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Is it possible to lone using an arbitrary blank state?
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Abstrat

We show that in a loning proess, whether deterministi inexat or probabilisti exat,

one an take an arbitrary blank state while still using a �xed loning mahine.

Quantum information annot be loned. There annot exist a mahine whih an produe two (or

more) exat opies of an arbitrary state in a deterministi manner [1℄. Repliation is not allowed

even when the input state is taken at random from a given set of two non-orthogonal states [2℄.

It has been further shown that probabilisti exat loning is not possible if the input state is from

a given linearly dependent set [3℄.

Although exat loning is not possible, one an approximately lone an arbitrary input state

[4, 5, 6, 7℄. In this sheme a �xed state is taken as the blank state, depending on whih and the

initial mahine state, the loning operation is onstruted. We extend this operation suh that

any arbitrary (pure or mixed) state, taken as the blank opy, an do the job.

The optimal universal 1 → 2 inexat qubit loner of Bruÿet al.[5℄ takes an arbitrary qubit |ψ〉 〈ψ| =
1
2 (I +

−→s .−→σ ) along with a �xed blank state |b〉 and a mahine state |M〉 as input. An entangled

state of the three qubits is produed as the output suh that the redued density matries of the

�rst two qubits are two similar approximate opies ρ = 1
2 (I + η−→s .−→σ ) of |ψ〉 〈ψ| with η = 2

3 . The

unitary operator realizing this proess is de�ned on the ombined Hilbert spae of the input qubit,

the blank qubit and mahine by

U ′ |0〉 |b〉 |M〉 =
√

2

3
|00〉 |m〉+

√

1

6
(|01〉+ |10〉) |m⊥〉

U ′ |1〉 |b〉 |M〉 =
√

2

3
|11〉 |m⊥〉+

√

1

6
(|01〉+ |10〉) |m〉 (1)

where |b〉 is a �xed blank state (in a two-dimensional Hilbert spae), |M〉 is the initial state of the
mahine, |m〉 and |m⊥〉 being two mutually orthonormal states of the mahine Hilbert spae. The

two lones are to surfae at the �rst and seond qubits. Note that the mahine has turned out to

be a qubit.

As it stands, the unitary operator U ′
depends on the blank state |b〉 and the mahine state |M〉.

And the quality of the lones ould be badly a�eted if |b〉 gets hanged to an unknown state, say

by some environment-indued deoherene. We show that by suitably onstraining the unitary

operator it is possible to keep the lones intat, even in this hanged senario. After dealing with

the 1 → 2 qubit loner, we show that the same is true for the most general loner, the N → M
qudit (elements of a d-dimensional Hilbert spae) loner. We arry over these onsiderations to

the ase of probabilisti exat loning.

Let us suppose that for the 1 → 2 qubit loner, the mahine state |M〉 belongs to a four-dimensional

Hilbert spae. And let the unitary operator U be de�ned on the ombined Hilbert spae of the

input qubit, blank qubit and the four-dimensional Hilbert spae of the mahine by

U |0〉 |b〉 |M〉 =
√

2

3
|00〉 |M0〉+

√

1

6
(|01〉+ |10〉) |M1〉
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U |1〉 |b〉 |M〉 =
√

2

3
|11〉 |M1〉+

√

1

6
(|01〉+ |10〉) |M0〉

U |0〉 |b⊥〉 |M〉 =
√

2

3
|00〉 |M2〉+

√

1

6
(|01〉+ |10〉) |M3〉

U |1〉 |b⊥〉 |M〉 =
√

2

3
|11〉 |M3〉+

√

1

6
(|01〉+ |10〉) |M2〉

where 〈Mi| Mj〉 = δij (i, j = 0, 1, 2, 3) and 〈b| b⊥〉 = 0.

Let |B〉 = c |b〉+ d |b⊥〉 be an arbitrary pure state of the Hilbert spae of the blank qubit. Then

U |0〉 |B〉 |M〉 =
√

2

3
|00〉 |X〉+

√

1

6
(|01〉+ |10〉) |X ′〉

U |1〉 |B〉 |M〉 =
√

2

3
|11〉 |X ′〉+

√

1

6
(|01〉+ |10〉) |X〉 (2)

where

|X〉 = c |M0〉+ d |M2〉
|X ′〉 = c |M1〉+ d |M3〉

are orthogonal. This form is exatly the same as in equation (1). Thus an arbitrary input qubit

|ψ〉 would be just as well loned by equation (2) as it would be through equation (1).

We now onsider the most general loning mahine, the one that produes M approximate opies

of the input, when N(< M) d-dimensional inputs are provided [7℄. The orresponding unitary

operator need only be de�ned on the symmetri subspae

4

of the dN -dimensional Hilbert spae of

the N input qudits. It is de�ned by [7℄

U ′

NM |−→n 〉 ⊗ |R〉 =
M−N
∑

−→
j =0

α−→n−→
j

∣

∣

∣

−→n +
−→
j
〉

⊗
∣

∣

∣

∣

M−→
j

〉

(3)

where

−→n = (n1, n2, ...., nd), |−→n 〉 is a ompletely symmetri and normalised state with ni systems

in |i〉 with ∑d

i=1 ni = N ,

−→
j = (j1, j2, ...., jd) with

∑d

k=1 jk =M −N , |R〉 denoting the ombined
state of the M − N �xed pure d-dimensional blank states |bd〉 and the initial state |M〉 of the
loning mahine and

∣

∣

∣

∣

M−→
j

〉

denoting the orthonormal states of the loning mahine. And

α−→n−→
j

=

√

(M −N)!(N + d− 1)!

(M + d− 1)!

√

√

√

√

d
∏

k=1

(nk + jk)!

nk!jk!

There are s equations required to de�ne U ′

NM , where s is the dimension of the symmetri subspae

[8℄. The required dimension of the mahine is D = (M−N+d−1)!
(M−N)!(d−1)! .

Now we proeed as we had done for the 1 → 2 qubit loner. If we want to allow an arbitrary pure

state (possibly entangled) of the dM−N
-dimensional Hilbert spae of the blank states to at as the

new blank state and still produe the same outputs, we have to use a (D × dM−N )-dimensional

mahine. The new unitary operator UNM satis�es, along with the s equations in (3), (dM−N −1)s
more equations orresponding to the dM−N − 1 more blank states on whih the new operator is

to be de�ned. Then by linearity, for an arbitrary pure blank state |B1〉, we would have

UNM |−→n 〉 |B〉 |M〉 =
M−N
∑

−→
j =0

α−→n−→
j

∣

∣

∣

−→n +
−→
j
〉

⊗
∣

∣

∣

∣

X−→
j

〉

(4)
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The symmetri subspae is de�ned by the linear span of the set of all tensor produt states |ψ〉 ⊗ |ψ〉 ⊗ ...N

times, |ψ〉 being any d-dimensional state.
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where X−→
j

are orthonormal states of the mahine. This has the same form as eq. (3) and thus

would be equally e�ient in produing the requisite approximate opies.

Similar onsiderations arry over to the ase of probabilisti exat loning. Although we only

onsider the ase qubits, the onsiderations arry over to higher dimensions. In the ase of qubits,

instead of the U ′

1 de�ned by[3℄

U ′

1 |ψ0〉 |b〉 |M〉 = √
γ |ψ0〉 |ψ0〉 |m〉+

√

1− γ |Φ〉

U ′

1 |ψ1〉 |b〉 |M〉 = √
γ |ψ1〉 |ψ1〉 |m〉+

√

1− γ |Φ〉
with γ = 1/ (1 + |〈ψ0| ψ1〉|) (|m〉 and |Φ〉 are orthogonal), |ψ0〉, |ψ1〉 being two non-orthogonal

states whih are to be probabilistially loned, we de�ne U1 as

U1 |ψ0〉 |b〉 |M〉 = √
γ |ψ0〉 |ψ0〉 |M0〉+

√

1− γ |Φ〉

U1 |ψ1〉 |b〉 |M〉 = √
γ |ψ1〉 |ψ1〉 |M0〉+

√

1− γ |Φ〉

U1 |ψ0〉 |b⊥〉 |M〉 = √
γ |ψ0〉 |ψ0〉 |M1〉+

√

1− γ |Φ′〉

U1 |ψ1〉 |b⊥〉 |M〉 = √
γ |ψ1〉 |ψ1〉 |M1〉+

√

1− γ |Φ′〉
where |M0〉, |M1〉, |Φ〉, |Φ′〉 are mutually orthogonal. Then

U1 |ψ0〉 |B〉 |M〉 = √
γ |ψ0〉 |ψ0〉 |m′〉+

√

1− γ |Φ′′〉

U1 |ψ1〉 |B〉 |M〉 = √
γ |ψ1〉 |ψ1〉 |m′〉+

√

1− γ |Φ′′〉

for an arbitrary blank qubit |B〉 = c |b〉 + d |b⊥〉 so that |m′〉 = c |M0〉 + d |M1〉 and |Φ′′〉 =
c |Φ〉+ d |Φ′〉 are orthogonal states. Consequently, the probabilisti loning goes through with the

same optimal e�ieny even if we use an arbitrary blank pure qubit.

As we have mentioned, the main motivation behind onsideration of an arbitrary blank state was

deoherene. Deoherene, however, usually produes mixed states. But in our disussion we have

only onsidered pure states. We now show that the input blank state ould as well be an arbitrary

mixed state. For de�niteness, let us onsider only mixed qubits. Any suh mixed state an be

written as ρ = a1 |a1〉 〈a1| + a2 |a2〉 〈a2| where a1, a2 ≥ 0, a1 + a2 = 1 and 〈a1 |a2〉 = 0. Sine

|a1〉 and |a2〉 are pure states, by linearity it follows from (2) that the same unitary operator that

allowed an arbitrary pure blank state, would just as well lone even when the blank state is a

mixed qubit.

To summarize, we have shown that an unknown blank state an be used for loning, whether it is

deterministi inexat or probabilisti exat.
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