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Abstract. In this paper a metaheuristic technique called Ant Colony Optimization (ACO) is proposed

to derive operating policies for a multi-purpose reservoir system. Most of the real world problems often

involve non-linear optimization in their solution with high dimensionality and large number of equality

and inequality constraints. Often the conventional techniques fail to yield global optimal solutions.

The recently proposed evolutionary algorithms are also facing problems, while solving large-scale

problems. In this study, it is intended to test the usefulness of ACO in solving such type of problems.

To formulate the ACO model for reservoir operation, the problem is approached by considering a finite

time series of inflows, classifying the reservoir volume into several class intervals, and determining the

reservoir release for each period with respect to a predefined optimality criterion. The ACO technique

is applied to a case study of Hirakud reservoir, which is a multi-purpose reservoir system located

in India. The multiple objectives comprise of minimizing flood risks, minimizing irrigation deficits

and maximizing hydropower production in that order of priority. The developed model is applied for

monthly operation, and consists of two models viz., for short-time horizon operation and for long-

time horizon operation. To evaluate the performance of ACO, the developed models are also solved

using real coded Genetic Algorithm (GA). The results of the two models indicate that ACO model

performs better, in terms of higher annual power production, while satisfying irrigation demands and

flood control restrictions, compared to those obtained by GA. Finally it is found that ACO model

outperforms GA model, especially in the case of long-time horizon reservoir operation.

Key words: Ant Colony Optimization, Genetic Algorithms, reservoir operation, hydropower, irriga-

tion, flood control

1. Introduction

Most of the real world optimization problems often involve large scale optimization.
In the past, many optimization techniques used to find optimal solutions were
constrained by the complexities of non-linear relationships in model formulation
and by increase in the number of variables and constraints. For this reason, recently
many heuristic and metaheuristic algorithms have been proposed, which though do
not always ensure the global optimum solution, however give quite good results in
an acceptable computation time. So researchers are persistently looking for newer
techniques and their improvements over the years. Recently, a new metaheuristic
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technique, namely Ant Colony Optimization (ACO) technique has been proposed
and is becoming increasingly popular in tackling various large-scale optimization
problems (Dorigo et al., 1996). In the field of water resources, reservoir operation is
one such problem that involves many complexities in its operation. In this paper, the
potential of ACO technique to derive suitable operating policies for a multi-purpose
reservoir system is presented.

1.1. SCOPE FOR NON LINEAR OPTIMIZATION IN RESERVOIR OPERATION

In the case of multi-purpose reservoir operation, the goals are much more complex
than for single purpose reservoir operation and often involve several problems
like insufficient inflows and higher demands. In order to satisfy the objectives to
the maximum extent with the available water resources, in the face of inherent
constraints, it is necessary to operate the reservoir system in the best possible way,
to get maximum benefits with minimum losses. Optimally operating a reservoir
is a complicated task and there is no standard algorithm available which can be
applicable to all problems, since each problem contains its unique physical and
operating characteristics (Yeh, 1985).

In the past, many traditional optimization algorithms have been used for man-
agement of complex water resources systems in order to provide an improved basis
for decision making. While formulating the model to solve a problem closer to
reality, it often leads to nonlinearities and nonconvexities in their objectives and
constraints. So the conventional techniques have difficulties in solving real world
problems. For example, a typical hydropower production is an intricate function of
non-linear objectives and constraints. Though generalized softwares are available
for solving linear programming (LP) problems, the strictly linear form of LP does
limit its applicability (Wurbs, 1993). Similarly, with increase in the number of state
variables, the dynamic programming solutions face the problem of curse of dimen-
sionality, i.e., any increase in number of state variables cause exponential increase
in computation time (Yeh, 1985). The conventional non-linear programming tech-
niques have the problem of getting trapped to local optima and also computational
requirements are huge (Yeh, 1985).

To overcome those problems, in recent times, Evolutionary Computation (EC)
techniques have been proposed and applied to various kinds of problems in water
resources field. Genetic Algorithm (GA) is one such EC technique. The GA is
basically a Darwinian natural selection process, that combines the concept of sur-
vival of the fittest with natural genetic operators (Holland, 1975). The working of
GAs and its application are well documented in Goldberg (1989) and Michaelwicz
(1996). In the field of water resources, for reservoir operation, few applications of
GA technique to derive reservoir-operating policies have been reported recently
(Oliveira and Loucks, 1997; Wardlaw and Sharif, 1999; Chang and Chen, 1998;
Sharif and Wardlaw, 2000; Nagesh Kumar et al., 2005). In GA the increased di-
mensionality due to high number of decision variables and constraints, does not
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impose greater computational cost, but the number of function evaluations re-
quired to get at an optimum is very large. Also with very long chromosomes,
the likelihood of obtaining the global optimum is considerably reduced. Recently
researchers observed that metaheuristic technique like Ant Colony Optimization
(ACO) is making some improvement in this direction for discrete combinatorial op-
timization (Dorigo et al., 1996). Few researchers found that ACO outperforms other
evolutionary optimization algorithms including GAs (Dorigo and Gambardella,
1997; Maier et al., 2003). It was also inferred that as the search space becomes
larger the performance of ACO improves significantly over GAs (Dorigo et al.,
1999).

From literature, it is observed that ACO applications to water resources problems
are quite few and there is a great potential to apply ACO in this field. Abbaspour
et al. (2001) employed ACO algorithm to estimate hydraulic parameters of unsat-
urated soil and concluded that ACO is able to estimate the true parameters within
a reasonable accuracy. Maier et al. (2003) used ACO algorithms to find a near
global optimal solution to a water distribution system, illustrating that ACO algo-
rithm may form an attractive alternative to GAs for the design of optimum water
distribution systems. Jalali et al. (2003) proposed ACO algorithms for monthly
operation of reservoir system. In their study three alternative formulations of ACO
algorithms were tested for a single purpose reservoir operation. But they have not
explored the potential of ACO for large scale optimization problems. So in this
study, efforts are made to explore the potential of ACO application to solve higher
dimensional and highly constrained non-linear optimization problem, with multiple
purposes.

In this paper two models are analysed. First one is short-time horizon operation
(12 time periods at a time) with a smaller number of variables and constraints,
hereafter referred as Reservoir System Operation Model - I (RSOM-I). The second
model is longtime horizon operation (432 time periods at a time, which is considered
to be long enough to assume stationarity of inflow data) with larger number of
decision variables and constraints, hereafter referred as Reservoir System Operation
Model - II (RSOM-II). The performance of ACO model is evaluated by comparing
with GA model results, with respect to their efficiency in yielding an optimal
solution. Therefore, the objectives of the present study include:

1. Developing a methodology for ACO to apply for a reservoir operation problem,
and exploring the potential of ACO by applying it to an existing multi-purpose
reservoir system.

2. Evaluate the performance of the ACO, by comparing with the results of GA.

In the following sections, a brief description about ACO and its procedure is pre-
sented first. Next, the details of the case study and model formulation for reservoir
operation are explained. Later, ACO application for the reservoir operation is pre-
sented. Finally the results are discussed, followed by the conclusion.
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2. Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo
(1992). The inspiring source of ACO is the foraging behavior of ants. This behavior
enables ants to find shortest paths between food source and their nest (Dorigo et al.,
1996; Dorigo and Stützle, 2004). While walking from their nest to food source and
back, ants deposit a substance called pheromone on the ground. When they decide to
go, they choose with higher probability paths that are marked by stronger pheromone
concentrations. This basic behavior is the basis for a cooperative interaction and
emergence of shortest paths.

Ant colony algorithms provide a multi-member approach, for solving discrete
combinatorial optimization problems. ACO takes elements from real ant behavior to
solve more complex problems than those faced by real ants. The first ACO algorithm
presented in the literature is called Ant System (AS) (Dorigo et al., 1996). Later
many developments have taken place in ACO methodologies. An improvement of
AS is Ant Colony System (ACS) algorithm proposed in Dorigo and Gambardella
(1997). Pseudo-code for ACS algorithm is given in Figure 1. More recently Stutzle
and Hoos (2000) introduced Max-Min Ant system (MMAS) algorithm and validated
the same by applying to few test cases in Traveling Salesman problem (TSP) and
Quadratic Assignment Problem (QAP) and concluded that MMAS was one of the
best in performance. A brief description of ACO algorithm based on Dorigo and
Gambardella (1997) is presented in the next section.

2.1. ACO ALGORITHM

In ACO, each ant builds a possible solution to the problem, by moving through a
finite sequence of neighbor states. Moves are selected by applying a stochastic local

Figure 1. Pseudo-code for the Ant Colony System (ACS) algorithm.
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search directed by the ant internal state, problem specific heuristic information and
the shared information about the pheromone.

Ants use a decision rule called pseudo-random proportional rule, in which, an
ant k in node i will select node j to move as follows

Pk
i j (t) =

⎧⎪⎨⎪⎩
[τi j (t)]α[ηi j (t)]β∑

u∈J k (i){[τiu(t)]α[ηiu(t)]β} if j ∈ J k(i)

0 if j /∈ J k(i)

(1)

where, ηi j (t) represents heuristic information about the problem i.e., the heuristic
value of path ij at time t according to the measure of the objective function; τi j (t)
represents the total pheromone deposited on path ij at time t ; J k(i) represents the
allowable moves for ant k from node i ; α and β are parameters that determine the
relative importance of the pheromone trail with respect to the heuristic information.

The state transition rule is as follows: the next node j that ant k chooses to go is
given as,

J =
{

max
u∈Jk (i)

{
[τiu(t)]α[ηiu(t)]β

}
if q ≤ q0

J if q > q0

(2)

where q is a random number uniformly distributed in [0, 1]; q0 is a tunable parameter
(0 ≤ q0 ≤ 1); J ∈ J k(i) is a node randomly selected according to the probability
distribution given by Equation 1.

In each iteration of the algorithm, each ant progressively builds a solution, by
using the probability transition rule. The pheromone trail is updated both locally
and globally.
Local updating: During the construction of the solution, if an ant carries out the
transition from node i to node j, then the pheromone value of the corresponding arc
will be changed as,

τi j (t)
step←− (1 − ϕ).τi j (t) + ϕ.τ0 (3)

where τ0 is the initial value of pheromone; ϕ is a tunable parameter (0 ≤ ϕ ≤ 1).
Local updating is very useful to avoid premature convergence of the solution, and
helps in exploring the new search space, for the problems where the starting node
is fixed.
Global updating: At the end of an iteration of the algorithm, once all the ants have
built a solution each, pheromone trail is added to the arcs used by the ant that found
the best tour from the beginning of the trail. The global trail updating rule is given
as

τi j (t)
iteration←− (1 − ρ).τi j (t) + ρ.�τi j (4)
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where ρ ∈ [0, 1] is a persistence parameter that controls the pheromone decay; �τi j

is increment in pheromone trail and according to ACS (Dorigo and Gambardella,
1997) is given as,

�τi j (t) =
{

1
Fgb

if (i, j) ∈ global best tour

0 otherwise
(5)

where, Fgb is a fitness function corresponding to the global best tour within all
the past iterations. Sometimes another type of global best ant updating rule called
iteration best ant update is used. The updating rule is the same as given in Equa-
tion 4, but in Equation 5, Fgb will be replaced by Fib, the fitness function corre-
sponding to the best tour done by any ant in the current iteration.

It can be noted that ACO is a problem dependent application. So to apply
the algorithm, it requires appropriate representation of the problem and suitable
heuristics in its solution construction (Dorigo and Di Caro, 1999).

3. Case Study Description

The case study considered in this paper is the Hirakud reservoir project in Orissa
state, India. Hirakud dam is situated at latitude 21◦32′ N and longitude 83◦52′ E.
The index map of Mahanadi river basin showing the location of Hirakud dam is
presented in Figure 2. The reservoir has an active storage capacity of 5,375 Mm3

(Million cubic meters) and a gross storage of 7,189 Mm3. The Hirakud project is a
multi-purpose scheme and the water available in the dam is used in the following
order of priority: for flood control, drinking water, irrigation, and power generation.
Since the drinking water requirement is a very small quantity compared to other
demands, this quantity is neglected in this particular model formulation. Water levels
begin rising in July with the beginning of monsoon season in the region, and begin
declining in October, at the end of the season. During monsoon season, the project
provides flood protection to 9,500 km2 of delta area in the districts of Cuttack and
Puri. Also the project provides irrigation for 155,635 ha in wet season (Kharif) and
for 108,385 ha in dry (Rabi) season in the districts of Sambalpur, Bargarh, Bolangir,
and Subarnpur. The water released through the powerhouses after power generation,
irrigates further 436,000 ha of command area in Mahanadi delta. Installed capacity
of power generation is 198 MW through its two powerhouses at Burla (PH-I)
located at the right bank and Chiplima (PH-II) located at 22 km downstream of
the dam (Proc. of 3rd meeting of rule curve revision committee, 1988). The PH-I
generates energy by utilizing water discharged directly from the Hirakud dam. Then
the utilized water passes to the PH-II through a power channel to generate further
power at Chiplima.

Orissa state is having plenty of water during the wet season, so there is great
possibility for hydropower improvement in that season. Net energy production is
high during the monsoon period. However, unless the region experiences unusually
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Figure 2. Index map of Mahanadi river basin shows location of Hirakud dam.

heavy rain in the dry season, power generation would not be possible in that season.
Otherwise power production will be little during dry season. Over a period of
36 years the average annual inflow is 3.36 Mha-m (Million hectare meters). The
reservoir inflow, utilization pattern and dam details were collected from Department
of Irrigation, Government of Orissa. The historic inflow data was available for
36 years from 1958 to 1993. Monthly data of 432 periods for those 36 years is used
in this study.

3.1. RESERVOIR OPERATION MODEL

To handle multiple objectives of the reservoir system, the constraint approach is
adopted in this study to convert the multiple objectives problem into a single ob-
jective problem. The objective function of the model is maximizing hydropower
production subject to flood rule curve restrictions, irrigation release constraints
and other physical and technical constraints. The model is formulated for monthly
operation, as follows:

Minimize sum of squared deviation of monthly targeted power,

Max E =
N T∑
t=1

(Pt − TPt )
2 (6)
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where, Pt is hydropower produced in MkWh during period t and TPt is targeted
power in MkWh for period t; and NT = total number of time periods.

Hydropower (Pt ) produced is given by

Pt = k1 ∗ RP(t) ∗ H (t) (7)

where, k1 is power coefficient; R P(t) is the amount of water released to turbines
during period ‘t’; H (t) is the average head available during period ‘t’ and is ex-
pressed as a non-linear function of the average storage during that period;

Subject to the following constraints:
Mass balance equation for the reservoir storages and inflows is

S(t + 1) = S(t) + I (t) − RP(t) − IRR(t) − E(t) − OF(t)

for all t = 1, 2, . . . , N T (8)

where, S(t) and S(t + 1) are initial and final storage volumes respectively during
time period t ; I (t) is inflow into the reservoir; IRR(t) is irrigation release; E(t) is the
evaporation losses and is expressed as a non-linear function of the average storage
during that period; OF(t) is the overflow or spill from the reservoir.

Storage bounds for the reservoir:

Smin(t) ≤ Si (t) ≤ Smax(t) for all t = 1, 2, . . . , N T (9)

where, Smin(t) and Smax(t) are minimum and maximum storages allowed in period t
respectively. These storages are constrained by flood protection rules during mon-
soon season. In the remaining periods, minimum storage (Smin(t)) is taken as equal
to dead storage, while maximum storage (Smax(t)) is equivalent to the full capacity
of the reservoir.

Irrigation release constraints:

IDEMmin(t) ≤ IRR(t) ≤ IDEMmax(t) for all t = 1, 2, . . . , N T (10)

where, IDEMmin(t) and IDEMmax(t) are minimum and maximum irrigation de-
mands respectively in time period t;

Turbine capacity constraint:

0 ≤ RP(t) ≤ TC for all t = 1, 2, . . . , NT (11)

where, TC is the turbine capacity of power plant.
In addition to the above constraints, it is to be ensured that end storage of the

last period is equal to the initial storage of the first period.

S1 = SNT+1 (12)
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In this model, the first priority is given for flood control, and the next priority
to meet irrigation demand, and then to hydropower demand. If any excess water is
found after meeting these two demands, such water will be spilled out as overflow,
for utilization by diversion structures downstream.

4. Optimal Reservoir Operation using Ant Colony Optimization

As mentioned earlier ACO is a problem dependent application. So to apply ACO
algorithm, the following steps need to be considered:

1. An appropriate representation of the problem, as a graph or a similar structure
easily covered by ants, which facilitates the incremental construction of possible
solutions, using a probabilistic transition rule to move from one state i to a
neighboring state j.

2. Selection of heuristic information ηi j (t), that provides the problem specific
knowledge to be used by the search process to move from node i to node j.

3. Defining an appropriate fitness function to be optimized for the problem.
4. Selection of proper pheromone updating rules, which best suit for the given

problem.

4.1. REPRESENTATION OF THE PROBLEM

To formulate the ACO model for reservoir operation, it is expedient to consider
the problem as a combinatorial optimization problem, with a facility of graphical
representation. The reservoir volume is divided into several classes for each time
period to make a combinatorial optimization problem. A typical graphical repre-
sentation of the solution approach is shown in Figure 3. The problem is approached
by considering a time series of inflow, classifying the reservoir volume into several
intervals, and deciding the releases for each period with respect to a predefined
optimality criterion. Links between initial and final storage volumes of different
periods form a graph, which represents the system, determining the release during
that period. Figure 4 explains the initial distribution of ants over different time
periods, in different storage classes at the beginning of iteration.

4.2. HEURISTIC INFORMATION

The heuristic information ηi j (t) about the problem is determined by including the
minimum squared deviation in the criterion.

ηi j (t) = 1[
RP(t) − PD(t)

PD(t)

]2

+ c
for all t = 1, 2, . . . , NT (13)

Where, R P(t) = water release for power made in period t, with the initial and final
storage volumes at classes i and j, respectively; P D(t) = water release to be made
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Figure 3. Graphical representation of reservoir operation problem, showing the discretization

of storage volume into several classes for each time period. NT = total number of time periods;

NSC = total number of storage classes.

Figure 4. Typical layout showing random distribution of ants along the time horizon and

storage volume classes at the start of iteration.

to generate targeted power in period t; and c = a constant to avoid divisibility by
zero.

4.3. FITNESS FUNCTION

The fitness function is a measure of the goodness of the generated solutions ac-
cording to the defined objective function. For this study, minimum total squared
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deviation (TSD) is used as a fitness measure. To limit the range of values, the fitness
function is normalized. The fitness function is given as:

TSD =
NT∑
t=1

[
(RP(t) − PD(t))

PD(t)

]2

(14)

It may be noted that the model formulation consists of various equality and
inequality constraints (Equations 6 to 12) as described in the previous section and
handling of these constraints is explained in section 5.

4.4. PHEROMONE UPDATING RULES

The effect of local and global updating rules is tested individually for the reservoir
operation model. After a number of trials, it is found that without local updating,
the algorithm results in better performance. So in this study only global updating
is used. In the case of global updating, when using only global best ant (the ant
corresponding to best fitness value from the start of iterations) for pheromone
updating, the search may concentrate too fast around this solution, and exploration
of the new search space is limited, which may lead to poor quality solutions (or
local optima). To avoid this, along with global best ant updating, current iteration
best ant updating is chosen for the pheromone trail update. So the mixed strategy
of iteration best tour trail updating for pheromone at the end of each iteration, and
global best tour tail updating at regular intervals of iterations is employed in this
study.

5. Model Application

As already stated above, to demonstrate the performance of the model, the Hirakud
reservoir system is taken up as the case study. The reservoir serves for multiple
purposes of flood control, irrigation and power production, in that order of priority.
From the inflow data series, it is observed that monsoon season July, August,
September (JAS) is the peak period for the reservoir to get filled and at the same
time, there is imminent danger of flood occurring in these three months. So it is
essential to incorporate flood protection measures into the model. The minimum and
maximum levels to be maintained in JAS months are shown in Table I (Proc. of rule
curve revision committee, 1988). These levels are maintained in the reservoir by
putting them as constraints into the model, in the form of storage bounds, to ensure
that the order of priority of usages is maintained as per the reservoir management
and regulation policies. These storage bounds are the values corresponding to the
levels to be maintained as per the flood protection rule curves. Irrigation demands
are also considered as constraints in the model. After satisfying these constraints,
the focus is then on maximizing power production with the available water. Active
storage capacity of the reservoir is 5,375 Mm3. The reservoir volume is divided
into 200 classes with 26.875 Mm3 intervals, which is much higher in number when
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Table I. Reservoir storage levels to be maintained as

per flood protection rules (Proc. of 3rd meeting of

rule curve revision committee, 1988)

Month and Date Min. level (m) Max. level (m)

July 1st - 181.356

August 1st - 179.832

September 1st 188.928 191.1096

compared to the number of discretisation levels used in conventional optimization
techniques like dynamic programming.

To initiate the model, a finite number of ants are randomly distributed into
different classes of initial storage volume. It is assumed that the starting point for
individual ants could be at any time period along the NT-month operation horizon.
Thus, ants are also randomly distributed along the operation horizon (Figure 4). In
construction of the solution, feasible paths to be followed by the ants are constrained
by the continuity equation and other constraints, as shown in Equations 8 to 12.
Here a feasible solution produced by an ant means, it covers the whole time period
of length NT, duly satisfying the various constraints of the model. Also the solution
should include exactly 1 edge from vertical nodes in Figure 4. In case the ant
starts from an edge different from time period 1, then from that time period, it
moves forward step-by-step one period at a time until it reaches the last time period
NT. Then it goes to the time period 1, duly satisfying continuity and the initial
storage constraints. From this step onwards, it moves step-by-step forward until
it reaches its starting node with the same initial storage value. This is a cyclic
procedure.

After completion of the tour by all ants, by taking the values of the fitness func-
tion, the pheromones are updated using global updating rules to continue with the
next iteration. In the mixed strategy pheromone updating, iteration best ant trail
updating is done at the end of each iteration, and global best ant trail updating is
done at regular intervals of once in five iterations. When the pheromone update is
completed, the next iteration is begun. The step-by-step procedure for ACO algo-
rithm for the reservoir operation is presented in Figure 5. To handle the constraints,
simulation and evaluation approach is used. At each generation, the decision vari-
ables are evaluated for the current solution and then the bounds are checked. If
there is any violation in satisfying the constraints, then penalty can be applied, by
choosing suitable penalty coefficient. To avoid any disruption that may be caused in
convergence by using a solely penalty function approach, heuristics are used in the
component selection process, which automatically satisfy any number of practical
or construction constraints without using a penalty function.

To compare the performance of ACO, another naturally inspired global opti-
mization method GA is used. GA model consist of the same objective function
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Figure 5. Step by step procedure of ACO algorithm for Reservoir operation.

and constraints as discussed in the reservoir operation model. A real coded GA
is applied to the model, after carrying out a thorough sensitivity analysis for
choosing its parameters. Similar to the above constraint handling approach, self
adaptive and penalty function approach is used to handle the constraints of the
problem.

The formulated ACO and GA models are implemented in C language and the
developed programs are executed on a 1.4 GHz, 512 MB RAM, Pentium 4 PC. The
developed models are applied for two different time horizons of reservoir operation.
In RSOM-I the reservoir operation is for one year, in which NT = 12. In RSOM-II,
the reservoir operation is for a sufficiently long period, about 36 years (NT = 432),
which can well represent the stationarity in the time series. The results of these two
models are discussed in the next section.
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6. Results and Discussion

6.1. RESERVOIR SYSTEM OPERATION MODEL-I (RSOM-I)

To apply the model, the values of parameters of ACO should be decided. After pre-
liminary analysis and suggestions from earlier studies on ACO, the parameters were
adopted as α = 1, β = 4, q0 = 0.9, ρ = 0.1 for conducting sensitivity analysis.
The value of the parameter, which is of interest in the sensitivity, is progressively
changed and sensitivity analysis is carried out. In literature various researchers
have reported a range of values for α and β based on their problem of interest. For
example, Dorigo et al. (1996) recommended α = 1 and β = 5 for TSP; Dorigo
and Gambardella (1997) suggested α = 0.1 and β = 2 for TSP and Zecchin
et al. (2005) suggested α = 1 and β = 0.5 for water distribution system problem.
Based on preliminary analysis, 0 ≤ α ≤ 4; 0 ≤ β ≤ 5 are tested in this study for
model performance. It is found that best performance of the algorithm occurs at
α = 1 and β = 2. Sensitivity analysis for different values of ρ is carried out and
it is found that best performance of the algorithm occurs at ρ = 0.1. To study the
effect of random proportion rule on the performance of the algorithm, sensitivity
analysis is carried out by changing the values of q0 and it is found that the value
of q0 = 0.8 is yielding better performance of the model. Similarly after testing for
different combinations of number of ants (m) and maximum number of iterations
(Imax), the values chosen are m = 10 and Imax = 50.

Similarly to apply GA model, sensitivity analysis for GA parameters is carried
out. Since the problem involves real parameter variables, the model uses simulated
binary crossover and polynomial mutation operators (Deb, 2000). The best parame-
ters for genetic operators are found to be crossover probability (pc) = 0.8; mutation
probability (pm) = 0.09; the distribution index for simulated binary crossover is 10
and that for mutation operator is 100; population size = 200 and generation size =
500.

For RSOM-I, the total number of decision variables is 12 and total number of
constraints is 73. The developed model is run individually for all the 36 years. It can
be noted that, the result reported for each year is the best result of 10 independent
runs. The results of RSOM-I are shown in Figures 6 to 8. From Figure 6 it can
be observed that the annual hydropower production obtained from ACO is well
matching with that from GA. However ACO is yielding in marginally higher average
hydropower production about 1511.83 Mkwh (Million kilowatt hours), as compared
to 1502.279 Mkwh by GAs. The average monthly hydropower productions obtained
using ACO and GA are shown in Figure 7. It can be observed that, for more number
of time periods, ACO is performing better than GA model. Figure 8 shows the
average reservoir storages at the beginning of each month. It is observed that the
average computational time required for 10 independent runs, for ACO and GA are
7.84 sec and 8.09 sec respectively.

After achieving satisfactory performance for short-time horizon operation, the
study shifted to deriving reservoir-operating policies for longer-time horizon i.e.,
over a stretch of 432 (36 × 12) periods at a time.
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Figure 6. Annual hydropower production obtained using ACO and GA for RSOM-I.

Figure 7. Monthly average hydropower production obtained using ACO and GA for RSOM-I.

Figure 8. Monthly average initial storages obtained using ACO and GA for RSOM-I.
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6.2. RESERVOIR SYSTEM OPERATION MODEL - II (RSOM-II)

Similar to RSOM-I, a thorough sensitivity analysis is carried out for ACO for
different parameter settings, the best parameters found and adopted in this model
are: α = 1, β = 2, q0 = 0.8, ρ = 0.1, m = 20 and Imax = 200. In the case of
GA model, the parameters adopted are: crossover probability = 0.8 and mutation
probability = 0.02. The distribution index for simulated binary crossover is 10 and
that for mutation operator is 100. The other parameters adopted are, population
size = 500 and maximum number of generations = 5,000. It may be noted that for
both ACO and GA, the results reported are based on the best result obtained from
10 independent runs.

Figure 9 shows the results of annual hydropower production obtained using
ACO and GA techniques. It can be seen that AGO model is resulting in higher
annual hydropower production and out-performing GA. Average power production
obtained by ACO is 1,533.679 Mkwh, whereas that obtained using GA is only
966.636 Mkwh. This may be due to the fact that, GA is unable to cope up with too
many decision variables and unable to satisfy the large number of constraints. This
model in total has 432 decision variables and 2593 constraints in its formulation.
Although GA has taken larger population size and more generations, it often resulted
in infeasible solutions. Only after many trials, it could yield feasible solutions, but
these were still far below when compared to ACO results. The average hydropower
productions obtained from RSOM-II in each month are shown in Figure 10. It can
be seen that except in the months of July, August and October, in all the remaining
time periods, ACO performance is significantly better than that of GA. The average
storages of the reservoir at the beginning of each month are shown in Figure 11. In
this case the average computational time requirements for ACO and GA are 32 min
28 sec and 80 min 54 sec respectively.

Figure 9. Annual hydropower production obtained using ACO and GA for RSOM-II.
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Figure 10. Monthly average hydropower production obtained using ACO and GA for

RSOM-II.

Figure 11. Monthly average initial storages obtained using ACO and GA for RSOM-II.

The results obtained clearly indicate that ACO performance is the better. Fig-
ure 12 shows the comparison of the results for both the short-time horizon operation
(1 year at a time) and long time-horizon operation (36 years at a time) models. It can
be seen that ACO model is performing better for long time horizon operation than
for short-time horizon i.e., year wise operation models (both GA and ACO). Also
it can be noticed that for long time period operation, ACO model is taking care of
the carry over storage to meet the uncertainty of adequate inflow in the subsequent
year and thus yielding better results. But in year-wise operation, this flexibility is
restricted by the end of period storage constraint. So to derive reservoir operating
policies for planning purpose and to analyze the policies with long term goals, the
long time horizon operation will be more useful. Thus ACO performance will be
very much useful in deriving such policies.
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Figure 12. Comparison of annual hydropower production obtained for RSOM-I and RSOM-

II using ACO and GA. (ACO1Y and GA1Y are results of RSOM-I, i.e., short-time horizon

reservoir operation model. ACO36Y and GA36Y are results of RSOM-II, i.e., long-time horizon

reservoir operation model)

From these results, the main advantages of ACO noticed are, even if the number
of decision variables and constraints increase in the problem domain, the quality of
optimal solution is not affected. Also to reach a near optimal solution, the number
of ants and the number of iterations required are quite small and also the number of
function evaluations required is less. One of the causes for the better performance of
ACO, may be the randomized initialization of starting position of ants over the entire
time horizon, thus enabling the algorithm to better explore the available solution
search space. Also ACO uses heuristic information and probabilistic transition
rules, to move from one storage class in the current time period to the next storage
class in the next time period. This enables ACO to yield a better solution at each
time step, consequently helping to find the optimal solution over the entire time
horizon in a few iterations.

The results clearly show that in deriving reservoir operation policies for a long
time-horizon, the over year storage requirement constraint can be relaxed, con-
sequently which helps in better operation. Thus, in this regard the performance
of a metaheuristics based algorithm like ACO is significant. This is a substantial
improvement over other nonlinear optimization techniques, using which it is not
possible to obtain optimal solution over such a long time horizon.

7. Conclusion

In this study a metaheuristic technique called Ant Colony Optimization (ACO) is
applied for a reservoir operation problem and the usefulness of the technique is
explored. The ACO algorithm for multi-purpose reservoir operation is presented
using a single reservoir, deterministic, finite-horizon problem and applied to an



ANT COLONY OPTIMIZATION FOR MULTI-PURPOSE RESERVOIR OPERATION 897

existing reservoir system namely, Hirakud reservoir in India. In this model, power
production is maximized after satisfying the flood control rules, meeting the ir-
rigation demands and within the limitations of other physical constraints. After
carrying a thorough sensitivity analysis for deciding values of concerned param-
eters, the ACO technique is applied to a short-time horizon reservoir operation
model. To evaluate the performance of ACO model, the results are compared with
those obtained by GA model. The results of both models showed closer matching.
To further explore the potential of ACO, it is tested for a long-time horizon opera-
tion model. It is found that the reservoir operating policies developed by ACO give
much better performance, yielding higher annual hydropower than by GA model.
By optimizing the model for such a long time period, ACO facilitates to evolve
better operation policies by considering the over year storage requirements. Thus it
can be concluded that the ACO technique is quite promising and very much useful
to derive efficient operating policies for a multi purpose-reservoir system.
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