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Abstract

The paper presents the application of artificial neural network (ANN) to determine the end-depth-ratio (EDR) for a smooth
inverted semicircular channel in all flow regimes (subcritical and supercritical). The experimental data were used to train and vali-
date the network. In subcritical flow, the end depth is related to the critical depth, and the value of EDR is found to be 0.705 for
a critical depth–diameter ratio up to 0.40, which agrees closely with the value of 0.695 given by Dey [Flow Meas. Instrum. 12 (4)
(2001) 253]. On the other hand, in supercritical flow, the empirical relationships for EDR and non-dimensional discharge with the
non-dimensional streamwise slope of the channel are established.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A free overfall is a situation, causing the flow to sep-

arate from the streambed to form free nappe due to a

sudden drop. It causes a gradually varying flow profile

and also offers the possibility of being used as a

flow-measuring device in all flow regimes (subcritical

and supercritical). Earlier, in open channel hydraulics

critical depth was used to determine the discharge, as

there exists a unique relationship between critical depth

and discharge. This method based on critical depth and

discharge has a disadvantage, because the location of

occurrence of critical depth is dependent on discharge

that makes it difficult to measure. To overcome this

problem of locating the position where the flow

becomes critical, the attempts are made to relate the

critical depth with end depth. The end depth is the flow

depth at the free overfall, which also called as brink

depth. Thus, the end depth is identified as key para-

meter for the flow measurement in open channel
hydraulics. Fundamental experimental research was
carried out by Rouse [2] to determine the end-depth-
ratio (EDR), which was found to be 0.715 in mildly
sloping rectangular channels. Since then numerous
experiments on free overfall in different types of chan-
nels have been reported [1,3–42].
Rajaratnam and Muralidhar [3] explored circular

overfalls by developing a theoretical model based on
the momentum equation and experimental results.
Numerical solutions using potential flow theory were
presented by Montes [4]; whereas analytical solutions
for circular overfalls based on the momentum equation
and the simulation of a free overfall with a sharp-cres-
ted weir were given by Dey [5,6], respectively. The
modified energy equation based on the Boussinesq
approximation was used by Anderson [7] to determine
the EDR for the rectangular overfall. Considering the
streamline inclination and curvature, the solutions of
momentum and extended energy equations were put
forward by Hager [8]. Theory of direct fluid sheet was
applied by Naghdi and Rubin [9] to develop an exact
solution of the associated nonlinear equations. Another
analytical approach, termed cnoidal wave theory, was
reported by Marchi [10] to solve the two-dimensional



Nomenclature

b bias
D channel diameter (m)
E error
h flow depth (m)

ĥh h=D

~hh h=hc

P number of training patterns
p number of output nodes
Q discharge (m3 s�1)

Q̂Q Q=ðg0:5 D2:5Þ
S channel slope

ŜS S=Sc
~SS ðŜS � 1Þ=ŜSmax

t desired target
U input vector [u1, u2, . . .,un]
u input value
W weight vector [w1j, w2j, . . .,wnj]
w weight of connection
x distance along channel (m)
Y output vector [y1, y2, . . .,yn] and
y network output

Subscripts

c critical flow
e end section
i neuron of the previous layer
j neuron of the successive layer and
o far upstream section
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free overfall. Also, the end depths in trapezoidal and

exponential channels were analytically determined by

Murty Bhallmudi [11] using the momentum approach

based on the Boussinesq approximation. Anastasiadou-

Partheniou and Hatzigiannakis [12] and Ferro [13]

simulated the free overfall with a sharp-crested weir.

The effect of bottom roughness on rectangular overfalls

was studied by Dey [14,15]. Dey [1,16,18,19] and Dey

and Ravi Kumar [17] studied free overfalls in circular

channels with flat base, D-shaped, U-shaped and inver-

ted semicircular channels, respectively. ISO 3874 [20]

and ISO 4371 [21] recommended the estimation of dis-

charge by the end depth method in rectangular and

non-rectangular channels, respectively. Dey [22] put

forward a comprehensive state-of-the-art review of

researches on free overfall. However, little attempt has

so far been made to analyze the free overfall by ANNs.
This paper presents an application of ANN to free

overfall using experimental results for smooth inverted

semicircular channels. The back-propagation algorithm

based upon the generalized delta rule proposed by
Rumelhart et al. [43] was used to train the ANN in this
study. Part of experimental data is used to train the
ANN and the remaining to validate. The ANN yields
the EDR and discharge, which are compared with
results of Dey [1].
2. Overview of ANNs

The development of ANNs began approximately 50
years ago [44], inspired by a desire to understand the
human brain to emulate its functioning. Within the last
decade, it has experienced a huge resurgence due to the
development of more sophisticated algorithms and the
emergence of powerful computational tools. Extensive
research has been devoted in investigating the potential
of ANNs as computational tools that acquire, rep-
resent and compute a mapping from one multivariate
input space to another. Mathematically, an ANN is
often used as a universal approximator. The ability of
identifying a relationship from given patterns make it
possible for ANNs to solve large-scale complex pro-
blems such as pattern recognition, nonlinear modeling,
classification, association and control.
An ANN is a massively parallel-distributed infor-

mation-processing system that has certain performance
characteristics resembling biological neural networks of
the human brain [45]. This development is based on the
following rules:

1. Information processing occurs at many single
elements called nodes, also referred to as units, cells
or neurons.

2. Signals are passed between nodes through connec-
tion links.

3. Each connection link has an associated (synaptic)
weight that represents its connection strength.

4. Each node typically applies a nonlinear transform-
ation called an activation function to its net input to
determine its output signal.

A neural network is characterized by its architecture
that represents the pattern of connection between
nodes, its method of determining the connection
weights, and the activation function [46]. Usually,
neural networks are classified based on the number of
layers: single layer, multilayer; and based on the direc-
tion of information flow and processing: feed-forward,
recurrent. A typical ANN consists of an input layer, an
output layer and the hidden layers, each layer having a
number of neurons (nodes). Fig. 1 shows the configur-
ation of a feed-forward four-layer ANN. The input
(first) layer of neurons receives the input variables for
the problem at hand. This consists of all the quantities
that can influence the output. The output (last) layer of
neurons consists of values predicted by the network
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and thus represents the model output. The number of
hidden layers and the number of neurons in each hid-

den layer are usually determined by trial-and-error pro-
cedure. Each neuron in a layer is connected to all the
neurons of the next layer by the connecting links, and
the neurons in one layer are not connected among
themselves. A synaptic weight is assigned to each link
to represent the relative connection strength of two
nodes at both ends in predicting input–output relation-
ship. The data (signals) passing from a neuron of ith
layer to the neuron of the jth layer (ui) through the

connecting link are multiplied by the respective synap-
tic weights. The output of the node j, yj is obtained by
computing the value of function f with respect to the
inner product of vector U and Wj minus bj, where bj is
the bias (or threshold value), associated with this node.
The function f is called an activation function. Its
functional form determines the response of a neuron to
the total input signal it receives. Three basic types of

activation functions are identified: threshold function,
piecewise-linear function and sigmoid function. The
most commonly used function is sigmoid function. This
function is usually a steadily increasing S-shaped curve.
Under this threshold function, the output yj from the
jth neuron in a layer is:

yj ¼ f ðU :Wj � bjÞ ¼
1

1þ e�ðU :Wj�bjÞ
ð1Þ

where Wj ¼ weight vector ½w1j;w2j; . . . ;wnj �; wij ¼
weight of the connection joining the neuron of the jth
layer with the neuron of the previous ith layer; U ¼
input vector [u1, u2, . . .,un]; and ui ¼ input value of the
neuron in the ith layer.
In order for an ANN, to generate an output yj that

is as close as possible to the target tj, a training pro-
cess, also called learning, is employed to find optimal
weight and bias, that minimizes a predetermined error
function that usually has the form:

E ¼
X

P

X

p

ðyj � tjÞ2 ð2Þ

where p is the number of output nodes; and P is the
number of training patterns. Training is a process by
which the connection weights of an ANN are adapted
through a continuous process of simulation by the
environment in which the network is embedded. There
are primarily two types of training—supervised and
unsupervised. A supervised training algorithm requires
an external teacher to guide the training process. This
implies that a large number of examples (or patterns)
of inputs and outputs are required for training. The
training procedure involves the iterative adjustment
and optimization of connection weights and threshold
values for each of nodes. On the other hand, an unsu-
pervised training algorithm does not involve a teacher.
During training, only an input data set is provided to
the ANN that automatically adapts its connection
weights to cluster those input patterns into classes with
similar properties. The primary goal of training is to
minimize the error function by searching for a set of
connection strengths and threshold values that cause
the ANN to produce outputs that are equal to or close
to targets. After training has been accomplished, it is
then hoped that the ANN is capable of generating
reasonable results given new inputs. The commonly
used training algorithms are back-propagation,
Fig. 1. Schematic representation of a feed-forward four-layer ANN.
Fig. 2. Definition sketch of free overfall in an inverted semicircular channel.
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Table 1

Experimental data in horizontal channels
Channel D
 (mm)
 Q (m3 s�1) ĥh
c
 ĥhe ~hh
c
 Q̂Q
1 1
28
 4:604	 10�4 0
.086
 0.059 0
.691
 2:508	 10�2
5:279	 10�4 0
.094
 0.066 0
.706
 2:875	 10�2
6:442	 10�4 0
.107
 0.078 0
.726
 3:509	 10�2
6:900	 10�4 0
.112
 0.082 0
.728
 3:758	 10�2
2:083	 10�3 0
.234
 0.169 0
.721
 1:135	 10�1
1:875	 10�3 0
.218
 0.149 0
.684
 1:021	 10�1
1:701	 10�3 0
.205
 0.148 0
.721
 9:305	 10�2
1:438	 10�3 0
.183
 0.124 0
.677
 7:830	 10�2
8:429	 10�4 0
.128
 0.090 0
.703
 4:591	 10�2
1:233	 10�3 0
.165
 0.118 0
.717
 6:718	 10�2
1:029	 10�3 0
.146
 0.100 0
.684
 5:606	 10�2
8:933	 10�4 0
.133
 0.098 0
.734
 4:866	 10�2
7:771	 10�4 0
.121
 0.068 0
.679
 4:233	 10�2
4:171	 10�4 0
.080
 0.055 0
.680
 2:272	 10�2
2:179	 10�3 0
.241
 0.176 0
.739
 1:187	 10�1
1:954	 10�3 0
.224
 0.161 0
.719
 1:064	 10�1
5:829	 10�4 0
.100
 0.071 0
.707
 3:175	 10�2
1:763	 10�3 0
.209
 0.143 0
.681
 9:600	 10�2
1:550	 10�3 0
.192
 0.136 0
.706
 8:443	 10�2
1:183	 10�3 0
.161
 0.109 0
.680
 6:445	 10�2
2 6
8
 7:558	 10�4 0
.337
 0.231 0
.685
 1:998	 10�1
5:158	 10�4 0
.264
 0.191 0
.722
 1:366	 10�1
4:233	 10�4 0
.232
 0.163 0
.704
 1:121	 10�1
2:804	 10�4 0
.177
 0.124 0
.701
 7:425	 10�2
3:821	 10�4 0
.217
 0.158 0
.727
 1:012	 10�1
2:521	 10�4 0
.164
 0.121 0
.735
 6:675	 10�2
2:258	 10�4 0
.153
 0.104 0
.678
 5:980	 10�2
5:988	 10�4 0
.291
 0.200 0
.688
 1:585	 10�1
4:604	 10�4 0
.245
 0.178 0
.728
 1:219	 10�1
4:250	 10�4 0
.232
 0.165 0
.708
 1:125	 10�1
7:454	 10�4 0
.334
 0.236 0
.706
 1:974	 10�1
6:475	 10�4 0
.306
 0.223 0
.729
 1:714	 10�1
5:550	 10�4 0
.277
 0.187 0
.674
 1:470	 10�1
4:954	 10�4 0
.257
 0.181 0
.740
 1:312	 10�1
4:317	 10�4 0
.235
 0.166 0
.706
 1:143	 10�1
7:875	 10�4 0
.345
 0.253 0
.731
 2:085	 10�1
6:842	 10�4 0
.317
 0.223 0
.704
 1:812	 10�1
6:713	 10�4 0
.313
 0.214 0
.683
 1:777	 10�1
6:171	 10�4 0
.296
 0.214 0
.720
 1:634	 10�1
5:800	 10�4 0
.285
 0.195 0
.683
 1:536	 10�1
3 4
3
 2:495	 10�4 0
.345
 0.247 0
.716
 2:077	 10�1
2:180	 10�4 0
.317
 0.224 0
.708
 1:815	 10�1
1:811	 10�4 0
.282
 0.201 0
.714
 1:508	 10�1
1:586	 10�4 0
.258
 0.180 0
.696
 1:320	 10�1
1:358	 10�4 0
.233
 0.164 0
.705
 1:130	 10�1
1:022	 10�4 0
.191
 0.137 0
.716
 8:344	 10�2
7:095	 10�5 0
.152
 0.104 0
.685
 5:908	 10�2
6:600	 10�5 0
.145
 0.102 0
.703
 5:496	 10�2
5:520	 10�5 0
.128
 0.092 0
.721
 4:597	 10�2
3:660	 10�5 0
.098
 0.067 0
.689
 3:047	 10�2
2:646	 10�4 0
.357
 0.249 0
.697
 2:203	 10�1
2:432	 10�4 0
.339
 0.237 0
.697
 2:025	 10�1
2:829	 10�4 0
.371
 0.261 0
.702
 2:356	 10�1
2:460	 10�4 0
.342
 0.243 0
.710
 2:048	 10�1
1:977	 10�4 0
.297
 0.210 0
.704
 1:646	 10�1
1:682	 10�4 0
.268
 0.186 0
.694
 1:400	 10�1
1:511	 10�4 0
.250
 0.179 0
.714
 1:258	 10�1
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conjugate gradient algorithms, radial basis function
and cascade correlation algorithm [47].
ANNs have been used in a wide range of areas in

hydrology and hydraulics due to the successive applica-
tions in modeling nonlinear system behaviour. ANNs
have been used for rainfall-runoff modeling, flow pre-
dictions, flow/pollution simulation, parameter identifi-
cation, and modeling nonlinear/input–output time
series [48,49].
3. Experimental set-up and procedure

The experiments were carried out in three different
inverted semicircular channels (made of transparent
perspex), having diameters 128 mm (Channel 1),
68 mm (Channel 2) and 43 mm (Channel 3). The
lengths of the channels were 4 m. A flexible joint
arrangement, acted as a hinge to provide the slope of
any desired value. Fig. 2 shows the free overfall in a
smooth inverted semicircular channel.
The discharge entering into the channel from a con-

stant head tank fed by a centrifugal pump, was set by
slowly opening the upstream valve until a desired
height at the end section of the channel was reached.
The corresponding discharge was recorded with the aid
of a measuring tank. For each channel, two series of
experiments were conducted for settings of horizontal
and steep (supercritical) streamwise slopes. The end
depths were measured by a point guage. Tables 1 and 2
present the experimental data for horizontal and steep
slopes, respectively.
Table 2

Experimental data of steep sloping channels and comparisons with the computational data
Q (m3 s�1) ĥh
c ĥh
e S
 ~SS ~SS
0 ~hh
e Q̂Q
Channel 1 (D ¼ 128 mm)
7:857	 10�4 0
.123 0
.062 0
.022
 3.169 0
.704 0
.509 4
:289	 10�2
8:663	 10�4 0
.131 0
.078 0
.022
 3.276 0
.739 0
.596 4
:718	 10�2
4:967	 10�4 0
.090 0
.051 0
.022
 2.238 0
.402 0
.563 2
:705	 10�2
6:858	 10�4 0
.112 0
.066 0
.018
 2.485 0
.482 0
.593 3
:736	 10�2
4:875	 10�4 0
.089 0
.059 0
.014
 1.741 0
.241 0
.666 3
:655	 10�2
7:492	 10�4 0
.119 0
.070 0
.014
 2.003 0
.326 0
.591 4
:081	 10�2
8:146	 10�4 0
.125 0
.078 0
.014
 2.062 0
.345 0
.621 4
:437	 10�2
8:575	 10�4 0
.130 0
.070 0
.027
 4.080 1
.000 0
.541 4
:671	 10�2
Channel 2 (D ¼ 68 mm)
5:121	 10�4 0
.263 0
.139 0
.019
 3.634 0
.855 0
.532 1
:356	 10�1
3:517	 10�4 0
.205 0
.114 0
.019
 3.074 0
.673 0
.554 9
:312	 10�2
7:500	 10�4 0
.335 0
.200 0
.015
 3.532 0
.822 0
.597 1
:986	 10�1
6:150	 10�4 0
.296 0
.159 0
.015
 3.180 0
.708 0
.537 1
:628	 10�1
5:046	 10�4 0
.260 0
.163 0
.015
 2.887 0
.603 0
.627 1
:336	 10�1
3:971	 10�4 0
.222 0
.131 0
.015
 2.590 0
.516 0
.589 1
:051	 10�1
5:092	 10�4 0
.262 0
.173 0
.013
 2.479 0
.480 0
.660 1
:348	 10�1
3:950	 10�4 0
.222 0
.145 0
.013
 2.210 0
.393 0
.654 1
:046	 10�1
Channel 3 (D ¼ 43 mm)
2:552	 10�4 0
.349 0
.203 0
.018
 3.684 0
.871 0
.582 2
:125	 10�1
1:854	 10�4 0
.286 0
.162 0
.018
 3.109 0
.685 0
.567 1
:544	 10�1
1:755	 10�4 0
.276 0
.160 0
.018
 3.027 0
.658 0
.580 1
:461	 10�1
1:575	 10�4 0
.257 0
.156 0
.018
 2.874 0
.608 0
.640 1
:312	 10�1
2:007	 10�4 0
.301 0
.182 0
.016
 2.877 0
.609 0
.640 1
:671	 10�1
1:800	 10�4 0
.280 0
.177 0
.016
 2.724 0
.560 0
.633 1
:499	 10�1
1:575	 10�4 0
.257 0
.164 0
.016
 2.555 0
.505 0
.639 1
:312	 10�1
1:305	 10�4 0
.227 0
.149 0
.016
 2.346 0
.437 0
.655 1
:087	 10�1
Table 1 (continued )
Channel D
 (mm)
 Q (m3 s�1) ĥh
c
 ĥhe ~hh
c
 Q̂Q
1:187	 10�4 0
.213
 0.150 0
.703
 9:880	 10�2
7:815	 10�5 0
.162
 0.115 0
.713
 6:507	 10�2
4:935	 10�5 0
.119
 0.081 0
.681
 4:109	 10�2
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4. Results and discussion

A four-layer feed-forward ANN model is used to

analyze the experimental data. The number of neurons

in the hidden layers are varied from three to seven. The

sigmoidal function is used as an activation function in

the present study. The normalized data obtained from

experimentation is divided into two parts, one part is

used for training the network and the other for the

validation of the performance of the network. Two

combination of data grouping is considered for train-
ing and testing, 50:50 and 65:35. The values of learning
rate parameter and momentum constant used are 0.2
and 0.5. The target error set for the network is 0.001
and the number of epochs 15. The other parameters
like number of iterations, RMS error of training and
testing for various network trials are given in Table 3.
4.1. Subcritical flow

The performance of the ANN model in the sub-
critical flow regime for EDR ~hhe and non-dimensional

discharge Q̂Q are shown in Figs. 3 and 4. The depen-

dency of EDR ~hhe on critical depth–diameter ratio ĥhc
obtained from the network value is shown in Fig. 5.

The value of EDR ~hhe is found to be 0.705 up to

ĥhc ¼ 0:40. The variation of ĥhe with Q̂Q is presented in
Fig. 6. The variations, shown only in the range of the
experimental data, correspond closely with Dey [1].
4.2. Supercritical flow

Figs. 7 and 8 show the performance of ANN model
in supercritical flow regime for ~hhe and Q̂Q, respectively.
The comparison of experimental data with net values

for ~hhe and Q̂Q is presented in Figs. 9 and 10 having
regression coefficients 0.672 and 0.976, respectively.

The empirical relationships are developed for EDR ~hhe
and non-dimensional discharge Q̂Q from the ANN out-
put which can be used as ready reckoner to obtain the
discharge from the measurement of end depth for a
given slope.

~hhe ¼ 0:589ĥh0:0714c
~SS�0:217 ð3Þ

Q̂Q ¼ 0:772ĥh0:874e
~SS0:303 ð4Þ
Table 3

Parameters of network
Regime of flow I
nput data
 Number of

neurons in

the hidden

layer

~hh
e
 Q̂Q
T
raining
 Testing
 N
umber of

iterations

R
MS error
 Number of

iterations
RMS error
T
raining
 Testing
 Training T
esting
Subcritical flow 5
0
 50 3
 68980 0
.000115
 0.001354
 8900
 0.000239 0
.000456
5
0
 50 5
 28650 0
.000125
 0.001269
 45180
 0.000247 0
.000419
5
0
 50 7
 9650 0
.000138
 0.001025
 50585
 0.000256 0
.000405
6
5
 35 3
 101425 0
.000225
 0.002514 1
25460
 0.000118 0
.000189
6
5
 35 5
 96645 0
.000211
 0.002671
 78565
 0.000124 0
.000164
6
5
 35 7
 100875 0
.000201
 0.002698
 8950
 0.000138 0
.000155
Supercritical flow 5
0
 50 3
 72290 0
.000280
 0.001070
 7200
 0.000242 0
.000652
5
0
 50 5
 11855 0
.000250
 0.001483
 33135
 0.000257 0
.000553
5
0
 50 7
 8305 0
.000221
 0.001755
 5840
 0.000256 0
.000560
6
5
 35 3
 1
519470 0
.000173
 0.063079
 22980
 0.000168 0
.000190
6
5
 35 5
 105300 0
.000320
 0.001068
 6945
 0.000176 0
.000204
6
5
 35 7
 237680 0
.000203
 0.010195
 5600
 0.000158 0
.000640
Fig. 3. Performance of ANN model in subcritical flow for ~hhe (a)

training; (b) testing.
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Fig. 5. Variation of EDR ~hhe with ĥhc in subcritical flow.
Fig. 6. Variation of EDR ĥhe with Q̂Q in subcritical flow.
Fig. 7. Performance of ANN model in supercritical flow for ~hhe (a)
training; (b) testing.
Fig. 8. Performance of ANN model in supercritical flow for Q̂Q (a)

training; (b) testing.
Fig. 4. Performance of ANN model in subcritical flow for Q̂Q (a)

training; (b) testing.
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5. Conclusions

A back-propagation algorithm based four-layer feed-
forward ANN model has been used to determine the
EDR and discharge for a smooth inverted semicircular
channel in all flow regimes (subcritical and super-
critical). The results of the network have corresponded
closely with the results presented in Dey [1]. In sub-
critical flow, the EDR to the critical depth has been

found to be 0.705 for ĥhc ¼ 0:40. For supercritical flow,

the empirical relationships for EDR and non-dimen-

sional discharge have been established.
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