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Abstract: Many water resources systems are characterized by multiple objectives. For multiobjective optimization, typically there can be
no single optimal solution which can simultaneously satisfy all the goals, but rather a set of technologically efficient noninferior or Pareto
optimal solutions exists. Generating those Pareto optimal solutions is a challenging task and often difficulties arise in using the conven-
tional methods. In the optimization of reservoir systems, most of the times there is interdependence among one or more decision variables.
Recently, it is emphasized that the evolutionary operators used in differential evolution algorithms are very much suitable for problems
having interdependence among the decision variables. This paper utilizes this aspect and presents an efficient and effective approach for
multiobjective optimization, namely multiobjective differential evolution �MODE� algorithm with an application to a case study in
reservoir system optimization. The developed MODE algorithm is first tested on a few benchmark test problems and validated with
standard performance measures by comparing them with the nondominated sorting genetic algorithm-II. On achieving satisfactory
performance for test problems, it is applied to generate Pareto optimal solutions to a multiobjective reservoir operation problem. It is
found that MODE provides many alternative Pareto optimal solutions with uniform coverage and convergence to true Pareto optimal
fronts. The results obtained show that the proposed MODE can be a viable alternative for generating optimal trade-offs in multiobjective
optimization of water resources systems.
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Introduction

Many real-world systems involve multiobjective optimization in
their operation. Multiobjective optimization problems �MOPs� re-
quire the simultaneous optimization of several noncommensu-
rable and often competitive/conflicting objectives. Because of the
multiple conflicting objectives, it is not possible to find a single
optimal solution, which will satisfy all the goals. Instead, the
solution exists in the form of alternative trade-offs, also known as
the Pareto optimal solutions. For example, a reservoir system,
which serves multiple purposes, involves multiobjective optimi-
zation in its implementation. In the past, many researchers have
used classical optimization techniques such as linear program-
ming, dynamic programming, and nonlinear programming to
solve the multiobjective problems, by adopting a weighted ap-
proach or a constrained approach, without considering all the ob-
jectives simultaneously �Croley and Rao 1979; Haimes and Hall
1974; Tauxe et al. 1979; Thampapillai and Sinden 1979; Liang et
al. 1996�.

Despite having some useful applications for single objective
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optimization, most of the traditional methods are not suitable ap-
proaches for multiobjective optimization, because these methods
use a point-by-point search approach, and the outcome for which
is a single optimal solution. They often fail in yielding true Pareto
optimal solutions, when the objective function is nonconvex and
consists of disconnected Pareto fronts �Deb 2001�. They also re-
quire human expertise and a number of simulation runs in order to
get the trade-off behavior of solutions and often it is difficult to
obtain entire Pareto optimal solutions, especially for problems of
a large scale. Typically, real-world problems contain complex
search spaces, where the quality of decision alternatives is evalu-
ated through simulation using sophisticated computer models.
This usually prevents conventional optimization techniques from
being applicable. The main goal of this paper is to present an
efficient multiobjective optimization algorithm, which will over-
come the problems explained previously and demonstrate its ap-
plicability and efficiency through a case study in water resources
systems optimization.

Recent studies emphasized that evolutionary algorithms are
attractive alternatives for solving MOPs and are used for solving
many practical problems because they are independent of the
problem representation �Deb 2001�. Typically, the population
based evolutionary multiobjective optimization �EMO� methods
are able to evolve good Pareto fronts in a single run without
significant extra computational time over that of a single objective
optimizer which can find just one solution on the front. Hence,
treating a multiobjective real-world problem as it really should be
treated, i.e., “without simplifying and changing it to a single ob-
jective pseudoreal problem” is becoming a viable, fast, and effec-
tive alternative. In recent years, this is becoming more evident in
diverse fields of real-world applications. For example, EMOs

have been used in the water resource projects of designing and
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operation of reservoir management, water distribution networks,
and groundwater monitoring �Janga Reddy and Nagesh Kumar
2006; Halhal et al. 1997; Devi Prasad and Park 2004; Reed et al.
2001�.

Traditional genetic algorithms that use low mutation rates and
fixed step sizes may face trouble with problems having interde-
pendent relationships between decision variables and may require
more number of function evaluations �Salomon 1996�. Many
water resources and hydrological problems might involve interde-
pendence relationships among the decision variables of the opti-
mization model. Interdependencies among the decision variables
can be effectively handled, by properly rotating the coordinate
system of the given function as it is done in differential evolution
�Price 1999�. Differential evolution has all the desired properties
necessary to handle complex problems with interdependencies be-
tween input parameters, without the implementation complexity
and computation cost of some of the self-adaptive evolutionary
computation techniques, such as evolutionary strategies �Price
1999�. They maintain correlated self-adapting mutation step sizes
in order to make timely progress in optimization. In reservoir
operation, there is often interdependence among one or more de-
cision variables. Thus, the evolutionary operators used in differ-
ential evolution algorithm are very much suitable to tackle these
problems. This paper utilizes this aspect and presents a novel
approach for multiobjective optimization, namely, multiobjective
differential evolution �MODE� to generate operational trade-offs
to reservoir operation problems.

Background

Multiobjective Optimization

A general formulation for multiobjective optimization problem
can be described as

Minimize f�x� = �f1�x�, f2�x�, . . . , fm�x��, x � S �1�

where f i�x� �i=1,2 , . . . ,m�=scalar objective function which maps
decision variable x into the objective space f i=Rn→R.

The n-dimensional variable x is constrained to lie in a feasible
region �S� and R=set of real numbers. The feasible region is
constrained by J-inequality and K-equality constraints, i.e.

S = �x:gj�x� � 0, hk�x� = 0, j = 1,2,… . ,J, k = 1,2, . . . ,K�

�2�

In MOP, the desired goals are often conflicting against each
other and it is not possible to satisfy all the goals at a time. Hence,
it gives a set of noninferior solutions also known as Pareto opti-
mal solutions �Cohon 1978; Goioechea et al. 1982; Deb 2001�.
The definition of these Pareto optimal concepts is given as
follows.

Let x= �x1 , . . . ,xk�, and y= �y1 , . . . ,yk�, be two vectors. Then, x
dominates y if and only if, �1� xi�yi for all i=1, . . . ,m; and �2�
xi�yi for at least one i.

This property is known as Pareto dominance and it is used to
define Pareto optimal points. In other words, a solution, x, of the
MOP is said to be Pareto optimal if and only if, there does not
exist another solution y, such that f i�y� dominates f i�x� for all
i=1,2 , . . . ,m. The set of all Pareto optimal solutions of an MOP
is called Pareto optimal set and is denoted as Q*. The set,

* T *
PF = ��f1�x� , . . . , fm�x�� �x�Q �, is called Pareto front.
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Differential Evolution

Differential evolution �DE� is a recent optimization technique in
the family of evolutionary computation. It is proposed as a variant
of genetic algorithms to achieve the goals of robustness in opti-
mization and faster convergence to a given problem. DE differs
from other evolutionary algorithms in the mutation and recombi-
nation phase. Unlike some metaheuristic techniques such as ge-
netic algorithms and evolutionary strategies, where perturbation
occurs in accordance with a random quantity, DE uses weighted
differences between solution vectors to perturb the population
�Storn and Price 1995�.

The general convention used for different variants of DE is
DE/� /� /�. Here DE stands for differential evolution algorithm,
� represents a string denoting the vector to be perturbed;
�=number of difference vectors considered for perturbation of �;
and �=type of crossover being used �exp�exponential;
bin�binomial�. Here the perturbation can be made either in the
best vector of the previous generation �best� or in any randomly
chosen vector �rand�. Similarly for perturbation, either single or
two vector differences can be used. For perturbation with a single
vector difference, out of the three distinct randomly chosen vec-
tors, the weighted vector differential of any two vectors is added
to the third one. Similarly for perturbation with two vector differ-
ences, five distinct vectors other than the target vector are chosen
randomly from the current population. Out of these, the weighted
vector difference of each pair of any four vectors is added to the
fifth one for perturbation. In binomial crossover, the crossover is
performed on each of the decision variables whenever a randomly
picked number between 0 and 1 is within the crossover constant
�CR� value. As earlier studies reported, that both variants of
crossover operators having similar kind of performance �Storn
and Price 1997; Price 1999; Onwubolu and Davendra 2006�, so in
this study we evaluated only bin variants of DE. A brief descrip-
tion of the algorithm is presented below.

DE Algorithm

Let S�Rn be the search space of the problem under consider-
ation. Then, the DE algorithm utilizes NP �population size�,
n-dimensional vectors

Xi = �xi1, . . . ,xin�T � S, i = 1, . . . ,NP

as a population for each iteration, called a generation, of the al-
gorithm. The initial population is usually taken to be uniformly
distributed in the search space. At each generation, two operators,
namely mutation and crossover are applied on each individual,
thus producing the new population. Then, a selection phase takes
place, where each individual of the new population is compared
to the corresponding individual of the old population, and the best
between them is selected as a member of the population in the
next generation �Storn and Price 1995�.

According to the mutation operator, for each individual, Xi
�G�,

i=1, . . . ,NP, at generation G, a mutation vector

Vi
�G+1� = �vi1

�G+1�,vi2
�G+1�, . . . ,vin

�G+1��T

is determined using one of the equations from Eqs. �3�–�7� �Storn
and Price 1997�. Here the choice of equation, dictates the variant
of DE to be used in the model application. Therefore, use of Eqs.
�3�–�7� lead to different variants of DE, such as DE/rand/1/bin,
DE/best/1/bin, DE/rand-to-best/1/bin, DE/rand/2/bin, and DE/

best/2/bin, respectively
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Vi
�G+1� = Xr1

�G� + F�Xr2
�G� − Xr3

�G�� �3�

Vi
�G+1� = Xbest

�G� + F�Xr1
�G� − Xr2

�G�� �4�

Vi
�G+1� = Xi

�G� + F�Xbest
�G� − Xi

�G�� + F�Xr1
�G� − Xr2

�G�� �5�

Vi
�G+1� = Xbest

�G� + F�Xr1
�G� − Xr2

�G�� + F�Xr3
�G� − Xr4

�G�� �6�

Vi
�G+1� = Xr1

�G� + F�Xr2
�G� − Xr3

�G�� + F�Xr4
�G� − Xr5

�G�� �7�

where Xbest
�G� =best individual of the population at generation G;

F�0=real parameter, called mutation constant, which controls
the amplification of the difference between two individuals
so as to avoid search stagnation; and r1, r2, r3, r4, and r5, are
mutually different integers, randomly selected from the set
�1,2 , . . . , i−1, i+1, . . . ,NP�.

Following the mutation phase, the crossover operator is ap-
plied on the population. For each mutant vector, Vi

�G+1�, an index
rnbr�i�� �1,2 , . . . ,n� is randomly chosen, and a trial vector

Ui
�G+1� = �ui1

�G+1�,ui2
�G+1�, . . . ,uin

�G+1��T

is generated, with

uij
�G+1� = �vij

G+1 if �rand b�j� � CR� or �j = rnbr�i��
xij

G if �rand b�j� � CR� and �j � rnbr�i�� 	 �8�

where, j=1,2 , . . . ,n; rand b�j�= jth evaluation of a uniform ran-
dom number generator within �0,1� and CR=user defined cross-
over constant in the range �0,1� �Storn and Price 1997�. In other
words, the trial vector consists of some of the components of a
randomly selected individual of the population, i.e., the individual
with index rnbr�i�.

To decide whether the vector Ui
�G+1� should be a member of the

population of the next generation, it is compared to the corre-
sponding vector Xi

�G�. Thus, if f denotes the objective function
under consideration, then

Xi
�G+1� = �Ui

G+1 if f�Ui
G+1� � f�Xi

G�
Xi

G otherwise
	 �9�

Thus, each individual of the trial vector is compared with its
parent vector and the better one is passed to the next generation,
so the elitism �the best individuals in the population� is preserved.
These steps are repeated until specified termination criterion is
reached. The pseudocode for DE algorithm �DE/rand/1/bin� is
given in Fig. 1.

This DE technique has proved significantly faster and robust

Fig. 1. Pseudocode of the differential evolution algorithm �DE/rand/
1/bin�
for numerical optimization �Storn and Price 1997� and is also
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capable of optimizing all integers, discrete and continuous vari-
ables, and can handle nonlinear objective functions with multiple
nontrivial solutions �Onwubolu and Davendra 2006�. The ability
to provide efficient solutions for complex problems and simpler
operations of DE is very much attractive and encouraging to de-
velop MODE technique.

Multiobjective Differential Evolution

Recently, researchers attempted to extend DE technique to multi-
objective optimization and showed that DE can be an attractive
alternative for multiobjective numerical optimization �Abbas and
Sarker 2002; Madavan 2002; Xue 2003; Parspolous et al. 2004;
Robič and Filipič 2005�. In this study, the MODE is developed by
integrating nondominated sorting, ranking, and crowding distance
assignment procedures �Deb et al. 2002� with DE. This also main-
tains an external archive to maintain the best noninferior solutions
explored over the generations. The details of MODE methodol-
ogy are described in the following.

MODE Methodology

Handling of multiple objectives with DE, poses certain difficulties
in its implementation. Besides preserving a uniformly spread
front of nondominated solutions in the process of reaching true
Pareto optimal solutions, it is also necessary to take decision on
when to replace the parent with the candidate solution. To achieve
the multiobjective optimization goals, the MODE methodology
combines Pareto-dominance principles with DE and uses elitism
in its evolution.

The main algorithm consists of initialization of population,
evaluation, Pareto-dominance selection, performing DE opera-
tions, and reiterating the search on population to reach true Pareto
optimal solutions. In this process, the members are first evaluated
and checked for dominance relation. If the new member domi-
nates the parent, then it replaces the parent. If the parent domi-
nates the candidate, the new member is discarded. If the parent
and new member both are nondominated to each other, then these
two are added to a temporary population �tempPop�. This step is
repeated for all members of the population. Thereafter, in order to
select the population for next generation, the tempPop is reduced
to NP by using nondominated ranking and crowding distance as-
signment procedures. Apart from that, this study uses nondomi-
nated elitist archive �NEA� to store the best solutions found so far
over the generations. The size of NEA can be set to any desirable
number of nondominated solutions. To maintain the consistency
and for easiness in comparison with nondominated sorting genetic
algorithm-II �NSGA-II�, in this study, the size of NEA is set to
NP. In case, the size of NEA exceeds NP, then a crowding opera-
tor is used to select the sparse individuals to create effective
selection pressure toward true Pareto optimal solutions. The se-
lection of best in DE algorithm is made by randomly choosing a
solution from the elite archive, NEA. The proposed MODE meth-
odology can be summarized in the following steps.
1. Input the required DE parameters. Initialize all the vector

populations, randomly in the limits of specified decision
variables.

2. Evaluate each member of the population. Identify individuals
that give nondominated solutions in the current population
and store them in NEA. Set generation counter, Gª0.
3. Perform mutation and crossover operations �as explained for
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single objective DE� on all the members of the population,
i.e., for each parent Pi

a. Select distinct vectors randomly from the current popu-
lation �primary vector� other than the parent vector �i.e.,
randomly select r1 ,r2 ,r3 . . . � �1,2 , . . . ,n�, such that
r1�r2�r3 . . . � j�;

b. Calculate new mutation vector using one of the expres-
sions from Eqs. �3�–�7�;

c. Modify the mutated vector by binary crossover with the
parent, using crossover probability CR �Eq. �8��; and

d. Restrict the variables to its boundaries, if any variable
is outside the lower or upper bound.

4. Evaluate each member of the population. Check for domi-
nance with its parents. If the candidate dominates the parent,
the candidate replaces the parent. If the parent dominates the
candidate, the candidate is discarded. Otherwise, the candi-
date is added to a temporary population �tempPop�.

5. Add the latest solution vectors �current population� to the
tempPop. Then use the nondominated sorting and crowding
assignment operators to select the individuals to next genera-
tion. Store the nondominated solutions in nondominated elite
archive, NEA. If NEA size exceeds the desired number of
Pareto optimal set, then select desired number of the least
crowded members with the help of crowding assignment op-
erator. Empty the tempPop.

6. Increment the generation counter, G to G+1 and check for
termination criteria. If the termination criterion is not satis-
fied, then go to Step 3; otherwise output the nondominated
solution set from NEA.

The details of the operators for nondominated ranking and

Table 1. Test Problems Used in This Study

Problem
Variable
bounds

KUR xi� �−5,5�
i=1, . . . ,3 Minimize

ZDT3 xi� �0,1�
i=1, . . . ,30 Minimize

ZDT4 x1� �0,1�
xi� �−5,5�
i=2, . . . ,10

Minimize

ZDT6 xi� �0,1�
i=1, . . . ,10 Minimize

CONSTR x1� �0.1,1.0�
x2� �0,5� Minimize

Subject to

SRN xi� �−20,20�
i=1,2 Minimize

Subject to
crowding distance assignment can be found in Deb et al. �2002�.
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Following the steps explained earlier, the algorithm is coded in
MATLAB 6.5 �The MathWorks Inc., U.S.A.� and are executed on
a 1.4 GHz, 512 MB RAM, Pentium 4 PC.

The developed MODE is first evaluated through few standard
test problems to ensure that the algorithm is performing well for
different types of complexity and then applied to a case study in
reservoir system optimization. To evaluate the efficiency of
MODE, the model results are compared with the results obtained
using the Nondominated Sorting Genetic Algorithm-II �NSGA-II�
�Deb et al. 2002�. The C-programming code for NSGA-II is ob-
tained from the web site of Kanpur Genetic Lab �KanGAL,
�http://www.iitk.ac.in/kangal/soft.htm��.

Test Problems and Results

The test problems considered in this study are only those which
are reported as difficult to be solved by general MOP solvers
�Deb et al. 2002�. Therefore, there is a better chance to prove the
efficiency of the MODE. The details of test problems considered
are given in Table 1. In that, out of six, the first four problems
involve unconstrained optimization �KUR, ZDT3, ZDT4, and
ZDT6� and the other two are constrained optimization problems
�CONSTR and SRN�. All these test problems have different levels
of complexity like convexity, nonconvex, and disconnected
Pareto optimal solutions. The test problems KUR and ZDT3 are
having disconnected objective space; ZDT4 is having complexity
with too many local optimal solutions, whereas ZDT6 is having
nonconvex Pareto optimal front with low density of solutions near

Objective functions and constraints

f1�x�=
i=1
n−1�−10 exp�−0.2�xi

2+xi+1
2 ��

f2�x�=
i=1
n ��xi�0.8+5 sin�xi

3��

f1�x�=x1

f2�x�=g�x��1−�x1 /g�x�− �x1 /g�x��sin�10	x1��
g�x�=1+9�
i=2

n xi� / �n−1�

f1�x�=x1

f2�x�=g�x��1−�x1 /g�x��
g�x�=1+10�n−1�+
i=2

n �xi
2−10 cos�4	xi��

f1�x�=1−exp�−4x1�sin6�6	x1�
f2�x�=g�x��1− �f1�x� /g�x��2�
g�x�=1+9��
i=2

n xi� / �n−1��0.25

f1�x�=x1

f2�x�= �1+x2� /x1

g1�x�=x2+9x1�6

g2�x�=−x2+9x1�1

f1�x�= �x1−2�2+ �x2−1�2+2

f2�x�=9x1− �x2−1�2

g1�x�=x1
2+x2

2�225

g2�x�=x1−3x2�−10
Pareto front. CONSTR and SRN are both having complexity with
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2/bin;
constrained optimization and non-smooth Pareto optimal fronts.
For any multiobjective problem the main goals in optimization

are, minimizing the distance of the Pareto front produced by an
algorithm with respect to the true Pareto front �i.e., convergence
to true Pareto-optimal solution set� and maximizing the spread of
solutions found �i.e., maintenance of diversity among the gener-
ated set of solutions�. Also it should ensure that the generated
solutions to be uniformly distributed along the true Pareto front.
To test the performance of the MODE, two performance metrics
have been used, viz., set coverage metric and spacing metric �Deb
2001�. The details of these metrics are given in the following.

Set Coverage Metric

This metric gives the relative spread of solutions between two
sets of solution vectors U and V. The set coverage metric calcu-
lates the proportion of solutions in V, which are weakly domi-
nated by solutions of U �Deb 2001�

SC�U,V� =
��v � V� ∃ u � U:u � v��

�V�
�10�

the value SC�U ,V�=1 means that all solutions in V are weakly
dominated by U, whereas SC�U ,V�=0 represents the situation
when none of the solutions in V are weakly dominated by U. As
the domination operator is not symmetric, i.e., SC�U ,V� is not
necessarily equal to 1–SC�V ,U�. Therefore, it is necessary to
calculate both SC�U ,V� and SC�V ,U� to understand how many
solutions of U are covered by V and vice versa.

Spacing Metric

The spacing metric aims at assessing the spread �distribution� of
vectors throughout the set of nondominated solutions. It is calcu-
lated with a relative distance measure between consecutive solu-
tions in the obtained nondominated set �Deb 2001�

SP =� 1

�Q�
i=1

�Q�

�di − d̄�2 �11�

where di=mink�Q∧k�i
m=1
M �fm

i − fm
k � and d̄=mean value of the dis-

tance measure d̄=
i=1
�Q� di / �Q�; fm

i and fm
k =values of mth objective

function for ith and kth members in the population; and

Table 2. Performance Evaluation of Different Variants of MODE with
Coverage Metric

Test case Statistic SC�A ,R� SC�R ,A� SC�B ,R� SC�R ,B�

KUR Mean 0.1190 0.1190 0.1360 0.1000

SD 0.0213 0.0357 0.0357 0.0245

ZDT3 Mean 0.1320 0.0000 0.1390 0.0010

SD 0.0432 0.0000 0.0498 0.0032

ZDT4 Mean 0.5370 0.0000 0.3710 0.1050

SD 0.2469 0.0000 0.2710 0.3114

ZDT6 Mean 0.8950 0.0000 0.9070 0.0000

SD 0.0643 0.0000 0.0591 0.0000

CONSTR Mean 0.1620 0.1082 0.1420 0.1170

SD 0.0343 0.0284 0.0358 0.0149

SRN Mean 0.1040 0.0720 0.0940 0.0600

SD 0.0369 0.0225 0.0295 0.0231

Note: The result are based on ten independent runs for the re
C=MODE/rand-to-best/1 /bin; D=MODE/best/2 /bin; E=MODE/rand/
Q=Pareto optimal solution set. The desired value for this metric
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is zero, which means that the elements of the set of nondominated
solutions are equidistantly spaced.

To apply the MODE algorithm, the parameters of F and CR
are to be decided, for that a thorough sensitivity analysis is car-
ried out. For mutation constant �F�, the sensitivity is evaluated for
different values of F, such as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, and 1.0. For CR, the sensitivity is evaluated for different
values of CR, such as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
During this analysis, the following parameters are found to give
good results. The initial population was set to 100; CR=0.3; and
F=0.5. The maximum number of generations carried out is set to
250. For NSGA-II, the initial population was set to 100, crossover
probability to 0.9, and mutation probability to 1/n �n=number of
real variables�. The SBX and real parameter mutation were set to
20 and 20, respectively. This algorithm is also run for 250 gen-
erations. Thus, both the algorithms are compared for the same
number of function evaluations.

In order to find the best performing variant for the MODE
algorithm, different variants of MODE are evaluated. The com-
putations of different MODE variants can be recognized by using
different equations for mutation operator, viz., Eqs. �3�–�7� for
MODE/rand/1/bin, MODE/best/1/bin, MODE/rand-to-best/1/bin,
MODE/rand/2/bin, and MODE/best/2/bin, respectively. The
MODE algorithm variants have been applied to the above-
described test problems. For each test problem, all the algorithms
were run for ten independent trial solutions. Different algorithms
are denoted as A=MODE/rand/1/bin; B=MODE/best/1/bin;
C=MODE/rand-to-best/1/bin; D=MODE/rand/2/bin; E=MODE/
best/2/bin, and R=NSGA-II.

In Tables 2 and 3, performance of different variants of MODE
are compared with NSGA-II, showing the mean and standard de-
viation �SD� values for set coverage metric �SC� and spacing
metric �SP�, respectively. It is to be noted that these results are
compared based on model performance in a run. The set coverage
metric, SC�A ,R�=1, means that all solutions in R are weakly
dominated by A, whereas SC�A ,R�=0 represents the situation
when none of the solutions in R are weakly dominated by A. So
the higher value of SC gives indication of better performance.
From Table 2, as far as the SC metric is concerned, MODE per-
formance is superior to NSGA-II, as it can be observed that all the
six �KUR, ZDT3, ZDT4, ZDT6, CONSTR, and SRN� test cases
are having higher SC values in MODE variants as compared to

ct to NSGA-II, Showing Mean and Standard Deviation Values for Set

�C ,R� SC�R ,C� SC�D ,R� SC�R ,D� SC�E ,R� SC�R ,E�

.1365 0.1050 0.1120 0.1280 0.1110 0.1420

.0250 0.0255 0.0235 0.0449 0.0370 0.0432

.0130 0.3798 0.0810 0.0096 0.0690 0.0394

.0116 0.0835 0.0335 0.0093 0.0251 0.0251

.5410 0.0020 0.1030 0.2680 0.0000 0.8833

.2475 0.0063 0.1024 0.2131 0.0000 0.0583

.9080 0.0000 0.8870 0.0000 0.8940 0.0000

.0391 0.0000 0.0574 0.0000 0.0659 0.0000

.1440 0.1150 0.1020 0.2030 0.1000 0.2130

.0412 0.0387 0.0346 0.0414 0.0327 0.0400

.0880 0.0610 0.0830 0.0920 0.0900 0.0810

.0494 0.0213 0.0211 0.0270 0.0333 0.0242

ve algorithms. Here A=MODE/best/1 /bin; B=MODE/rand/1 /bin;
and R=NSGA-II. Bold numbers indicate the best performing algorithm.
respe

SC

0
0

0

0

0
0

0
0

0
0

0

0

specti
NSGA-II. Table 3 shows the spacing metric �SP� statistics for all
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the algorithms. This SP metric gives an idea of how uniformly a
solution set is distributed along the Pareto optimal front. For spac-
ing metric small values of SP are desirable. Generally this metric
becomes important only when the generated solutions lie in true
Pareto optimal frontiers. However, it can be observed that MODE
variants are resulting in good distribution of solutions with
smaller SP values. Bold numbers in Tables 2 and 3 indicate the
best performing algorithm for each test case. From the previous
results �Tables 2 and 3�, it can be observed that, MODE/rand-to-
best/1/bin variant is performing superior to all other variants of
MODE.

In order to demonstrate the working of the algorithm, results
of a typical simulation run with MODE/rand-to-best/1/bin algo-
rithm and NSGA-II are shown in Fig. 2. The visual illustration
also clearly demonstrates that the developed methodology is effi-
cient and is able to achieve true Pareto optimal solutions for all
the test problems. Next, we test the MODE algorithm to evaluate
its performance on a complex, real-world problem.

Case Study Description

To demonstrate the efficiency of the proposed methodology for
reservoir operation problems, a case study of Hirakud Reservoir
project in Orissa state, India, is considered. The project is situated
at latitude 21°32� N and longitude 83°52� E. The index map of
Mahanadi River Basin showing the location of Hirakud dam is
presented in Fig. 3. The reservoir has live storage capacity of
5,375
106 m3 and a gross storage of 7,189
106 m3. The Hira-
kud Reservoir is a multipurpose project, which serves for flood
control, drinking water, irrigation, and for power generation; the
water is used in the decreasing order of priority of this sequence.
Since the drinking water requirement is a very small quantity, this
quantity is neglected in this particular model formulation. Water
levels begin rising in July, the beginning of monsoon season in
the region, and begin declining in October, at the end of the
season. During monsoon season, the project provides flood pro-
tection to 9,500 km2 of delta area in the districts of Cuttack and
Puri. The project provides irrigation for 155,635 ha in wet season
�Kharif� and for 108,385 ha in dry �Rabi� season in the districts of
Sambalpur, Bargarh, Bolangir, and Subarnpur. The water released
through the powerhouses after power generation, irrigates further
436,000 ha of command area in Mahanadi delta. Installed capac-

Table 3. Spacing Metric Values for Different Variants of MODE and for

Test case Statistic SP�A� SP�B�

KUR Mean 0.0937 0.0944

SD 0.0020 0.0034

ZDT3 Mean 0.0105 0.0094

SD 0.0016 0.0007

ZDT4 Mean 0.0071 0.0077

SD 0.0004 0.0032

ZDT6 Mean 0.0222 0.0054

SD 0.0532 0.0005

CONSTR Mean 0.0436 0.0428

SD 0.0029 0.0026

SRN Mean 1.3108 1.4669

SD 0.1625 0.2777

Note: Here A=MODE/best/1 /bin; B=MODE/rand/1 /bin; C=MOD
R=NSGA-II. Bold numbers indicate the best performing algorithm.
ity of power generation is 259.5 MW from powerhouse at Burla
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�PH-I� located at the right bank and 72 MW from powerhouse at
Chiplima �PH-II� located at 22 km downstream of the dam. The
PH-I generates energy by utilizing water discharged directly from
the Hirakud Dam. Then the utilized water passes to the PH-II
through a power channel to generate further power at Chiplima.

Orissa state is having plenty of water during the wet season, so
there is greater possibility for hydropower improvement in that
season. Net energy production is high during the monsoon period
and low during the dry season. Many times, unless the region
experiences unusually heavy rain in the dry season, power gen-
eration would not be possible in that season. Over a period of
36 years the average annual inflow is 3.36
106 ha m. The reser-
voir inflow, utilization pattern, and dam details were collected
from the Department of Irrigation, Government of Orissa. The
historic inflow data were available for 36 years, from 1958 to
1993. The model formulation and operation is for a time interval
of ten daily periods in a year. So the ten daily data for 36 years is
used in this study.

Model Formulation

The multiple objectives of the reservoir system are minimizing
flood risk, maximizing hydropower production, and minimize ir-
rigation deficits in a year, subject to various physical and techni-
cal constraints. Among them, flood control objective of a dam is
in conflict with the other objectives of irrigation and hydropower
generation. Although for irrigation and hydropower, the reservoir
has to be filled up as soon as it could be done and the level
retained at as high as possible, flood control requires low water
level and also quick depletion of reservoir after a flood. As flood
control is the major goal of the project, it should be given high
priority, compared to other objectives during monsoon season.
From historical time series of inflows and flood prone periods, the
reservoir authority adopts safe guidelines to minimize flood risk
in the downstream area and avoid losses to the maximum extent
possible. To manage this goal, the model incorporates flood rule
curve restrictions as constraints, so that the required priority is
achieved. The model is formulated for ten daily operations, with
the objectives of maximize hydropower production �f1� and mini-
mize the annual sum of squared deficits of irrigation release from

-II

SP�C� SP�D� SP�E� SP�R�

0.0910 0.0921 0.0897 0.0823
0.0048 0.0066 0.0019 0.0223

0.0092 0.0101 0.0103 0.0079
0.0006 0.0009 0.0010 0.0009

0.0080 0.0089 1.7218 0.0076

0.0014 0.0035 2.6112 0.0007

0.0050 0.0273 0.0051 0.0050
0.0006 0.0689 0.0003 0.0007

0.0430 0.0526 0.0657 0.0465

0.0044 0.0081 0.0224 0.0032

1.2670 1.2805 1.2675 1.5969

0.1000 0.0980 0.0992 0.1307

d-to-best/1 /bin; D=MODE/best/2 /bin; E=MODE/rand/2 /bin and
NSGA

E/ran
demands �f2�. They are expressed as follows:
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Maximize f1 = 

t=1

NT

�P1,t + P2,t� �12�

where

Pi,t = kiRPi,tHi,t for i = 1,2,and ∀ t �13�

Minimize f2 = 

t=1

NT

�min�0,IDt − IRt��2 �14�

Subject to the following constraints:

St+1 = St + It − RP1,t − IRt − EVPt − OVFt ∀ t �15�

St
min � St � St

max ∀ t �16�

RPmin � RPi,t � TCi ∀ t; i = 1,2 �17�

Fig. 2. Nondominated solutions obtained for test problem
i,t
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IRt
min � IRt � IRt

max ∀ t �18�

where, Pi,t=hydropower produced �
106 kWh� in the ith power
house �i=1,2� during period t �t=1,2 , . . . ,36�; NT=total number
of time periods; ki=power coefficient; RPi,t=amount of water re-
leased to ith turbine, during period t; Hi,t=average head available
during period t and is expressed as a nonlinear function of the
average storage during that period; IRt=irrigation release in
period t; IDt=maximum irrigation demand in period t; RPi,t

min

=minimum release to be made to meet hydropower requirements;
St=initial storage volume during time period t; It=inflow into the
reservoir; EVPt=evaporation losses �is a nonlinear function of the
average storage�; OVFt=overflow from the reservoir; St

min and
St

max=minimum and maximum storages allowed in
time period t, respectively; IRt

min and IRt
max=minimum and maxi-

mum irrigation releases, respectively, in time period t; and
TCi=turbine capacity of power plant i �i=1,2�.

In addition to the previous constraints, it is to be ensured that

g MODE and NSGA-II, shows the result of a typical run
s usin
end storage of the last period of the year is greater than or equal
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to the initial storage of the first period of the next year. This
reservoir operation model contains a total of 108 decision vari-
ables, i.e., releases to irrigation �IRt� and releases to hydropower
�RP1,t and RP2,t� for all t=1,2 , . . . ,36.

Model Application and Results

To apply the MODE algorithm, the following parameters are
used. The initial population was set to 200; CR=0.3; mutation
constant F=0.5; and maximum number of generations=500. For
NSGA-II, the initial population was set to 200, crossover
probability=0.9, and mutation probability=1/n �n=number of
real variables�. The SBX and real parameter mutation were set to
10 and 20, respectively. This algorithm is also run for 500
generations.

The water stored in the reservoir is to be released to meet both
the irrigation and hydropower demands. As there is no single
optimal solution which can simultaneously satisfy both goals, the
developed MODE is intended to find a set of noninferior solutions
to function as the decision-making information for decision mak-
ers. From test problems, it is found that MODE/rand-to-best/1/bin
is performing better than the other variants of MODE. So the
reservoir operation model is solved using both MODE/1/rand-to-
best/bin �hereafter, for convenience it is referred as MODE� and
NSGA-II algorithms. The developed MODE has generated vari-
ous efficient alternatives �Pareto optimal solutions� in a single
run. Table 4 shows the performance of the MODE, as compared
with NSGA-II results. It can be observed that the MODE is re-
sulting in higher values of SC metric compared to NSGA-II. This
indicates that, both NSGA-II and MODE find a set of Pareto

Fig. 3. Location map of the H
optimal solutions, but MODE has a better coverage of the Pareto
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front than NSGA-II, hence giving more choices to the decision
maker. Fig. 4 gives the results of MODE, shows the improvement
attained in noninferior solutions convergence to true Pareto opti-
mal solutions over the generations.

Fig. 5 shows the results of best noninferior solutions obtained
in a typical run using MODE and NSGA-II. It can be clearly seen
that MODE is achieving better noninferior solutions �Pareto op-
timal solutions� compared to NSGA-II. Thus for this reservoir
operation problem, the complexity involved in its modeling is
well captured by the MODE. This can be attributed to the opera-
tors used in differential evolution, selection criteria used for new
generations and proper matching of all other operators. Also the
rotationally invariant MODE is effectively utilizing the interde-

Dam in the Mahanadi Basin

Table 4. Results of MODE and NSGA-II for the Two-Objective Hirakud
Reservoir Operation Model, Showing the Best, Worst, Mean, Variance,
and Standard Deviation Values for Performance Measures of Set
Coverage Metric and Spacing Metric

Statistic

Performance metric

Set coverage metric Spacing metric

SC�A ,R� SC�R ,A� MODE NSGA-II

Best 0.0250 0.0000 185.74 12.22

Worst 1.0000 0.1761 726.66 419.96

Mean 0.7556 0.0454 425.15 124.81
Variance 0.1253 0.0040 29,428.46 28,336.74

SD 0.3539 0.0632 171.55 168.34

Note: In SC�A ,B�, A=MODE/rand-to-best/1 /bin; and R=NSGA-II. The
results are based on ten independent runs for both the algorithms. Bold
irakud
numbers indicate the best performing algorithm.
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pendence relationships among the variables and exploring the ef-
ficient Pareto frontiers in each generation, thus achieving superior
performance to that of NSGA-II.

The operating policy corresponding to each noninferior
solution is called a satisfactory operating policy and it can be
discriminated from the optimal operating policy of the single-
objective optimization. There are many ways to select the final
compromising solution. However, this may require decision mak-
er’s analysis and interpretation. To demonstrate the final decision
making, compromise programming approach �Deb 2001� is
adopted in this study. The method of compromise programming
picks a solution which is minimally located from a given refer-
ence point. From the generated solutions, first we have to fix a
distance metric d�f ,z� and a reference point z for this purpose.
Then the Tchebycheff metric is computed by

d�f ,z� = max
m=1

M ��fm�x� − zm��
max

x�S
�fm�x� − zm�

�19�

Fig. 4. A typical run of MODE show the improvement in
nondominated solutions over the generations for Hirakud reservoir
operation problem. �f1=annual squared deficit for irrigation
�
106 m3�2 and f2=hydropower production 
106 kWh�

Fig. 5. Nondominated solutions obtained for Hirakud Reservoir
operation problem using MODE and NSGA-II, shows the result of a
typical run. Here BCS is the best compromised solution obtained for
MODE solution set �f1=annual squared deficit for irrigation
�
106 m3�2 and f2=hydropower production 
106 kWh�.
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where S=entire search space and zm=reference solution for mth
objective function. The reference point comprises of the indi-
vidual best objective function values z= �f1

* , f2
* , . . . , fM

* �T. As this
solution is nonexistent, the decision maker is interested in choos-
ing a feasible solution, which is closest to this reference solution.
So the solution which has smaller metric value is the desired one.

Using the previous approach, the best compromised solution
�BCS� is found and is shown as BCS in Fig. 5. The results of the
corresponding alternative solution give the compromised decision
for optimal reservoir operation. Fig. 6 shows the corresponding
ten daily release policies for irrigation and hydropower over a
year and the corresponding storage policy is shown in Fig. 7. It is
also noticed that, BCS for NSGA-II generated solutions �Pareto
optimal front�, produces slightly different optimal decision policy
to that of MODE result. However, both are in similar range.
These results suggest that MODE is an appropriate and effective
optimization tool for identifying reservoir management trade-offs.
Further, on the case study on which MODE was tested, it outper-
formed a commonly used multiobjective genetic algorithm formu-
lation �NSGA-II�. So the MODE can be judged as an effective
optimization tool for multiobjective reservoir operation decision
making.

Fig. 6. Ten daily release policy �corresponding to compromised
optimal solution� obtained for reservoir operation problem using
MODE �IR=release to irrigation and PR=release to power
production�

Fig. 7. Ten daily storage operating policy �corresponding to
compromised optimal solution� obtained for reservoir operation
problem using MODE
H/APRIL 2007



Discussion

Measure of MODE Complexity

The proposed MODE approach is simple to implement, yet effi-
cient in yielding true Pareto optimal solutions. The computational
complexity of MODE is also reasonable. In this approach, in
addition to the objective function computations, the computa-
tional complexity of the algorithm is mainly involved in the non-
dominated comparison of the members in the population, sorting,
and crowding distance computation. If there are m objective func-
tions and N number of solutions in the population, then the
objective function computation has O�mN� computational
complexity. In this study, the computational time required in the
reservoir operation simulation model is small; therefore, the com-
putational effort required for sorting and other operations is also
important. The costly part of crowding distance computation is
sorting the solutions in each objective function. If there are K
solutions in the NEA, sorting the solutions in the external reposi-
tory has O�mK log K� computational complexity. If the population
and the NEA have the same number of solutions, say N, the
computational complexity for the nondominated comparison is
O�mN2�. Therefore, the overall complexity of the MODE is less
than or equal to O�mN2�, which is in well agreement with the
latest versions of multiobjective evolutionary algorithms
�MOEAs�. For example, the overall computational complexity of
NSGA-II is O�mN2� �Deb et al. 2002�. Thus, MODE is fast
enough to compete with the latest versions of MOEAs and supe-
rior to older versions of MOEAs �e.g., NSGA-I has a computa-
tional complexity of O�mN3��.

Conclusions

This study presents a novel approach for solving multiobjective
reservoir system optimization problems using DE. The proposed
methodology for MODE combines Pareto dominance criteria with
DE for nondomination selection and crowded distance compari-
son operator for promoting solution diversity, and incorporates
elitism in its evolution to improve the performance of the algo-
rithm. First, different variants of MODE are tested by applying to
standard test problems in EMO literature, and their efficiency is
evaluated with standard performance measures by comparing
with the results of NSGA-II. It is found that the MODE/rand-to-
best/1/bin variant is resulting in better performance among all
other variants of MODE. To have practical significance, then the
developed MODE is applied for generation of optimal trade-offs
for a multiple objective reservoir operation problem, namely
Hirakud Reservoir project. The optimization involves minimiza-
tion of flood risk, maximization of hydropower production, and
minimization of irrigation deficits while properly evaluating other
constraints. The MODE resulted in many Pareto optimal solutions
in a single run, by specifying the reservoir releases and storage
policy for each solution. The interdependence among the decision
variables is better exploited using MODE. It is also found that the
performance of MODE is better than NSGA-II for the reservoir
system optimization problem. Thus, the obtained results suggest
that the MODE approach is robust, and converging to the true
Pareto optimal front with a good solution spread and coverage.

The main advantages of MODE algorithm are, the method is
relatively simple and easy to implement with few parameters to
be fine-tuned and can handle interdependence relationships

among the decision variables effectively, thus resulting in fast and
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efficient Pareto optimal solutions. Finally, it is suggested that the
developed MODE algorithm can be used as an efficient alterna-
tive technique to solve the multi objective optimization problems.

Notation

The following symbols are used in this paper:
best � the best solution of previous generation;
bin � binomial crossover operator;
CR � crossover constant;

D � dimension of the solution vector;
DE � differential evolution;
DP � dynamic programming;

d̄ � mean value of the distance measure;
E � total energy production;

EVPt � evaporation losses in period t;
exp � exponential crossover operator;

F � mutation constant;
fm � mth objective function;

Hi,t � net head available for ith turbine during time
period t;

It � inflow to the reservoir during time period t;
IDt � irrigation demand in time period t;
IRt � irrigation release in time period t;

IRt
min, IRt

max � minimum and maximum irrigation releases in
time period t;

LP � linear programming;
MODE � multiobjective differential evolution;
MOEA � multiobjective evolutionary algorithm;

MOP � multiobjective optimization problem;
NEA � nondominated elite archive;
NLP � nonlinear programming;

NSGA � nondominated sorting genetic algorithm;
NT � total number of time periods;
NP � population size;

n � dimension of decision vector;
OVFt � overflow in period t;

Pi,t � hydropower produced from ith turbine in time
period t;

PF* � Pareto optimal front;
Q* � Pareto optimal set;

RPi,t � release made to ith turbine in period t;
r1, r2, r3, r4, r5

� mutually different random integers;
rand � randomly chosen solution from previous

generation;
rnbr � random integer;

St � initial storage of reservoir in time period t;
St

min, St
max � minimum and maximum storage limits of the

reservoir;
SC � set coverage metric;
SD � standard deviation;
SP � spacing metric;

tempPop � temporary population;
TCi � ith turbine capacity;

Ui
G ,Vi

G ,Xi
G � solution vector of the ith individual in

generation G;
uid, vid, xid � decision value of the ith solution dth variable;

x, y � vector of decision variables;
z � reference solution;

� � string denoting the vector to be perturbed;
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� � number of difference vectors considered for
perturbation of �; and

� � crossover type;
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