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Stochastic models of streamflow: some case 
studies 

P. P. MUJUMDAR* & D. NAGESH KUMAR 
Department of Civil Engineering, Indian Institute of Science, 
Bangalore, 560 012, India. 

Abstract Ten candidate models of the Auto-Regressive Moving 
Average (ARMA) family are investigated for representing and 
forecasting monthly and ten-day streamflow in three Indian rivers. 
The best models for forecasting and representation of data are 
selected by using the criteria of Minimum Mean Square Error 
(MMSE) and Maximum Likelihood (ML) respectively. The 
selected models are validated for significance of the residual 
mean, significance of the periodicities in the residuals and 
significance of the correlation in the residuals. The models 
selected, based on the ML criterion for the synthetic generation 
of the three monthly series of the Rivers Cauvery, Hemavathy and 
Malaprabha, are respectively AR(4), ARMA(2,1) and ARMA(3,1). 
For the ten-day series of the Malaprabha River, the AR(4) model 
is selected. The AR(1) model resulted in the minimum mean 
square error in all the cases studied and is recommended for use 
in forecasting flows one time step ahead. 

Modèles stochastiques de l'écoulement - quelques études de cas 

Résumé Dix modèles test de la famille ARMA ont été examinés 
pour représenter et prévoir les débits mensuels et décadaires de 
trois rivières Indiennes. Les meilleurs modèles pour prévoir et 
représenter les données ont été choisis en utilisant respectivement 
le critère du Moindre Carré (MMCE) et le Maximum de 
Probabilité (MP). Les modèles choisis ont été validés pour la 
signification de la moyenne résiduelle, la signification des 
périodicités dans les résidus et la signification de la corrélation 
dans les résidus. Les modèles choisis basés sur le critère du MP 
pour la production synthétique de séries de débits de trois mois 
des rivières Kaveri, Hemavathi et Malaprabha sont 
respectivement AR(4), ARMA(2,1) et ARMA(3,1). Pour les 
séries décadaires de la rivière Malaprabha, le modèle AR(4) a 
été choisi. Le modèle AR(1) a conduit à la valeur minimale de 
moyenne quadratique dans tous les cas étudiés et on le 
recommande en prévoyant les débits avec un pas de temps en 
avance. 

*now with the Department of Civil Engineering, Indian Institute of Technology, Bombay 400 076, 
India. 
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P. P. Mujumdar & D. Nagesh Kumar 396 

INTRODUCTION 

The development and use of stochastic models of hydrological phenomena 
play an important role in water resources engineering, including their use to 
forecast river flows. The choice of the right model for a given hydrological 
series is an important aspect of the modelling process. The statistical models 
that are best suited for three South Indian rivers, viz. the Cauvery, 
Malaprabha and Hemavathy, are investigated herein. Many models of the 
ARMA (Auto-Regressive Moving Average) family are considered in this 
study, and for each river a model is selected for the representation of data 
and for one step ahead forecasting. As demonstrated below, the best models 
for these two needs are often not the same. The ARIMA (Auto-Regressive 
Integrated Moving Average) models are deliberately excluded from the study, 
as differencing the series (which is an essential feature of such models) causes 
the variance to increase continuously and hence such models cannot be used 
for the simulation of data (Kashyap & Rao, 1976). They may, however, be 
used for one step ahead forecasting, where they may perform as well as the 
ARMA models. 

Box & Jenkins (1970) give a method to estimate the orders of the AR 
and MA terms of a model based on autocorrelations and partial auto­
correlations. Procedures for estimating these orders from the given data based 
on testing residuals, given in Kashyap & Rao (1976), are used in the present 
study. 

A popular decision rule for comparing models in the time series 
literature is the Akaike Information Criterion (AIC) (Akaike, 1974). However, 
investigations, both theoretical (Kashyap, 1980) as well as numerical, have 
indicated flaws in the AIC rule. Firstly, the AIC has no optimal property, i.e. 
it does not minimize the average value of any criterion function. Secondly, the 
AIC rule is not consistent, i.e. the probability that the decision rule will 
choose a wrong model does not go to zero even when the number of 
observations tends to infinity (Shibata, 1976). 

Rao et al. (1982) have given a rule that is consistent. They have 
generalized the technique used by Kashyap (1977) in which a minimum 
probability of error rule was developed for comparing generalized AR models 
of different orders. 

In some time series applications, the given data are often transformed by 
a non-linear transformation such as a Box-Cox transformation (Box & Cox, 
1964). By employing the methods of Granger & Newbold (1976) it is now 
possible to obtain Minimum Mean Square Error (MMSE) forecasts of the 
original series when the data have been changed by a non-linear trans­
formation. 

Several investigators have used Bayes decision theory for choosing the 
model type and order (Valdes et al, 1979; Schwartz, 1978). Akaike (1979) 
interprets the AIC criterion as a Bayes rule. 

In constructing an appropriate model for a given streamflow series, the 
following procedure is usually followed: (a) the selection of the appropriate 
type of model among AR, MA, ARMA, ARIMA and seasonal ARIMA 
models; (b) the choice of orders for the selected model; (c) the estimation of 
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397 Stochastic models of streamflow - some case studies 

the parameters in the model using the given streamflow series; and (d) 
validation of the model by residual testing and by simulation. This procedure 
is applied to identify models for forecasting and synthetic generation of four 
streamflow series from three rivers in Karnataka State, India. The three rivers 
considered for the study are the Cauvery, Hemavathy & Malaprabha. In the 
case of the Malaprabha, both monthly and ten-daily series are studied, 
whereas only monthly series are considered for the other two rivers. Table 1 
gives the summary details of the data used for the four series. 

In the following paragraphs, the selection of models of the ARMA 
family with the two criteria, MLE and MMSE, is discussed. 

Table 1 Data used for the study 

Stream & site name Period for which 
data are available 

Type of data 

Cauvery at Krishna Raja 
Sagara Reservoir 

Hemavathy at AkJahebbal 

Malaprabha at Manoli 

Malaprabha at Manoli 

June 1934 - May 1974 
(40 years) 

June 1916 - May 1974 
(58 years) 

June 1950 
(35 years) 

June 1950 
(35 years) 

May 1985 

May 1985 

Monthly 

Monthly 

Monthly 

Ten-daily 

MODEL DESCRIPTION 

The models belonging to the ARMA family may be written as: 

y(t) 2 $ 4>jy(t •j) l%ejW(t j) + C + w(t) (1) 

*1 

8 

where {y(t), t-1,2, } is the series being modelled; 
mn is the number of AR parameters; 

is the ;'th AR parameter; 
is the number of MA parameters; 
is the j'th MA parameter; 

CJ is a constant; and 
{w(t), t=l,2, } is the residual series. 

The important assumptions involved in such models are that [w(t)] has 
zero mean with terms which are uncorrelated and form an independently 
identically distributed random variable. 

By choosing different values of m1 and m2 different models of the 
ARMA family can be generated. The simplest model belonging to this family 
would be the AR(1) model, for which m1 = 1 and m2 = 0, i.e.: 

y(t) = 0j y(t - 1) + C + w(t) (2) 
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P. P. Mujumdar & D. Nagesh Kumar 398 

ARMA models may be used with different transformations of the 
original (observed) series (Granger & Newbold, 1976; Granger & Anderson, 
1978). Commonly used transformations are the logarithm transform (Box & 
Jenkins, 1970) and the square root transform (McLeod et al., 1977). These 
transformations decide the class to which the model belongs. The observed 
series and the standardized series also constitute important classes. A 
standardized series {x), in this context, is defined as the series {y): 

xt-x. 

'•-IT 
in which jT. is the estimate of the mean streamflow of the period / (month or 
ten days) to which / belongs and St is the estimate of the standard deviation 
of the streamflows of the period /'. Standardization ensures the removal of 
periodicities inherent in the process. In the present work, only the 
standardized series are considered for the selection of models. It may be 
more useful to study different classes of models and select the best model for 
each of the classes and compare the performances of these models before a 
model is finally selected. 

Both contiguous and non-contiguous models are studied. The non­
contiguous models account for the most significant periodicities without 
considering the intermediate terms which may be insignificant. For example, a 
non-contiguous AR(3) model with significant periodicities at first, fourth and 
twelfth lags would be, 

y(t) = ^ y(t - 1) + % y(t - 4) + 012 y{t - 12) + C + wit) (3) 

The moving average terms are similarly considered. The obvious 
advantage of non-contiguous models is the reduction in the number of 
parameters to be estimated while accounting for the significant periodicities. 
Exactly which terms to include in the non-contiguous models would have to 
be decided based on the spectral analysis of the series under consideration. In 
the present case, the term corresponding to the twelfth lag was included for 
all the monthly series and that at 36th lag for the ten day series of the 
Malaprabha river was considered. In the latter case, a year consists of exactly 
36 periods. Thus a non-contiguous ARMA(3,3) model for the monthly series 
will be: 

y(t) = 0j y(t - 1) + 02 y(t - 2) + <t>n y(t - 12) + 

B1 w(t - 1) + 92 w(t -2) + 912w(r - 12) + C + w(f) (4) 

In the following paragraphs, the model selection based on the Maximum 
Likelihood Estimate (MLE) and the Mean Square Error (MSE) criteria is 
discussed and the results are presented for the three rivers chosen for the 
study. The validation tests carried out on the selected models are 
subsequently presented. 
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399 Stochastic models of streamflow - some case studies 

MODEL SELECTION 

The problem of model selection is an important one in time series analysis as 
there are infinitely many possible models and the choice of a wrong model 
may result in a costly decision. Out of these possible models however, only a 
few need to be considered for modelling a given streamflow sequence. AR 
parameters of up to order 6 and MA parameters of up to order 2 would, in 
general, serve the purpose. In this study, therefore, only the following models 
are investigated: AR(1), AR(2), ..., AR(6), ARMA(1,1), ARMA(2,1), 
ARMA(3,1), ARMA(1,2) and ARMA(2,2). 

A model may be selected as the best among those investigated by using 
the following two criteria: Maximum Likelihood rule (ML) and Mean Square 
Error (MSE). Many other criteria are available and these two are 
representative of those available. Both these methods are used for the 
selection of the best model for each of the three rivers considered. The two 
criteria used for the model selection are discussed below. 

Maximum likelihood rule 

Selection of a model by this criterion involves evaluating a likelihood value 
for each of the candidate models and choosing the model which gives the 
highest value. The general form of the log-likelihood function for the /th 
model for a Gaussian process is (Kashyap & Rao, 1976): 

L.= In \p{z,<t>i)]-ni (5) 

where L. is the likelihood value; 
p is the probability density function; 
z is the vector of the historical series; 
$. is the vector of the parameters and residual variance, 

( e 1 ( e 2 , . . . . , 4>v 4>2 , P); 
p;. is the residual variance; and 
n. is the number of parameters. 

An immediate observation of the likelihood function (equation (5)) is 
that, in general, as the number of parameters, n., increases, the likelihood 
value decreases. Thus it is to be expected that the ML rule selects models 
with a small number of parameters. This is the principle of parsimony 
propounded by Box & Jenkins (1970). A particular likelihood function within 
this general framework is (Kashyap & Rao, 1976): 

-N 
In pi - ni 

'"\ „2, 
Vl ffl. 

Ur(0 -t=\ 

-N ml 
— - In 2n + — 
2 2 

rP "» 
in 

J y J 
2 

(6) 
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P. P. Mujumdar&D. Nagesh Kumar 400 

where p is the variance of iy(t)}. 
Usually ml « N, in which case equation (6) may be written as (Kashyap 

& Rao, 1976): 

L. 
N [in p.) - n. (V) 

Equation (7) is the likelihood function that is used to select the model 
for a given site. The twelve models mentioned above are the candidate 
models. Table 2 gives the likelihood values for these twelve models for each 
of the three streams for both contiguous and non-contiguous models. It is 
apparent that, for a given model, the value of the likelihood function differs 
significantly from one site to another. This large difference may be due to the 
difference in the lengths of the data available as the variance of the residuals 
(or the logarithm of it) is not likely to cause the observed magnitude of 
change in the values of the likelihood function. The relative values of the 
likelihood function for different models when applied to a given site, rather 
than those for a given model for different sites, is of interest. In Table 2, the 
values shown with an asterisk superscript are the maximum values in their 
respective rows. For the Cauvery river at the KRS reservoir site, the model 
corresponding to the maximum likelihood value is AR(4). This is in 

Table 2 Maximum likelihood values 

Site Contiguous ARMA 
(1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (1,1) (1,2) (2,1) (2,2) (3,1) 

KRS Reservoir 
(Monthly) 

Hemavathy 
(Monthly) 

Malaprabha 
(Monthly) 

Malaprabha 
(Ten-daily) 

29.33 28.91 28.96 31.63 30.71 29.90 30.58 29.83 29.83 28.80 29.45 

22.53 22.55 22.64 22.94 22.47 21.51 23.38 24.96* 24.48 23.94 22.37 

0.588 0.830 -0.16 -0.86 -0.68 -0.63 0.660 -0.07 -0.74 -1.12 -1.19* 

59.71 60.26 59.87 61.97* 60.97 60.80 60.66 61.52 58.94 58.64 60.91 

Site Non-contiguous ARMA 
(2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (2,2) (2,3) (3,2) (3,3) (4,2) 

KRS Reservoir 
(Monthly) 

Hemavathya 

(Monthly) 

Malaprabha 
(Monthly) 

Malaprabha 
(Ten-daily) 

28.52 28.12 28.21 30.85 29.94 29.12 29.81 28.82 28.48 28.06 28.65 

22.52 22.49 22.57 23.09 22.76 21.77 23.37 24.81* 24.33 22.87 22.85 

-0.37 -0.17 -1.16 -1.86 -1.66 -1.63 -0.33 -1.07 -1.74 -2.11 -2.34* 

58.80 59.33 58.94 61.13* 60.14 59.98 59.73 60.64 58.03 57.67 60.06 

a - AR & MA parameters at 12th lag (ref. equation (4)) 
b - AR & MA parameters at 36th lag (ref. equation (4)) 
* indicates the selected model. 
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401 Stochastic models ofstreamflow - some case studies 

accordance with observation of the spectral analysis of the series. For the 
Hemavathy river at Akkihebbal, the model selected is ARMA (1,2). For the 
monthly series of the Malaprabha river at Manoli, ARMA(3,1) is chosen, whereas 
for the ten-day series of the same river the AR(4) model is selected. 

For a given series, the choice of a contiguous model or a non­
contiguous model is decided by the relative likelihood values for the two 
models. Thus for the monthly series of the Cauvery and Hemavathy, 
contiguous models are adequate whereas for the Malaprabha a non­
contiguous ARMA(4,2) model is the best one among those considered. Table 
3 gives the parameters estimated for the models selected to represent the 
four series. The values indicated within the brackets are the standard error 
values associated with the parameters. For a parameter to be significant, its 
absolute value must be larger than the standard error. 

Table 3 Parameter values and their standard error for models selected on ML 
rule basis 

Site Model Parameters with their standard error 
selected in brackets 

0.2137 (0.0644) , 

0.0540 (0.0661) 
-0.0157(0.1070) 

0.9015 (0.0605) : 

0.1737 (0.0659) , 

0.9402 (0.0650) , 

-0.0897(0.0560) . 
0.1425 (0.1124) ' 

0.4852 (0.0410) , 

-0.0051(0.0457) , 
0.1243 (0.0974) ' 

f * ? -
•>*4-

• • 9 / = 

,- c = 
;4>? = 
,-9i = 

;<t>?-
;<S>4-

0.0398 (0.0659) 

0.1762 (0.0652) 

0.5404 (0.0838) 

-0.1706(0.1418) 

-0.0830(0.0612) 

0.6059 (0.1756) 

0.0441 (0.0456) 

0.1034 (0.0416) 

Models such as those in Table 3 are often used for the synthetic 
generation of data. Sequences generated by such models are used for the 
design of reservoirs. Such simulated sequences would obviously be different 
from one model to another. Designs based on such sequences would thus 
depend on the right choice of model. The maximum likelihood estimate 
criterion is suited for the selection of a model for simuhtion purpose. For 
short-term forecasting, such as one step ahead forecasting, the mean square 
error (MSE) criterion may be more useful (Kashyap & Rao, 1976). Selection 
of a model based on an MSE criterion is known as the prediction approach, 
and is discussed below. 

Prediction approach (MSE criterion) 

The procedure involved in this approach is quite simple and can be 

KRS Reservoir ARMA(4,0) <t> 1 

(Monthly) A 
C3 

Hemavathy ARMA(1,2) $1 

(Monthly) g 

Malaprabha ARMA(3J) 4>j 
(Monthly) A 

C3 

Malaprabha ARMA(4,0) tp. 
(Ten-daily) A J 

C3 
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P. P. Mujumdar & D. Nagesh Kumar 402 

summarized as follows: (a) estimate the parameters of different models using 
a portion, usually half, of the available data; (b) forecast the second half of 
the series one step ahead by using the candidate models; (c) estimate the 
MSE corresponding to each model; and (d) select the modeMhat results in 
the least value of the MSE. The one step ahead forecast, y[(t + l)/t], for 
ARMA {mv m2) is given by: 

Ç[(t + l)lt] = i j l } 4>j y(t - j) + Z™J <t>j w(t -j)*C (8) 

y[(t + l)/f] represents the forecast streamflow for the time, t + 1, given the 
streamflow up to and including the time, t. The one step ahead forecast error 
is given by: 

e(t + 1) = y(t + 1) - y[(t + l)/t] (9) 

When the series consists of N observations, the first N/2 observations are 
used for the parameter estimation of the candidate models. The streamflows 
from N/2 + 1 to N are forecast by using these models and their errors 
calculated. The MSE for a model is then given by: 

TN e(i)2 

MSE . — (10) 

Table 4 gives MSE values for contiguous as well as non-contiguous models 
for all the series considered. For all the cases the simplest model, AR(1), 
results in the least value of the MSE, underlining the fact that for one step 
ahead forecasting quite often the simplest model is sufficient. Also, in the 
present case, as the number of parameters increases, the MSE increases, 
which is an interesting result contrary to the common belief that models with 
larger numbers of parameters give better forecasts. For all the four series of 
the streamflows considered, the AR(1) model is strongly recommended for 
use in forecasting the series one step ahead. However it should be noted that 
this is not a general conclusion and for other time series a similar analysis 
has to be carried out separately to decide the model that suits the particular 
sequence the best. Table 5 gives the estimated parameters, with their standard 
error in brackets, for the models selected on the MSE criteria. 

The exercise so far has been to identify a model both for simulation and 
for forecasting. Before the model is used, however, it has to be validated. The 
major assumptions that have gone into the construction of the model must 
be checked for their validity in the selected model. The following section 
discusses the validation tests carried out in this study and the results. 

VALIDATION TESTS 

The following tests are carried out to examine whether the following 
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4 03 Stochastic models of streamflow - some case studies 

Table 4 Mean square error values 

Site Contiguous ARMA 
(1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (1,1) (1,2) (2,1) (2,2) (3,1) 

KRS Reservoir 
(Monthly) 
Hemavathy 
(Monthly) 

Malaprabha 
(Monthly) 

Malaprabha 
(Ten-daily) 

KRS Reservoir" 
(Monthly) 

Hemavathy® 
(Monthly) 

Malaprabha 
(Monthly) 

Malaprabha 
(Ten-daily) 

0.97 1.92 2.87 3.82 4.78 5.74 2.49 2.17 3.44 4.29 1.89 

0.78* 1.54 2.31 3.08 3.85 4.62 0.98 0.81 0.80 1.35 2.41 

0.77* 1.54 2.31 3.08 3.85 4.62 0.98 0.81 0.80 1.35 2.41 

0.62* 1.24 1.85 2.47 3.09 3.72 0.77 1.02 1.07 2.44 1.62 

Site Non-contiguous ARMA 
(2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (2,2) (2,3) (3,2) (3,3) (4,2) 

0.96 1.89 2.84 3.79 4.74 5.70 2.42 1.99 2.52 1.15 1.71 

0.76* 1.51 2.25 3.00 3.75 4.49 1.04 1.52 8.68 0.83 1.39 

0.77* 1.54 2.31 3.07 3.85 4.62 0.98 0.81 0.80 1.24 3.76 

0.62* 1.24 1.85 2.47 3.09 3.72 0.68 0.88 1.13 2.04 1.65 

a - AR & MA parameters at 12th lag (ref. equation (4)) 
b - AR & MA parameters at 36th lag (ref. equation (4)) 
* indicates the selected model. 

Table 5 Parameter values and their standard error for models selected on MSE 
basis 

Site 

KRS Reservoir 
(Monthly) 

Hemavathy 
(Monthly) 

Malaprabha 
(Monthly) 

Malaprabha 
(Ten-daily) 

Model 
selected 

ARMA(1,0) 

ARMA(l.O) 

ARMA(1,0) 

ARMA (1,0) 

Parameters with their standard error 
in brackets 

<pj = 0.2557 (0.0627) ; C = -0.009 (0.0765) 

<pj = 0.4204 (0.0502) ; C = -0.1816 (0.0864) 

4>j = 0.3742 (0.0654) ; C = 0.1404 (0.1110) 

ipj = 0.5311 (0.0348) ; C = -0.1189 (0.0780) 

assumptions used in building the model are in fact valid for the model 
selected: 
(a) the residual series {w(t)} has zero mean; 
(b) no significant periodicity is present in the residual series; and 
(c) the residual series is uncorrelated. 
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P. P. Mujumdar & D. Nagesh Kumar 404 

The residual series is constructed from equation (1) as follows: 

m^ ""2 w(t) = y(t) - Ij,] fyd - ;) - I^f 9. w(t - /) + C (11) 

Fig. 1 shows the histogram of residuals for the inflows into the KRS 
reservoir resulting from an AR(4) model. The histogram is skewed to the 
right, suggesting that a skewed distribution such as the log-Pearson type III 
should be used in a simulation. A similar skewness is also seen in the 
histograms of the residuals from the other models selected. 

VJ 

Q 

/, 

I i"7i rr\ m rzl 
1 2 3 4 5 6 7 S 9 1 0 1 1 12 13 14 15 16 17 18 19 20 

Fig. 1 Histogram of residuals. 

All the validation tests are carried out on the residual series only. The 
tests are summarized briefly in the following paragraphs. 

Test 1 Significance of the residual mean 

The purpose of this test is to examine the validity of the assumption that the 
series {w(t)} has zero mean. For this purpose a statistic, n(w), is defined as: 

n(w) = N* wl p Yi (12) 

where w is the estimate of the residual mean; and 
A 

p is the estimate of the residual variance. 
The statistic, *)(w), is approximately distributed as t(a, N - 1), where a 

is the significance level at which the test is being carried out. If the value of 
i){w) 5 t(a, N - 1), then the mean of the residual series is not significantly 
different from zero and hence the series passes this test. Table 6 gives the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
0
8
 
1
8
 
M
a
y
 
2
0
1
1



405 Stochastic models ofstreamflow - some case studies 

values of the statistic, n(w), and f(a, N - 1) for all the models selected for 
the different sites. At the 95% significance level, it is observed that the 
residual series passes the test in all the cases. This must be true when the 
models are fitted to the standardized series. 

Table 6 

Model 

ARMA (1,0) 
ARMA (2,0) 
ARMA (3,0) 
ARMA (4,0) 
ARMA (5,0) 
ARMA (6,0) 
ARMA (1,1) 
ARMA (1,2) 
ARMA (2,1) 
ARMA (2,2) 

Results of tests 1 and 2 for KRS data 

Test 1 

ri 

0.002 
0.006 
0.008 
0.025 
0.023 
0.018 
0.033 
0.104 
0.106 
0.028 

'0.95 <239> 

1.645 
1.645 
1.645 
1.645 
1.645 
1.645 
1.645 
1.645 
1.645 
1.645 

Test 2 
V) value 
One 

0.527 
1.027 
1.705 
3.228 
3.769 
4.190 
4.737 
6.786 
7.704 
6.857 

for the periodicity 
Two 

1.092 
2.458 
4.319 
6.078 
7.805 
10.130 
10.090 
10.670 
12.120 
13.220 

Three 

0.364 
0.813 
1.096 
0.948 
1.149 
1.262 
2.668 
2.621 
2.976 
3.718 

Four 

0.065 
0.129 
0.160 
0.277 
0.345 
0.441 
0.392 
0.372 
0.422 
0.597 

F095(2, 238) 

3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 

Test 2 Significance of the periodicities 

For the model to be applicable, the residual series, {w(f)}, must not have any 
significant periodicity in it. The following test is carried out to ensure that 
this is, in fact, true. This test is conducted for different periodicities, and the 
significance of each of the periodicities is tested. A statistic, n(w), is defined 
as: 

n(w) 
Jl(N - 2) 

4 p\ 
(13) 

where y2 = or + 3 ; 

px = VN fe [w(t) - « cos {Wxt) - B sin ( ^ f ) ] 2 ] ; 

â = 2/N l £ i w(t) cos (Wxt)\ 

B = 2IN 1 ^ w(t) sin (Wf)\ and 

2fllWl is the periodicity for which the test is being carried out. 
The statistic, n(w), is distributed approximately as Fa(2, N - 2), a being the 
significance level. The periodicity corresponding to W1 is not significant if: 

n(w) « FJ2, N-2) 

This test was carried out on the residual series resulting from each of 
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the four streamflow series considered. Table 6 presents the values of *7(w) 
for the different periodicities tested. All the periodicities tested were found 
to be insignificant for the models selected and thus the models passed 
the test. 

Another test carried out for the significance of periodicities is the 
cumulative periodogram test, also known as Bartlett's test (Bartlett, 1946). 
Unlike the previous test which has to be carried out for one periodicity 
at a time, this test is conducted to detect the first significant periodicity 
in the series. If a significant periodicity is observed, the next significant 
periodicity will be detected by carrying out the test on the series from 
which the first periodicity is removed, and so on. The test is briefly 
explained below: 

Define y\= [2/N 1 ^ w(t) cos (Wkt)]
2 + [2/N 1 ^ w(t) sin (Wkt)]

2 

k = l,2,....,/v72 (14) 

yk y2 

C ° m P U t e g * = i f (15) 

It is noted that 0 S gk S 1. The plot of gk versus fc is known as 
the cumulative periodogram. On the cumulative periodogram two 
confidence limits are drawn. These are given by ±\/(N/2)y\ The value of 
X prescribed (Kashyap & Rao, 1976) is 1.35 for 95% confidence and 1.65 
for 99% confidence. If all the values of gk lie within the significance 
band, then there is no significant periodicity present in the series. When 
one of the gk values lies outside the significance band (the subsequent 
values will also lie outside the band), the periodicity corresponding to that 
value of gk is significant. 

Fig. 2 shows the cumulative periodogram of the residual series resulting 
from the AR(4) model applied to the KRS inflows. All the values of gk lie 
within the significance band, thus confirming the result of the earlier test that 
no significant periodicity is present in the residual series. The same result is 
also observed in the case of the models selected for each of the other three 
streamflow series considered. To contrast the cumulative periodogram, shown 
in Fig. 2, the cumulative periodogram of the original series (without stan­
dardizing) is shown in Fig. 3. It is seen from Fig. 3 that, corresponding to k 
= 40, the periodicity is significant. This value of k corresponds to a periodicity 
of 12 months. 

Of the two tests mentioned in this section, the latter (Bartlett's test) is 
more convenient computationally. These two tests are carried out both on the 
original series and on the residual series. In the cases studied, the conclusions 
drawn from the two tests do not differ from each other at any time. 
However, the cumulative periodogram test is preferred because of its ability 
to test all the periodicities at a time. 
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407 Stochastic models of streamflow - some case studies 

Fig. 2 Cumulative periodogram for residuals. 

Fig. 3 Cumulative periodogram for monthly data. 

Test 3 White noise test 

An important assumption in the models studied is that the residual series, 
{w(t)}, is a white noise sequence (or that the series is uncorrelated). In this 
section the residuals are tested for absence of correlation. Two tests are 
carried out for this purpose and the results are compared. 

Whittle's test This test (Whittle, 1952) involves the construction of the 
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covariance matrix. The covariance Rk at lag k of the series, {w(t)}, is estimated by: 

Rk = 1I(N - k) l £ M w(j) w(j - k) (16) 

k = °'1 '2 Anax 

The value of &max is normally chosen as 15% of the sample size., i.e. 
kmgx = 0.15N. The covariance matrix, T nV is then constructed as: 

«l 

R0 * 1 ^ 2 Rkm 
ax 

R* i?1 ̂ 0 * w 2 

^nax 'taax4 "" ° 

(17) 

This is a square symmetric matrix of size «1 = /cmax. 
A statistic, n(w), is defined as: 

n(w) = (N/nl - 1) (p/Pl - 1) 

where pQ is the lag zero correlation coefficient (= 1) and 

det I". 

(18) 

Pi 
nl 

det r nl-l 

The matrix T nll is constructed by eliminating the last row and the last 
column from the matrix TnV The statistic, n(yv), defined by equation (18) is 
distributed approximately as Fa(nl, N - nl). If n(w) « F (ni, N - nl) then 
the residual series is uncorrelated. This test was carried out on the residual 
series resulting from the different models considered for all the four 
streamflow series. Table 7 gives the values of the statistic, n(w), for the 
models applied to the KRS inflows. From Table 7 it is seen that when 
nl = 25, ARMA(1,2) and ARMA(2,1) do not pass the test. In all other 
cases the test is successful. The result from the other sites indicates that the 
models selected for each series also passed the test. 

Portmanteau test This test also uses the covariance, Rk, defined earlier. 
The statistic, ri(w), is defined as: 

n(w) = (N-nl) Z& (RJR0)
2 (19) 
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4 09 Stochastic models of streamflow - some case studies 

Table 7 Whittle's test for KRS data (N = 240) 

F0.95 <nl- N~ nl) 

Model 

ARMA (1,0) 
ARMA (2,0) 
ARMA (3,0) 
ARMA (4,0) 
ARMA (5,0) 
ARMA (6,0) 
ARMA (1,1) 
ARMA (1,2) 
ARMA (2,1) 
ARMA (2,2) 

ni = 73 
1.29 

n 

0.642 
0.628 
0.606 
0.528 
0.526 
0.522 
0.595 
0.851 
0.851 
0.589 

ni = 49 
1.39 

T) 

0.917 
0.898 
0.868 
0.743 
0.739 
0.728 
0.854 
1.256 
1.256 
0.845 

ni = 25 
1.52 

T) 

0.891 
0.861 
0.791 
0.516 
0.516 
0.493 
0.755* 
1.581* 
1.581 
0.737 

indicates that the model does not pass the test, 

This is distributed approximately as x^inl). If ri(w) « xa(nl), then the 
series is uncorrelated at the significance level, a. The value of nl is normally 
chosen as Q.15N. However the test was carried out for different values of nl. 
Table 8 gives the results of this test. It is seen that the residuals of all 
models except ARMA(1,2) and ARMA(2,1) pass the test. 

Kashyap & Rao (1976) have proved that the portmanteau test is 
uniformly inferior to Whittle's test and recommended the latter for 
application. 

Table 8 Portmanteau test for KRS data (N = 240) 

^•0.95^kmaJ 
Model 

ARMA (1,0) 
ARMA (2,0) 
ARMA (3,0) 
ARMA (4,0) 
ARMA (5,0) 
ARMA (6,0) 
ARMA (1,1) 
ARMA (1,2) 
ARMA (2,1) 
ARMA (2,2) 

k n = 48 
max 

65.0 

31.44 
32.03 
30.17 
20.22 
19.84 
19.64 
29.89 
55.88 
55.88 
28.62 

k =36 
max 

50.8 

33.41 
34.03 
32.05 
21.49 
21.08 
20.87 
31.76* 
59.38* 
59.38 
30.41 

k =24 
max 

36.4 

23.02 
24.47 
21.61 
11.85 
11.75 
11.48 
22.24* 
48.37* 
48.37 
20.39 

k =12 
max 

21.0 

14.80 
15.17 
13.12 
4.31 
4.14 
3.79 
12.76* 
39.85* 
38.85 
11.25 

indicates that the model does not pass the test. 

CONCLUSIONS 

Streamflow sequences for three south Indian rivers, viz. the Cauvery, 
Hemavathy and Malaprabha, are modelled. Ten candidate models of the 
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P. P. Mujumdar & D. Nagesh Kumar 410 

ARMA family are studied and the best model for each of the four 
streamflow series is selected (three monthly and one ten-day series). The best 
models resulting from the maximum likelihood criterion for the three monthly 
series of the Cauvery, Hemavathy and Malaprabha are respectively AR(4), 
ARMA(2,1) and ARMA(3,1). For the ten-day series of the Malaprabha, the 
model selected is AR(4). Selection of models based on a minimum mean 
square error criterion results in an AR(1) model for all the four streamflow 
series considered. The selected models are validated by tests on residuals for 
the significance of residual mean, the significance of periodicities (Bartlett's 
test) and the significance of correlations (Whittle's test and Portmanteau test). 
These tests revealed that the models selected by the two criteria pass all the 
tests and hence these models are recommended for use in practice for the 
three rivers. 
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