segments, but may be joined by
additional first or second order segments. Two
third order segments join to form a fourth order
segment, and so on. The source streams of order 1
and when two streams of order i and j, respectively
merge, a stream of order w is formed, with

w =max{i,j, Int[l + (1/2)(i +j)]}, (1)

where function Int[ ] denotes the integer part of the
argument.

List of Symbols, Nomenclature and
Morphometric Parameters

Order of the channel network
of the basin

Number of channel segments  N(w)
of order w

Channel length of order w L(w)

Area of channel segments of  A(w)
order w

Total number of channels in ~ N(£2)
the basin of order Q2

Area of the basin of order Q@  A(Q)

Mean length of channel
segments of order w
Mean area of channel
segments of order w
Main channel length of I(€2)
the basin of order {2
Total length of the channel
network in the basin of
order ()
The fitted exponent between
area and total length of
channel network
The fitted exponent between  «
area and main channel length
Perimeter of the basin P
Circularity ratio (R.) A(w, Q)/m(P/6.3)>.

L(w, )/ N(w, 2)

A(w, Q)/N(w, 2)

L(©)

Hortonian River Networks

In the geomorphological analysis of river net-
works, scaling properties were defined by Horton’s
laws (Smart, 1972), Strahler’s ordering (e.g. Smart,
1972; Shreve, 1967) yield the bifurcation stream
number law.

Bifurcation ratio (Rg) is the ratio of the number
of channel segments of a given order N(w, §2) to the
number of streams to the next highest order,
Nw-1,9) (2)

N(w—1,9)

Nw) R

w=2,...,0. (2)
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Stream length ratio (Ry) is the ratio of mean
length of segments of order w, L(w,2) and mean
length of segments of the next lower order,
L(w—1,9) (3) and the stream length law

where N(w, 2) is the number of streams of order w
in a basin of order Q(N(,Q=1); L(w,Q) is the
average length of streams of order w; and Rg, Ry
are Horton’s numbers of bifurcation and length
respectively.

Stream area ratio (Ry) is the ratio of mean area
of segments of order w, 4(w,2) and mean area of
segments of the next lower order, 4(w — 1,Q) (4).

The law of stream areas was proposed by
Schumm (1956)

where A(w) is the average area drained by each w
order stream and Ry is the stream area ratio. The
area A(w, 2) is normally taken to include not only
the area drained directly by the particular stream of
order w but also that drained by all of its tributaries
of lower order. The law of stream areas suggests
that Rp > Rg. This follows from the fact that
A(w) > RgA(w —1), so that A(w) > (Rp/Ra)A(w).

The empirical laws of stream numbers, stream
length (Horton, 1945), and stream areas (Schumm,
1956) which enunciate the bifurcation ratio Ry, the
stream length ratio Ry, and the stream area ratio R
are constant for the homogeneous river basins. Esti-
mates of these ratios can be obtained from the slopes
of the straight lines resulting from plots of logarith-
mic transformed values of N(w,?), L(w,?), and
A(w, Q) versus of order w, for w ranging from 1 to €.
Channel network density: The channel density p
was calculated by following expressions (5)

p=L(Q2)/4(2), (5)

where A(€2) and L(2) be the finite measures of the
basin area and are of total channel network (i.e.,
scale dependent).

Channel frequency: Channel frequency, F, was
calculated by Eq. (6) proposed by Strahler (1957):

Q
F=Y Nw)/AQ). (6)
w=1

Melton’s law: The Melton’s law (Smart, 1972) (7)
relates the channel frequency (6) to the square of
the channel density (5) with a value of about
0.69. This law is of interest to test how closely a
Horton system obeys Melton’s law:

Zgzl N(w, Q)/A(Q) — E ~ (.69 (7)
(LOQ)/Aw, Q) o

This law applies for basins of higher order if
Rg> Ry and Rpo/Rg=1, or Rg< Ry and (RgRA/
Ry)=1.

There are two proposed methods to test if a
model is Hortonian or non-Hortonian. The former
is based on Melton’s law. Marani et al. (1991),
postulate that this law is asymptotically true within
a Peono system, which is a non-Hortonian system
(Beer and Borgas, 1993). The later method is to
examine the channel density. In a non-Hortonian
system like the Peono system the channel density
does not vary with scale (Marani et al., 1991),
whereas in a Horton system it does.

Fractal Description of River Networks

Several papers have been presented of late which
address the fractal description of stream network
(La Barbera and Rosso, 1987; Tarbotan et al.,
1990; Rosso et al., 1991; Marani et al., 1991; Masek
and Turcotte, 1993). These researchers proposed
various derivations, based on heuristic arguments
to compute fractal dimensions by considering
bifurcation and length ratios and certain length—
area measures. However, the river network models
developed by various researchers some relation-
ships have been constituted by means of showing
certain similarities based on morphometric param-
eters as well as fractal and multi-fractal measures.
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The fractal-skeletal based channel network
(F-SCN) model is an extension of the previous
work (Sagar, 1996) in which preliminary study
has been carried out to show certain fractal
relationships.

Length—area measures: The dependence of the
river areas (A), river lengths (L), and basin
perimeter (P), on the Strahler (1957) order can be
measured for the river network models. A large
number of power law relationships between the
characteristics of river networks have been pro-
posed. The exponents of «a, 3 may be estimated
through the length—area relations (8)—(10). The
fractal dimension of the main channel length was
computed using length—area measures. The main
channel length, / and area, A4, are related (8) as
follows:

[~ A% (8)

Hack (1957) found that the above equation
described quite well the relationship between the
area and length of a river in Virginia and Mary-
land and that the exponent « had a value of
about 0.6. Since river basins have a compact
geometry the above equation (8) suggests that the
main steam length of a river can be described as a
fractal with a dimensionality, d (9) given by
Mandelbrot (1982):

d=2a. 9)
The area and total stream length appear to be
related by (10),

L~ A" (10)

where L denotes the total length of streams in the
basin of area 4. ( is a fitted exponent.

Fractal Measures based on Morphometric
Order Ratios

La Barbera and Rosso (1987, 1989) based on
intuitive arguments showed the fractal dimension
(D) of stream networks to be as proposed in

Eq. (11)

D, =log Rg/log Ry,
Dy =1, Rg <Ry

Rpg > Ry, (1)

Commenting on the work of La Barbera and Rosso
(1987), Tarbotan et al. (1990) proposed a new
derivation (12) as follows:

D; = d(log Rg/log Ry), (12)

where d=fractal dimension of the main stream
length. Feder (1988) also indicated that the fractal
dimension and main river length should be related
to the bifurcation ratio (Rp), length ratio (Ry) and
stream area ratio (Ra) of the river networks
respectively. This is expressed as

D; =2(log R/ log Rg),
D; =2(log R./log Rp),

Rp > Ra,

13
R < Ra. ( )

Rosso et al. (1991) introduced the definition of Dy
(14) as follows:

log Rp
D :2 Py R Z R b
P logRy RS (14)
Dy =2, Rp < Ra.

Stark (1991) heuristically argued that D4 can have
no hydrological relevance to a Horton system
because it implies an area that tends to infinity as
the order tends to infinity. However, it is true that
any river basin with finite area as the resolution is
refined, though the total length may diverge.

2 FRACTAL-SKELETAL BASED
CHANNEL NETWORK (F-SCN) MODEL

The stream network is the pattern of stream
branches that is determined by inequalities of
outline of the basin. The wrinkles in the basin
outline may be visualised as topographic undula-
tions. These undulations are treated as the crenula-
tions in the elevation contours which are the flow
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paths of streams. It implies that the number of
crenulations on the top most contour in the
catchment is equal to number of first orders. After
flowing to a certain distance, the two first orders
join together to form second order of which the
flow path is another crenulation, larger than that of
the previous order crenulation of the contour. The
stream network, between trunk stream and twigs,
exhibits self-similarity and asymmetry. The two
tributary branches arising at a stream segment
bifurcation often differs in width, length and angle,
leading to a highly heterogeneous structure. The
tools involved to generate F-SCNs are generating
mechanism, which includes the deterministic quan-
tities, like bifurcation ratio, stream length ratio,
angle of divergence, the concept of skeletonization,
and the rule (random or non-random). This model
includes the following two sequential steps:

Step 1. Fractal basin generation;
Step 2. Channel network extraction from the frac-
tal basin.

Fractal Basin Generation

To generate fractal basins with a fractal dimensions
range from 1 to 2 in 2-dimensional space, one
begins with two shapes, (1) broad outline of the
basin as polygon, an initiator-basin, and (2) a
generator. The latter is an oriented broken line
made up of N equal sides of length r which can be
designed at will (Mandelbrot, 1982). Each stage of
the construction begins with a broken line and
consists in replacing each straight interval with a
copy of the generator, reduced and displaced to
have the same end points as those of the interval
being replaced. In all cases, D =1log N/log 1/r. Step
0 is to draw the segment of length (0, 1), which is
one side length in the initiator-basin. Step 1 is to
draw either of the kinked curves (Fig. 1), each made
up of N intervals superposable upon the segment
(1/4,1/3,1/3 for the generator shown in Fig. 1).
Step 2 is to replace each of the N segments used in
step 1 by a kinked curve obtained by reducing the
curve of step 1 in the ratio r(N)=1/r. One obtains
altogether N segments of length 1/(r)*. Iterating

this process adds further detail. Homogeneous and
heterogeneous channel network patterns will be
determined respectively by symmetric generator
with non-random, and asymmetric generator with
random rules. Asymmetric fractal basins arise due
to asymmetric outline of the initiator and also due
to generating mechanism and the rule applied to
transform the initiator as fractal basin. The
boundary of the fractal basin possesses many
crenulations that have been taken as the basis to
find out the flow paths of the stream network.
These undulations in the outline of the fractal basin
and in the successive bifurcation generation levels
determine the whole stream network pattern. The
fractal basin can be transformed as channel net-
work, a line thinned caricature to summarise the
shape, size, orientation and connectivity of the
basin.

To implement the second step, certain mathemat-
ical morphological transformations (Serra, 1982)
were employed. These transformations were used to
implement the concept of skeletonization proposed

FIGURE 1 Different generators.
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by Lantuejoul (1980). The concept of skeletoniza-
tion which is considered as the basis to extract the
channel network in this present investigation was
proposed by mathematical morphologists (Serra,
1982; Lantuejoul, 1978; 1980; Maragos and Schafer,
1986). This concept is being extensively applied in
several fields such as biological shape description
(Blum, 1973), pattern recognition (Maragos and
Schafer, 1986), metallography (Lantuejoul, 1978;
1980) with highly promising results. Certain impor-
tant morphological transformations that are essen-
tial to implement skeletonisation process are briefly
described as follows:

Mathematical Morphological Transformations

Mathematical morphology based on set theoretic
concepts is one the approaches to the analysis of
geometric properties of different structures. The
fractal basin, M, a discrete binary image is defined
as a finite subset of Euclidean two-dimensional
space, Z>. The geometrical properties of a fractal
basin as a set (M) and set complement (M°) are
subjected to the morphological functions. The
morphological operators is visualised as working
with two images. The image being processed is
referred to as the fractal basin that needs to be
decomposed into channel subsets, and the other
image being a structuring template (S). Each
structuring template possesses a designed shape
that is thought of as a probe of fractal basin. In
addition, many structuring templates were repre-
sented by a compact subset of Euclidean space, so
that constraints which correspond to the four
principles of the theory of mathematical morphol-
ogy such as invariance under translation, compat-
ibility with change of scale, local knowledge and
uppersemicontinuty will be imposed on morpho-
logical set transformations (erosion, dilation, open-
ing and closing), for precise extraction of
topological information from the drainage net-
work extraction point of view. The three morpho-
logical transformations involved in drainage
network extraction are dilation to expand, erosion
to shrink, and cascade of erosion—dilation to

smoothen the set. These transformations are
based on Minkowski set addition and subtraction
(Hadwiger, 1957).

Dilation: Dilation combines two sets using vector
addition of set elements. If M and S are sets in
Euclidean space with elements m and s, respec-
tively, m=(my,...,my) and s=(sy,...,sy) being
N-tuples of element co-ordinates, then the dila-
tion of M by S (structuring template) is the set of
all possible vector sums of pairs of elements, one
coming from M and the other from S. The
dilation of a fractal basin, M, with structuring
template, S, is defined as the set of all points ‘n’
such that S,, intersects M. It is expressed as

M&S={m:SyNM+#0} =M, (15

seS

Erosion: The erosion of a fractal basin, M, with
structuring template, S, is defined as the set of
points ‘m’ such that the translated S, is contained
in M. It is expressed as

Mo S={m:S,CM}= (M, (l6)

seS

where S={s: s€S}, i.e. S rotated 180° around the
origin. For more information on mathematical
morphological transformations, reader may refer
to Serra (1982).

Channel Network Extraction

Channel network, a line thinned caricature to
summarise the shape, size, orientation and con-
nectivity of the basin is extracted from fractal
basin. Components of such networks include
traditional characteristics of shape in two-dimen-
sional space. The channel network of a basin (Fig.
2(a)) viewed as a subset of R* (Euclidean space), is
defined as the set of the centers of the maximal
disks inscribable inside the basin (Fig. 2(b)). Figure
2(c) is the extracted channel network that can be
arrived at through the procedure described in Egs.
(17) and (18). The channel network, CH(M) of a
fractal basin (M) viewed as a subset of R’
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FIGURE 2 (a) Structure, (b) Structure with maximum inscribable circles, and (c) morphological skeleton after designating

Strahler’s ordering.

(Euclidean space), is defined mathematically as

CH,(M) = (M6 S,) —{[(MesS,) e Sle S}
n=12,....N, (17)

CH(M) = L]j CH, (M), (18)
n=0

where CH,,(M) denotes the nth channel subset of
fractal basin (M). In the above expression, sub-
tracting from the eroded versions of M their
opening by S retains only the angular points, which
are points of the channel in this model. The union
of all such possible channel points produces
F-SCNs. Depending on the skeletonization pro-
cess, which determines channel network, numerous
types of channel networks ranging from homo-
geneous to heterogeneous by changing the type of
structuring element (S) from regular to irregular
are observed.

Though the basins are homogeneous, due to
geologic controls the heterogeneous channel net-
work may arise. The rule adopted here is determi-
nistic, non-random type to generate fractal basin.
This simplistic model generate river network
patterns more closely to realistic networks by
considering the asymmetric initiator basins and
the random rules to generate fractal basins. Most
of the dendritic patterns generally arise in trian-
gular initiator basins. However, in the case study
provided, the outlet is at the glory hole (center).
Hence, the resultant channel networks are of radial

type. As the structural composition of channel
network depends on the type of boundary con-
straints, the boundary choice of the initiator basin
becomes vital besides the generating mechanism
and the rule for simulating the channel network.
The generation of more realistic river networks is
possible by considering the natural watershed,
which is more often asymmetric, in approximated
polygonal form.

3 FRACTAL BASINS WITH CENTER AS
OUTLET, “GLORY HOLE”

The case study is shown by considering four regular
sided initiator-basins, ranging from pentagon to
octagon, and a generator (Fig. 3). Considering this
generating rule, four initiator-basins were trans-
formed as fractal basins in closed form with the
center as outlet (‘glory hole’). The channel net-
works of the fractal basins thus extracted by the
procedure detailed in F-SCN model are shown in
Figs. 4(a)—(d). These are referred to as five sided to
eight sided channel networks as they are extracted
from the fractal basins that are generated by
considering initiator-basins in the form of regular
sided polygons. Since, the considered generator
(Fig. 3) is such that it transforms the initiator-
basin, with non-random rule, the following equa-
tions hold good as long as the generator, rule, and
the regular sided polygons (Q >4 < oo, Q being the
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FIGURE 3 Generator.

(a) Five sided (b) Six sided

(c) Seven sided

(d) Eight sided

FIGURE 4 Morphological skeletons of the fractal structures.

number of sides of the polygon) are same as the
ones considered here.

Morphometric Order Ratios

Following Strahler’s (1957) ordering technique, the
extracted channel networks were designated with
orders. The basic measures such as area, perimeter

of the basins, order-wise channel lengths and
number, main channel lengths and total channel
lengths, are computed (Table I). It is opined by
Beer and Borgas (1993) that the channel density
varies with the changing scale in Horton systems.
To test the Hortonity of the channel network
generated through F-SCN model, the channel
density of the fractal basin at different resolutions
is computed and it is inferred that the channel
network produced through F-SCN is of Horton
type.

The morphometric order ratios were computed.
The bifurcation ratios were computed as 2.98 for
the channel networks shown in Figs. 4(a)—(d), and
the length ratios are respectively 2.66, 2.85, 3.09,
and 3.41 (Table II). The circularity ratio (Rc) for
the considered initiators were computed as 0.8691,
0.9114, 0.937, and 0.953 respectively. It was
observed that, with increasing circularity ratio,
the ratio of logarithms of bifurcation ratio, and
length ratio decreases, while with increasing circu-
larity ratios, the length ratio increases. No varia-
tion was observed in the bifurcation ratio, with the
variation in the fractal basin. This is due to the fact
that the generating mechanism and rule are the
same to transform all the considered initiator-
basins.

The scaling properties of the network as a whole
is viewed as the product of the structural composi-
tion of the network system and the effect of small
irregularities reflected by d. Just as in the case of
computing the fractal dimension of a river network
which depends on its Rg and Ry, the fractal
dimension of F-SCNs was computed using the
three morphometric order ratios, and length—area
measures (Table III). Considering these basic
morphometric order ratios, several conclusions in
relation to other fractal dimensions of fractal basin
channel network, and main channel length, com-
puted through box counting method (Feder, 1988),
were drawn. The following relationships among
morphometric order ratios (Table 1V), fractal
dimension of basin (Table V), length—area mea-
sures (Table III), and certain values arrived at by
statistical relations.
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TABLE I Basic measures of morphological skeletons of second order fractal structures
Initiator Area, A Perimeter, Main  No. of orders N Mean length of Mean areas of individual ~ Total
(cm?) P (cm)  length / individual order order (4) (in cm?) channel
(cm) (L) (in cms) length (cm)
1 2 3 4 1 2 3 4 1 2 3 4
Five sided 110 160 16 130 50 15 S5 056 1.1 1.67 7.5 0313 1.21 278 14.06  190.25
Six sided 166.32 192 18 156 60 18 6 046 1.05 1.5 7.25 0.213 1.102 2.26 13.33  205.5
Seven sided  232.63 224 22 182 70 21 7 065 13 1.67 10 042 1.7 278 2857 313.6
Eight sided 309.1 256 26 208 80 24 8 054 126 167 11 029 1.6 278 30.37 341

TABLE II Certain order ratios of morphological skeletons of second order fractal structures

Initiator- Bifurcation ratio Length ratio Area ratio Circularity p F
basin ratio (R.)
2nd 3rd  4th Average, 2nd 3rd 4th Average, 2nd 3rd 4th Average,
(Rp) R ——— (Ra)
Ni/N>  N»/N3 N3/Ng Lo/Ly Ls/Ly La/Ls AsJA1 Ax|As A3/As
Five sided 2.6 3.33 3 2.98 196 1.52 45 2.66 387 23 5.06 3.74 0.8691 1.73 1.82
Six sided 2.6 3.33 3 2.98 228 143 483 2.85 517 2.05 59 437 09114 1.24 145
Seven sided 2.6 3.33 3 2.98 2 1.29 599 3.09 405 1.63 10.3 5.32 0.93656 1.35 1.21
Eight sided 2.6 3.33 3 2.98 233 133 6.6 3.41 551 1.74 109  6.06 0.953 1.1 1.04
TABLE III Length—area measures

Initiator [~ A" L~AP

Five sided a=0.59 A=1.112

Six sided a=0.563 3=0.04

Seven sided a=0.566 £=1.055

Eight sided a=0.566 B#=1.0132

TABLE 1V Fractal dimensions of F-SCN’s according to the derivations proposed by hydrogeo-

morphologists

Initiator Dl D2 D3 D4 D5 D()
Five sided 1.1161269 1.305 1.48 2 1.74 1.25
Six sided 1.0426 1.183 1.422 2 1.78 1.18
Seven sided 1 1.09 1.36 2 1.77 1.15
Eight sided 1 1.03 1.36 2 1.92 1.06

TABLE V Fractal dimensions of fractal structure, morphological skeleton, and main skeletal

length

Initiator Measured fractal dimensions through box counting method
D-Fractal basin Dts-Channel network d-Main channel length

Five sided 1.72 1.63 1.16

Six sided 1.77 1.66 1.13

Seven sided 1.81 1.7 1.13

Eight sided 1.85 1.77 1.14
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Fractal Relation with Morphometric
Order Ratios (Rg, Ry, and R,), and
Length—Area Measures

The fractal dimensions of fractal basins (D), their
channel networks (Drs), and main channel lengths
(d) are computed through box counting method
(Table V). This method provided the values of D,
Drs, and d, as the slopes of the straight lines which
were fitted to the log-transformed pairs of observed
box numbers and box size values. For five-sided
channel network, the fractal dimensions of fractal
basin, channel network, and main channel length
were computed by box counting method as 1.72,
1.63, and 1.18 respectively. The results for the six
sided network respectively are 1.77, 1.66, and 1.13.
For seven sided channel network the fractal dimen-
sions are 1.81, 1.7, and 1.132. Table V also shows

2.40

(a) Five side

2.004

Slope =-0-47

1.60

1.204

0-804

0-40-

Log-Number of skeletal branches
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these fractal dimensions, where the initiator-basin
is octagon, are 1.85, 1.77, and 1.14 for eight sided
channel network. These results were compared
with the fractal dimensions arrived at by morpho-
metric order ratios and length-area measures
(Tables III and IV). The fractal dimensions
computed using morphometric parameters were
found valid and they are related to the fractal
dimensions computed by box counting method.

Order (w) versus Number N*_ /Mean Length
L /Mean Area (/1321)

Graphs were plotted between the order number
and the logarithms of number of the respective
channel branches, and the logarithms of mean
channel lengths (Figs. 5(A) and (B)) for the
extracted channel networks. The statistical results

2.40
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1.604
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FIGURE 5(A)
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FIGURE 5 Graphs between (A) order no. versus log(number of skeleton branches) and (B) order no. versus log(mean length).

of these two types of plots viz. (a) order versus
number, (b) order versus mean lengths were arrived
at. The slope values for the plots between order and
number are —0.48 for all the considered channel
network patterns. In contrast, the slope values for
the plots between the order and the mean channel
lengths are 0.35, 0.37, 0.37, and 0.44 for the channel
networks of generated fractal basins respectively.
For the plot between order versus channel area, the
slope values respectively for five, six, seven and
eight sided networks are 0.714, 0.7512, 0.735, and
0.81. These values satisfy the Horton (1945) laws.
These laws state that natural drainage basins yield
a linear relationship. It is observed, in the latter

graph, that the slope values increased with increas-
ing circularity ratio of the fractal basins.

Mean Length L, versus Number N

The number—Ilength statistics for these channel net-
works are shown in Fig. 6, with the number and
mean lengths of orders 1-4, extracted from four
types of fractal basins. The slope values are —0.74,
—0.78, —0.77, and —0.92 for the four channel
networks respectively. The fractal dimensions (Ds)
were computed by subtracting these slope values
from unit (one). Hence, they are 1.74, 1.78, 1.77,
and 1.92. The fractal dimensions of the basins are
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1.72, 1.77, 1.81, and 1.85 respectively (Table V).
They are closely tallied with the values arrived at
through the statistical plots made between number
and mean lengths.

Mean Length L_ijzl versus Total Length L((2)

The plots for logarithms of average branch
length versus logarithm of total branch length for
these channel networks are shown in Fig. 7. The
slope values (b) for these plots respectively for the
four channel networks are —0.25, —0.18, —0.15,
and —0.06. According to Nelson and Manchester
(1988), in the context of lung morphogenesis
studies, the fractal dimensions (Dg) were computed
as

Dg=1-b, (19)
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where Dy is computed as 1.25, 1.18, 1.15, and 1.06
for these four types of F-SCNs. These fractal
dimensions are related to the fractal dimensions
(D»), proposed by Tarbotan et al. (1990), in the
context of river networks:

D6 = D2 = d(lOg RB/ 10g RL). (20)

The values arrived at through the equation
proposed by Tarbotan et al. (1990), are 1.3, 1.18,
1.1. and 1.03 respectively (Table 1V). These values
closely tally with the fractal dimensions computed
(Fig. 7) between the mean and the total channel
lengths. It is apparent that while the overall
channel length decreased upto third order, little
variations were observed in these plots (Fig. 7)
between the third and the forth orders. It was
observed that the variation between the 3rd and 4th
orders is due to the overall structural composition.
The fractal dimensions of the four types of channel
networks range from 1.06 to 1.25. These values
served as useful parameters to evaluate basin
generating algorithm based on the total and
average channel lengths. The difference may be
observed in the relationship between the average
length and the total branch length with the
variation either in the initiator-basin, generating
mechanism, or in the rule.

Main Channel Length /(2)—Area A())
Relationship

The important aspect of fractality is concerned
with the measured lengths of irregular lines, which
yields the length of the channel network to vary
with iteration. Dimensional analysis indicates that
for geometrically similar network, the length of the
main channel, /, is proportional to the square root
of the area, A, is

[~ A2,

This is also derived as an asymptotic result from
the random model of channel networks (Mesa and
Gupta, 1987). The empirical relationship between

the observed main length, /, and the area of fractal
basin, A4, is taken in the form (9) where « is a fitted
exponent. The present investigations yield esti-
mated « values, larger than 1/2 for four types of
channel networks. This « values range from 0.56 to
0.59 (Table III). As in the case of river length
(Mandelbrot, 1982), the main channel lengths of
these F-SCNs were also viewed as a fractal with
dimension 2a. By using four possibilities, it has
been found that the fractal dimension for length
measurement vary from 1.13 to 1.18 (Table III). As
long as the initiator-basin, the generating mechan-
ism and the rule are the same, these results hold
good. It is inferred that the fractal dimension of
channel length may be related to the structure of
network composition. The fractal length—area
relationship has been shown as 2a=d, where « is
an exponent fitted, and dis the fractal dimension of
the main channel length computed through box
counting method. The difference in exponents may
be due to lack of similarity.

Total Length 7(2) and Area A({)

The relationship between the total channel length,
L, and the area of fractal basin, 4, was taken in the
form of (10) where 3 is a fitted exponent. The
present investigation yield estimated [ values
ranging from 1.013 to 1.11 (Table III) for the
channel networks extracted from respective fractal
basins. These values () are closely tallied with that
of the fractal dimensions computed through
computing the ratio of logarithm of Ry and the
logarithm of Ry. It is related from Egs. (10) and
(12) as follows:

3 = [log Rg/log Rr] £ 0.04.

The relationships between the standard fractal
dimensions and the ratios of certain order ratios
are liable to vary with the variation either in the
generating mechanism or in the initiator-basin. If
the similar initiator-basin of any size is transformed
by a specific generator, the relationship between
the fractal dimensions and the morphometric order
ratios is invariant.
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In this case study, certain graphical plots were
fitted with a straight line. This was to verify the
relationships between the order versus number and
certain linear aspects of F-SCNs and through the
graphical plots that were proposed in the studies of
realistic river morphometric relationships. The
slope values computed through these graphical
plots tallied with the values proposed in the context
of natural river networks inspite of the fact that the
plots in the present model did not fit well by
straight lines. Moreover, the apparent oscillation
about the fit line is a consequence of abrupt
variation in the residues corresponding to the
middle order branch in the radial type of F-SCNs.

Fractal Relations among Fractal Dimensions
of Basins and their Channel Networks

The fractal measures Dy, D,, D3, and D¢, computed
through the derivations given in Egs. (11)—(13) and
(19), were directly proportional to each other:

D] = pDz = qD3 = I‘D(,, (21)

where p, ¢, and r are constants.

The following is an Eq. (22) to describe the
relationships between the fractal dimensions of the
fractal basin (D), its channel network (Drs),
the main channel length (d), the ratios of morpho-
metric order ratios of channel networks, the
product of generator specifications, and the circu-
larity ratio of the initiator-basin arrived at through
statistical analysis

D~ [(DTS)0'87 4 032] - d|:lOg(RB):| —0.454

log(Ry)
log(N)

0.986
23~ |———=R, 0.43. 22
* Log(l/r) ] * (22)

Highly symmetric initiator-basin with infinite
number of equal sides is very close to a circle, of
which the circularity ratio is very close to 1. If such
an initiator-basin is transformed by a generating
mechanism, according to a non-random rule, as a

fractal basin of which the area remains constant
throughout the succession of changes, the follow-
ing relation is proposed.

This relation is established by considering the
specification of generating mechanism and circu-
larity ratio of initiator-basins (4 < Q < oc), and
fractal dimensions of basins, their channel net-
works and certain morphometric order ratios of
channel networks:

IOg(N) 0.986
D {—log 7 R(} 1+0.43
IOg(N) 1.024
{rg 7 RL} 10.264. (23)

According to the above expressions for the F-SCNs
generated from a regular sided initiator-basin, with
infinite number of sides, very close to a circle, the
fractal dimensions of the fractal basin, and its
corresponding channel network converge to the
values 1.92 and 1.77 respectively. Interestingly, the
latter value i.e., 1.77, is the fractal dimension
proposed for diffusion limited aggregate.

CONCLUSIONS

Fractal-skeletal based channel network model
(F-SCN) was generated by considering two deter-
ministic quantities in this paper. They are initiator-
basins and a generating mechanism. Moreover, the
initiator-basins considered in this study were
regular, bounded, and symmetric. The generating
mechanism was considered such that it preserved
the area of the watershed (fractal basin) under the
succession of changes. The rule followed to trans-
form the initiator-basin into fractal basin was of
non-random type. As a result of this, and because
the characteristics of considered initiator basins
are of ideal type, the study is a deterministic one.
This model emphasised to describe how the
boundary of the basin forces the channel network
development. This model also generates channel
pattern similar to the realistic networks. The
statistical features of this model agreed well with
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the actual networks. The F-SCNs yielded an
almost perfect match with well-known empirical
geomorphological results and explain the most
important structural characteristics observed in
the geomorphology of channel networks.

It was inferred that with the variations either in
the initiator-basin or in the generating mechanism,
the relationship between the fractal dimensions and
the order ratios hold differently from each other. In
this investigation, the variation was shown as
increment in the number of sides of the regular
sided initiator-basin ranging from pentagon to
octagon. This slight variation, which can be
quantified as circularity ratio, in the initiator has
not shown much impact in the relationships that
have been shown. But, the fractal dimension of the
channel network is directly proportional to its
basin fractal dimension. As opined by Rigon et al.
(1993) in the context of studying the frame work of
river basin morphology based on OCNs, in the
present F-SCN model, the boundary of the basin
clearly forced on the development of channel
networks. It is interesting to study the role of the
shape of the basin in the optimal structure of
channel network. It is suggested to use the initiator-
basin such as triangle and square with one of the
vertices as outlets to generate more realistic river
networks.

It was an attempt to study the potential applica-
tion of the blend of fractal geometry and mathe-
matical morphology to develop algorithms for
modelling the drainage morphogenisis. The utility
of this approach explores the developmental and
the morphometric hypothesis with varying bound-
ary conditions of initiator basins, and the specifica-
tions of the generating mechanism. The results of
these simulations may improve our understanding
of known developmental alterations.
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