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Abstract The flow upstream of a free overfall from smooth inverted semicircular channels is theoretically

analysed to compute the end-depth ratio (EDR), applying an energy equation based on the Boussinesq

assumption. This approach eliminates the need for an experimentally determined pressure coefficient.

Experiments were conducted with horizontal channel conditions. The EDR related to the critical depth, which

occurs upstream from the end section, is found to be around 0.695 for a critical depth-diameter ratio up to 0.40.

A simple method is presented to estimate the discharge from a known end-depth. The theoretical model

corresponds closely with the experimental data.
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Introduction

A free overfall offers the possibility of being used as a flow-measuring device in an open

channel. As, in hydrologic engineering, it is essential to measure discharge in open channels,

considerable attention has been paid to exploring free overfall in different shaped channels.

In free overfalls, the water nappe emerging out is affected by the gravity resulting in an

accelerated flow. With the atmospheric pressure existing above and below the nappe, the

water surface profile is a parabola. At the end section, this causes a pressure distribution to

depart from the hydrostatic pressure distribution. At sections upstream from the brink, the

water surface curvature gradually decreases (Wilkinson 1973) and at an upstream control

section the hydrostatic pressure is reestablished. As a result of which, the flow depth reduces

gradually from the upstream control section towards the downstream direction with a

minimum depth he occurring at the brink, termed the end-depth. In subcritical flow, a critical

section occurs if the flow has to pass through a supercritical state. The critical depth hc based

on hydrostatic pressure distribution occurs upstream from the brink.

Fundamental experimental research was carried out by Rouse (1936) to determine the

end-depth ratio (EDR=end-depth/critical depth), which was found to be 0.715 in mildly

sloping rectangular channels. Since then numerous experiments on free overfalls in different

channels have been reported (Diskin 1961, Smith, 1962, Rajaratnam and Muralidhar 1964a,

b, Clarke 1965, Anderson 1967, Hager 1983, Keller and Fong 1989, Anastasiadou-

Partheniou and Hatzigiannakis 1995, Dey 1998a, b, 2000, 2001a, b, Dey and Ravi Kumar

2002). However, no attempt has so far been made to analyse free overfall in inverted

semicircular channels. Though the section is not common, inverted semicircular tunnels or

sewers are found in some places in India, especially in the southern part. Among them the

Pasuvemula tunnel at four miles along the Nagarjuna Sagar right canal (in the Guntur district

in Andhra Parades, India) and the Ramasagaram tunnel on the Tungabhadra low level canal

(in the Bellery district in Karnataka, India) are pertinent. Some other semicircular tunnels are

also in the Nagarjuna Sagar and Krishna Sagar dams.
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This paper presents a theoretical model for a free overfall from smooth inverted

semicircular channels, applying an energy equation based on the Boussinesq assumption (see

the appendix). It eliminates the need for an empirical pressure coefficient. The model yields

the EDR and the discharge, which are verified by the experimental results in subcritical flow.

This study does not consider the supercritical flow case, as it is not common in practice.

Experimental set-up and procedure

The experiments were carried out in three different inverted semicircular channels (made of

transparent Perspex), having diameters of 128 mm (channel 1), 68 mm (channel 2) and

43 mm (channel 3). The lengths of the channels were 3 m. Perspex walls enabled

observations to be made of the flow. A suitable holding arrangement was made to hold the

channel. As, in this study, the end-depths for the subcritical approaching flow were explored,

the experimental runs were taken in the horizontal channel condition. The channel was

connected to an upstream supply through a stilling tank to eliminate water surface

fluctuations. Water entered the stilling tank from a constant head tank fed by a centrifugal

pump. Water discharged through the downstream end of the channel into a measuring tank

and finally drained out into the reservoir. A valve in the upstream supply line controlled the

discharge. The discharge was set by slowly opening the upstream valve until a desirable

height at the end of the channel resulted. Once this was reached, the corresponding discharge

was recorded with the aid of a measuring tank, where the water was collected for a

predetermined period of time. A diverter helped to divert the water from the measuring tank

to a drain connected to the reservoir or vice versa. The end-depths were measured carefully

by a Vernier point gauge just touching the water surface with an accuracy of ^0.1 mm.

Similar point gauges were used to record the difference in water surface level in

the measuring tank. However, time and care taken during the measurements ensured the

accuracy. Tables 1(a)–(c) present the experimental data collected in channels under the

horizontal condition.

Table 1(a) Experimental data collected in Channel 1

Channel D Q ĥc ĥe h̃e Q̂

(mm) (m3s21)

4.604 £ 1024 0.086 0.059 0.691 2.508 £ 1022

5.279 £ 1024 0.094 0.066 0.706 2.875 £ 1022

6.442 £ 1024 0.107 0.078 0.726 3.509 £ 1022

6.900 £ 1024 0.112 0.082 0.728 3.758 £ 1022

2.083 £ 1023 0.234 0.169 0.721 1.135 £ 1021

1.875 £ 1023 0.218 0.149 0.684 1.021 £ 1021

1.701 £ 1023 0.205 0.148 0.721 9.305 £ 1022

1.438 £ 1023 0.183 0.124 0.677 7.830 £ 1022

8.429 £ 1024 0.128 0.090 0.703 4.591 £ 1022

1.233 £ 1023 0.165 0.118 0.717 6.718 £ 1022

1 128 1.029 £ 1023 0.146 0.100 0.684 5.606 £ 1022

8.933 £ 1024 0.133 0.098 0.734 4.866 £ 1022

7.771 £ 1024 0.121 0.068 0.679 4.233 £ 1022

4.171 £ 1024 0.080 0.055 0.680 2.272 £ 1022

2.179 £ 1023 0.241 0.176 0.739 1.187 £ 1021

1.954 £ 1023 0.224 0.161 0.719 1.064 £ 1021

5.829 £ 1024 0.100 0.071 0.707 3.175 £ 1022

1.763 £ 1023 0.209 0.143 0.681 9.600 £ 1022

1.550 £ 1023 0.192 0.136 0.706 8.443 £ 1022

1.183 £ 1023 0.161 0.109 0.680 6.445 £ 1022
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Table 1(c) Experimental data collected in Channel 3

Channel D Q ĥc ĥe h̃e Q̂

(mm) (m3s21)

2.495 £ 1024 0.345 0.247 0.716 2.077 £ 1021

2.180 £ 1024 0.317 0.224 0.708 1.815 £ 1021

1.811 £ 1024 0.282 0.201 0.714 1.508 £ 1021

1.586 £ 1024 0.258 0.180 0.696 1.320 £ 1021

1.358 £ 1024 0.233 0.164 0.705 1.130 £ 1021

1.002 £ 1024 0.191 0.137 0.716 8.344 £ 1022

7.095 £ 1025 0.152 0.104 0.685 5.908 £ 1022

6.600 £ 1025 0.145 0.102 0.703 5.496 £ 1022

5.520 £ 1025 0.128 0.092 0.721 4.597 £ 1022

3 43 3.660 £ 1025 0.098 0.067 0.689 3.047 £ 1022

2.646 £ 1024 0.357 0.249 0.697 2.203 £ 1021

2.432 £ 1024 0.339 0.237 0.697 2.025 £ 1021

2.829 £ 1024 0.371 0.261 0.702 2.356 £ 1021

2.460 £ 1024 0.342 0.243 0.710 2.048 £ 1021

1.977 £ 1024 0.297 0.210 0.704 1.646 £ 1021

1.682 £ 1024 0.268 0.186 0.694 1.400 £ 1021

1.511 £ 1024 0.250 0.179 0.714 1.258 £ 1021

1.187 £ 1024 0.213 0.150 0.703 9.880 £ 1022

7.815 £ 1025 0.162 0.115 0.713 6.507 £ 1022

4.935 £ 1025 0.119 0.081 0.681 4.109 £ 1022

Table 1(b) Experimental data collected in Channel 2

Channel D Q ĥc ĥe h̃e Q̂

(mm) (m3s21)

7.558 £ 1024 0.337 0.231 0.685 1.998 £ 1021

5.158 £ 1024 0.264 0.191 0.722 1.366 £ 1021

4.233 £ 1024 0.232 0.163 0.704 1.121 £ 1021

2.804 £ 1024 0.177 0.124 0.701 7.425 £ 1022

3.821 £ 1024 0.217 0.158 0.727 1.012 £ 1021

2.521 £ 1024 0.164 0.121 0.735 6.675 £ 1022

2.258 £ 1024 0.153 0.104 0.678 5.980 £ 1022

5.988 £ 1024 0.291 0.200 0.688 1.585 £ 1021

4.604 £ 1024 0.245 0.178 0.728 1.219 £ 1021

2 68 4.250 £ 1024 0.232 0.165 0.708 1.125 £ 1021

7.454 £ 1024 0.334 0.236 0.706 1.974 £ 1021

6.475 £ 1024 0.306 0.223 0.729 1.714 £ 1021

5.550 £ 1024 0.277 0.187 0.674 1.470 £ 1021

4.954 £ 1024 0.257 0.181 0.740 1.312 £ 1021

4.317 £ 1024 0.235 0.166 0.706 1.143 £ 1021

7.875 £ 1024 0.345 0.253 0.731 2.085 £ 1021

6.842 £ 1024 0.317 0.223 0.704 1.812 £ 1021

6.713 £ 1024 0.313 0.214 0.683 1.777 £ 1021

6.171 £ 1024 0.296 0.214 0.720 1.634 £ 1021

5.800 £ 1024 0.285 0.195 0.683 1.536 £ 1021
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Model for end-depth ratio (EDR)

In a free overfall, the water surface is a continuously falling curve, which starts somewhere

upstream of the brink, passes through the brink and ends up with a trajectory of a gravity fall

(Figure 1). Based on the Boussinesq assumption for a small free surface curvature, a

generalised equation (see the appendix) for the end-depth is given by Subramanya (1987) as

6Êe 2 4~he 2 3f ð~heÞ ¼ 0 ð1Þ

where Êe ¼ Ee=hc; E ¼ specific energy, h ¼ flow depth, ~he ¼ EDRð¼ he=hcÞ; f ð~heÞ ¼

A3
c=ðA

2
eTchcÞ; A ¼ flow area and T ¼ top width of the flow. In the above, subscripts ‘e’ and

‘c’ refer to the end and critical sections, respectively.

In subcritical flow, the critical depth is greater than the end-depth but is less than the normal

depth. Hence, the critical depth occurs at some distance upstream from the brink. However,

there is a continuity of the free surface. For an inverted semicircular channel (Figure 1), the

flow area A and the top width T of the flow are given as

A ¼ 0:25D 2jðĥÞ ð2Þ

T ¼ D2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 4ĥ 2

p
ð3Þ

where D ¼ diameter of the channel, ĥ ¼ h=D and

jðĥÞ ¼ arcsinð2ĥÞ þ 2ĥ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 4ĥ 2

p
: ð4Þ

In subcritical flow, the critical depth occurs before the end-depth and, as such, hc exists at

some location upstream from the brink. The specific energy at any section is given by

E ¼ Ee ¼ Ec ¼ hc þ Q 2=ð2gA2
cÞ: ð5Þ

where g ¼ gravitational constant.

Normalising the above equation, one can write

Êe ¼ 1 þ 0:125
jðĥcÞ

ĥc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 4ĥ

2

c

q : ð6Þ

Also, f ð~heÞ can be expressed using Eqs. (2)–(4) as

f ð~heÞ ¼
A3

c

A2
eTchc

¼ 0:25
j3ðĥcÞ

j2ðĥeÞĥc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 4ĥ

2

c

q : ð7Þ

Using Eqs. (6) and (7), Eq. (1) can be solved numerically to estimate EDR ~he.

Figure 1 Definition sketch
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Model for discharge

Discharge is calculated using the expression of the Froude number, that is

F ¼ V=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðA=TÞ

p
ð8Þ

where V ¼ flow velocity.

As the flow is critical at a location upstream from the brink, using F ¼ 1 in Eq. (8) one can

express the discharge Q in normalized form as

Q̂ ¼
1

8
·

j1:5ðĥcÞ

ð1 2 4ĥ
2

cÞ
0:25

ð9Þ

where Q̂ ¼ Q=ðg 0:5D2:5Þ: Eq. (9) is used to calculate Q̂ theoretically in subcritical flow,

using the known end-depth.

Results

Using Eqs. (6) and (7), Eq. (1) can be solved numerically to compute EDR ~he, and

subsequently Q̂ is determined from Eq. (9). The dependence of ~he on ĥc obtained from the

present model is shown in Figure 2. The curve obtained from the present model lies almost in

the middle portion of the experimental data. The value of EDR ~he is around 0.695 up to

ĥc ¼ 0:40: The computed curve rises sharply from ĥc ¼ 0:40 and ~he approaches 1 as ĥc

approaches 1. The variation of ĥe with Q̂ is presented in Figure 3. The present model

corresponds closely with the experimental observations.

Conclusions

The flow upstream of a free overfall from smooth inverted semicircular channels has been

theoretically analysed to calculate the end-depth ratio (EDR), applying an energy equation

based on the Boussinesq assumption. This approach has eliminated the need for an

empirical pressure coefficient. Experiments were conducted with the horizontal channel

condition. The EDR has been related to the critical depth, which occurs upstream from

the end section, and the value of the EDR is found to be about 0.695 for a critical depth-

diameter ratio up to 0.40. A simple method has been presented to estimate the discharge

from a known end-depth. The theoretical model has corresponded closely with the

experimental data.

Figure 2 EDR h̃e as a function of ĥc in subcritical flow
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Appendix

Boussinesq assumption

The free surface curvature of a free overfall being relatively small it varies from a finite value

(convex upwards) at the surface to zero at the channel boundary. According to the

Boussinesq assumption (Jaeger, 1957), a linear variation of the streamline curvature with

depth is assumed. He expressed the effective hydrostatic pressure head hep as

hep ¼ h þ
kh 2

3g
ðA1Þ

where k ¼ ðV 2=hÞðd 2h=dx2Þ and x ¼ streamwise distance.

Generalised equation of EDR (Subramanya 1987)

The specific energy Ee at the end section is given by

Ee ¼ hep þ
V2

e

2g
¼ he þ

V2
ehe

3g

d2h

dx2

� �
h¼he

þ
V2

e

2g
¼ he þ

Q2he

3gA2
e

d2h

dx2

� �
h¼he

þ
Q 2

2gA2
e

: ðA2Þ

Normalizing Eq. (A2) by hc and using Q2=g ¼ A3
c=Tc yields

d2ðh=hcÞ

dðx=hcÞ
2

����
h¼he

¼
3

~hef ð~heÞ
Êe 2 ~he 2

1

2
f ð~heÞ

� �
: ðA3Þ

Since the change of free surface curvature is

ðd2h=dx2Þh¼he
¼ 2g=V2

e ðA4Þ

normalizing Eq. (A4) by hc and using Q 2=g ¼ A3
c=Tc yields

d2ðh=hcÞ

dðx=hcÞ
2

����
h¼he

¼ 2
1

f ð~heÞ
: ðA5Þ

Equating Eqs. (A3) and (A5), the following equation is obtained

6Êe 2 4~he 2 3f ð~heÞ ¼ 0: ðA6Þ

The above equation proposed by Subramanya (1987) is the generalised equation of the end-

depth ratio (EDR).

Figure 3 Variation of ĥe with Q̂ in subcritical flow
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