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Abstrat

Reently Munro, Nemoto and White (The Bell Inequality: A measure of Entanglement?,

quant-ph/0102119) tried to indiate that the reason behind a state ρ having higher amount of

entanglement (as quanti�ed by the entanglement of formation) than a state ρ
′
, but produing

the same amount of Bell-violation, is due to the fat that the amount of mixedness (as

quanti�ed by the linearised entropy) in ρ is higher than that in ρ
′
. We ounter their argument

with examples. We extend these onsiderations to the von Neumann entropy. Our results

suggest that the reason as to why equal amount of Bell-violation requires di�erent amounts

of entanglement annot, at least, be explained by mixedness alone.

Werner[1℄ (see also Popesu[2℄) �rst demonstrated the existene of states whih are entangled but

do not violate any Bell-type inequality[3, 4℄. But there exist lasses of states (pure states, mixture

of two Bell states), whih violate Bell inequality whenever they are entangled[5, 6℄.

This implies that to produe an equal amount of Bell-violation, some states require to have more

entanglement (with respet to some measure) than others. It would be interesting to �nd out

what property of the �rst state requires it to have more entanglement to produe the same Bell-

violation. Reently Munro et al.[7℄ have tried to indiate that this anomalous property of the �rst

state is due to its being more mixed than the seond, where they took the linearised entropy[8℄ as

the measure of mixedness.

As in [7℄, we use the entanglement of formation as our measure of entanglement. For a state ρ of

two qubits, its entanglement of formation EoF (ρ) is given by[9℄

EoF (ρ) = h

(
1 +

√
1− τ

2

)

with

h(x) = −x log2 x− (1− x) log2(1− x).

The tangle τ [10℄ is given by

τ(ρ) = [max{0, λ1 − λ2 − λ3 − λ4}]2,
∗
res9603�isial.a.in

†
gkar�isial.a.in

‡
dhom�boseinst.ernet.in

1

http://arxiv.org/abs/quant-ph/0104007v2
http://arxiv.org/abs/quant-ph/0102119


the λi's being square root of eigen values, in dereasing order, of ρρ̃, where

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy),

the omplex onjugation being taken in the standard produt basis |00〉, |01〉, |10〉, |11〉 of two
qubits. Note that EoF is monotonially inreasing ranging from 0 to 1 as τ inreases from 0 to 1
and hene, like Munro et al.[7℄, we take τ as our measure of entanglement.

The maximum amount of Bell-violation(B) of a state ρ of two qubits is given by[6℄

B(ρ) = 2
√
M(ρ)

where M(ρ) is the sum of the two larger eigenvalues of TρT
†
ρ , Tρ being the 3 × 3 matrix whose

(m,n)-element is

tmn = tr(ρσn ⊗ σm).

The σ's are the Pauli matries.

The linearised entropy [8℄

SL(ρ) =
4

3
(1− tr(ρ2))

is taken as the measure of mixedness.

Munro et al.[7℄ proposed that given two two-qubit states ρ and ρ′ with

B(ρ) = B(ρ′),

but

τ(ρ) > τ(ρ′),

would imply

SL(ρ) > SL(ρ
′).

To support this proposal, it was shown that it holds for any ombination of states from the

following three lasses of states:

(1) the lass of all pure states

ρpure = P [a |00〉+ b |11〉]
with a, b ≥ 0,and a2 + b2 = 1,

(2) the lass of all Werner states[1℄

ρwerner = xP [Φ+] +
1− x

4
I2 ⊗ I2

with 0 ≤ x ≤ 1 and Φ+ = 1√
2
(|00〉+ |11〉), and

(3) the lass of all maximally entangled mixed states[11℄

ρmems =
1

2
(2g(γ) + γ)P [Φ+] +

1

2
(2g(γ)− γ)P [Φ−] + (1− 2g(γ))P [|01〉 〈01|

with g(γ) = 1/3 for 0 < γ < 2/3 and g(γ) = γ/2 for 2/3 ≤ γ ≤ 1, and Φ± = 1√
2
(|00〉 ± |11〉).

However, onsider the lass of all mixtures of two Bell states

ρ2 = wP [Φ+] + (1− w)P [Φ−],
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with 0 < w < 1. ρ2 is entangled whenever w 6= 1
2
, and for that entire region, ρ2 is Bell-violating[6℄.

For this lass it is easy to show that

B = 2
√
1 + τ

But the orresponding urve for pure states ρpure is also given by[7℄

B = 2
√
1 + τ

We see that for any �xed Bell-violation, the orresponding ρ2 has its tangle equal to that for the

orresponding pure state. But the mixedness of ρ2 is obviously larger than that of the pure state

(as the mixedness is always zero for pure states).

Next onsider the following lass of mixtures of three Bell states

ρ3 = w1P [Φ+] + w2P [Φ−] + w3P [Ψ+]

with 1 ≥ w1 ≥ w2 ≥ w3 ≥ 0,
∑

i wi = 1 and Ψ+ = 1√
2
(|01〉+ |10〉). We take w1 > 1

2
so that ρ3 is

entangled [12℄.

For ρ3, we have (as w1 ≥ w2 ≥ w3)

B(ρ3) = 2
√
2− 4w2(1− w2)− 4w3(1− w3),

τ(ρ3) = 1− 4w1(1− w1),

SL(ρ3) =
4

3
{w1(1− w1) + w2(1− w2) + w3(1 − w3)}.

Let

ρ′3 = w′
1P [Φ+] + w′

2P [Φ−] + w′
3P [Ψ+]

with 1 ≥ w′
1 ≥ w′

2 ≥ w′
3 ≥ 0,

∑
i w

′
i = 1, w′

1 > 1
2
be suh that

B(ρ3) = B(ρ′3)

whih gives

w2(1− w2) + w3(1 − w3) = w′
2(1− w′

2) + w′
3(1 − w′

3).

Now if

τ(ρ3) > τ(ρ′3),

we have

w1(1− w1) < w′
1(1− w′

1)

so that

w1(1− w1) + w2(1− w2) + w3(1− w3) < w′
1(1− w′

1) + w′
2(1− w′

2) + w′
3(1 − w′

3)

that is

SL(ρ3) < SL(ρ
′
3).

Thus for a �xed Bell-violation, the order of SL for ρ3 and ρ′3 is always reversed with respet to

the order of their τ 's. That is, the indiation of [7℄, referred to earlier, is always violated for any

two states from the lass of mixtures of three Bell states.

One an now feel that if the entanglement of formation of two states are equal, it ould imply

some order between the amount of Bell-violation and mixedness of the two states. But even that

is not true.

For our �rst example, if

τ(ρ2) = τ(ρpure)
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then

B(ρ2) = B(ρpure),

but

SL(ρ2) > SL(ρpure).

On the other hand for our seond example, if

τ(ρ3) = τ(ρ′3)

then

B(ρ3) > B(ρ′3)

implies

SL(ρ3) < SL(ρ
′
3).

In Ref.[7℄, the linearised entropy was the only measure of mixedness that was onsidered. But the

von Neumann entropy[13℄

S(ρ) = −tr(ρlog4ρ),

of a state ρ of two qubits, is a more physial measure of mixedness than the linearised entropy. We

have taken the logarithm to the base 4 to normalise the von Neumann entropy of the maximally

mixed state

1
2
I2 ⊗ 1

2
I2 to unity as it is for the linearised entropy. One may now feel that the

onjeture under disussion may turn out to be true if we hange our measure of mixedness from

linearised entropy to von Neumann entropy.

But both the von Neumann entropy and the linearised entropy are onvex funtions, attaining

their maximum for the same state

1
2
I2⊗ 1

2
I2 and eah of them are symmetri about the maximum.

Thus

SL(ρ) > SL(ρ
′)

would imply

S(ρ) > S(ρ′)

and vieversa. Thus all our onsiderations with linearised entropy as the measure of mixedness

would arry over to von Neumann entropy as the measure of mixedness.

Our results emphasize that the reason as to why equal amount of Bell-violation requires di�erent

amounts of entanglement annot, at least, be explained by mixedness alone.
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