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Structure–activity relationship of amyloid fibrils

Samir K. Maji a,*, Lei Wang b, Jason Greenwald b, Roland Riek b,*

a School of Bioscience and Bioengineering, IIT-Bombay, Powai, Mumbai 400076, India
b ETH Zurich, Physical Chemistry, ETH Honggerberg, 8093 Zurich, Switzerland

a r t i c l e i n f o
Article history:
Received 2 June 2009
Revised 2 July 2009
Accepted 7 July 2009
Available online 14 July 2009

Edited by Per Hammarström

Keywords:
Amyloid
Fibril
Protein
Aggregation
Nuclear magnetic resonance
Alzheimer’s disease
0014-5793/$36.00 � 2009 Federation of European Bio
doi:10.1016/j.febslet.2009.07.003

Abbreviations: EPR, electron paramagnetic resona
resonance; IAPP, islet amyloid polypeptide; CD, circ
microscope

* Corresponding author.
E-mail addresses: samirmaji@iitb.ac.in (S.K. M

ethz.ch (R. Riek).
a b s t r a c t

Protein aggregation is a process in which proteins self-associate into imperfectly ordered macro-
scopic entities. Such aggregates are generally classified as either amorphous or highly ordered,
the most common form of the latter being amyloid fibrils. Amyloid fibrils composed of cross-b-sheet
structure are the pathological hallmarks of several diseases including Alzheimer’s disease, but are
also associated with functional states such as the fungal HET-s prion. This review aims to summarize
the recent high-resolution structural studies of amyloid fibrils in light of their (potential) activities.
We propose that the repetitive nature of the cross-b-sheet structure of amyloids is key for their mul-
tiple properties: the repeating motifs can translate a rather non-specific interaction into a specific
one through cooperativity.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Rudolf Virchow introduced the term ‘‘amyloid” to describe the
macroscopic tissue abnormality that exhibits a pale, waxy appear-
ance and produces a positive iodine staining reaction that is char-
acteristic of starch-like materials [1]. The classic histological
definition of an amyloid is an extra-cellular protein deposit that
binds congo red and produces a yellow-green birefringence under
polarized light [2]. Since X-ray fiber diffraction of aligned amyloid
fibrils yields a characteristic diffraction pattern with a meridional
reflection at 4.7 Å and an equatorial reflection at around 8–11 Å,
the underlying organization is proposed to be the cross-b-sheet
structural motif [3–5] (Fig. 1). In the cross-b structure, the individ-
ual strands of each b-sheet run perpendicular to the fibril axis
(4.7 Å spacing) whereas the b-sheets (�10 Å spacing) are parallel
to the fibril axis (Fig. 1). Under the electron microscope (EM), amy-
loid fibrils appear to be long, non-branched filaments with 6–
12 nm diameters, indicating that amyloid fibrils are composed of
an ordered arrangement of thousands of copies of a peptide/pro-
tein [4] (Fig. 1). These structural characteristics of amyloid fibrils
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are used here to redefine the amyloid entity as simply a (fibrillar)
protein aggregate with an underlying cross-b-sheet motif. It is the
aim of this review to summarize the recently established high-
resolution structural data on amyloids and to set this information
in perspective with their (biological) activities.
2. Low-resolution structural studies of amyloid fibrils: the
cross-b-sheet motif

Since amyloid fibrils are non-crystalline and insoluble in water,
detailed structural studies by single crystal X-ray crystallography
and multidimensional NMR are difficult (but see below). Hence,
low-resolution methods were established for the physical and
structural characterization of amyloid fibrils. The initial insight
into the secondary structure present in amyloid fibrils came from
the tinctorial properties of amyloids in vivo. Congo red binds the
amyloid entity and exhibits yellow-green birefringence under
cross-polarized light, indicating the presence of ordered structure
in the amyloid aggregate [2]. Similarly, amyloid binding-induced
Thioflavin T fluorescence suggests the presence of ordered
structure in the aggregates [6]. The repetitive nature of the cross-
b-sheet structure of amyloids can be assayed by X-ray fiber diffrac-
tion [4,5]. Circular dichroism (CD) and Fourier transform infrared
spectroscopy (FTIR) are used to measure the b-sheet content of
amyloids [7], whereas electron microcopy (EM) can define the
boundaries and shape of the amyloid fibrils to a resolution of
lsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.febslet.2009.07.003
mailto:samirmaji@iitb.ac.in
mailto:roland.riek@phys.chem. ethz.ch
mailto:roland.riek@phys.chem. ethz.ch
http://www.FEBSLetters.org


Fig. 1. Amyloid fibrils are composed of long filaments as shown by the transmission electron micrograph. In the fiber diffraction pattern they show a meridional reflection at
4.7 Å and an equatorial reflection at around 8–11 Å, which suggest the presence of a cross-b-sheet structural motif as depicted in the drawing.
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approximately 10–25 Å [8–10]. In contrast, electron paramagnetic
resonance spectroscopy (EPR) [11] and quenched hydrogen/
deuterium exchange coupled with mass spectrometry [12] or
two-dimensional nuclear magnetic resonance spectroscopy
(NMR) provide significant details about the local structure of the
amyloid fibrils [13–15]. By combining the information derived
from these methods several structural models have been proposed
(for a complete list see Table 1), but these techniques cannot yield
atomic resolution structures.

Recent advances in solid-state NMR techniques allow for the
accurate measurement of intermolecular distances and backbone
torsion angles of amyloid fibrils. Lansbury et al. first described
the application of solid-state NMR in determining the anti-parallel
nature of Ab(34–42) fibrils based on intramolecular 13C–13C dis-
tances and 13C chemical shifts [16]. Balbach et al. reported multi-
ple-quantum NMR and rotational echo double-resonance results
for Ab(16–22) fibrils that suggested an anti-parallel b-sheet struc-
ture [17]. For Ab(1–40) an in-register parallel b-sheet conformation
has been suggested based on multiple-quantum NMR experiments
and likewise for Ab(10–35) by dipolar recoupling in a windowless
sequence measurement [18,19]. Tycko and coworkers collected
more restraints and established structural models for the polymor-
phic Ab(1–40) [20]. Table 1 lists the solid-state NMR studies to date
on amyloid fibrils including amyloid fibrils of islet amyloid poly-
peptide (IAPP), a-synuclein, prion protein, and a WW domain.

3. X-ray crystallography: the 3D structure of the cross-b-spine of
short amyloidogenic peptides

Recently, Eisenberg et al. determined the 3D structures of short
fibril-forming peptide segments of amyloid proteins (i.e. Sup35,
insulin, Ab, tau, and amylin) by X-ray crystallography [21,22].
The peptides that they studied are highly soluble in water, but
are also able to form microcrystals as well as fibrils. Using a spe-
cially designed microfocus beamline, the researchers were able
to elucidate several high-resolution structures from these micro-
crystals. Interestingly, they are composed of the cross-b-sheet mo-
tif that is proposed to be the core structure of amyloid fibrils.
Several experimental results support the notion that the peptide
conformation in the microcrystals could be shared with the fibril
structure: microcrystals and fibrils grow in the same condition
and coexist in the same solution; some fibrils grow from the tips
of crystals; and the microcrystals can seed the growth of amyloid
fibrils. Moreover, the powder diffraction patterns of microcrystals
and their fibril counterparts are very similar.

In the initial X-ray structure determined from microcrystals of
the peptide GNNQQNY from Sup35, the peptides form perfectly
in-register b-sheets parallel to the short (4.86 Å) edge of the unit
cell (but the long axis of the microcrystal) (Fig 2). Similar to their
expected orientation in a fibril, the individual b-strands are per-
pendicular to the long axis of the microcrystal. The b-sheets are
packed in the crystal with two distinct interfaces, termed the ‘‘dry”
and ‘‘wet” interfaces (Fig. 3). The dry interface consists of side
chain interdigitation of complementary side chains via van der
Waal’s interactions and hydrogen bonds typical of Asn/Gln ladders
[20–22]. This structural motif is called the ‘‘steric zipper” and has
also been documented for Ab(1–42) fibrils [9,20]. In contrast to
the dry interface, the wet interface is composed mainly of hydro-
gen bonds between the sidechains and also via water molecules
in a fashion that is similar to intermolecular contacts in protein
crystals. This suggests that the stable structural unit of the micro-
crystals is a pair of b-sheets forming a minimal cross-b-sheet motif.

Eisenberg et al. have since reported on another dozen high-res-
olution microcrystal structures from peptides with a variety of
amino-acid sequences, and more will come (Table 2). All of the
structures are in an ‘‘infinite” b-sheet conformation with the sheets
forming an interface via a steric zipper [22] demonstrating the
prevalence of the cross-b-sheet motif with steric zipper-type side
chain interactions in peptide complementation and oligomeriza-
tion in amyloid fibrils. However, there are important differences
between the various structures and according to these differences,
the steric zippers can be categorized by (i) whether their b-strands
are parallel or anti-parallel, (ii) whether their b-sheets pack with
the same (‘fact to face”) or different (‘face-to-back’) surfaces adja-
cent to one another, and (iii) whether the two closely packed b-
sheets are oriented in the same direction (‘up–up’) or opposite
direction (‘up–down’). Combinations of these three structural
arrangements give eight theoretically possible classes of steric zip-
pers of which five were observed experimentally. Interestingly,
some peptides can form different microcrystals comprising differ-
ent classes of steric zippers, offering a molecular-level explanation
for amyloid polymorphism [23–25] and prion strains [15,26].

Although the crystal structures may indicate that the structural
complexity of amyloid fibrils is limited, it is noteworthy to men-
tion that only peptides and not entire proteins were crystallized
so far in an amyloid-like conformation, and hence, one should
not underestimate the possible structural complexity of protein
fibrils (but see [11]). In particular, a complex structure might be
derived from a combination of steric zipper-like structures com-
posed by several peptide segments within a single polypeptide
chain as exemplified by the 3D structure of the HET-s(218–289)
amyloid fibrils discussed next.

4. Solid-state NMR: the 3D structure of HET-s(218–289) amyloid
fibrils

The 3D structure of HET-s(218–289) amyloid fibrils has been
determined by solid-state NMR [27]. High-resolution solid-state



Table 1
Structural studies of amyloids by solid state and solution state NMR spectroscopy.

Protein/peptide No. of amino
acids

NMR Structural information References

Ab(34–42) 9 Solid state Antiparallel b-sheet [16]
Ab(10–35) 26 Solid state Parallel b-sheet [18,19,70]
Ab(16–22) 7 Solid state Antiparallel b-sheet [17]
TTR(105–115) 11 Solid state Extended b-sheet, 3D structure of a single peptide chain [71]
Ab(1–42) 42 Solid state Parallel b-sheet [70]
Ab(11-25) 15 Solid state Antiparallel b-sheet [72]
[M35ox]Ab42 42 H/D exchange Parallel b-sheet, cross-b-sheet with steric zipper [9]
Peptide ccb 17 Solid state Anti parallel b-sheet [73]
b2M 97 H/D exchange b-sheet core of the fibrils [13]
b2M(20–41) 22 Solid state Parallel b-sheet, cross-b-sheet with steric zipper [74]
HET-s(218–289) 72 H/D exchange and solid state b-solenoid structure (see text) [27]
Ab40 40 Solid state Parallel b-sheet, cross-b-sheet with steric zipper [20]
[D23 N]Ab40 40 Solid state Polymorphism of in-registrar parallel (minor) and

anti-parallel (major) b-sheet structure
[75]

Brain-seeded synthetic Ab40 40 Solid state Parallel b-sheet [76]
a-Synuclein 140 Solid state b-Sheet-rich fibril core of residues 38–95 [77]
a-Synuclein 140 H/D exchange and solid state The fibril core of residues 30–110 with five b-strands [10]
Ure2p(1–89) 89 Solid state Parallel b-sheet [78]
Ure2p(10–39) 30 Solid state Parallel b-sheet with polar zipper [79]
IAPP 37 Solid state Parallel b-sheet comprising b-strand of residue 8–17 and 28–37 [80]
hIAPP(20–29) 10 Solid state Antiparallel b-sheet [81]
hIAPP(20–29) 10 Solid state Polymorphism between parallel and antiparallel

b-sheet depending on sample preparation
[82]

Sup35(1–253) 253 Solid state Parallel b-sheet [83]
Rnq1(153–405) 253 Solid state Parallel in-registrar b-sheet [84]
huPrP(23–144) 122 Solid state Fibril core comprising residues 112–141 with b-strands [85]
mPrP(89–143)P101L 55 Solid state b-Sheet conformation comprising residues 112–124 [86,87]
moPrP(106–126) 21 H/D exchange b-Sheet conformation comprising residues of 112–124 [88]
WW domain of Human CA150 37 Solid state Parallel b-sheet, cross-b-sheet [89]
Sup35 (Sup NM), Sc4 and Sc37 strains 253 H/D Exchange Overlapping amyloid core of Sup1–40 and strain

dependent expansion of protection for Sc37
[15]

TTRY114C 128 H/D Exchange Fibril core comprised of the six b–strands, which
retains a native-like conformation

[90]

Ab(1–42) 42 H/D Exchange Fibril core comprising residues 11–25 and 28–42 [91]
Ab(1–40) 40 H/D Exchange Fibril core comprising residues 8–25 and 27–40, and

partially protected residues 4–5
[92]

ccb-p 17 Solid state At low pH: �2 out-of-register antiparallel b-sheet [93]
At neutral pH: +3 out-of-register antiparallel b-sheet

CspA 70 H/D Exchange The entire CspA polypeptide chain is structured in the fibrils [94]
Ab(25–35) 11 H/D Exchange Fibril core comprising residues 28–35 [95]
AMed42–49 8 Solid state A parallel in-register arrangement within b-sheets [96]
HamsterPrP(109–122) 14 Solid state Steric zipper-like b-sheet [97]
apoC-II 79 H/D Exchange Fibril core comprising residues 19–37 and 57–74 [98]
Ab(14–23) 10 Solid state Antiparallel b-sheets [99]
Ab(1–40) 40 H/D Exchange Fibril core comprising residues 16–24 and 27–36 [100]
hCT 32 Solid state Antiparallel b-sheets [101]
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NMR spectra of 13C,15N-labeled HET-s(218–289) fibrils were re-
corded for sequence-specific assignment and the collection of dis-
tance and angular restraints. The resonance lines are strikingly
narrow (down to 0.2 ppm) and are comparable to those of micro-
crystalline proteins, indicating a highly ordered structure for a part
of the fibrils. Upon sequence-specific chemical shift assignment,
the secondary structure could be determined by the deviations of
the combined 13C chemical shifts from random coil values. Nega-
tive deviations indicated b-sheet secondary structure for residues
226–234, 237–244, 262–271 and 273–282. Exceptions were ob-
served at residues 229 and 265 (see below) and, to a lesser degree,
at 277. The striking correlation between the quenched H/D ex-
change data and the chemical shift data allowed for the confident
establishment of secondary structure in the HET-s(218–289) amy-
loid fibrils [14]. Subsequently, the 3D structure of HET-s(218–289)
amyloid fibrils was determined using 134 experimental inter- and
intramolecular distance restraints collected in PDSD (proton-dri-
ven 13C spin diffusion) experiments [27]. The refined model shows
that HET-s(218–289) forms a left-handed b-solenoid, with each
molecule forming two helical windings. The four b-strands com-
prising residues 226–234 (b1), 237–245 (b2), 262–270 (b3) and
273–282 (b4) are connected by two short loops (b1–b2 and b3–
b4) and by an unstructured 15-residue-long segment between b2
and b3 (Fig. 2b). The high level of structural order and the stability
of HET-s(218–289) fibrils are explained by the formation of the
compact hydrophobic core, at least 23 hydrogen bonds per mole-
cule, three salt-bridges and two asparagine-ladders.

The b-solenoid structure of the HET-s(218–289) fibrils (Fig. 2) is
composed of a combination of structural entities observed in the
crystal structures of the amyloid peptides (see above). In particu-
lar, the four b-sheets of HET-s(218–289) fibrils are parallel and
in-register. The interactions between three strands are of hydro-
phobic nature accompanied at the arches by several hydrogen
bonds and an Asn ladder consisting of residues N226/N262. The
surface residues are mostly charged and form several salt-bridges.
These structural arrangements result in an overall b-helix charac-
teristic fold, which is of much higher structural complexity than
short peptide fibrils – a complexity, which is typically observed
in soluble protein folds. Indeed, the three-stranded triangular
hydrophobic core superimposes well with the b-solenoid



Fig. 2. 3D structures of the (A) x-ray structure of the peptide GNNQQNY and (B) the NMR structure of HET-s(218–289). The b-strands are indicated by grey arrows. In (A) all
side chains are shown and the atoms are color coded red for oxygen and blue for nitrogen, respectively. In (B) only a few side chains were selected for simplicity: The side
chains of the hydrophobic core are colored yellow. The Asn ladder of residues N226/N262 is in green, and the salt bridge between Lys229 (blue) and Glu265 (red) is also
shown.
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structures of soluble proteins, such as the tailspike protein P22
[28], and the filamentous hemagglutinin, a 230 kDa adhesion of
the whooping cough agent Bordetella pertussis [29].

5. Structure–activity relationship of HET-s(218–289) amyloid
fibrils

The well-organized structure of the HET-s prion fibrils is evi-
dent and supports the proposed native function of the amyloid
state to be an infectious entity [14,30]. This interpretation is dem-
onstrated by the presence of the two pseudo-repeats in the se-
quence. The repeats provide intramolecular hydrogen bonds that
may facilitate the nucleation and growth of fibrils [14], while the
differences between the two repeat sequences support the fibril
fold. In particular, K229 in b1 with E265 in b3, E234 in b1 with
K270 in b3, and K236 in b2 with E272 in b4 form charge-compen-
sating salt-bridges (Fig. 2), which in a perfectly repeated sequence
would result in charge-repulsion. These charge alterations along
the fibril axis also support the correct in-register alignment of
the b-sheets resulting in a single packing scheme that may explain
the extraordinarily high order in these fibrils, as seen by NMR, as
well as the absence of polymorphism in HET-s fibrils grown at
physiological pH [27]. Furthermore, the solvent-exposed side
chains are hydrophilic making the HET-s(218–289) fibrils reminis-
cent of soluble proteins. This property may be beneficial for and
accelerate prion propagation, because it will support the diffusion
of the prion fibril by suppressing non-specific hydrophobic interac-
tions with other proteins or the membrane. Since these interac-
tions have been suggested to be possible toxic mechanisms of
disease-associated amyloids or the prefibrillar aggregates thereof
[31], it is intriguing to speculate whether HET-s fibrils are non-
toxic because of their charge-compensated hydrophilic surface.

The detailed structural analysis of HET-s(218–289) amyloids
established the structure of the infectious form of a prion protein
at atomic resolution. Alteration of the structure by the introduction
of the b-sheet breaking Pro residue at b-strand locations resulted in
a loss of infectivity in the fungus [14] indicating that the structure
of the amyloid appears to be the infectious entity of the HET-s
prion [14]. Whether this structural entity helps in elucidating the
mechanism of prion formation and propagation of the other yeast
and mammalian prions remains to be seen [15,32,33]. The evolu-
tionarily optimized fibril structure of HET-s(218–289) serves also



Fig. 3. Crystal packing for the peptide GNNQQNY (PDB entry 1YJP) viewed along the
b axis so that the b-sheets are perpendicular to the page. A single dry interface is
depicted with the brown line and two identical wet interfaces are depicted with the
blue lines. The unit cell is shown in black.
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as a prototypical fibril fold for functional amyloids [34–36] and
contrasts in many respects with the disease-associated amyloids
discussed in the following text.

6. Disease and functional activities of amyloids

Amyloid fibrils are associated with more than two-dozen hu-
man diseases including Alzheimer’s, Parkinson’s and prion diseases
[37]. In striking contrast to the disease-associated amyloids, there
are also amyloids with native biological activities [35]. Escherichia
coli form extra-cellular amyloid fibrils called curli that are involved
in surface and cell–cell contacts promoting community behavior
and host colonization [36]. The eggshell protein (chorin) of silk-
worm is an amyloid that protects the oocyte and the developing
embryo from a wide range of environmental hazards [38]. The
prion amyloids in yeast are associated with enhanced survival of
the host in certain environmental conditions [39,40]. The HET-s
Table 2
3D structures of amyloid peptides forming a cross-b-sheet motif.

Peptide sequence Segment from protein Type of

GNNQQNY Sup35 Parallel
NNQQNY Sup35 Parallel
NNQQ Sup35 Parallel
VQIVYK Tau Parallel
SSTSAA RNase Parallel
SNQNNF Prion protein Parallel
GGVVIA Ab Parallel
MVGGVV Ab Antipara
LYQLEN Insulin Antipara
VEALYL Insulin Antipara
NNFGAIL Amylin Parallel
SSTNVG Amylin Parallel

Nomenclature [22]: Class 1: parallel, face-to-face, up–up packing; Class 2: parallel, face
antiparallel, face-to-back, up–up packing; Class 8: antiparallel, face-to-back, up–down p
prion protein of the fungus Podospora anserina forms infectious
amyloids that are involved in a native function called heterokaryon
incompatibility [30]. The Pmel17 forms a functional human amy-
loid that appears to be important in the formation of skin pigmen-
tation [34].

Although it is apparent that the activity of functional, non-toxic
and disease-associated, toxic amyloids must be attributed to their
3D structure, there is little or no knowledge about the structural
differences responsible for the differences in toxicity. As high-
lighted above, the lack of toxicity of the functional HET-s fibrils
might be due to their hydrophilic surface that may suppress non-
specific hydrophobic interactions with other proteins or the mem-
brane. Alternatively, functional amyloid proteins may aggregate
into highly specific amyloid fibrils without the presence of confor-
mational intermediates such as protofibrils and oligomers that
have been suggested to be the toxic species in Alzheimer’s disease
([41–43]). Although still largely composed of b-sheet [44], these
conformational intermediates display a common structural motif
that is distinct from fibrils as evidenced by the establishment of
both oligomer-specific and fibril-specific antibodies [45]. Follow-
ing this hypothesis, it has been suggested that the disease-associ-
ated amyloid fibrils have a beneficial function by sequestering
the toxic oligomers formed during aggregation into a non-toxic
mature amyloid [42].

7. Structure–activity relationship of amyloids

Although all amyloids share the cross-b-sheet structural motif,
they comprise a variety of biophysical and biological properties.
The formation of amyloids may result both in a loss of function
of the polypeptide involved as described for the yeast prions
[39,40], or a gain of function as in the case of the HET-s prion sys-
tem [30]. Pmel17 amyloids serve as a template for ligand binding
[34] while other amyloids induce a specific toxic response as
shown for the HET-s prion system [30]. Prion amyloids are infec-
tious [14] while other amyloids are not (see [46]), and it is varia-
tions in the amyloid structure that are responsible for prion
strain diversity [15]. Some amyloids can be very stable in harsh
physical and biochemical environments while others release
readily monomers [47]. Some polypeptides form amyloids at phys-
iological conditions, others only at extreme (non-physiological)
conditions. Amyloids are very specific in their aggregation
behavior and normally incorporate only a single polypeptide se-
quence, although coaggregation is possible in certain circum-
stances [48,49]. The simple fold of a cross-b-structure, being a
one-dimensional crystal that can grow indefinitely, still allows
for a plurality of properties. In fact, the repetitive nature may be
the key for their multiple activities, because the repetitive confor-
b-sheet Type of cross-b-spine References

Class 1 and class 2 [21,22]
Class 2 [21,22]
Class 2, class 4 [22]
Class 2 [22]
Class 1 [22]
Class 2 [22]
Class 4 [22]

llel Class 8 [22]
llel Class 7 [22]
llel Class 7 [22]

Non-typical steric zipper [69]
Class 1 [69]

-to-back, up–up packing; Class 4: parallel, face-to-back, up–down packing; Class 7:
acking.
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mation is able to translate a rather non-specific function into a spe-
cific one by cooperativity.

8. Anfinsen’s hypothesis

The existence of amyloids emphasizes that Anfinsen’s thermo-
dynamic hypothesis [50] must be view in a more general way than
is common. Anfinsen stated his hypothesis as: ‘‘[T]he three-dimen-
sional structure of a native protein in its normal physiological mili-
eu (solvent, pH, ionic strength, presence of other components such
as metal ions or prosthetic groups, temperature, and other) is the
one in which the Gibbs free energy of the whole system is lowest;
that is, . . .the native conformation is determined by the totality of
interatomic interactions and hence by the amino-acid sequence, in
a given environment”. Clearly, the amyloid proteins/peptides and
in particular the functional amyloid polypeptides have (at least)
two stable conformational states: the soluble-monomeric and the
insoluble-fibrillar. Because the free energy of a solution depends
on the concentration of the solute, the state of the solute can
change with its concentration. Thus, it is completely in accord with
Anfinsen’s hypothesis that the amyloid proteins/peptides occupy
one structure in a dilute solution, and another structure – the amy-
loid state when they are at high concentration. In other words, for
many proteins the amyloid state is the thermodynamically stable
state at high concentrations, a situation stabilized by a high density
of intermolecular hydrogen bonds and complementary steric inter-
actions. Meanwhile, the amyloid state is not the energetically most
favorable conformation at a lower protein/peptide concentration.

9. Amyloid aggregation is not a generic property of the peptide
backbone

Many proteins aggregate into amyloid-like inclusion bodies
when over-expressed in E. coli [51,52], while others can aggregate
into amyloid-like structures when heat precipitated. Still others
that are normally in a soluble form exclusively can be coaxed into
amyloid fibrils in the right conditions [53,54]. Despite the fact that
so many proteins can achieve an amyloid or amyloid-like confor-
mation, this is not evidence that the formation of amyloid fibrils
is mainly a generic property of the polypeptide backbone and that
the side chains play a minor role, as has been suggested by Dobson
et al. [55]. On the contrary, amyloid aggregation is highly amino-
acid sequence specific as demonstrated by the intermolecular side
chain interactions observed in the crystal structures of the Eisen-
berg group [21,22,56]. Furthermore, the essential involvement of
side chain interactions in the aggregation process is evident from
the observed sequence-specific nature of amyloid aggregation
[57–59], and by the experimentally-derived scale of amino-acid
aggregation-propensities (ranging from the aggregation-prone
hydrophobic residues to the aggregation-interfering charged side
chains [60,61]). However, through an exhaustive screening of
non-physiological conditions such as extreme protein concentra-
tion, a pH less than 3, or the addition of aprotic solvents
[53,54,62,63], the influence of the side chains in the aggregation
process can be altered or their importance diminished, eventually
driving the protein of interest into amyloid fibrils. Although the
amyloid-like conformation is one of the common features of many
protein aggregates, proteins can also aggregate by domain-swap-
ping [56,64,65], into nanotube structures [66], and into helical
assemblies [67,68], all without forming any cross-b structures.
10. Conclusion

Almost 75 years ago, the pioneering biophysicist Astbury pub-
lished an X-ray diffraction pattern from poached, stretched egg
white which had reflections at 4.7 Å in the meridional direction
and �10 Å along the equatorial direction [3]. The pattern sug-
gested that the protein chains of the egg white pack in an ex-
tended or b-conformation, with the chains perpendicular to the
long (stretched) axis. The authors concluded that when pro-
teins/peptides aggregate, they go into their energetically most
favorable conformational state, this being the cross-b-sheet motif.
Now it appears that the egg white example was not a special case
and that when proteins aggregate they often form an amyloid-
like entity comprising a specific structure. The process of protein
aggregation can thus be viewed as a primitive folding mechanism,
resulting in a defined aggregated conformation composed of
intermolecular hydrogen bonds and side chain – side chain inter-
actions. This in turn determines for each (amyloid) aggregate its
own distinct properties, which can include both functional and
toxic activities.
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