
Water Resources Management 17: 337–353, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

337

Folded Dynamic Programming for Optimal
Operation of Multireservoir System

D. NAGESH KUMAR1∗ and FALGUNI BALIARSINGH2

1 Civil Engineering Department, Indian Institute of Science, Bangalore, India; 2 Civil Engineering
Department, OUAT, Bhubaneswar, India
(∗ author for correspondence, e-mail: nagesh@civil.iisc.ernet.in, Fax: 91 80 3600 404)

(Received: 15 October 2002; in final form: 5 June 2003)

Abstract. Dynamic Programming (DP) is considered as a good technique for optimal reservoir
operation due to the sequential decision making and ease in handling non-linear objective functions
and constraints. But the application of DP to multireservoir system is not that encouraging due to
the problem ‘curse of dimensionality’. Incremental DP, discrete differential DP, DP with successive
approximation, incremental DP with successive approximation are some of the algorithms evolved
to tackle this curse of dimensionality for DP. But in all these cases, it is difficult to choose an initial
trial trajectory, to get at an optimal solution and there is no control over the number of iterations
required for convergence. In this paper, a new algorithm, Folded DP, is proposed, which overcomes
these difficulties. Though it is also an iterative process, no initial trial trajectory is required to start
with. So, the number of iterations is independent of any initial condition. The developed algorithm is
applied to a hypothetical reservoir system, solved by earlier researchers. Operating policy obtained
using the present algorithm has compared well with that of the earlier algorithm.

Key words: algorithm, dynamic programming, multireservoir operation, optimization

1. Introduction

The importance and applicability of Dynamic Programming (DP), proposed by
Bellman (1957), is well known for optimal control problems in various streams of
engineering and management. The application of DP in water resources area was
discussed by Yakowitz (1982) and Yeh (1985). They have also discussed about
a hindrance to use DP due to the ‘curse of dimensionality’. In a multireservoir
system, it is necessary to obtain an operating policy (release policy) for all the
reservoirs simultaneously, because the optimum condition of the system cannot be
investigated by considering the reservoirs in isolation. In Discrete DP (DDP), the
state variables (storage of reservoirs) are normally discretized. Dense discretization
is preferred over the coarse one, to obtain an operating policy close to the global
optimum. These two factors, simultaneous investigation of all the reservoirs (high
dimensionality) of the system and dense discretization of storage state variables,
are the root causes of the curse of dimensionality.



338 D. N. KUMAR AND F. BALIARSINGH

Various methods are adopted to tackle the curse of dimensionality in the past.
No method has a clear superiority over others. The trade-off between accuracy and
easiness is to be considered in the selection of a method. The idea of overcoming
high dimensionality problem by successive approximation was given by Bellman
(1957). Using this philosophy, Larson (1968) applied Dynamic Programming with
Successive Approximation (DPSA) algorithm to a hypothetical four reservoirs sys-
tem. Larson and Korsak (1970) provided the proof of convergence for DPSA.
Incremental DP (IDP) was proposed by Hall et al. (1969) and applied to water
resource problem. Discrete Differential DP (DDDP) was proposed by Heidari et
al. (1971) and was applied to the same hypothetical reservoir system, adopted by
Larson (1968). Incremental DPSA (IDPSA) was applied by Giles and Wunder-
lich (1981) to a reservoir system, operated by Tenessee valley authority. Another
method, Binary State DP algorithm, was given by Ozden (1984). All the above
methods are of discrete type.

In the class of continuous type, Progressive Optimality (Turgeon, 1981), State
Incremental DP (Larson, 1968), and Differential DP were already widely applied
to water resources problems. Perera and Codner (1998) took the help of two factors
to improve the computational efficiency of stochastic DP model during operation
of an urban water supply reservoir system. They assumed strong cross correlation
of stream flow among the various sites and used corridor approach.

As the algorithm, proposed in this paper, is for multidimensional discrete de-
terministic DP, the discussion is restricted to this type. While the authors do not
claim complete superiority of the present algorithm over the earlier ones in all
respects, they demonstrate a clear superiority in many aspects. All the algorithms
are of iterative type. An initial feasible trial trajectory was essential for starting
the iterations in each and every one of the earlier algorithms. This trial trajectory
is evaluated by the objective function value. In the process of iterations, a better
trajectory is continuously obtained than in the previous one, which gives better ob-
jective function value. Ultimately, an optimal trajectory is arrived at. The number of
iterations required to achieve the optimal trajectory depends on how far the chosen
trial trajectory is from the optimal one. The present algorithm, Folded Dynamic
Programming (FDP), is different from the earlier algorithms in two aspects. There
is no need to assume any initial trial trajectory and the number of iterations for
achieving optimal solution is considerably less.

Earlier algorithms were discussed in different manners in the earlier works. For
better clarity amongst them and to delineate their differences from the present one,
the earlier algorithms are briefly explained in one frame in Section 2. The proposed
algorithm, FDP is explained in Section 3. FDP is applied to the reservoir system of
Larson (1968) in Section 4. Conclusions from the study are given in Section 5.



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 339

1.1. EARLIER ALGORITHMS

1.1.1. DDP

The well-known backward recursive equations for conventional DDP are

ft(St) = max
Rt∈At

[
Lt (St , Rt) + ft+1 (St+1)

]
t = 0, 1, . . ., T − 1 ,

where fT (ST ) = 0

Subject to Si,t+1 = Si,t+Ii,t − Ri,t ∀i = 1, . . .,M ,

where St is a vector of M dimensional storage states in M reservoirs at beginning of
the time period t . There are T time periods in the operating horizon, designated by
0, 1, . . ., T −2, T −1. ft (St ) is the maximum total return over the remaining periods
t, t +1, . . ., T −1 with St as initial storage vector state for M reservoirs. Lt (St , Rt )
is the return function from the system by the operation during time period t with
St as the initial storage state vector and Rt as the release (decision) vector during
time period t . At is the maximum release (canal capacity) value. If any other value
is taken, there will not be much change in finding out the optimal policy. The
dynamic behaviour of each reservoir in the system is shown with reservoir water
balance equation. Si,t is the storage of reservoir i at beginning of time period t . Ii,t

is the combination of independent natural inflow and release from other reservoirs
to the reservoir i during time period t . Ri,t is release from reservoir i during time
period t . Various losses, like evaporation, seepage etc. are presently ignored for
simpler discussion and can be easily considered later during actual application.

Largely, the algorithms used for increasing the computational capability of DP,
are of two types. These are incremental and successive approximation types. In
both the cases, the storage state spaces are discretized by grid points into uniform
increments, called state increments. The storage is allowed to change only from one
grid point to the other. In the case of incremental type, only three neighborhood
storage states (corridor) for the whole operating horizon are considered in each
iteration. The best operating policy (trajectory) is the line joining the storage state
of each time step from initial to final time period of the operating horizon. This will
be the center of corridor for the next iteration. In successive approximation type,
iterations are done for the full range of storage state of one reservoir at a time.

The IDP algorithm is explained in detail in the next section. Regarding the
other algorithms, only the differences from IDP and the differences amongst the
algorithms are discussed.

1.1.2. IDP

i. P is assumed as the initial trial trajectory for all the M reservoirs during the
whole operating horizon. F is the objective function value of the reservoir
system, when operated with this trial trajectory.



340 D. N. KUMAR AND F. BALIARSINGH

ii. A corridor is made by considering one feasible neighbouring storage state
grid point on each side of P .

iii. Conventional DP is run through this corridor and the best trajectory is found,
which is denoted by P ′. F ′ is the objective function value corresponding to
P ′. In each time period, 3M ∗ 3M matrix is required to store the return value.
So total size of matrix, required for this algorithm is number of time periods
∗3M ∗ 3M .

iv. The trajectory and corridor for the next iteration is to be found out depending
on the value of F ′′, which is equal to (F ′ − F)/F . The formation of corridor
around the trajectory P ′, now termed as P , is done with the same state incre-
ment as in the previous iteration, if F ′′ ≥ ξ , where ξ is a predefined factor.
Otherwise, a state increment less than that in the previous iteration is to be
used. The step (iii) is repeated with this new corridor.

v. This process of iterations is stopped, when F ′′ < ξ and the state increment is
below the predefined value.

1.1.3. DDDP

The process of iteration is same as in IDP, the only difference being in forming the
corridor around the trajectory. Here, there may be more than three grid points in
the corridor, depending on the choice of the model user. Nopmongcol and Askew
(1976) have rightly pointed out that DDDP is a generalized version of IDP.

1.1.4. DPSA

The iterations are done for one state variable at a time. While fixing the corridor
around trial trajectory for first iteration, the entire possible grid points for the first
state variable only are considered and the trajectory of all the remaining state
variables is kept fixed. Then DP is run through this corridor. The best trajectory,
obtained in first iteration will be the new trajectory for second iteration. In second
iteration, second state variable is considered as the first state variable. In this way,
first set of iterations continues till all the state variables are considered. Then, next
set of iterations is done similar to the first one, with new trajectories. This process
stops when two sets of consecutive iterations yield nearly same trajectories.

1.1.5. IDPSA

This is a combination of IDP and DPSA. The process of iterations is done in two
tiers. In first tier, iteration starts with three feasible grid points as corridor, one
on each side of trial trajectory of the first state variable, for the whole operating
horizon. In subsequent iterations, the trajectory for the same state variable moves
towards the optimal policy with better objective function value as in IDP. When
there is no more improvement in the first state variable, the second state variable is
considered as the first one. In second tier, the reservoirs are selected one after the



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 341

other, as in DPSA. The first and second tier iterations are applied repeatedly till the
improvement of trajectory stops.

1.1.6. Binary State DP

Corridor is formed with one grid point on one side of trial trajectory, the side being
fixed by previous iteration. Unlike in any incremental type DP, here only two grid
points are considered instead of three.

More details of the algorithms presented in this section are available in the
respective references.

2. Folded Dynamic Program (Present Algorithm)

Before discussing the algorithm of FDP, it is necessary to explain the way of find-
ing maximum and minimum possible storage at beginning of each time period,
hereafter called time step, of whole operating horizon for all the reservoirs. The
operating horizon, the duration of reservoir operation, is considered as stage and
storage of reservoir is considered as state variable in DP formulation. In physical
terms, the storage state variable can be at any point between the dead storage level
and full reservoir level. In the present FDP algorithm, the entire storage state space
at each time period is required to be divided into four equal state increments to
form five grid points. The storage can be changed from any grid point of one time
step to any grid point of adjacent time step. This procedure is illustrated in results
section.

Step-wise procedure of the proposed algorithm, FDP, is explained below.

i. Depending on the natural inflow, release capacity, and boundary condition of
storage, the maximum and minimum possible storage values for each reser-
voir at every time step of operating horizon are found out.

ii. Considering the maximum and minimum possible storages as the two extreme
grid points, three intermediate grid points are determined adopting a uniform
state increment. This means, that the possible storage space at each time step
is divided into four equal state increments to get the five grid points. Thus
there will be totally 5 ∗ M grid points for each time step. State increment is
different for different time steps as also for different reservoirs. The mesh of
these grid points for the whole operating horizon of all the reservoirs, forms
the corridor.

iii. Conventional DP is run through this corridor to find the trajectory, P , which
gives maximum objective function value, F .

iv. For finding the trajectory for next iteration, if this trajectory is either the min-
imum or maximum storage value, i.e., extreme grid points at any time step,
these points are changed to the next interior grid points to form the revised
trajectory. This revised trajectory will be the center of corridor for the next
iteration.



342 D. N. KUMAR AND F. BALIARSINGH

v. In the next iteration, the state increment is halved at each time step. The cor-
ridor is formed by taking two state increments or grid points on each side of
the trajectory. Then step (iii) is repeated to find the best trajectory, P ′, whose
objective function value is F ′.

vi. The iterations are continued with half value of state increments of those of the
previous ones at each time step. There can be two stopping rules. First, the
decrement of state increment at a time step stops, where state increment hap-
pens to be less than a predefined value. The iteration stops, when decrement
of state increment process stops at each time step. Second, the iteration stops,
when F ′′ < ξ is satisfied, where of F ′′ is (F ′ − F)/F and ξ is a predefined
factor. In the present case, second stopping rule is applied.

2.1. NAME FOR THE ALGORITHM

If a flexible thread is folded twice, five points are obtained consisting of three
folding points and two extremes. These five points denote the five storage states
for the first iteration. Length between any two consecutive folding points is the
value of state increment adopted. Taking any consecutive three points, if the thread
is again folded, there will be two more folding points making up a total of five. Now
the length between any two consecutive points is half of that of the first folding.
By repeated foldings like this, we can reach any point of the whole of the thread.
Authors visualized the importance of this folding phenomenon to reach any value
of feasible storage from within the range of storage state. Hence the algorithm is
called Folded Dynamic Programming (FDP).

3. Application of FDP

FDP is applied to the hypothetical reservoir system used by Larson (1968). A
number of earlier methods were also applied to this system. So it is preferred to
apply the present algorithm also to the same system, to facilitate direct comparison
of this algorithm with the earlier ones. In this problem, the optimum operation over
24 hr of a hypothetical multipurpose four-reservoir system is to be determined. The
reservoir network, which contains both series and parallel connections, is shown in
Figure 1. In this optimization, use of water for power generation, irrigation, flood
control and recreation are considered. Storages in the reservoirs are considered as
the state variables for the problem. The volume of water in the reservoir i for time
period t is denoted as Si,t , i = 1, 2, 3, 4, where Si,t is expressed in normalized
units. On the basis of flood control considerations, a maximum water level for each
reservoir is established.



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 343

Figure 1. Multi reservoir system network (Larson, 1968).

Twelve time periods of 2 hr each are considered for operating horizon, desig-
nated by 0, 1, . . ., 11. The constraints of four dimensional storage vector are

0≤S1,t≤10, 0≤S2,t≤10, 0≤S3,t≤10, 0≤S4,t≤15;

for t = 0, 1, . . ., 12 .

(1)

The control variable is taken as the release from each of the four reservoirs. These
quantities are also expressed in the same normalized units. The variables Ri,t , i =
1, 2, 3, 4, specify the release from the reservoir i during time period t . In this study,
each time period is of 2 hr duration.

Maximum release from each reservoir is determined by the capacity of the tur-
bines and minimum release is determined by considering the use of the downstream
flow for navigation, conservation, and municipal and industrial water supplies. The
constraints on release from four reservoirs are

0≤R1,t≤3, 0≤R2,t≤4, 0≤R3,t≤4, 0≤R4,t≤7;

for t = 0, 1, . . ., 11 .

(2)



344 D. N. KUMAR AND F. BALIARSINGH

The system dynamic equations for the reservoirs are given below. They are applic-
able for whole operating horizon, i.e., t = 0, 1, . . ., 11.

S1,t+1 = S1,t + I1,t − R1,t t = 0, 1, . . ., 11 (3)

S2,t+1 = S2,t + I2,t − R2,t t = 0, 1, . . ., 11 (4)

S3,t+1 = S3,t + R2,t − R3,t t = 0, 1, . . ., 11 (5)

S4,t+1 = S4,t + R1,t + R3,t − R4,t t = 0, 1, . . ., 11 , (6)

where I1,t and I2,t are inflows into reservoirs 1 and 2, respectively.
The desired state vectors at the beginning and end of operating horizon are

S0 =




5
5
5
5


 S12 =




5
5
5
7


 . (7)

The objective of this multireservoir system is to maximise the benefit from irriga-
tion and hydropower generation. So the objective function is

F =
11∑
t=0

4∑
i=1

bi,t∗Ri,t +
11∑
i=0

b5,t∗R4,t , (8)

where bi,t is the benefit per unit flow for reservoir i during time period t . Benefits
from the flow over a given 2 hr period are assumed to be a linear function of the
flow. Irrigation benefits are considered only for the release from the reservoir 4.
Benefit for irrigation from the releases of reservoir 4 is denoted by b5,t . Details of
the problem are given by Larson (1968) and Heidari et al. (1971).

4. Results

It is necessary to find out the minimum and maximum possible storages for each
reservoir at each time step. In each time step of whole operating horizon, storage
corresponding to two extreme grid points, which may or may not be dead storage
level or full reservoir level are found out in such a way that the chance of falling into
the same storage state at the last time step as that of the first time step of operating
horizon in the process of DP is avoided. The following equations are followed to
find out the storage states corresponding to these two extreme grid points.

Smax,i,t+1 = Smax,i,t + Ii,t ∀ i and t = 0, 1, . . ., T − 2 (9)

Smin,i,t+1 = Smin,i,t + Ii,t − Ri,t ∀ i and t = 0, 1, . . ., T − 2 (10)



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 345

Smax,i,t+1 = Smax,i,t + Ii,t − Ri,t ∀ i and t = 0, 1, . . ., T − 2 (11)

Smin,i,t+1 = Smin,i,t + Ii,t ∀ i and t = 0, 1, . . ., T − 2 (12)

Ri,t≤RCi,t ∀ i, t (13)

SDSL,i≤Smax,i,t≤SFRL,i ∀ i, t (14)

SDSL,i≤Smin,i,t≤SFRL,i ∀ i, t , (15)

where

Smax,i,t = maximum possible storage of reservoir i at beginning of time
period t ;

Smin,i,t = minimum possible storage of reservoir i at beginning of time
period t ;

Ii,t = the inflow volume to the reservoir i during time period t ;

Ri,t = the release from reservoir i during time period t ;

RCi,t = the maximum release capacity of reservoir i during time period
t ;

SDSL,i = the reservoir storage of reservoir i at dead storage level;

SFRL,i = the reservoir storage of reservoir i at full reservoir level.

Equations (9) and (10) are used during forward pass and Equations (11) and (12)
are used during backward pass. The aim of these four equations is to get the max-
imum possible storage as high as feasible and the minimum possible storage as low
as feasible. Equation (13) shows the limit of release of each reservoir at each time
step. In all these four equations, the storage should also satisfy the physical limits,
generally dead storage level (DSL) and full reservoir level (FRL) by Equations (14)
and (15).

For illustration, storage limits obtained for reservoir 1 for each time step are
shown in Figure 2. Here the operating horizon is twelve time periods of 2 hr each,
giving 13 time steps from 0 to 12. The desired storage states are 5 units at both
time steps 0 and 12. So both minimum and maximum possible storages at the
time steps of both 0 and 12 are fixed as 5 units. During forward pass, maximum
possible storage for successive time steps was obtained using Equation (9) and
shown as curve A in Figure 2. It varies from 5 to 10 units during time step 0–3
and then continues to be 10 up to 12th time step. Similarly, the minimum possible
storage was obtained by applying Equation (10) and shown as curve B in Figure 2.
It varies from 5 to 0 units during time step 0–5 and then continues to be at 0 up to
12th time step. The storage state is restricted at 0 and 10 to satisfy the condition
laid by storage constraint for reservoir 1 (Equation (1)). The desired storage state at
time step 12 is 5 as per the Equation (7), i.e., the minimum and maximum possible



346 D. N. KUMAR AND F. BALIARSINGH

Table I. Maximum/minimum possible storage for each reservoir in each time step

Reser- Time steps

voir 0 1 2 3 4 5 6 7 8 9 10 11 12

1 5/5 7/4 9/3 10/2 10/1 10/0 10/0 10/0 9/0 8/0 7/1 6/3 5/5

2 5/5 8/4 10/3 10/2 10/1 10/0 10/0 10/0 9/0 8/0 7/0 6/2 5/5

3 5/5 9/1 10/0 10/0 10/0 10/0 10/0 10/0 10/0 10/0 10/0 9/1 5/5

4 5/5 12/0 15/0 15/0 15/0 15/0 15/0 15/0 15/0 15/0 15/0 14/0 7/7

storages at this time step should be 5. At the end of forward pass, as the minimum
and maximum possible storages are obtained as 10 and 0 respectively, the backward
pass is to be carried out. During backward pass, curves C and D of Figure 2 are
obtained for maximum and minimum possible storage by using Equations (11)
and (12), respectively. Then the final minimum possible storage is found out by
taking the higher value of minimum possible storage states obtained by forward
and backward pass (comparing curve B and D of Figure 2), which is shown as curve
A in Figure 3. The final maximum possible storage is obtained by taking the lower
value of maximum possible storage state, obtained by forward and backward pass
(comparing curves A and C of Figure 2), which is shown as curve E of Figure 3.
At each time step, the storage space between minimum and maximum possible
storages, AE, is divided into four equal state increments, there by creating three
intermediate grid points. By joining the corresponding points of all the time steps
from 0 to 12, curves B, C, and D are formed. In this way, the mesh of five grid points
at each time step for all twelve periods for the first reservoir are found. The mesh
of all the four reservoirs, obtained similarly, forms the corridor for first iteration
of FDP. Additional details on practical problems in choosing the maximum and
minimum storages for the grid generation are discussed in Baliarsingh (2000).

Depending on full range of possible inflows and possible releases from the
reservoirs, maximum and minimum possible storage values are found and shown
in Table I for all the reservoirs.

The corridor of five grid points with equal storage state increments at each
time step is formed. The iteration continues as per the algorithm presented in the
previous section. The state increments are halved in each consecutive iteration. For
example, the state increments during first five iterations of reservoir 2 at time step
1 are 4, 2, 1, 0.5, respectively, and at time step 3 are 8, 4, 2, 1, respectively. If ξ is
taken as 0.002, the process converges at 5th iteration and 398.0 units is obtained
as the objective function value. If ξ is taken as 0.0004, the process converges at
7th iteration with the objective function value as 398.7. This is only 0.64% less
than global optimum value of 401.3, obtained by earlier methods. The objective
function value and rate of convergence are shown in Figure 4. Although, devel-
opment of trajectory in each iteration is obtained from the solution, trajectories



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 347

F
ig

ur
e

2.
M

ax
im

um
an

d
m

in
im

um
po

ss
ib

le
st

or
ag

e
fo

r
re

se
rv

oi
r

1
in

fo
rw

ar
d

an
d

ba
ck

w
ar

d
pa

ss
es

.



348 D. N. KUMAR AND F. BALIARSINGH

F
ig

ur
e

3.
G

ri
d

po
in

tm
es

h
of

re
se

rv
oi

r
1

fo
r

fi
rs

ti
te

ra
ti

on
of

fo
ld

ed
dy

na
m

ic
pr

og
ra

m
m

in
g.



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 349

Figure 4. Objective function value at different iterations.

for the alternative iterations, i.e., 1, 3, 5 of each individual reservoir are shown in
Figures 5a–d.

Optimal operating policy obtained using FDP is presented in Figure 6 for the
four reservoirs. For comparison, final recommended trajectory, obtained by Heidari
et al. (1971) using DDDP is also presented in Figures 6a–d for the four reservoirs
and they compared well.

5. Discussions

In earlier algorithms, the convergence depends on the proximity of the initial trial
trajectory to the optimal trajectory. But in the present method, there is no such
depending factor for convergence. From the algorithm, it can be seen that the
present method takes remarkably less number of iterations than in the earlier meth-
ods to converge. However, rate of improvement slows down at higher number of
iterations, as can be seen from Figure 4.

When DP is run with the mesh of grid points (corridor) generated by FDP, the
chance of sticking to the storage state value at all the time steps of operating horizon
is ruled out, as the storage value corresponding to minimum storage at each time
step is not the same. It can also be noticed that by this process the state increment
at each time step is not same and the process ensures arriving at the desired storage
values at first and last time periods of operating horizon.

The only disadvantage in the present algorithm is that there is no guarantee of
reaching the global optimum, which is also not possible with most of the earlier
methods. Heidari et al. (1971) have agreed in their paper that the global optimum
was found by luck, as the optimum trajectory happens to fall only on integer value
and they have chosen state increment as 1.0. While solving with a state increment



350 D. N. KUMAR AND F. BALIARSINGH

Figure 5. Trajectory of the system at various iterations for each reservoir.



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 351

Figure 6. Comparison of recommended final policy from FDP and DDDP for 4 reservoir
system.



352 D. N. KUMAR AND F. BALIARSINGH

of 1.3, optimum objective function value obtained using FDP was 399.06, which is
very close to the global optimum of 401.3.

The required matrix size in the present algorithm is the number of time periods
∗5M ∗ 5M instead of number of time periods ∗3M ∗ 3M for IDP. So in the applic-
ation of FDP, the required matrix size is 12 × 625 × 625. In case of multireservoir
system, the matrix size increases exponentially. In this situation of large number of
reservoirs in the system, FDP can be applied with successive approximation, i.e.
considering only one dimension at a time. So the matrix size in each iteration is
limited to number of time periods ∗5 ∗ 5.

6. Conclusions

A new algorithm, Folded Dynamic Programming, is presented to overcome the
curse of dimensionality inherent in dynamic programming. In the earlier methods,
an initial trial trajectory is essential to start. The trial trajectory moves towards the
global optima in the grid of state increments. Trajectory may fall into local optima,
if it is in between initial trial trajectory and global one. Bellman has suggested
solving the problem with different trial trajectories. But if the dimension, i.e.,
number of reservoirs in the system, is large, there is no clue as to the number
of trial trajectories required to ensure the global optimum condition. The above
inconvenience can be avoided in the present algorithm, as initial trajectory is not
at all necessary. Proposed algorithm is applied to a hypothetical multi reservoir
system from the literature. Earlier algorithms require 7 to 18 iterations to reach
optimal solution, depending on the initial trial trajectory and state increment. The
present algorithm requires only 5 iterations for the same solution without requiring
any initial trajectory. It is concluded that FDP can be used as an improvement to
IDP. In the case of higher dimensional problems, FDP can be solved by successive
approximation.

References

Baliarsingh, F.: 2000, ‘Long-term and Short-term Optimal Reservoir Operation for Flood Control’,
Doctoral Thesis, Indian Institute of Technology, Kharagpur, India.

Bellman, R.: 1957, Dynamic Programming, Princeton University Press, Princeton, N.J.
Giles, J. E. and Wunderlich, W. O.: 1981, ‘Weekly multipurpose planning model for TVA reservoir

system’, J. Water Resour. Plng. Mgmt. ASCE 107(WR2), 495–511.
Hall, W. A., Tauxe, G. W. and Yeh, W. W.-G.: 1969, ‘An alternate procedure for the optimization of

operations for planning with multiple river, multiple purpose systems’, Water Resour. Res. 5(6),
1367–1372.

Heidari, M., Chow, V. T., Kokotovic, P. V. and Meredith, D. D. 1971, ‘Discrete differential dynamic
programming approach to water resources systems optimization’, Water Resour. Res. 7(2), 273–
282.

Larson, R. E.: 1968, State Increment Dynamic Programming, Elsevier, New York, U.S.A.
Larson, R. E. and Korsak, A. J.: 1970, ‘A dynamic programming successive approximations

technique with convergence proofs’, Automatica 6, 245–252.



DYNAMIC PROGRAMMING FOR OPTIMAL RESERVOIR OPERATION 353

Nopmongcol, P. and Askew, A. J.: 1976, ‘Multilevel incremental dynamic programming’, Water
Resour. Res. 12(6), 1291–1297.

Ozden, M.: 1984, ‘A Binary State DP algorithm for operation problems of multireservoir systems’,
Water Resour. Res. 20(1), 9–14.

Perera, B. J. C. and Codner, G. P.: 1998, ‘Computational improvement for stochastic dynamic
programming models of urban water supply reservoirs’, J. Amer. Water Resour. Assoc. 34(2),
267–278.

Turgeon, A.: 1981, ‘Optimal short-term hydro scheduling from the principle of progressive optimal-
ity’, Water Resour. Res. 17(3), 481–486.

Yakowitz, S.: 1982, ‘Dynamic programming applications in water resources’, Water Resour. Res.
18(4), 673–696.

Yeh, W. W.-G.: 1985, ‘Reservoir management and operations models a state-of-the-art review’, Water
Resour. Res. 21(12), 1797–1818.


