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Venous plasma metabolomics is a potent and highly sensitive tool for identifying and measuring 
metabolites of interest in human health and disease. Accurate and reproducible insights from such 
metabolomic studies require extreme care in removing preanalytical confounders; one of these is 
the duration of tourniquet application when drawing the venous blood sample. Using an untargeted 
plasma metabolomics approach, we evaluated the effect of varying durations of tourniquet 
application on the variability in plasma metabolite concentrations in five healthy female subjects. 
Tourniquet application introduced appreciable variation in the metabolite abundances: 73% of the 
identified metabolites had higher temporal variation compared to interindividual variation [Intra-Class 
Correlation (ICC) > 0.50]. As such, we recommend tourniquet application for minimal duration and to 
wait for 5 min with the needle in situ after removing the tourniquet, to reduce hemostasis-induced 
variability and false flags in interpretation.

Metabolomics, or the identification and measurement of metabolites in biological samples, has become an 
invaluable means for generating new knowledge in terms of markers for prognosis and diagnosis of human 
pathophysiology as well as of new leads in understanding causal  pathways1–4. Of the various possible sources of 
samples from human subjects for metabolomic assessments, components of blood (plasma and serum), remain 
the most relevant and therefore, most studied type of  sample5. However, unlike metabolomics performed with 
samples generated from in vitro or animal model experiments that are inherently less heterogenous, using plasma 
or serum metabolomics as a tool in human translational research is subject to the inherent interindividual vari-
ability between subjects due to genetic and environmental factors and their interactions. An additional source 
of variation is pre-analytic factors. Controlling for such variability introducing pre-analytic factors would be 
key to improving reproducibility of high impact human metabolomic findings such as the use of sarcosine as a 
biomarker for progression of prostate  cancer6,7. Here, fasting status, type of collection tube, presence of haemoly-
sis, time taken and temperature of sample during processing, temperature and duration of storage of processed 
samples, and freeze–thaw cycles have been  assessed8–12. Unknown and unaccounted for variation arising due to 
pre-analytic factors could lead to overestimation of interindividual variation or even intraindividual variation, 
if the samples have been collected at multiple time points in a longitudinal fashion. However, Agueusop et al.13 
reported remarkable stability of the human serum metabolome over a 4 weeks’ time period, when the samples 
were collected on 3 different days under stringently controlled conditions.

An additional, unstudied and potentially significant variation might arise from local tissue hemostasis dur-
ing venous blood collection due to variable tourniquet application times and associated haemostasis. We could 
not identify any study that has investigated this effect on metabolomic readouts in the plasma. Therefore, we 
explored the effect of different durations of tourniquet-induced local hemostasis on fasted venous plasma metab-
olomic profiles of South Asian Indian women, for a deeper understanding of tourniquet-time related precau-
tions required for reproducible untargeted human metabolomic studies. Our hypothesis was that the number of 
metabolites differing in abundance from the control, unrestricted blood flow condition would increase in step 
with the increased time of tourniquet-induced local hemostasis.
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Results
Socio-demographic characteristics, anthropometric measurements and metabolic profiles of the study partici-
pants are summarized in Table 1. All 05 subjects were apparently healthy, pre-menopausal females (age range 
26.7–33.3 years). The BMI of the subjects ranged from normal to overweight (21.6–27.3 kg/m2). The subjects 
were normoglycemic (mean fasting glucose: 88.2 ± 5.2 mg/dL) and normotensive [mean systolic blood pressure 
and diastolic blood pressure (mmHg): 107.4 ± 5.8 and 84.2 ± 7.4 respectively].

A total of 353 metabolites were identified in the study plasma samples by the Compound Discoverer software 
(version 3.1.0.305, ThermoFisher Scientific, Vanquish Flex Binary, Waltham, MA, USA). Since our primary aim 
was to identify and quantitate the variation, if any, in the relative abundance of plasma metabolite across the 
4 collection time points in all the study participants, we decomposed total variability into within time point 
variation (inter-individual variation) and between time point variation (temporal variation) (Supplementary 
Table 1). The temporal variation in the relative abundance of the identified metabolites between the 4 plasma 
collection time points, i.e., 1, 2 and 4 min after tying the tourniquet (T1, T2, T4 respectively) and free flowing 
blood with no tourniquet (NT, which was the collection made 5 min after the removal of the tourniquet,) in 5 
study participants is summarized in Fig. 1. In this, 73% of the identified metabolites had higher temporal vari-
ation compared to interindividual variation, as evident from Intra-Class Correlation (ICC) > 0.50, ICC being 
the proportion of temporal variation over total (temporal + inter-individual) variation. Interestingly, among all 
identified metabolites, 24 metabolites did not exhibit any temporal variation. The inter-individual variation for 
these 24 metabolites ranged between 11.4 to 98.1% (Supplementary Table 1). Box plots representing pareto-scaled 
intensities of three of these metabolites (pro-pro-pro, l-Isoleucine and l-Glutamic acid) and of three selected 
metabolites with high between timepoint temporal variability (1-Linoleoyl-sn-glycero-3-phosphocholine, 

Table 1.  Subject characteristics and metabolic profile of the 05 study subjects. Data are mean ± SD. a Fasted 
blood sample.

Mean ± SD

Age (years) 31.4 ± 2.7

BMI (kg/m2) 23.9 ± 2.4

Systolic blood pressure (mmHg) 107.4 ± 5.8

Diastolic blood pressure (mmHg) 84.2 ± 7.4

HbA1c (%)a 5.4 ± 0.2

Fasting plasma glucose (mg/dL) 88.2 ± 5.2

Fasting serum insulin (mU/L) 10.5 ± 5.5

Serum cholesterol (mg/dL)a 166.6 ± 19.6

Serum triglycerides (mg/dL)a 78.6 ± 38.8

Serum creatinine (mg/dL)a 0.7 ± 0.1

Figure 1.  Distribution of temporal variability, measured by Intra-Class Correlation (ICC) of the 353 
metabolites, identified as differentially abundant between the 4 collection time points [T1, T2, T4: 1, 2 and 
4 min, respectively, after tying the tourniquet and NT (no tourniquet with sample collection 5 min after removal 
of the tourniquet)] in 05 study participants. The bold dark vertical line of the box-whisker plot superimposed 
on the density indicates the median ICC, the left and right sides of the rectangle are indicative of 25th and 75th 
percentiles and the whiskers measure the 95% confidence interval. The vertical dotted line at 0.50 ICC has been 
included to visualize the proportion of metabolites accounting for temporal variability > 50% of total variation of 
each metabolite.
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1-Oleoyl-sn-glycero-3-phosphocholine and 1-Palmitoyl-sn-glycero-3-phosphocholine) is presented in Fig. 2. 
The raw and Pareto-scaled intensities of the 353 metabolites for all study subjects and sample collection time 
points is available in Supplementary Tables 2 and 3 respectively.

In order to further understand the effect of tourniquet-induced haemostasis on variability in metabolite 
abundances, we derived the interindividual variability of each metabolite at the 4 collection time points by coef-
ficient variation (CV) calculated as the ratio of median absolute deviation (MAD) about median to median of 
the raw abundance of respective metabolites (Fig. 3). The CVs ranged up to 100% and when evaluated at each 
collection time point, the median CV was least at NT (15.11%, Table 2).

Discussion
Obtaining accurate and reproducible insights when using metabolomics tools in clinical research requires a 
critical evaluation of technical factors contributing to the overall variability of metabolomics profiles. We sys-
tematically interrogated the effect of duration of application of a tourniquet during collection of blood from 
healthy subjects, on the variability in metabolite concentrations using an untargeted metabolomics approach. 
We observed considerable temporal variability in relative abundance of the identified metabolites. The intra-class 
correlations, that measured the temporal variability in relation to the overall variability, were more than 0.50 
for 73% of the identified metabolites (Fig. 1) and the mode was at ~ 0.90. Therefore, the duration of tourniquet 
application is an important factor that induces variability in measurement of abundance of the metabolites.

The inter-individual variation in metabolite abundances was higher amongst the metabolites with least tem-
poral variation compared to those with highest temporal variation. This is plausible in light of the observation 
that amongst the 24 metabolites without any temporal variation were sesamex (a synergist for insecticides)14, val-
decoxib (a non-steroidal anti-inflammatory drug)15 and vanillin (primary component of vanilla bean extract)16. 
These are exogenous metabolites, whose presence in the plasma is likely indicative of an individual’s consump-
tion/exposure to the relevant exogenous sources.

With regard to time point of blood collection to minimize introducing variation due to tying of the tourni-
quet, the ideal situation would be to not use the tourniquet at all. However, considering the need for using the 
tourniquet to find the vein for blood collection in group of subjects where finding the vein is otherwise difficult, 
the duration of tourniquet application should be minimal and one should wait for 5 min with the needle in situ 
after removing the tourniquet, before blood sampling. As a rule, the shorter the duration of application of tor-
niquet, the better the accuracy in the measurement of metabolites.

A strength of our study is that we minimized inter-individual variation in plasma metabolomic profiles by 
carefully including subjects as similar to each other as possible, in terms of age (range 26.7–33.3 years), sex 
(all pre-menopausal females), ethnicity (South Asian Indian) and geographical location (Bangalore, India), as 
well as by collecting all samples within a one-hour time period in the morning, after a pre-defined fasting time 
period (11–12 h) These factors have been earlier reported to contribute to variability in human blood (plasma/
serum) metabolomic profiles  (age17–20,  sex19,20, geographical  location21–23, fasting/mealtime24 and time of day 

Figure 2.  Box-whisker plots representing pareto-scaled intensities of selected High- and Low-Between 
Timepoint Variability Metabolites (HBTVM and LBTVM, respectively). (a) HBTVM1: 1-Linoleoyl-sn-glycero-
3-phosphocholine, HBTVM2: 1-Oleoyl-sn-glycero-3-phosphocholine, HBTVM3: 1-Palmitoyl-sn-glycero-
3-phosphocholine. (b) LBTVM1: pro-pro-pro, LBTVM2: l-Isoleucine, LBTVM3: l-Glutamic acid. The bold 
dark vertical line of the box-whisker plot indicates the median CV, the top and bottom ends of the rectangle are 
indicative of 25th and 75th percentiles and the whiskers measure the 95% confidence interval.
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when sample is  collected24). The small number of participants, with blood sampling at relatively few discrete 
time points, are limitations.

To conclude, for untargeted human plasma metabolomics studies, we recommend that blood should be 
collected without the application of a tourniquet for needle insertion. If this is needed, for example, when find-
ing a vein is difficult, blood should be collected within 1 min of applying the tourniquet; if not, blood should 
be collected from the in situ needle at least 5 min after removing the tourniquet. With common sense, we also 
recommend making other a priori decisions on the exact standard operating procedure for the subject’s fast-
ing/fed state, duration of fasting, timing of the day for collection of sample, type of sample collection tubes, 
duration of tourniquet application during sample collection, time–temperature-duration of storing the samples 
before processing, steps of sample processing including sample aliquot sizes to minimize freeze–thaw cycles, 
time–temperature-duration of storing the samples after processing and before freezing, duration of sample stor-
age under frozen condition, number of permissible freeze–thaw cycles and also of the steps for sample processing 
after thawing, for metabolomics analysis, at the start of a study. A uniform, practical and rigid standard operating 

Figure 3.  The coefficient variation (CV) (representing inter-individual variability) of each metabolite at four 
sample collection time points [T1, T2, T4: 1, 2 and 4 min, respectively, after tying the tourniquet and NT (no 
tourniquet with collection 5 min after removal of the tourniquet)] in 05 study participants. The CVs were 
calculated as the ratio of median absolute deviation about median to median of the unscaled abundance (peak 
intensities) of respective metabolites and plotted for all 353 metabolites, identified as differentially abundant 
between the 4 collection time points (a) and as box-whisker plot (b) for each of the 4 collection time points 
summarizing the same feature by more interpretable manner. The bold dark horizontal line of the box-
whisker plot indicates the median CV, the top and bottom ends of the rectangle are indicative of 25th and 75th 
percentiles and the whiskers measure the 95% confidence interval.

Table 2.  Distribution of interindividual variability of metabolite abundance of the 353 metabolites, measured 
as the Coefficient of Variations (CVs) by collection time points [T1, T2, T4: 1, 2 and 4 min, respectively, after 
tying the tourniquet and NT (no tourniquet with collection 5 min after removal of the tourniquet)] in 05 study 
participants. The CVs were calculated as the ratio of median absolute deviation about median to median of the 
unscaled abundance (peak intensities) of respective metabolites. T1, T2, T4 are 1, 2 and 4 min respectively, of 
time elapsed after tying the tourniquet; NT is no tourniquet, where blood sample collection occurred 5 min 
after removal of the tourniquet.

Sample collection time point N Mean Median SD Quartile 1 Quartile 3

NT 353 22.58 15.09 20.17 8.01 31.12

T1 353 28.28 20.88 22.20 11.88 40.54

T2 353 27.49 19.61 24.36 10.17 36.00

T4 353 28.74 20.56 23.47 11.46 38.88
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procedure that addresses these variability-inducing factors is a prerequisite for improving reproducibility and 
therefore, the relevance of plasma or serum metabolomics as a tool for interrogating human health and disease.

Methods
Study design and inclusion criteria. Apparently healthy female subjects (18–60 year old) volunteering 
to participate in the study were recruited at the Division of Nutrition, St. John’s Research Institute, St. John’s 
Medical College and Hospital, Bangalore. Exclusion criteria were: age outside 18–60 years range, not willing to 
participate in the study, were participating in other studies, had tested positive for hepatitis (HBsAg) or HIV, 
needed chronic or daily medical therapy (connective tissue diseases, inflammatory bowel disease, active tuber-
culosis, symptomatic heart disease), had serious pre-existing clinical conditions.

Ethical approval and informed consent. Ethical approval for the study had been sought and obtained from the 
Institutional Ethics Committee of St. John’s Medical College and Hospital, Bangalore. Explanation of the study 
protocol was done in the language understood by the participants. Informed, signed consent from the partici-
pants was obtained at recruitment. All relevant guidelines and regulations were followed while carrying out the 
study protocol.

Socio‑demographic data and medical history. Well-structured questionnaires were provided to the participants 
and explained by trained study personnel for obtaining detailed socio-demographic data. Information on recent 
medical history (3 months prior to recruitment) of the participants, and on medications and nutritional supple-
ments being currently taken by them was obtained and duly recorded.

Anthropometric and vital signs measurements. A digital scale, to a precision of 0.1 kg, was used to weigh the 
subjects, in minimal clothing, while the height of the subjects were recorded to the nearest 0.1 cm. Measurement 
and recording of blood pressure and pulse was done appropriately by trained study personnel.

Sample collection and clinical chemistry. An overnight fasting (11–12 h fasting) blood sample (10 mL) 
was collected in EDTA (BD  Vacutainer®, Becton, Dickinson and Company, Franklin Lakes, NJ) tubes between 
∼ 0830 and 0930 h by arm (antecubital vein) venepuncture. Four collection time points [T1, T2, T4: 1, 2 and 
4 min respectively, after tying the tourniquet, and NT (no tourniquet): collection 5 min after removal of the 
tourniquet] were included for each study participant.

Samples were transferred immediately and stored in an ice box (< 1.5 h of collection). Post-centrifugation 
(1166 rcf, 10 min, 4 °C) in a cooling centrifuge (REMI C-23 BL Cooling centrifuge, Mumbai, India), the plasma 
was aliquoted in cryovials and stored at − 80 °C until analysis. Glucose, total cholesterol, triglycerides and cre-
atinine (Beckman Coulter AU480 Chemistry Analyzer, Beckman Coulter, Brea, CA), insulin (ROCHE Hitachi 
Elecsys 2010 Chemistry Analyzer, Basel, Switzerland) and haemoglobin A1c (Siemens Dimension XPand Plus 
Analyzer, Siemens, Erlangen, Germany) levels were measured using standard plasma and serum clinical chem-
istry assays.

High-resolution accurate-mass (HRAM) data analysis. Plasma samples were processed by following 
similar protocol as described  earlier25. Briefly, plasma samples (100 μL) were spiked with an internal standard 
(IS) of a 2H-labelled amino acid mixture (20 μL, 1 ng/mL; U-2H labelled amino acid mix > 97% purity; Cam-
bridge Isotope Laboratories, Massachusetts, USA) and deproteinised using chilled organic solvent (8:1:1, ace-
tonitrile: methanol: acetone). Samples were vortex-mixed and incubated at 4 °C for 30 min before centrifugation 
at 20,000 rcf for 20 min in a refrigerated centrifuge (5810 R, Eppendorf, Eppendorf AG, Hamburg, Germany). 
Supernatants were dried at 40 °C in a vacuum concentrator (Labconco, USA) and dried extracts were reconsti-
tuted in acetonitrile/water (1:1). Untargeted metabolomics analysis was performed on a high-resolution accu-
rate-mass (HRAM) platform consisting of an ultra-high pressure liquid chromatograph (UHPLC, Thermo Sci-
entific, Vanquish Flex Binary, Waltham, MA, USA) coupled to an orbitrap based mass spectrometer (Q Exactive, 
Thermo Scientific, San Jose, USA). The mass spectrometer was calibrated by using a positive ion calibration 
solution (Pierce LTQ Velos ESI Positive Ion Calibration Solution, ThermoFisher Scientific, Waltham, MA, USA) 
on daily basis before starting an analytical sequence consisting of solvent blanks, pooled quality control (QC) 
samples, which included six technical replicates of a pool of aliquots derived from the study plasma  samples26 
and study plasma samples. Separation of the metabolites was achieved by using a Zorbax Eclipse plus-C18 col-
umn (150 × 2.1 × 1.8 micron, Agilent Technologies, Santa Clara, CA, USA) maintained at 40 °C. Other LC–MS/
MS related method parameters are similar to that described  earlier25.

Raw data files acquired through the Xcalibur  software27 (version 4.1, ThermoFisher Scientific, MA, USA) were 
initially processed by using the Compound Discoverer  software28 (version 3.1.0.305, ThermoFisher Scientific, 
Waltham, MA, USA) for positive polarity with an untargeted metabolomics workflow as described  earlier25 to 
find and identify the differences between samples. The workflow used the adaptative curve model with 2 min 
maximum shift, 5 ppm mass tolerance, and 3 S/N (signal/noise) threshold for retention time alignment. Peak 
detection required less than 5 ppm mass error for extracted ion chromatograms with a minimum peak intensity 
of 1,000,000. [M +  H]+ 1 was set as base ion with consideration for other adducts. Peaks were required to have 
a width at half height less than 0.5 min and a minimum of 5 scans. The maximum element count for isotope 
pattern modelling was  C90H190Br3Cl4K2N10Na2O15P3S5. All detected compounds were grouped across samples 
with 5 ppm mass error and 0.2 min retention time shift. Missing peaks (not detected initially) in a given sample 
were determined using the Fill Gaps node algorithm with 5 ppm mass error and 1.5 S/N threshold with real 
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peak detection. The Fill Gaps node calculates the area of missing chromatographic peaks as follows: matching 
detected ions based on expected m/z and retention time regardless of adduct assignment, re-detecting peaks at 
lower thresholds, simulating peaks based on expected m/z, and imputing spectrum noise based on detection 
limit values. Further, QC based area correction is applied for instrument drift using the cubic spline regression 
model. Each compound was required to be detected in at least 50% of QC runs with a Relative Standard Devia-
tion (RSD) less than 30%. Compound identification was achieved by using mzCloud (ddMS2) and ChemSpider 
(formula or exact mass) and similarity searches for all compounds with ddMS2 data was done by using mzCloud 
and mzLogic algorithm applied to rank order ChemSpider results. The pre-processed data were exported to .xlsx 
files for further statistical analysis.

Statistical analyses. Anthropometric and metabolic profile data were presented as mean ± SD and median 
with interquartile range (IQR). Metabolite abundance data was scaled using the pareto scaling  method29 and 
variance of metabolites were decomposed into inter and intra individual variabilities by standard linear random 
effects model. The proportion of intra-individual variability over total was assessed by Intra-Class Correlation 
(ICC) for each metabolite. A chi-square test was performed to test whether temporal variability is different from 
zero within estimation algorithm of random effects model. We considered acceptable false positive rate at most 
5%. Further, using the unscaled raw abundance (peak intensities) of the metabolites, the inter individual vari-
ability of each metabolite at four collection time points were derived by coefficient variation (CV) calculated 
as the ratio of median absolute deviation (MAD) about median to median of the raw abundance of respective 
metabolites. The statistical software R version 4.0.2 was used for the  analysis30 (R Core Team, 2020, Vienna, 
Austria).

Data availability
The datasets generated and analysed during the current study that support the findings of this study are available 
from the corresponding author on reasonable request.
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