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Abstract

Gut microbiota has been implicated as a modifier of childhood growth. Here, 16S rRNA

sequencing-based fecal microbiota profiles of 18–24 month old Indian children were evalu-

ated (n = 41), in relation to their anthropometric parameters, intestinal permeability, body

composition and total energy expenditure. Pathway analyses were conducted to assess

microbial functions related to stunting, underweight and wasting. The fecal microbiota was

enriched in Prevotella 9, Bifidobacterium and Escherichia-Shigella. Weight, weight-for-age

Z-scores (WAZ) and weight-for-length Z-scores (WLZ), along with age, acted as covariates

of microbiota variation specifically in boys (n = 23). Bifidobacterium longum subsp longum

abundance was positively associated with WAZ while Bifidobacterium bifidum and Bifido-

bacterium breve abundances were negatively associated with age. The lipopolysaccharide

biosynthesis pathway was upregulated in stunted (n = 16) and wasted (n = 8) children. Find-

ings from this study indicate that child sex may be a critical modifier of the role of gut micro-

biota on childhood growth.

Introduction

Suboptimal nutritional status is prevalent in children under 5 years of age in low- and middle-

income countries despite noticeable progress in regions such as Central and tropical America

[1]. Due to considerable disparities in socioeconomic and demographic factors amongst the

low and middle income countries, the WHO Global Nutrition Targets set in 2010 to reduce

stunting by 40% and wasting to<5% by 2025 are unlikely to be achieved [1]. Achieving these

targets requires efforts to first identify underpinning mechanistic pathways followed by rele-

vant interventions to promote child growth.
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Prevailing nutritional interventions have barely been able to improve child growth faltering.

A contributing factor toward this conundrum could be the failure of the intervention regimes

to address the role of the gut in child growth faltering. Specifically, the role of environmental

enteropathy (EE) or Environmental Enteric Dysfunction (EED) in growth faltering per se and

also in recovering from faltered growth due to lack of appropriate response to nutritional ther-

apies, has gained a lot of attention [2,3]. Accumulating evidence suggests that child growth

may be compromised by a complex interplay (host-microbiome interactions) between the resi-

dent microbiota, intestinal integrity, immune response and food intake and metabolism on

child growth [4].

A recent study has established a causal pathway relating duodenal microbiota, enteropathy

and stunted growth in children from urban slums of Bangladesh [5]. Pre-clinical models that

have attempted to provide links between undernourishment, intestinal pathogenic insult and

EE, indicate the possibility of varying EE phenotypes that could depend on a combination of

diet deprivation and pathogens [6]. This has been confirmed by associations between poor

nutritional status and altered fecal microbiome in children from India and elsewhere [7–10].

However, intervention with specially designed microbiome directed complementary foods do

not have a faster rate of recovery from moderate acute malnutrition compared to routinely

provided ready-to-use therapeutic foods [11]. Considering the known links between geograph-

ical location, dietary habits and gut microbiome profiles [12,13], it is also necessary to advance

existing knowledge by conducting in-depth characterization of gut microbiome profiles of

undernourished children from diverse geographical areas. The current study evaluated the

hypothesis that the fecal microbiome profiles of 41 young Indian children aged 18–24 months

is associated with their anthropometric, demographic, body composition and intestinal per-

meability variables aligned to their nutritional and EE status.

Materials and methods

Participant details

The selection of participants for this study (n = 41, 18–24 months age) was based on the avail-

ability of fecal samples for gut microbiota analysis from a larger study for which apparently

healthy children had been recruited from an urban slum in close proximity to St. John’s

National Academy of Health Sciences to determine tryptophan metabolism and protein digest-

ibility in children at risk of EE. The study had been approved by the Institutional Ethics Com-

mittee, St. John’s Medical College and Hospital, Bangalore, India and written informed

consent had been obtained from caregivers of the participants. The study was registered at the

Clinical Trials Registry of India (http://ctri.nic.in/Clinicaltrials/login.php); registration num-

ber: CTRI/2017/02/007921.

Non-breastfed children, aged between 18–24 months, underwent a pediatric clinical exami-

nation and history taking to exclude chronic or congenital systemic disorders, history of food

allergies or serious illness in the past three months. Children with a history of gastrointestinal

symptoms in the previous two weeks, antibiotic therapy in the last four weeks, and regular

iron supplementation were excluded. A screening blood sample was collected to test for C-

reactive protein (CRP), HIV, Hepatitis B and hemoglobin (Hb) (ABX-Pentra 60C+, France).

Information on general demographic characteristics were collected through caregiver inter-

views. Anthropometric measurements were performed employing standard procedures and

equipment, weight was measured to the nearest 10 g (Seca 354, Hamburg, Germany) and

length to the nearest millimeter (Seca 417, Hamburg, Germany). Nutritional status indicators,

length-for-age Z-scores (LAZ), weight-for-age Z-scores (WAZ) and weight-for-length Z-

scores (WLZ) had been extracted using the WHO anthroplus software (version 3.2.2, January
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2011). Based on established cut-offs for nutritional indicators [14], the participants were cate-

gorized as stunted (LAZ< -2), underweight (WAZ < -2) or wasted (WLZ < -2), respectively.

Body composition, total energy expenditure, dual sugar assay

measurements and calculations

For body composition and total energy expenditure (TEE) measurements, the participants

drank doubly labelled water (DLW), after ensuring 2 hour post-prandial period, at a dose of

0.2 g/kg body weight (BW) of 99.9% 2H2O and 3 g/kg BW of 10% H2
18O (supplied by Sercon

Ltd, Cheshire, UK). A basal urine sample was collected before dosing, at home by the mothers

into a sterile container, and one sample between 3 to 4 h post DLW dose for body composi-

tion, and another sample after 1 week (at home) for TEE estimation. The deuterium dose

reaches equilibrium in urine between 3–5 hours, as observed in newborns [15], comparable

with the study age group and has been standardised by the International Atomic Energy

Agency [16,17]. Isotopic enrichments of 2H and 18O in urine samples were measured in dupli-

cates using isotope ratio mass spectrometer (IRMS, Delta V advantage, Thermo Scientific, Bre-

men, Germany).

Total body water for body composition estimation was obtained by the deuterium dilution

method and fat free mass (FFM) was derived using standardized protocols and calculations as

per the International Atomic Energy Agency [16]. Similarly, established equations for rate of

carbon dioxide production and energy expenditure were used for TEE estimation [16].

The participants were also assessed for the presence of impaired intestinal permeability

with the dual sugar absorption test, using lactulose (L) and rhamnose (R) sugars (henceforth

referred to as the LR protocol) in a short duration (2 h) LR protocol [18,19]. Mothers were

requested to collect the early morning urine void into a sterile container, which served as a

baseline sample for the experiment. Mothers were directed to provide breakfast to the child

early in the morning. On arrival at the research facility and confirmation of a 2 h post-prandial

period, the children were encouraged to void urine before a dose of 1.3 g lactulose and 0.3 g

rhamnose (Tokyo Chemical Industry Co., Ltd) was administered orally in a volume of 14 mL

water. Children were encouraged to drink water after dosing, but no other liquids and/or food

was provided for the next 2 h. During this 2 h period all urine voids were collected through a

pre-weighed plastic diaper lined with a sterile cotton pad. If no urine was collected at the end

of 2 h, the collection was continued for an additional 0.5 h, in the fasting state. The diapers

were weighed to quantify volume, the urine sample was transferred into a sterile container and

stored in an ice box until the end of the experiment, when the samples were pooled in propor-

tion to the total volume voided, and aliquoted into sterile cryovials and stored at -20˚C until

analysis.

Urinary L and R concentrations were measured by an isotope dilution method modified

from a procedure that was previously described [20]. Briefly, a weighed volume of urine sam-

ple was spiked with a known quantity of U-13C12-lactulose and U-13C6-rhamnose:H2O (Cam-

bridge Isotope Laboratories, MA, USA) as Internal Standards (IS). The samples were extracted

and derivatized to their silylated esters by following two step procedure of methoxyamination

and silylation by using methoxyamine hydrochloride, pyridine and N,O-bis(trimethylsilyl)tri-

fluoroacetamide containing 1% trimethylchorosilane, Sigma-Aldrich MO, USA) and were

analysed by gas chromatography-mass spectrometry (GC-MS, SQ, 5975, Agilent Technologies,

CA, USA) in selected ion monitoring mode to quantify ions at m/z 361 and 367 (for lactulose

and 13C12-lactulose respectively) and m/z 117 and 119 (for rhamnose and 13C6-rhamnose

respectively).

Calculation of percent recovery of each sugar in the urine and their ratio was as follows:
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Percent (%) lactulose (or rhamnose) recovery = [(total urine volume (mL) over first 2 h x

lactulose (or rhamnose) concentration (μmol/L) in urine)/dose of lactulose (or rhamnose)

administered] x 100

Lactulose to rhamnose ratio (LRR) = % lactulose recovery/% rhamnose recovery

The participants were categorized as having normal or high intestinal permeability (and

associated inflammation) using an LRR value of 0.067 as the upper limit of normal [21]. This

upper limit of normal (98th centile, mean + 2SD) for LRR was obtained from 20 healthy chil-

dren (LRR mean ± SD: 0.029 ± 0.019) with normal nutritional indices (LAZ, WAZ, and WHZ

> -1) belonging to a high socio-economic background, recruited from the well-baby clinic of

St. John’s Medical College and Hospital, Bangalore, for the larger study from which partici-

pants for the current study were selected (manuscript under preparation).

Collection of fecal samples

Fecal samples were collected by the participants’ mothers in their respective households. Prior

to sample collection, the field workers had demonstrated how to collect the fecal samples to

the mothers, and clarified any doubts or questions that the mothers had regarding the sample

collection procedure. A fecal sample collection kit, containing a sterile container, plastic bags,

gloves and spoon was provided to the mothers to collect the first passage of faeces, in the

morning hours, or according to the child’s routine. With gloved hands, the mothers used the

spoon to transfer the fecal material from the plastic bags, on which the child had passed stool,

to the sterile container. The collected fecal samples were either stored by the parents in the

children’s homes at room temperature for a maximum of 5 hours, or collected directly from

the children when feasible, before they were transferred in an ice box (2 to 8˚C) to St. John’s

research facility by the field workers, and then aliquoted into 3 sterile cryovials and stored at

-80˚C freezer until analysis. The fecal sample collection protocol was designed based on earlier

studies that have demonstrated stability of fecal samples and associated microbiota profiles

when collected and stored at 4˚C or room temperature up to 24 hours before longer-term stor-

age at -80˚C till analysis [22,23].

Fecal microbiota analysis

Fecal DNA was extracted using an in-house kit that comprised of fecal sample lysis, RNase A

treatment, phenol-chloroform-isoamyl alcohol-based phase separation and precipitation of

DNA with 100% ethanol. The extracted DNA was quantified using Qubit dsDNA HS Assay kit

(Thermo Fisher Scientific, MA, USA) and checked on agarose gel for integrity. The extracted

DNA was diluted to 5ng and V3-V4 amplicons were generated from 16S rDNA PCR products

with region-specific primers (16S Forward: AGAGTTTGATCCTGGCTCAG; 16S Reverse:

GGTTACCTTGTTACGACTT; V3-V4 Forward: CCTACGGGNGGCWGCAG; V3-V4 Reverse:

GACTACHVGGGTATCTAATCC) and NEBNext High-Fidelity 2X PCR Master Mix (New

England Biolabs, MA, USA) using a nested PCR strategy. The V3-V4 amplicons were then

checked on agarose gel followed by clean up using AMPure XP beads (Beckman Coulter Inc.,

CA, USA).

Cleaned V3-V4 amplicons were used for library preparation using NEBNext Ultra DNA

Library preparation kit (New England Biolabs, MA, USA). In brief, the amplicons were end

repaired and mono-adenylated at 3’-end in a single enzymatic reaction. Next, NEB hairpin-

loop adapters were ligated to the DNA fragments in a T4-DNA ligase-based reaction. Follow-

ing ligation, the loop containing Uracil was linearized using USER Enzyme (a combination of

Uracil-DNA glycosylase and Endonuclease VIII), to make it available as a substrate for PCR
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based indexing in the next step. During PCR, barcodes were incorporated using unique prim-

ers for each of the samples by giving 10 PCR cycles, thereby enabling multiplexing.

The prepared library was checked for fragment distribution using Agilent D1000 Screen

Tapes and reagents (Agilent Technologies, Inc., CA, USA). The obtained library was pooled

and diluted to final optimal loading concentration before Cluster amplification on Illumina

flow cell. Once the cluster generation is completed, the clustered flow cell is loaded on Illumina

HiSeq2500 instrument (Illumina, Inc., CA, USA) to generate 0.5M, 250bp Paired end reads/

sample. To segregate the barcodes sequenced together on the machine, Illumina’s bcl2fastq

v2.18 was used for demultiplexing. The default parameters of bcl2fastq were retained for the

demultiplexing step which notably includes allowing one mismatch in the barcode sequence.

The data quality post-demultiplexing was verified by custom scripts and found to be suitable

for further analysis. These analyses were performed at MedGenome Labs Pvt Ltd, Bangalore,

India.

Bioinformatics and statistical analysis

Quality control and pre-processing of metagenomic sequences. The demultiplexed

sequencing reads were processed using the Quantitative Insights Into Microbial Ecology

QIIME 2 (v2019.10.0) pipeline [24]. The paired end reads were depleted of amplicon primers

using the Cutadapt plugin [25]. Quality check was performed using demux plugin followed by

denoising, chimera identification and PhiX removal and dereplication using the DADA2

plugin [26]. The final read statistics after the pre-processing steps are described in S1 Table.

The minimum final read count after post-feature filtering was 60623 reads.

Taxonomy classification. Taxonomies were assigned using a naïve Bayes classifier

(q2-feature- classifier and classify-sklearn plugins) trained on V3-V4 sequence region

extracted from the latest SILVA rRNA (16S SSU) v132 reference database [27] using locus-spe-

cific primer sequences. Operational taxonomic units (OTUs) were defined at 99% similarity.

Phylogenetic diversity analysis. De novo sequence alignments were performed using

MAFFT [28] followed by construction of the phylogenetic tree using FastTree [29]. OTUs

present in less than 2 samples or at total counts below 10 were filtered out to remove potential

PCR or sequencing errors and low abundant features that may not represent the true biological

diversity. Alpha rarefaction plots indicated the completeness of OTU representation across dif-

ferent sequence sampling depths (S1 Fig). Measures of within-sample and between-sample

phylogenetic richness and community consistency were evaluated by estimating alpha and

beta diversity indices using rarefied data subsampled to minimal depth (60623 reads). The

effect of selected sampling depth on alpha diversity indices (Pielou’s evenness, Faith’s phyloge-

netic diversity index, Shannon diversity and observed OTUs) (S2 Fig) and beta diversity indi-

ces (Bray-Curtis, Jaccard’s, unweighted and weighted UniFrac distances) were determined (S3

Fig). Principal coordinates analysis (PCoA) plots for the beta diversity metrics were generated

using Emperor [30]. Group significances in the alpha and beta diversity metrics were assessed

with Kruskal–Wallis test and permutational multivariate analysis of variance (PERMANOVA,

at permutations = 999) respectively using the QIIME2 plugins.

Covariate analysis. The association of demographic, anthropometric and other variables

with PCoA ordination (calculated based on Bray-Curtis dissimilarity) was estimated with

envfit function in the vegan R package (999 permutations, followed by Benjamini-Hochberg

multiple test correction) that utilizes MANOVA and linear correlations for categorical and

continuous variables, respectively. Partial least squares discriminant analysis (PLS-DA) was

performed using mixOmics R package using the case and non-case definitions for stunting,

wasting and underweight groupings.
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Univariate association analysis. Towards removing rare OTUs and improving the sig-

nal-to-noise ratio, only OTUs with relative abundance > 0.1% in at least 2 samples [31,32]

were retained for this feature-based analysis. The final OTU table used for all subsequent anal-

yses contains a total of 142 taxa including few taxonomic assignments at the subspecies level.

Given the limited accuracy of using 16s rRNA (V3-V4) sequences for subspecies-level assign-

ments, it is imperative to validate all reported associations at the subspecies level using targeted

PCR-based approaches. The associations with anthropometric, demographic body composi-

tion and intestinal permeability parameters were assessed using Spearman correlation analysis

on relative abundance measures. The p-values were adjusted for multiple comparison at each

taxonomic level separately using Benjamini-Hochberg method. The association tests were per-

formed using R platform [33].

Metagenomic pathway analysis. Metagenomic inference analysis was conducted by pre-

dicting KEGG orthology (KO) metagenomes [34], enzyme commission (EC) metagenomes

and MetaCyc pathways [35] using PICRUSt (phylogenetic Investigation of Communities by

Reconstruction of Unobserved States) [36] through q2-picrust2 plugin from QIIME2.

Linear discriminant analysis (LDA) Effect Size (LEfSe) analysis. The final filtered OTU

table was analysed using the linear discriminant analysis (LDA) Effect Size (LEfSe) method

[37] to compare case and non-case classes identified for stunting, wasting and under-nutrition

groups as well as for the high and low LRR groups using default parameters. Relative abun-

dances of the different KEGG pathways, EC terms and MetaCyc pathways were also assessed

using LEfSe algorithm after placing a filter of 0.1% in at least two samples.

Results

Participant characteristics

Fecal samples from 41 participants (aged 18–24 months) were used for 16S rRNAV3-V4

sequencing based gut microbiota analysis. Participant characteristics are available in Table 1,

categorized based on their nutritional status as stunted n = 16, non-stunted n = 25; wasted

n = 8, non-wasted n = 33; underweight n = 15, normal weight n = 26 and in S2 Table, catego-

rized based on their lactulose rhamnose ratio (LRR,�0.067: n = 16 and <0.067: n = 25). Based

on their paediatric clinical examination at the time of recruitment and medical history

obtained through caregiver interviews, the participants were otherwise normal, without renal

affection, either due to disease or drugs.

16S rRNA V3-V4 sequencing of fecal microbiota

A total of 47,363,558 read sequences were obtained across 41 samples, with an average of

11,55,208 reads per sample (S1 Table). After preprocessing using QIIME2 pipeline, 6,429,231

good quality reads were obtained with an average of 156,810 reads per sample. The detected

operational taxonomic unit (OTU) counts ranged between 158 and 534.

Fecal microbiota is similarly diverse in nutritional indicator groups

Alpha rarefaction curves were generated to assess the effect of different sampling depth on

OTU abundance (S1A Fig). The plots clearly indicate that detection of observed OTUs had

already attained a plateau at 60000 reads, the minimum sample depth in the dataset. The pla-

teauing trend was separately confirmed for the case and non-case groupings of the three nutri-

tional status groups as well (S1B–S1D Fig). Several alpha and beta diversity estimators were

computed to measure within-sample and between-sample diversities and to compare cases

and non-cases within the three nutritional status groups. Overall, alpha diversity was not
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different between case and non-case groups (S2 Fig) except in case of Shannon diversity mea-

sures among underweight children (p = 0.048). However, a few of the beta diversity metrics

were different between cases and non-cases, such as Bray-curtis distance in wasted (p = 0.01)

and weighted UniFrac distances in stunted (p = 0.04) and wasted (p = 0.006) children (S3 Fig).

Overall, there was a significant overlap between cases and non-cases using principal coordi-

nates analysis of beta diversity measures.

Child weight and weight-based scores are covariates of fecal microbiota

variation, specifically in boys

Towards identifying covariates of microbiota variation in our sample set, we performed Prin-

cipal Coordinates Analysis (PCoA) based on their Bray-Curtis dissimilarity measures and eval-

uated possible correlations of the microbial community structure with anthropometric,

demographic, body composition, TEE and intestinal permeability parameters (Fig 1A). Weight

and weight-derived scores (WAZ, WLZ) had significant effect on sample clustering (Fig 1B).

The maximum individual effect size estimated was for WAZ (26%), followed by WLZ (25%)

and weight (21%). Subgroup analysis of the covariate effects by sex revealed that the weight-

mediated effects were specifically present in the boys (Fig 1C–1F). A significant contribution

of age was also observed within the boys (p = 0.035). In contrast, none of the covariates tested

had any significant effect on fecal microbial community variation in the girls. Further

Table 1. Characteristics of children categorised as cases and non-cases by nutritional status�.

Stunted

(LAZ<-2)

Non-stunted

(LAZ�-2)

P-value Underweight

(WAZ<-2)

Non-Underweight

(WAZ�-2)

P-value Wasted

(WLZ<-2)

Non-Wasted

(WLZ�-2)

P-value

n 16 25 15 26 8 33

Sex (F/M) 8/8 10/15 9/6 9/17 5/3 13/20

Age (months) 21.9 ± 2.6 21.2 ± 2.6 0.393 21.9 ± 2.7 21.3 ± 2.6 0.450 22.0 ± 3.3 21.4 ± 2.5 0.553

Weight (kg) 8.7 ± 0.8 9.9 ± 1.1 0.001 8.4 ± 0.6 10.0± 0.9 <0.001 8.4 ± 0.8 9.7± 1.0 0.002

Height (cm) 77.4 ± 2.4 81.0 ± 3.2 <0.001 77.7 ± 3.1 80.7 ± 3.1 0.004 79.5 ± 3.9 79.7 ± 3.3 0.910

Maternal

education (years)

8 (5,10) 10 (7,10) (0.095) 8 (3,10) 9 (7,10) (0.369) 6 (4,10) 10 (7,10) (0.165)

Hb (g/dL) 10.2 (8.9,11.1) 10.6 (8.8,11.1) (0.500) 10.8 (10.4,11.4) 10.1 (8.6,10.8) (0.086) 11.0 (10.6,11.4) 10.3 (8.7,10.9) (0.112)

%FFM^ 77 (74,82) 78 (75,82) (0.805) 77 (74,81) 78 (74,82) (0.779) 77 (75,82) 78 (74,82) (0.957)

TEE (kcal/d)^ 783 ± 160 768 ± 220 0.837 711 ± 87 807 ± 224 0.203 648 ± 99 800 ± 198 0.108

TEE (kcal/kg

FFM/d)^
116 ± 20 99 ± 24 0.050 111 ± 13 104 ± 27 0.517 102 ± 18 108 ± 24 0.605

LAZ -2.5 ± 0.4 -1.1 ± 0.8 <0.001 -2.3 ± 0.6 -1.2 ± 0.9 <0.001 -1.6 ± 1.3 -1.6 ± 0.9 0.961

WAZ -2.3 ± 0.6 -1.2 ± 0.8 <0.001 -2.5 ± 0.4 -1.1 ± 0.6 <0.001 -2.6 ± 0.6 -1.4 ± 0.8 <0.001

WLZ -1.4 ± 0.8 -0.9 ± 1.0 0.069 -1.9 ± 0.6 -0.6 ± 0.8 <0.001 -2.4 ± 0.3 -0.8 ± 0.8 <0.001

Dual sugar assay

Rhamnose

recovery (%)

1.5 (1.2,1.9) 1.6 (1.2,2.1) (0.741) 1.6 (1.3,2.1) 1.5 (1.2,2.0) (0.678) 1.8 (1.2,2.7) 1.5 (1.2,1.9) (0.507)

Lactulose

recovery (%)

0.08 (0.06,0.15) 0.09 (0.05,0.19) (0.843) 0.14 (0.06,0.21) 0.07 (0.05,0.13) (0.301) 0.14 (0.07,0.21) 0.07 (0.05,0.16) (0.235)

LRR 0.052

(0.042,0.094)

0.059

(0.039,0.090)

(0.947) 0.052 (0.045,0.138) 0.057 (0.034,0.087) (0.512) 0.052

(0.050,0.103)

0.056

(0.033,0.090)

(0.467)

�Values are mean ± SD and Median (Q1,Q3), P value for Independent t-test (Mann-Whitney test).
^n = 13 and 17 for stunted and non-stunted, 10 and 20 for underweight and non-underweight, 5 and 25 for wasted and non-wasted.

Abbreviation: LAZ, Length-for-age z-score; WAZ, Weight-for-age z-score; WLZ, Weight-for-Length z-score; Hb, Haemoglobin; FFM, fat free mass; %FFM, % fat free

mass per kilogram body weight; TEE, Total Energy Expenditure LRR, Lactulose Rhamnose ratio.

https://doi.org/10.1371/journal.pone.0251803.t001
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examination of the taxonomic relative abundances using supervised PLS-DA analysis revealed

strong separation between the case and non-case samples within the three nutritional status

categories, with maximum separation observed for underweight category (Fig 1G).

Bacterial abundance associates with growth measures and age

To delineate relations between anthropometric, demographic, body composition, TEE and

intestinal permeability variables and nutritional status with microbial abundances, the

Fig 1. Microbial community variation among 18–24 month old Indian children. Microbial community variation

represented by Principal coordinates analysis (PCoA) based on Bray-Curtis distances highlighting the covariate

contribution to community variation estimated using envfit correlation analysis plotted against first two components

with arrows scaled to contribution in (A) all 41 participants, (C) boys (n = 23) and (E) girls (n = 18). Effect sizes of

covariates of microbial composition in (B) all 41 participants, (D) boys (n = 23) and (F) girls (n = 18), significance

indicated with p-values (p< 0.05). (G) PLS-DA score plot showing model discrimination between cases and non-cases

with respect to stunting, wasting and underweight status, respectively. The ellipses denote 95% confidence intervals for

each grouping. LAZ: length-for-age Z-score, WAZ: weight-for-age Z-score, WLZ: weight-for-length Z-score, TEE:

total energy expenditure, LRR: lactulose to rhamnose ratio, FM: fat mass, FFM: fat free mass.

https://doi.org/10.1371/journal.pone.0251803.g001
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association of age, LAZ, WAZ, WLZ, %FFM, %FM, TEE, LRR and Hb levels of the children

was tested with the relative abundances, using Spearman correlation analysis (Table 2, S4 Fig).

An abundance-filtered OTU table consisting of 142 taxa was used for all downstream feature-

based analysis in an attempt to improve the signal-to-noise ratio by additionally filtering out

rare OTUs. WAZ was negatively associated with Bacteriodetes Phylum (p.adj = 0.01), as well

as its related class (Bacteroidia, p.adj = 0.02) and order (Bacteroidales, p.adj = 0.03). WLZ was

also negatively associated with Bacteriodetes Phylum (p.adj = 0.03) and its class (Bacteroidia,

p.adj = 0.05). At the phylum level, a positive association was identified between WLZ and Fir-

micutes abundance (p.adj = 0.03). The abundances of Coriobacteria and Erysipelotrichia clas-

ses showed positive associations with WAZ (p.adj = 0.04) and WLZ (p.adj = 0.04),

respectively. Hemoglobin levels were found to be negatively correlated with Enterobacter
abundance (p.adj = 5.3e-03) at the genus level. Finally, at the species level, significant positive

associations were identified between Bifidobacterium longum subsp longum abundance and

WAZ (p.adj = 0.02). Significant negative associations were observed between age and abun-

dances of Bifidobacterium bifidum (p.adj = 0.009) and Bifidobacterium breve (p.adj = 0.03). No

statistically significant associations were identified for sex, LAZ score, %FFM, %FM, TEE and

LRR (S3 Table).

Nutritional status associated Taxonomic composition of fecal samples

To discern the overall microbial composition profile of the three nutritional status groups, tax-

onomic classification of the sequencing reads originating from each sample using the SILVA

database were performed and their relative proportions visualized. Ten bacterial phyla were

detected in the fecal samples with Firmicutes being the most prevalent (44.7%), followed by

Bacteriodetes (18.9%), Actinobacteria (11.7%) and Proteobacteria (12.2%) (Fig 2A). Among

the 61 bacterial families identified, the most abundant were Prevotellaceae (17.6%), Veillonel-

laceae (13.2%), Lachnospiraceae (8.6%), Ruminococcaceae (8.5%) and Bifidobacteriaceae (8%)

(Fig 2B). At the genus level, the fecal microbiota was dominated by Prevotella 9 (14.4%), Bifido-
bacterium (8%), Escherichia-Shigella (5.8%), Faecalibacterium (5.6%) and Dialister (5.1%). A

total of 12 genera including Bifidobacterium, Collinsella, Streptococcus, Veillonella, Faecalibac-
terium, Dialister, Escherichia-Shigella, Prevotella 9, Brevibacillus, Blautia, Dorea and Butyrici-
coccus were detected in at least 95% of all samples (39/41) (Fig 2C). Visual inspection of the

taxonomic distribution suggested distinct case-non-case differences that were further sub-

jected to statistical tests using the linear discriminant analysis Effect Size (LEfSe) algorithm

(see below).

Differential microbial abundance with nutritional status

To identify differences in bacterial taxon abundances, statistical comparisons were made in the

three nutritional status categories using the linear discriminant analysis Effect Size (LEfSe)

algorithm. Stunted children showed enrichment for bacterial genera including Prevotella 7
and Prevotella 9 of Prevotellaceae family and Sutterella of Betaproteobacteriales order. They

also showed depletion of Clostridiaceae 1 family, Intestinibacter and Fusicatenibacter genera

and Bifidobacterium longum subsp longum species compared to non-stunted children (Fig 3,

S4 Table). Prevotella 9 of Prevotellaceae, Lachnospiraceae UCG-004 genus and Bacteroidales

order were found over-represented in wasted children accompanied by decreased abundance

of Blautia, Fusicatenibacter, Sutterella and Erysipelatoclostridium genera, Eggerthellaceae fam-

ily and uncultured species within Megasphaera, Megamonas and Phascolarctobacterium gen-

era. The comparative analysis also highlighted significant reduction of uncultured species

belonging to Enorma and Megamonas genera, Bifidobacterium longum subsp longum species,
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Clostridium sensu stricto 1 and Fusicatenibacter genera, along with Peptostreptococcaceae fam-

ily among underweight children.

Predicted microbial function differences in malnourished children:

Lipopolysaccharide biosynthesis pathway is upregulated in stunted and

wasted children

To investigate whether alterations in microbial metabolic functions correlate with malnutri-

tion indices, PICRUSt was employed to infer functional gene content associated with taxo-

nomic composition. Further, differential abundance of PICRUSt-predicted KEGG and

MetaCyc pathways and enzymes in the nutritional status categories were assessed using LEFSe

algorithm. Owing to limited sample size, a linear discriminant analysis (LDA) cut-off score of

2 or greater and an unadjusted p-value threshold of 0.05 were used to report differentially

abundant functional entities identified.

Out of the 111 KEGG pathways tested, a total of 10, 19 and 7 pathways were found to be sig-

nificantly associated with stunting, wasting and underweight status, respectively (Fig 4, S5A

Table). Lipopolysaccharide biosynthesis and ubiquinone and terpenoid quinone synthesis

pathways were upregulated in case fecal samples of stunting and wasting categories.

Macronutrient metabolism pathways in fecal microbiota from

undernourished children are perturbed

KEGG pathways involved in galactose, fructose and mannose metabolism were uniformly

depleted in case fecal samples of stunting, wasting and underweight categories. The phospho-

transferase system pathway was depleted in both stunted and wasted case fecal samples but not

Table 2. Association of fecal microbiota with nutritional status indicated by length-for-age (LAZ), weight-for-age (WAZ) and weight-for-length (WLZ) Z-scores

determined by Spearman correlation analysis.

Taxon Variable Spearman

ρ p p.adj

Phylum

Bacteroidetes WAZ -0.46 0.002 0.013

Bacteroidetes WLZ -0.39 0.011 0.032

Firmicutes WLZ 0.40 0.010 0.032

Class

Bacteroidia WAZ -0.46 0.002 0.022

Bacteroidia WLZ -0.39 0.011 0.053

Coriobacteriia WAZ 0.41 0.008 0.040

Erysipelotrichia WLZ 0.44 0.004 0.043

Order

Bacteroidales WAZ -0.46 0.002 0.029

Genus

Enterobacter Hb -0.57 9.6E-05 5.3E-03

Species

Bifidobacterium longum subsp longum WAZ 0.52 0.0005 0.017

Bifidobacterium bifidum Age -0.54 0.0003 0.009

Bifidobacterium breve Age -0.47 0.002 0.033

Abbreviation: WAZ, Weight-for-age z-score; WLZ, Weight-for-Length z-score; Hb, Haemoglobin.

https://doi.org/10.1371/journal.pone.0251803.t002
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underweight ones. Protein export and nucleotide metabolism pathways like pyrimidine

metabolism were upregulated in case fecal samples of stunting and underweight categories.

LEfSe Analysis of EC terms also highlighted similar findings (S5 Fig, S5B Table). Pyrimi-

dine metabolism enzyme, thymidine kinase and protein export enzyme, signal peptidase 1

were found to be enriched in case fecal samples belonging to every nutritional status grouping.

Stunted and underweight children also showed increased abundance of starch synthase (glyco-

syl-transferring) enzyme. An aminoacyl-tRNA biosynthesis enzyme, cysteine-tRNA ligase was

found to be under-represented among the cases of all three nutritional status categories. In

addition, phosphatidylglycerol-membrane-oligosaccharide glycerophosphotransferase, an

enzyme involved in glycerolipid metabolism, showed reduced abundance in stunted and

Fig 2. The fecal microbial composition profiles of 18–24 month old Indian children. Fecal microbial composition

profiles at the (A) phylum level and (B) family level and (C) genus level within the case and non-case samples of

stunting, wasting and underweight groupings. Only the top 20 families with most relative abundance are labelled in (B)

and (C). The remaining families and genera including unclassified and unassigned have been grouped together as

“Other”.

https://doi.org/10.1371/journal.pone.0251803.g002
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wasted children. Wasted and underweight children showed depletion of fructokinase and

4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase.

In the MetaCyc pathway analysis, Kdo transfer to lipid IVA III (Chlamydia), (5Z)-dode-

cenoate biosynthesis I and ADP-L-glycero-beta-D-manno-heptose biosynthesis pathways

were over-represented among cases of all the three groupings (S5C Table). A total of 16 path-

ways were jointly perturbed in stunted and wasted children including depletion of predicted

amino acid biosynthesis pathways such as arginine via N-acetyl-L-citrulline, arginine via orni-

thine and isoleucine biosynthesis II along with enrichment of an array of fatty acid biosynthe-

sis sub-pathways among others (S6 Fig). Sucrose degradation III, pentose phosphate pathway

and glycogen biosynthesis I pathways were depleted among wasted and underweight children

while tetrahydrofolate biosynthesis superpathway and 4-deoxy-L-theo-hex-4-enapyranuronate

degradation pathways were highly abundant in the cases belong to both groups. Both stunted

and underweight fecal samples recorded remarkable abundance of inosine 5’-phosphate degra-

dation pathway.

Differential microbial abundance and functions with intestinal

permeability

To identify gut microbial correlates of intestinal permeability, we applied the LefSe method to

compare the microbial levels in individuals categorized into high LRR (LRR� 0.067) and low

LRR (LRR < 0.067) groups. The relative abundances of Megasphaera elsedenii, Megasphaera,

Mitsuokella, Lactococcus garvieae subsp garvieae, Prevotella 2, Alloprevotella, Anaerovibrio and

Fig 3. Fecal microbiota characterization cladograms of stunting, wasting and underweight in 18–24 month old Indian

children. The fecal microbiota characterization cladograms were based on LEfSe (linear discriminant analysis Effect Size) in the

study participants.

https://doi.org/10.1371/journal.pone.0251803.g003
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Libanicoccus were significantly higher for the high LRR group, while the relative abundances

of Enterobacter was reduced compared to the low LRR group with LDA scores over 2 and

unadjusted p-value< 0.05 (Fig 5, S6 Table).

Comparison of predicted microbial functions of the two groups suggested that the high

LRR group is likely to have reduced capacity for microbial functions associated with

C5-Branched dibasic acid metabolism and environmental information processing pathways

such as Two component system and MAPK signalling pathway–plant. Pathways associated

with platinum drug resistance, pantothenate and CoA biosynthesis, peroxisome and phenylal-

anine, tyrosine and tryptophan biosynthesis were predicted to be enriched among the high

LRR group.

Similar analysis involving MetaCyc pathways revealed upregulation of partial TCA cycle

(obligate autotrophs) and biosynthesis of methionine and tetrahydrofolate in the high LRR

group along with downregulation of urea cycle, L-rhamnose degradation I and dTDP-N-Ace-

tylthomosamine biosynthesis (S7A Fig). In addition, two enzymes, (S)-2-haloaciddehalogenase

Fig 4. Predicted microbial pathways (KEGG) of stunting, wasting and underweight in 18–24 month old Indian

children. A summary of differential abundant microbial pathways (KEGG) predicted in stunted, wasted and

undernourished children using the linear discriminant analysis (LDA) Effect Size (LEfSe) tool. An LDA cut-off score

of 2 or greater and unadjusted p-value threshold of 0.05 was used to report the significant findings.

https://doi.org/10.1371/journal.pone.0251803.g004
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and histidine-tRNA ligase were found to be overabundant among the high LRR group (S7B

Fig, S6 Table).

Discussion

The present analysis reports associations of the fecal microbiota with anthropometric and

nutritional status metrics of stunting, wasting and underweight in a group of Indian children

aged 18–24 months from urban slum dwelling families with low socioeconomic status. The

underweight case samples had lower overall alpha diversity (Shannon index measure, for both

richness and evenness) compared to the non-underweight. Other metrics of alpha diversity of

the microbiota, evenness (Pielou’s evenness) and richness (Faith’s phylogenetic diversity index

and observed OTUs) were similar in fecal samples from case and non-case groups for stunting,

wasting and underweight. This finding is similar to the lower alpha diversity of the gut micro-

biota observed in older (9–11 year) stunted Mexican children [38], but is in contrast with the

higher alpha diversity reported in stunted children aged 6–24 months from India in

Fig 5. Fecal microbiota characterization based on lactulose-rhamnose ratios in 18–24 month old Indian children.

(A) Fecal microbiota characterization cladograms of high LRR and low LRR groups based on LEfSe (linear

discriminant analysis Effect Size) in the study participants. (B) Differentially abundant microbial pathways (KEGG)

predicted in high LRR and low LRR groups using LEfSe analysis. An LDA cut-off score of 2 or greater and unadjusted

p-value threshold of 0.05 was used to report the significant findings.

https://doi.org/10.1371/journal.pone.0251803.g005
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comparison to well-nourished ones [8]. Factors including diet diversity, quality of potable

water, living conditions could explain these differences [39,40].

In the 41 fecal samples in this study, Firmicutes, Bacteroidetes and Actinobacteria were the

top 3 abundant phyla and Prevotellaceae, Veillonellaceae and Lachnospiraceae were the top 3

abundant families. A longitudinal case study of a single, vaginally-born, healthy male infant

from USA also reported Bacteroidetes and Firmicutes as the top 2 abundant phyla at 1.5–2

years age [41]. In partial similarity to our findings, another longitudinal study on 2 cohorts of

>100 healthy Danish infants born either to mothers with normal weight or to obese mothers,

reported Lachnospiraceae, Veillonellaceae and Prevotellaceae as the top most, 5th and 12th

most abundant families in the fecal samples at 18 months of age [42]. Prevotella 9, Bifidobacter-
ium and Escherichia-Shigella were the top 3 abundant genera in our study. This points to a

likely Prevotella enterotype across nutritional categories in these children and is in line with

the Prevotella enterotype [43], identified in 1–6 year old healthy children from rural Burkina

Faso and in 7–11 year old Indonesian and Thai children reflecting their high intakes of resis-

tant starch from carbohydrates and lower bile acid biosynthesis and associated with depleted

fat intakes [44,45]. As Prevotella is known to degrade intestinal mucin glycoproteins [46], a

Prevotella-enriched gut microbiome could potentially impair intestinal integrity. In line with

this, Kristensen et al have reported Prevotella as the most and second-most abundant genus in

fecal samples from 6–24 month old Ugandan children hospitalized for oedematous and non-

oedematous severe acute malnutrition, respectively [47]. Further, unlike the healthy children

from Burkina Faso [45] but like the stunted 2–5 year old children from Madagascar and the

Central African Republic (CAR) [10], potentially enteropathogenic Escherichia-Shigella were

the 3rd highest abundant genera. Interestingly, Streptococcus and Veillonella that are normally

found in the oropharyngeal cavity and were over-represented in fecal samples from the stunted

children from Madagascar and CAR, were amongst the 12 genera present in�95% of our

study samples and were 7th and 11th highest abundant genera in our study. Veillonella was the

6th most abundant genera in fecal samples from a set of 10 normal birth weight and non-

stunted and 10 low birth weight and persistently stunted Indian children [8]. In the same vein,

a Streptococcus and a Veillonella species in the duodenal samples from 1.5 year old children

with EE were negatively correlated with their LAZ scores [5].

Of the anthropometric, demographic, body composition and intestinal permeability

parameters tested, only weight, WAZ and WLZ acted as covariates of microbiota variation in

the 41 samples. Interestingly, these parameters as well as age, were observed to be statistically

significant covariates specifically in samples from boys. Sex-specific associations have been

reported earlier in boys between their BMI at 5–8 years and antibiotic use within the first year

of life [48]. To the best of our knowledge, the current study is the first report of child sex-spe-

cific associations of nutritional indicators with the gut microbiota profile.

Evaluation of associations between fecal microbial abundances and anthropometric, demo-

graphic, body composition, TEE and intestinal permeability variables revealed only 3 signifi-

cant associations at species level. Abundances of Bifidobacterium longum subsp longum was

positively associated with WAZ while those of Bifidobacterium bifidum and Bifidobacterium
breve were negatively associated with age. Both B. bifidum and B. breve are well-known infancy

and early childhood associated bacterial taxa [49], with another study reporting decrease in

abundance of B. bifidum and B. breve between 1 to 2 years in a cohort of 87 healthy Norwegian

children [50]. These observations tally well with their predicted functions, in fermenting

human milk oligosaccharides by B. bifidum through its lacto-N-biosidase and galacto-N-biosi-

dase activity [51] and in starch degradation by B. breve that encodes the starch degrading

enzyme amylopullulanase, during the introduction of complementary feeding [52]. B. longum
abundance has been shown to increase with prebiotic (inulin based plant-derived fermentable

PLOS ONE Gut microbiome of Indian children

PLOS ONE | https://doi.org/10.1371/journal.pone.0251803 May 14, 2021 15 / 22

https://doi.org/10.1371/journal.pone.0251803


oligosaccharide) supplementation and associated loss of WAZ and %FM in 7–12 year old over-

weight/obese Canadian children [53], which is in contrast to observations from this study.

Apart from inulin, legumes are a major source of plant-derived fermentable oligosaccharide in

the diet [54]. Since legumes form the most important source of protein in predominantly vege-

tarian, low socioeconomic status Indian families, positive association of B. longum subsp
longum abundance with WAZ in our study could simply be a reflection of legume consump-

tion by these children, relating to better WAZ scores.

Microbial metabolic pathways demonstrate significant stability despite high inter-individ-

ual variability in their taxonomic composition [55]. In this study, macronutrient metabolism

pathways were found to be perturbed in fecal samples from undernourished children, which

could either be causal in nature or merely effect of dietary and other exposures leading to their

undernourished state. Future nutritional intervention studies are likely to better resolve the

role of gut microbial function in childhood growth faltering.

The lipopolysaccharide (LPS) biosynthesis pathway was upregulated in case fecal samples

of stunting and wasting categories while biosynthesis pathway of its precursor, ADP-L-gly-

cero-beta-D-manno-heptose, was over-represented in case samples from all 3 nutritional sta-

tus groupings. Elevation of plasma LPS levels, a direct marker of gut microbial translocation

across a compromised gut barrier, has been reported in ~15 month old malnourished Zambian

children [56]. Gut microbial LPS is also known to be a potent activator of innate immune sig-

nalling and can influence the susceptibility of children to allergies and autoimmunity [57].

Based on observations from the current study, it is plausible to argue that elevation in plasma

LPS levels could be associated with an increased capacity of the gut microbiota to synthesize

LPS, which is likely related to increased abundance of related Gram-negative bacterial species.

On fecal analysis of cases and non-cases by LRR categories (high and low LRR) relative

abundance of Megasphaera, Mitsuokella and Lactococcus garvieae was noted to be significantly

higher in the high LRR group. These results replicate findings from a Malawian cohort of chil-

dren (with mean age of 20 months) who were similarly categorised by lactulose mannitol ratio

(LMR) cut-offs, whereinMegasphaera,Mitsuokella, and Sutterella were found to be more prev-

alent in those with high LMR, possibly indicating an intestinal inflammatory response in these

children [58].

The key strength of this study resides in the ability to have characterized the gut microbiota

of a largely homogenous group of Indian children aged 18–24 months from a single, urban

slum, for whom demographic, anthropometric, body composition, TEE and intestinal perme-

ability data were available. Additionally, subject sex categorized analysis of the associations

between gut microbiota profiles and anthropometric and nutritional indicators, were per-

formed, which helps to understand if sex of the child is likely to act as a modifier of future

interventions to improve gut health and in turn child linear growth. The primary weakness of

this study lies in its small sample size, in light of which the findings need to be interpreted. Fur-

ther, the fecal samples had been stored at room temperature for a maximum of 5 hours before

transfer in an ice box at 2 to 8˚C to the study site for aliquoting and storage at -80˚C till analy-

sis. Though stability of fecal samples and associated microbiota profiles when collected and

stored at 4˚C or room temperature up to 24 hours before longer-term storage at -80˚C till anal-

ysis has been reported [22,23], few other studies have recommended storage of fecal samples

up to 4 hours at room temperature if storing at 4˚C or freezing at -80˚C immediately after col-

lection is not feasible [59,60]. Finally, whole genome shotgun sequencing, instead of the 16S

rRNA sequencing of the fecal samples, would have provided a more comprehensive under-

standing of the gut microbial profile of these children, which was not performed due to feasi-

bility issues.
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To conclude, this study describes the relations between nutritional indicators and fecal

microbiota profiles in a group of young Indian children from a low socioeconomic status. Key

findings include associations of bacterial abundances with WAZ and age, which were specific

to samples from boys. In fecal samples from children belonging to stunted, wasted or under-

weight categories, bacterial macronutrient metabolism pathways were perturbed while path-

ways related to lipopolysaccharide synthesis and its precursor were upregulated. Future larger

validation studies in populations from India and other geographical settings will provide criti-

cal evidence required to effectively modulate the gut microbiome for improving linear growth

in children.

Supporting information

S1 Fig. Alpha-rarefaction curves. (A) Alpha-rarefaction curves showing observed OTU
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S2 Fig. Box plots of alpha diversity measures (Pielou’s evenness, Faith’s phylogenetic diver-

sity index, Shannon diversity and observed OTUs) between cases and non-cases within

stunting, wasting and undernutrition groupings. The outlier samples are highlighted in blue

and yellow colors for cases and non-cases respectively.
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S3 Fig. Emperor PCoA plots showing the clustering of samples based on beta diversity

measures (Bray-Curtis, Jaccard’s, unweighted and weighted UniFrac distances). Each dot

represents a sample. P-values indicate group significances comparing cases and non-cases

within stunting, wasting and undernutrition groupings using PERMANOVA. P<0.05 are rep-

resented in red font.
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S4 Fig. Scatter plots of association between fecal bacterial taxa and nutritional status of the

study participants indicated by length-for-age (LAZ), weight-for-age (WAZ) and weight-

for-length (WLZ) Z-scores and Hemoglobin and Age. Associations were determined using

Spearman correlation (ρ). p = raw p-value, q = fdr-adjusted p-value.
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S5 Fig. A summary of differential abundant microbial enzymes (EC terms) predicted in

stunted, wasted and undernourished children using the linear discriminant analysis

(LDA) Effect Size (LEfSe) tool. An LDA cut-off score of 2 or greater and unadjusted p-value

threshold of 0.05 was used to report the significant findings.
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S6 Fig. A summary of differential abundant microbial MetaCyc pathways predicted in

stunted, wasted and undernourished children using the linear discriminant analysis

(LDA) Effect Size (LEfSe) tool. An LDA cut-off score of 2 or greater and unadjusted p-value

threshold of 0.05 was used to report the significant findings.

(PDF)

S7 Fig. Differentially abundant microbial (A) MetaCyc pathways and (B) enzymes (EC terms)

predicted in high LRR and low LRR groups using LEfSe analysis. An LDA cutoff score of 2 or
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M. Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican

Undernourished and Obese Children. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.

02494 PMID: 30386323

39. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, et al. The microbiome of uncon-

tacted Amerindians. Sci Adv. 2015; 1: e1500183. https://doi.org/10.1126/sciadv.1500183 PMID:

26229982

40. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of

the Hadza hunter-gatherers. Nat Commun. 2014; 5: 3654. https://doi.org/10.1038/ncomms4654 PMID:

24736369

41. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial con-

sortia in the developing infant gut microbiome. Proc Natl Acad Sci. 2011; 108: 4578–4585. https://doi.

org/10.1073/pnas.1000081107 PMID: 20668239

42. Laursen MF, Andersen LBB, Michaelsen KF, Mølgaard C, Trolle E, Bahl MI, et al. Infant Gut Microbiota

Development Is Driven by Transition to Family Foods Independent of Maternal Obesity. Suen G, editor.

mSphere. 2016; 1. https://doi.org/10.1128/mSphere.00069-15 PMID: 27303699

43. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human

gut microbiome. Nature. 2011; 473: 174–180. https://doi.org/10.1038/nature09944 PMID: 21508958

44. Nakayama J, Watanabe K, Jiang J, Matsuda K, Chao S-H, Haryono P, et al. Diversity in gut bacterial

community of school-age children in Asia. Sci Rep. 2015; 5: 8397. https://doi.org/10.1038/srep08397

PMID: 25703686

45. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shap-

ing gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl

Acad Sci U S A. 2010; 107: 14691–6. https://doi.org/10.1073/pnas.1005963107 PMID: 20679230

46. Wright DP, Rosendale DI, Robertson AM. Prevotella enzymes involved in mucin oligosaccharide degra-

dation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol

Lett. 2000; 190: 73–9. https://doi.org/10.1111/j.1574-6968.2000.tb09265.x PMID: 10981693
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