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Output state in multiple entanglement swapping
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The technique of quantum repeaters is a promising candidate for sending quantum states over long
distances through a lossy channel. The usual discussions of this technique deals with only a finite
dimensional Hilbert space. However the qubits with which one implements this procedure will “ride”
on continuous degrees of freedom of the carrier particles. Here we analyze the action of quantum
repeaters using a model based on pulsed parametric down conversion entanglement swapping. Our
model contains some basic traits of a real experiment. We show that the state created, after the
use of any number of parametric down converters in a series of entanglement swappings, is always
an entangled (actually distillable) state, although of a different form than the one that is usually
assumed. Furthermore, the output state always violates a Bell inequality.

I. INTRODUCTION

Entanglement cannot be created by local operations
and classical communication between the parties. How-
ever it was shown in Ref. [1] (see also [2]) that there exists
an operational scheme, such that particles can get entan-
gled without ever having interacted in the past. One of
the intruiging things about this phenomenon, which has
been called entanglement swapping, is that it shows that
one cannot always tell whether particles are entangled
by looking at their “common history”. Or the concept of
“common history” must be suitably enlarged. Note that
entanglement swapping process is a specific case of quan-
tum teleportation [3]. The first experimental realization
of entanglement swapping was reported in [4]. The ex-
periment was a direct realization of the experimental pro-
cedure given in [1], and modified in [5].
As a simple illustration of this phenomenon, consider

the situation in which Alice and Bob, share the singlet
|ψ−〉 = 1√

2
(|01〉 − |10〉), and Alice shares another singlet

with Claire. Alice now makes a projection measurement
on her parts of the two singlets in the Bell basis, given
by the states

|φ±〉 = 1√
2
(|00〉 ± |11〉),

|ψ±〉 = 1√
2
(|01〉 ± |10〉). (1)

It is easy to check that if Alice now communicates (over a
classical channel) the result of her measurement to Bob
and Claire, they will know that they share one of the
Bell states given by eq. (1). Note that in principle the
particles of Bob and Claire may not have interacted in
the past, although they share entanglement after Alice’s
classical communication to them.
Apart from this fundamental perspective, entangle-

ment swapping is also important in quantum communi-
cation applications. When sending a quantum state over
a noisy channel, the probability that it reaches the recip-
ient, decreases with the length of the channel. However,
the detectors at the recipient’s end are usually (rather
invariably) noisy, and this noise is independent of the
length of the channel. Thus after a critical length, the
signal is useless. To circumvent this problem, a proposal

was provided [6] that places a number of nodes in be-
tween the sender and the recipient of the signal. Entan-
gled states are first shared in these shorter segments (i.e.
between all successive nodes) and thereafter distilled [7]
to obtain highly entangled states between all successive
nodes (Fig. 1). Finally entanglement swapping is carried
out at all nodes to obtain highly entangled states between
the sender and the recipient (henceforth called Alice and
Bob respectively). It was shown [6] that this procedure,
called quantum repeaters, would lead to highly entangled
states between the ends of a noisy channel of arbitrary
length, with only a polynomial increase in time and log-
arithmic increase in local resources.

Usual discussions on quantum repeaters deal with only
a finite dimensional Hilbert space. But the qubits with
which one implements this procedure will “ride” on con-
tinuous degrees of freedom of the carrier particles. In
this paper, we address the problem of implementation of
this procedure of quantum repeaters, for the entangled
states prepared between successive nodes by spontaneous
pulsed parametric down conversion [1, 5]. The discussion
of the process will follow the ones of Refs. [1, 5]. The
experimental realization of entanglement swapping fully
confirmed the validity of this description [4]. Actually in
the experiment, polarization entanglement was utilized.
But it is elementary to show the equivalence of such ex-
periment with ones involving path entanglement, which
will be our model here (see Ref. [8]). In this paper, we
assume that the noise in the channel from a parametric
down conversion crystal to the nearest nodes is negligible.
Entanglement swapping is carried out at all the nodes.

The description of entanglement swapping that we con-
sider in this paper, is still a toy model. Nevertheless it
contains some basic traits of a possible real experiment.
We show that the final state prepared between Alice and
Bob is a so-called maximally correlated state, which is
always entangled (actually distillable) and always vio-
lates a Bell inequality. For a wide range of pulses and
filters, including Gaussian pulses and filters, the output
two qubit state created between Alice and Bob turns out
to be a mixture of two Bell states,
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FIG. 1: Quantum repeaters: A chain of maximally entangled states obtained after distilations, are shared between the sender,
the nodes at A, B, . . ., N and the recipient. Bell measurements are performed at the nodes. This results in an entangled state
shared by the sender and the reciepent.

where |φ±〉 are given by eq. (1) and where 0 ≤ V ≤ 1.

II. DOUBLE ENTANGLEMENT SWAPPING

Consider the case of three parametric down conver-
sion crystals producing three entangled states between
the sender (Alice) and A1, A2 and B1, and B2 and the
recipient (Bob) (see Fig. 2)[9].

r

Sender A1A2 B1B2 Recipient

r r r r r

FIG. 2: Quantum repeaters: A chain of three states.

Entanglement swapping will be carried out at A1A2

and B1B2. In Fig. 3, we give a schematic description of
entanglement swapping in an array of three type I spon-
taneous parametric down conversions (PDC) [1, 5]. Note
that frequency filters are in front of every beamsplitter,

in the “internal” part of the device. They are necessary
to make the photons emerging independently from two
different sources, indistinguishable by the detectors be-
hind the beamsplitters (for the physical reasons for this,
see [1, 5]).

We make the simplifying assumptions that the optical
lengths of all source-detector paths are equal and that
phase shifters work in the range of the order of the wave-
length (i.e. between 0 and 2π). This enables us to neglect
all retardation effects.

The description of the two-photon initial entangled
state will depend on whether the corresponding PDC is
an “external” or an “internal” one, in the series of PDCs.
In any series of PDCs, there will be two external ones,
while the rest will be called internal. For example, in the
case of three PDCs, as described in Fig. 3, PDC-I and
PDC-III are externals, while PDC-II is an internal one.
If the “idler” photon emitted by the external PDCs in
Fig. 3 (produced by a single pulse from a laser pump),
manages to pass via the filters, the resulting two-photon
state is given by (see Appendix)

∣

∣

∣
ψext(x, y, x

′

, y
′

)
〉

=

∫

dωi

∫

dωs

∫

dωpF (ωp)∆(ωp − ωi − ωs)f(ωi)(a
†
x(ωi)a

†
y(ωs) + a†

x
′ (ωi)a

†
y
′ (ωs)) |Ω〉 , (2)

where a†x(ωi) (a
†
y(ωs)) and a

†
x
′ (ωi) (a

†
y
′ (ωs)) are the cre-

ation operators of photons of the idler (signal) of fre-

quency ωi (ωs) respectively in beams x and x
′

(y and

y
′

). The function F represents the spectral content of
the pump pulse of frequency ωp and f is the transmis-
sion function of the filters and is assumed to be centered
at ω0/2, where in turn, ω0 is the central frequency of
the laser pump pulse. The function ∆(ωp − ωi − ωs) is
due to the phase-matching condition of the PDC pro-
cess. |Ω〉 is the vacuum state. The state produced

at PDC-I is
∣

∣

∣
ψext(b, a, b

′

, a
′

)
〉

and that at PDC-III is
∣

∣

∣
ψext(f, e, f

′

, e
′

)
〉

. We assume, in all our considerations,

the perfect case and so we will replace our ∆ by the Dirac
delta function. Here and henceforth, unless stated oth-
erwise, we ignore normalization of states.

If the two photons produced by the internal PDC
(PDC-II) in Fig. 3, manage to pass the filters, their state
acquires the following form (see Appendix):

∣

∣

∣
ψint(d, c, d

′

, c
′

)
〉

=

∫

dω
′

i

∫

dω
′

s

∫

dω
′

pF (ω
′

p)∆(ω
′

p − ω
′

i − ω
′

s)f(ω
′

i)f(ω
′

s)(a
†
d(ω

′

i)a
†
c(ω

′

s) + a†
d
′ (ω

′

i)a
†
c
′ (ω

′

s)) |Ω〉 . (3)
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FIG. 3: Entanglement swapping in a chain of three parametric down converters. The boxes denoted as PDC-I, PDC-II, and
PDC-III symbolizes the full parametric down conversion device, including the pump laser, crystal, a set of apertures that select
suitable output directions, as well as suitably oriented mirrors that direct the radiation into the interferometers shown in the

figure. The radiation at the detectors i1, . . . , i4 and i
′

1, . . . , i
′

4 is observed by detectors. The interferometers are built out of
mirrors M and 50-50 beamsplitters (BS). We need to put suitable frequency filters in front of all BS leading to the internal

outputs i(.) and i
′

(.). The symbols φ and φ
′

denote the local phase shifters. For simplicity, we shall study the case when only
four internal detectors (the “i”s) fire (those marked with asterix). Due to the specific properties of downconversion [1, 5], no
filters are needed in the output beams of the device, a and f .

Note that there is an extra filter function in this case.
This is a signature of the fact that both the photons from
PDC-II are detected by the internal detectors and to
reach there, they must pass the filters. In the general case
of an arbitrary number (say, n) of PDCs in a series, there
will be two entangled pairs described by eq. (2), while
there will be n−2 “internal” entangled pairs described by
eq. (3). Note here that previous works on entanglement
swapping with two PDCs [1, 5] did not need to consider
any “internal” entangled pairs.
In the case of entanglement swapping by 3 PDCs (as

shown in Fig. 3), our initial state, if all photons manage
to pass the filters, is given by

|Ψ〉 =
∣

∣

∣
ψext(f, e, f

′

, e
′

)
〉 ∣

∣

∣
ψint(d, c, d

′

, c
′

)
〉 ∣

∣

∣
ψext(b, a, b

′

, a
′

)
〉

.

Now suppose that the detector i1 fires at time t1, i2 at
time t2, i3 at time t3, and i4 at time t4. Then the wave
packet collapses into the state

|Ψ; t1, t2, t3, t4〉 = i1(t1)i2(t2)i3(t3)i4(t4) |Ψ〉 (4)

where, for example,

i1(t1) =

∫

dω exp{−iωt1}ai1(ω).

Note that the scalar product of
∫

dω exp{iωt1}a†i1(ω)
with a single photon state

∫

dωg(ω)a†i1(ω) |Ω〉

gives the probability amplitude to detect this photons at
time t1. Let us assume that our 50-50 beamsplitters (BS)
are the symmetric ones. That is, one has, e.g.

a†i1(ω) =
1√
2

(

a†
c
′ (ω) + ia†

b
′ (ω)

)

.

Note that the creation operator of the reflected beam

always enters the relation for a†ik with an i factor. As
we consider here the idealized case, we substitute ∆ by
Dirac delta functions to obtain

|Ψ; t1, t2, t3, t4〉 =
∫

dtF ∗(t)f(t− t4)f(t− t1)a
†
f [g, t3]a

†
a[g, t2] +

∫

dtF ∗(t)f(t− t3)f(t− t2)a
†
f
′ [g, t4]a

†
a
′ [g, t1], (5)

where we denote for example,

a†f [g, t3] =

∫

dωsg(ωs, t3)a
†
f (ωs)

with

g(ωs, t3) =

∫

dt exp{iωst}F ∗(t)f(t− t3).

After the photons in the state |Ψ; t1, t2, t3, t4〉 pass
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through the phase shifters (as depicted in Fig. 3), the

new state,
∣

∣

∣
Ψ; t1, t2, t3, t4, φ, φ

′

〉

, is obtained by replac-

ing a†
a
′ by exp{iφ}a†

a
′ and a†f by exp{iφ′}a†f . Let us as-

sume now that the photons (after passing through phase
shifters and 50-50 beam splitters (cf. Fig. 3)) are de-
tected at a+ and f+ at times ta and tf respectively.
Hence the amplitude of such a process is

Aa+,f+(ta, tf , t1, t2, t3, t4) =

〈f+(tf ), a+(ta)|
∣

∣

∣
Ψ; t1, t2, t3, t4, φ, φ

′

〉

,

where, for example,

|f+(tf ), a+(ta)〉 =
∫

dω exp{iωtf}a†f+(ω)
∫

dω
′

exp{iω′

ta}a†a+
(ω

′

) |Ω〉 .

Writing it out explicitly, one obtains

Aa+,f+ = exp{i(φ− φ
′

)}T1 + T2,

where

T1 = T (ta, tf , t1, t2, t3, t4)

≡
∫

dtdt
′

dt
′′ ∫

dωsdω
′′

s exp{i(ω′′

s t+ ωst
′

)}×
exp{−i(ω′′

s tf + ωsta)}F ∗(t)F ∗(t
′

)F ∗(t
′′

)×
f(t− t3)f(t

′ − t2)f(t
′′ − t4)f(t

′′ − t1)

(6)

and

T2 = T (ta, tf , t2, t1, t4, t3).

However, due to the finite time resolution of the detec-
tors, the precise detection times are not known. There-
fore the full probability, P , of the process is obtained
after integration of the square of the amplitude over the
detection times:

P (a+, f+) =
∫

[|T1|2 + |T2|2
+2 cos(φ − φ

′

+ φ0)|T1T ∗
2 |]dt1dt2dt3dt4dtfdta

(7)

(where φ0 is a phase). We integrate here from −∞ to
+∞, because the time resolution of detectors is usually
by orders of magnitude bigger than the duration of the
pumping pulse. We can now calculate the interferometric
contrast, or the visibility

V3 =
maxP −minP

maxP +minP
,

of the two particle interference process as observed by
changing the values of the local phase shifts in the two
external interferometers. (The index 3 stands for the
number of PDCs involved.) The resulting value is given
by

V3 =
2
∫

|T1T ∗
2 |dt1dt2dt3dt4dtfdta

∫

(|T1|2 + |T2|2)dt1dt2dt3dt4dtfdta
. (8)

We will now write down the explicit forms of the ex-
pressions in the numerator and denominator of V3. We
have

F1234 ≡
∫

|T1T ∗
2 |dt1dt2dt3dt4dtfdta

=
∫

dt1dt2dt3dt4|
∫

dtdt
′

dt
′′

dt′′×
|F (t)|2|F (t′)|2F ∗(t

′′

)F (t′′)×
f(t− t3)f

∗(t− t4)f(t
′ − t2)f

∗(t
′ − t1)×

f(t
′′ − t4)f(t

′′ − t1)f
∗(t′′ − t3)f

∗(t′′ − t2)|.
(9)

Throughout the paper, a “bar” will represent a new vari-
able. This should not be confused with complex conju-
gation, which we denote here by a “∗”.
A similar simplifying gives

G1234 ≡
∫

|T1|2dt1dt2dt3dt4dtfdta
=

∫

dtdt
′

dt
′′

dt′′
∫

dt1dt2dt3dt4×
|F (t)|2|F (t′)|2F ∗(t

′′

)F (t′′)×
|f(t− t3)|2|f(t

′ − t2)|2f(t
′′ − t4)f(t

′′ − t1)×
f∗(t′′ − t4)f

∗(t′′ − t1).
(10)

Note that in G1234, the indices are ordered. One can
easily find that

∫

|T2|2dt1dt2dt3dt4dtfdta = G2143. (11)

Hence the visibility of the two particle interference that
can be obtained due to the two-fold entanglement swap-
ping (Fig. 3), is given by

V3 = 2F1234

G1234+G2143
. (12)

III. ARBITRARY NUMBER OF SWAPPINGS

Consider now a chain (i.e., arranged in a series) of
any number, n, of PDCs (see Fig. 1). Let a(1) and

a
′(1) denote the paths within the external interferometer

into which one of the photons from the first PDC en-
ters. The paths within the other external interferometer,
into which enters the photon from the last PDcs will be

denoted as a(n) and a
′(n). Let ω

(1)
s and ω

(n)
s be the cor-

responding frequencies of the photons. If all the photons
manage through the frequency filters, the state is

∣

∣

∣
ψ(1)

〉

⊗
(

⊗n−2
l=2

∣

∣

∣
ψ(l)

〉)

⊗
∣

∣

∣
ψ(n)

〉

(13)

with the states
∣

∣ψ(1)
〉

and
∣

∣ψ(n)
〉

of the type character-

istic for the external PDCs and
∣

∣ψ(l)
〉

(l = 2, . . . , n − 2)
for the internal ones (compare eqs. (2) and (3)). Imagine
now that again all internal detectors ik, k = 1, 2, . . . , 2n−
2 fire. The final state into which the state in eq. (13)
collapses is of the following form:

|χt〉 =
∫

dω
(1)
s dω

(n)
s (Xt(ω

(1)
s , ω

(n
s )a†

a(n)(ω
(n)
s )a†

a
′(1)(ω

(1)
s )

+ Yt(ω
(1)
s , ω

(n)
s )a†

a
′(n)(ω

(n)
s )a†

a(1)(ω
(1)
s )) |Ω〉 .

(14)
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The functionsXt and Yt depend on the detection times at
the internal detectors (along with the frequencies). The
subscript t stands for the full set of times of detection at
the internal detectors, that is t = t1, t2, . . . , t2n−2. To see
this structure of the state for n = 4, see Fig. 4.
The effective mixed state, ρswap, that we obtain, is an

incoherent sum of the state χt, with the sum (integration)
being over the detection times:

ρswap =

∫

dt |χt〉 〈χt| ,

where dt ≡ Π2n
i=1dti.

Again we now assume that optical lengths of all source-
detector paths are equal and that phase shifts φ and φ

′

are of the order of the wavelength (i.e. between 0 and 2π).
Since the two output photons are fully distinguishable
(i.e. their sources are known), it would be no harm to
abandon the second quantized description. Thus, one can
rewrite the formula (14) in the following way. Note that

a†
a(.)(ω) |Ω〉 is a single photon state. The photon is in

path a(.) and has frequency ω. Therefore from the first
quantized point of view, this state can be replaced by
the tensor product |a〉 |ω〉, where |a〉 describes the path
variable and |ω〉 the frequency variable (energy). Using
such notation, eq. (14) can be put as

|χt〉 =
∫

dω
(1)
s dω

(n)
s ×

(Xt(ω
(1)
s , ω

(n
s )

∣

∣

∣
a

′(1)
〉

1

∣

∣

∣
ω
(1)
s

〉

1

∣

∣a(n)
〉

n

∣

∣

∣
ω
(n)
s

〉

n

+ Yt(ω
(1)
s , ω

(n)
s ),

∣

∣a(1)
〉

1

∣

∣

∣
ω
(1)
s

〉

1

∣

∣

∣
a

′(n)
〉

n

∣

∣

∣
ω
(n)
s

〉

n
).

(15)
The frequency degrees of freedom in ρswap can be traced
out to obtain the (unnormalized) state of the path (i.e.
the qubit) degrees of freedom as

ρswap
path =

∫

dω
(1)
s dω

(n)
s dt ζ

where

ζ =

(|X(ω
(1)
s , ω

(n)
s )|2

∣

∣

∣
a

′(1)
〉〈

a
′(1)

∣

∣

∣
⊗
∣

∣a(n)
〉 〈

a(n)
∣

∣

+|Y (ω
(1)
s , ω

(n)
s )|2

∣

∣a(1)
〉 〈

a(1)
∣

∣⊗
∣

∣

∣
a

′(n)
〉〈

a
′(n)

∣

∣

∣

+[X(ω
(1)
s , ω

(n)
s )Y ∗(ω

(1)
s , ω

(n)
s )×

∣

∣

∣
a

′(1)
〉

〈

a(1)
∣

∣⊗
∣

∣a(n)
〉

〈

a
′(n)

∣

∣

∣
+ h.c.]).

Here h.c. denotes hermitian conjugate of the term before
it within square brackets.
After normalization, one gets

ρswap
path = 1

b+c
(b |00〉 〈00|+ c |11〉 〈11|

+ [a |00〉 〈11|+ h.c.])
(16)

Here a =
∫

dωdtXY ∗, b =
∫

dωdt|X |2, c =
∫

dωdt|Y |2,
and

|0〉 =
∣

∣

∣
a(1)

〉

, |1〉 =
∣

∣

∣
a

′(1)
〉

,

and similarly for
∣

∣a(n)
〉

and
∣

∣

∣
a

′(n)
〉

. Writing a =

ra exp{iθa} (ra ≥ 0, θa real), and redefining the state

|1〉 of the first particle as exp{−iθa}
∣

∣

∣
a

′(1)
〉

, the normal-

ized state ρswap
path reads

ρswap
path = 1

b+c
(b |00〉 〈00|+ c |11〉 〈11|

+ [ra |00〉 〈11|+ h.c.])
(17)

where ra, b, and c are all positive.
One can now check that

Vn =
2ra
b+ c

(18)

where Vn is the visibility of the two-photon interference
in the external interferometers (like those in Fig. 3).
Let us give the values of the parameter in eq. (18) for

the case of Fig. 3. One has

ra =
∫

dωsdω
′′

s

∫

dt1dt2dt3dt4
∫

dtdt
′

dt
′′ ∫

dtdt′dt′′×
exp{i(ω′′

s t+ ωst
′

)}F ∗(t)F ∗(t
′

)F ∗(t
′′

)×
f(t− t3)f(t

′ − t2)f(t
′′ − t4)f(t

′′ − t1)×
exp{i(ω′′

s t+ ωst
′)}F ∗(t)F ∗(t′)F ∗(t′′ )×

f(t− t4)f(t
′ − t1)f(t

′′ − t3)f(t
′′ − t2).

Comparing with eq. (9), one can verify that

ra = F1234.

Similarly using eqs. (10) and (11), one finds that b and
c are respectively G1234 and G2143. Using eq. (12), one
therefore obtains the relation in eq. (18), for the case of
three parametric down conversions. It is straightforward
to see that the same relation holds for an arbitrary num-
ber of PDCs. As we have mentioned earlier, the case of
two PDCs is slightly different, in the sense that there are
no internal PDCs. However it is easy to check that the
relation in eq. (18) is true even for the case of two PDCs.
Whenever ra 6= 0, the state ρswap

path has nonpositive par-

tial transpose [10]. Therefore the state is entangled when-
ever ra 6= 0 [11] (see also [12]). The entanglement of
formation of χpath is [7, 13]

E = H(
1

2
(1 +

√

1− V 2
n )) (19)

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the bi-
nary entropy function. Note that the visibility Vn is the
so-called concurrence [13] of the state ρswap

path . In fact,
entanglement of formation is known to be additive for
the state ρswap

path [14, 15] (see also [16]), and hence the ex-

pression displayed in (19) is also the entanglement cost
(asymptotic entanglement of formation) of ρswap

path . States
with nonpositive partial transpose in 2⊗ 2 are distillable
[17]. Therefore the state ρswap

path , being in 2 ⊗ 2, is also
distillable whenever ra 6= 0.
Bipartite States of the form

∑

ij

aij |ii〉 〈jj|
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d
′

d
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i1 ⋆

i2 ⋆

i3 ⋆

i4 ⋆i6 ⋆

i5 ⋆

FIG. 4: An exemplary extended chain of swappings. Imagine that the initial states emitted by the four sources were entangled
two photon states, with the property that the one photon is emitted to the right and other one to the left, and the emissions
are such that both photons are in primed beams or both are in the unprimed ones. Now if the detectors i1, . . . , i6 fired (the
ones with asterix), one has only two consistent possibilities. (i) i1 fired due to source 1, but then i2 fired due to source 2,
therefore i3 fired again due to source 2 whereas i4 fired thanks to source 3, thus i5 fired also because of source 3, and finally

i6 fired because of source 4. This implies that a photon is in the beam a(4) and in the beam a
′(1). (ii) The second possibility

is that the i1 firing is due to source 2 and etc. Thus the other element of the final superposition must consist of photons in

beams a
′(1) and in the beam a(4).

are called maximally correlated states [18]. It is known
that for such states in 2 ⊗ 2, the entanglement cost is
strictly higher than its distillable entanglement [14, 15]
(cf. [18, 19]). We therefore have irreversibility in asymp-
totic local manipulations of entanglement for such states.
The state ρswap

path being a maximally correlated state in
2 ⊗ 2, would also have its entanglement cost strictly
greater than its distillable entanglement.
Additionally, the state ρswap

path violates a Bell inequality

[20] whenever ra 6= 0. The maximal amount of violation
is [21]

B = 2
√

1 + V 2
n . (20)

The ra = 0 case corresponds to null visibility and can
therefore be ignored. We plot the entanglement of for-
mation (which in our case is entanglement cost) and the
maximal amount of violation of Bell inequality against
the visibility Vn in Fig. 5. We therefore obtain the im-
portant fact that the output state, resulting from a se-
ries of entanglement swappings, is always entangled and
always violates local realism. Earlier works on entangle-
ment swapping process via two parametric down convert-
ers [1, 5] made the tacit assumption that the output is
a pure state admixed with white noise, and reached the
conclusion that the swapped state is separable and does
not violate local realism for low visibilities.
We will now discuss an interesting point with respect

to violation of Bell inequalities of the state ρswap
path . Let

us, for this state, find the T -matrix, whose elements for
any state ̺, of two qubits, is given by

Tij = tr(σi ⊗ σj̺), (i, j = x, y, z).

In the above formula, we treat our qubits formally as
spin-1/2 particles. For the state ρswap

path , Txx = Vn, Tyy =
−Vn, Tzz = 1 and the rest are vanishing. A necessary

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

Vn

E

B

FIG. 5: Plot of entanglement cost (E), given by eq. (19),
and the maximal amount of violation of Bell inequality (B),
given by eq. (20), against the visibility Vn for the state χpath

obtained after the detection of the idlers in the entanglement
swapping process with n parametric down conversions.

and sufficient condition for a state of two qubits to violate
local realism, for two settings per site, in the plane of ~n
and ~n

′

is given by [22]

∑

i,j=~n,~n
′

T 2
ij > 1.

In our case (i.e. for the state ρswap
path ),

∑

i,j=x,y T
2
ij = 2V 2

n ,

so that for Vn > 1√
2
, one obtains a violation of local

realism in the x−y plane. In the case of qubits defined by
the output paths of the multiple entanglement swapping
devices considered here, x− y plane spin observables are
equivalent to the measurement in the output ports of the
external interferometers. That is, the ~n·~σ operator for an
~n in the x− y plane, is equivalent to a device consisting
of a phase shifter in front of a 50-50 beamsplitter and
two detectors behind it.
The x − y plane does not provide a violation of local
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realism for 0 ≤ Vn ≤ 1√
2
, although the state is still entan-

gled (and distillable) in that region. For these lower val-
ues of the visibility Vn, we have to consider other planes
for obtaining a violation. For example in the x−z plane,
∑

i,j=x,z T
2
ij = 1+V 2

n , for the state ρswap
path , and thus a vi-

olation is always obtained in this plane. Hence, for these
lower visibilities, one must use other measurement planes
to obtain a violation. Such violation can therefore be ob-
tained, only by the Mach-Zehnder interferometers at the
output ports of the entanglement swapping device (Fig.
6). This is due to the fact that such a device is capable
of performing any U(2) unitary transformation.

Ent.
Swapping

ψ1 ψN

❅❅
��❅❅

��
��
φ1

��✠
❅❅■�

��

❅
❅❅

�
��

❅
❅❅ ❅❅

φN

❅❅❘
��✒�

��

❅
❅❅

�
��

❅
❅❅

FIG. 6: The schematic diagram shows that to obtain better
violation of local realism, the output ports of the entangle-
ment swapping (contained in the square box in the figure)
should be put to the Mach-Zehnder interferometers.

For a wide range of pumps and filters used in the swap-
ping process, one will have

b = c.

For example, this is the case when the pulse and filter
functions are Gaussian, i.e.

F (ωp) = exp{− (ωp − ω0)
2

2σ
} (21)

and

f(ωp) = exp{− (ωp − ω0/2)
2

2σf
}. (22)

In such cases, the normalized state created after the
idlers have been detected in the multiple entanglement
swapping process with n PDCs is

ρswap
path = 1

2 (|00〉 〈00|+ |11〉 〈11|
+ V

(b=c)
n |00〉 〈11|+ V

(b=c)
n |11〉 〈00|),

which can be rewritten as

ρswap
path =

1 + V
(b=c)
n

2

∣

∣φ+
〉 〈

φ+
∣

∣+
1− V

(b=c)
n

2

∣

∣φ−
〉 〈

φ−
∣

∣

where |φ±〉 are the Bell states given by eq. (1).

One has to bear in mind that the above results were
obtained under the asuumption that we deal with perfect
entanglement swappings, especially no noise was allowed.
It is obvious that for sufficiently low Vn (see Fig. 5), both
entanglement and violation of Bell inequalities would dis-
appear, even for very minor noise admixtures.

Acknowledgments

A.S. and U.S. thank William J. Munro for helpful com-
ments and are supported by the University of Gdańsk,
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APPENDIX A: THE TWO-PHOTON STATE

PRODUCED BY PDC

This appendix is essentially meant to provide a
“derivation” of the state (displayed in eqs. (2) and (3))
produced in a parametric down conversion. It is a re-
formulation of the theory of parametric down conversion
which can be found in, e.g., [23, 24].
The phenomenon of spontaneous parametric down

conversion (PDC) is a spontaneous fission of quasi
monochromatic laser photons into correlated pairs of
lower energy. All that takes place within a non-linear
crystal. The probability of a single laser photon to fission
is very low, but in a strong laser beam, the frequency of
the phenomenon is quite high. The new photons, custom-
arily called “signal” and “idler” have some basic proper-

ties. First of all, the wave vector ~k0 of the laser photons

is related to those (~ki and ~ks) of the idler and the signal

by ~k0 ≈ ~ki+~ks. One has to stress that this relation holds
within the crystal (and can be thought of as an approx-
imate conservation of the linear momentum). Secondly,
the frequencies ω0, ωi, and ωs of the laser photon, idler
and signal satisfy ωo ≈ ωi + ωs. And finally, the emerg-
ing pairs of photons are highly time-correlated. That is,
if their optical paths from the source to the detectors
are equal (which we assume in this paper), the detection
times are equal too (up to the time resolution of the de-
tection system). The relations between the wave vectors
and between the frequencies are called phase matching
conditions.

1. Crystal-field interaction.

Let us recall that in the interaction Hamiltonian of
the electromagnetic field with an atom or molecule, the

dominating part is Ĥa−f ∼ ~̂µe · ~E(~x, t). That is, it is
proportional to the scalar product of the dipole moment
of the atom or molecule with the local electromagnetic
field. Now the electric polarization of a material medium
is given by the mean dipole moment of the atoms or
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molecules from which the medium is built (per unit vol-
ume). Let ~p(~x, t) stand for the local polarization of the
volume δV , which contains the point ~x (the volume δV
is macroscopically small but microscopically large). The
principal term of the interaction Hamiltonian for crystal
and field must have the form

Hint ∼
∫

V

~p(~x, t) · ~E(~x, t)d3x, (A1)

where V is the volume of the crystal. From the micro-
scopic standpoint, the above formula reads

Hint ∼
∫

V

∑

n

~µnδ
(3)(~x− ~xn) · ~E(~x, t)d3x, (A2)

where ~xn is a symbolic representation of the position of
the n-th atom endowed with a dipole moment ~µn. The
summation is over all atoms (the word “atom” standing
for any stable aggregate of charged particles, like atoms
themselves, or ions, or molecules) of the medium. One

can see that the formula (A2) agrees with Ĥa−f . If one
introduces the averaged (macroscopic) polarization (av-
eraged over the macroscopically small volumes δV ), we

get (A1). One can assume that ~E(~x, t) interacts with
~p(~x, t) only in the point ~x, thus the i-th component of
polarization is in the most general case given by

pi(~x, t) =
∑3

j=1 χ
(1)
ij (~x)Ej(~x, t)

+
∑3

j,k=1 χ
(2)
ijk(~x)Ej(~x, t)Ek(~x, t) + · · · ,

(A3)

where χ
(1)
ij are χ

(2)
ijk are the (macroscopic) polarizability

coefficients. They are in the form of tensors. This is
due to the fact that polarizablility may depend on the
polarization of the incoming light. Note here that for
any crystal which is built of molecules which are centro-
symmetric the quadratic term of the polarizability van-
ishes. Therefore the effect exists only in birefringent me-
dia.
In the case of a perfect “nonlinear” crystal, we assume

that χ
(2)
ijk(~x) has the same value for all point within the

crystal. The nonlinear term of the polarization gives the
following term in the interaction Hamiltonian (cf. (A1)):

Hint ∼
∫

V
~p(~x, t) · ~E(~x, t)d3x

=
∫

V
~p lin(~x, t) · ~E(~x, t)d3x

+
∫

V
~p non(~x, t) · ~E(~x, t)d3x,

where ~p lin (~p non) is the linear (nonlinear) term of polar-
ization. The nonlinear part of the Hamiltonian is

HNL ∼
∫

V

∑

ijk

χ
(2)
ijkEi(~x, t)Ej(~x, t)Ek(~x, t)d

3x. (A4)

The quantized field can be expressed (in the interaction
picture) as

~E(~x, t) =
∑2

p=1

∫

d3k i√
2ω(2π)3

×
ǫ̂(~k, p)a−(~k, p) exp{i(~k · ~x− ωt)}+ h.c.

= ~E(+)(~x, t) + ~E(−)(~x, t),

(A5)

where ~E(−)(~x, t) = [ ~E(+)(~x, t)]†, and the summation is
over two orthogonal linear polarizations, h.c denotes the

hermitian conjugate of the previous term, ǫ̂(~k, p) is a
unit vector defining the linear polarization. The symbol

a−(~k, p) stands for the annihilation operator of a photon

of a wave vector ~k and polarization ǫ̂(~k, p). The principal
commutation rule for the creation and annihilation op-

erators is given by [a(~k, p), a†(~k′, p′)] = δp,p′δ(3)(~k − ~k′),

[a†(~k, p), a†(~k′, p′)] = 0 and [a(~k, p), a(~k′, p′)] = 0 . As we
are interested only in the PDC process, we will neglect
the depletion of the laser field and assume that the total

field within the crystal is ~E(~x, t) = ~ELaser(~x, t)+ ~Eq(~x, t),
where the laser beam is described by a classical electro-

magnetic field ~ELaser. In reality, the laser field is a mix-
ture of coherent states, and its phase is undefined, but

this is of no consequence to us here. The field ~Eq is de-
scribed in a quantum-electrodynamical way. It describes
the secondary photons emitted by the crystal. The down
conversion takes place, thanks to the terms in (A4) of

the form
∫

V

∑

ijk χ
(2)
ijkE

Laser
i EjEkd

3x. Only those terms
of Ej and Ek which contain the creation operators, can
give rise to a two photon state, after acting on the vac-
uum state |Ω〉. The creation operators can be found only
in the so-called negative frequency terms of the electro-
magnetic field operators (that is, in those which contain

the factors exp{−i(~k · ~x−ωt)} (cf. (A5))). Let us there-
fore forget about all other terms and analyze only

HNL ∼
∫

V

∑

ijk

χ
(2)
ijkE

Laser
i E

(−)
j E

(−)
k d3x+ h.c. (A6)

For simplicity let us describe the laser field as a

monochromatic wave ~ELaser(~x, t) = x̂E0(exp{i( ~k0 · ~x −
ω0t − φ)} + c.c), where 2E0 is the field amplitude and
c.c denotes the complex conjugate of the previous ex-
pression. (Since an arbitrary electromagnetic field is a
superposition of the plane waves, it is very easy to get
the general description.) Then from (A6), one gets

HNL ∼
∫

V

∑

jk{χ
(2)
3jkE0×

[exp{i(~k0 · ~x− ω0t− φ)} + c.c]×
∑

p

∫

d3k f(ω)ǫ̂(~k, p)a†(~k, p) exp{−i~k · ~x}×
∑

p′

∫

d3k′ f(ω)ǫ̂(~k, p)a†(~k′, p) exp{−i~k′ · ~x}d3x
+h.c.,

(A7)
with f(ω) being a factor dependent on ω. Its specific
structure is irrelevent here. Extracting only those el-
ements of the above expression which contain ~x, one
sees that their overall contribution to (A7) is given

by
∫

V
d3x exp{i~x(±~k0 − ~k − ~k′)}, which we write as

∆(~k0 − ~k − ~k′). If we assume that our crystal is a cube
L×L×L, then for L→ ∞, ∆ approaches the Dirac delta

δ(±~k0−~k−~k′). Thus, we immediately conclude that the
emission of the pairs of photons is possible only for the

directions for which the condition ~k0 ≈ ~k+~k′ is met [25].



9

Eq. (A7) can be therefore put in the form

HNL ∼ ∑

p,p′

∫

d3k
∫

d3k∆(~k0 − ~k − ~k′)Aeff
p,p′×

exp{−iω0t}a†(~k, p)a†(~k′, p′) + h.c,
(A8)

where Aeff
p,p′ =

∑

j,k E0χ
(2)
3jk ǫ̂j(

~k, p)ǫ̂k(~k
′, p′) is the effec-

tive amplitude of the laser pump field (which serves as a
laser-crystal coupling strength). This Hamiltonian fully
describes the basic traits of the phenomenon of down
conversion. In the so called type II down conversion, the
laser pump beam is ordinary wheras the idler and sig-
nal photons are extraordinary. Thus we shall replace the

general Aeff

p,p
′ by F0.

2. The state of photons emitted in the PDC

process.

We are interested in the process of production of pairs
of photons. Therefore we shall assume that the pump
field is rather weak, so that the events of double pairs
emissions are very rare. Therefore one can use the per-
turbation theory.
The evolution of the state |ΨD(t)〉 (in the interac-

tion (Dirac) picture) of the photons emitted in the
PDC process is governed by the Schrödinger equa-
tion i~ d

dt
|ΨD(t)〉 = HNL

D (t)|ΨD(t)〉, where HNL
D (t) =

exp{ i
~
H0t}HNL exp{− i

~
H0t}, and H0+H

NL is the total
Hamiltonian of the system. Therefore

|ΨD(t)〉 = |ΨD(t0)〉+ 1
i~

∫ t

t0
HNL

D (t′)|ΨD(t′)〉dt′
≃ |ΨD(t0)〉+ 1

i~

∫ t

t0
HNL

D (t′)|ΨD(t0)〉dt′,
(A9)

where we have replaced the time dependent state in
the integral by its initial form |ΨD(t0)〉 using the first
order of the perturbation calculus. In the Dirac pic-
ture, the creation and annihilation operators depend on

time as a†D(~k, p, t) = exp{iωt}a†(~k, p) and aD(~k, p, t) =

exp{iωt}a(~k, p). In (A9), we put t0 = 0, and we take the
vacuum state (no photons) |Ω〉 as the initial state |Ψ(0)〉.
We are interested only in the term with the integral, be-
cause it is only there that one can find creation opera-
tors responsible for the spontaneous emission of pairs of
photons. The photons interact with the laser field only
during the time of the order of L

c
. The interaction sim-

ply ceases when they leave the crystal. Therefore, as the
annihilation operators when acting on the vacuum state
give zero, one can write

∑

p,p′

∫

d3k
∫

d3k
′

F0∆(~k0 − ~k − ~k′)∆(ω + ω′ − ω0)

a†(~k, p)a†(~k′, p′)|Ω〉,

where we have written
∫ L

c

0 dt′ exp{it′(ω + ω′ − ω0)} as
∆(ω+ω′ −ω0). As L→ ∞, ∆ behaves as a Dirac delta.
Thus the allowed frequencies of the emissions satisfy the
relation [26] ω0 ≈ ω + ω′. Since L

c
ω, L

c
ω′ and L

c
ω0 are

typically of the order of 104 the function ∆(ω + ω′ −ω0)
is very close to δ(ω + ω′ − ω0).

3. Directions of emissions

We know that ω = |~k| c
n(ω,p) , where

c
n(ω,p) = c(ω, p) is

the speed of light in the given medium, which depends
on frequency and the polarization. Using this relation as
well as phase matching condition for frequencies, we get

the condition |~k0|c(ω0) ≃ |~k|c(ω, p)+ |~k′|c(ω′, p′). There-
fore, the emissions of the pairs are possible only when the
phase matching and the above condition are both met.
This means that the correlated emissions occur only for
specific directions, specific frequencies and specific polar-
izations. There are two types of down conversions:

1. both photons of a pair have the same polarization
(type I),

2. they have orthogonal polarizations (type II).

Additionally if one has:

1. ω ≃ ω′ then we have a frequency degenerate PDC,

2. and if k̂ = k̂′, then we have a co-linear one.

4. Time correlations

In this section it will be shown that the down converted
photons are very tightly time correlated. The probability
of a detection of a photon, of say, the horizontal polar-
ization H , at a detector situated at point ~x and at the
moment of time t, is proportional to

p(~x, t,H) ≃ ηT r̺E
(−)
H (~x, t)E

(+)
H (~x, t), (A10)

where η is the coefficient which characterizes the quan-
tum efficiency of the detection process, ̺ is the density
operator, which represents the field in the Heisenberg
picture, EH is the horizontal component of the field in
the detector. For the above relation to be true, we also
assume that via the aperture of the detector enter only
photons of a specified direction of the wave vector.
For a pure state, (A10) reduces to p(~x, t,H) ≃

〈ψ|E(−)
H E

(+)
H |ψ〉. The probability of a joint detection of

two photons, of polarization H , at the locations ~x1 and
~x2, and at the moments of time t1 and t2 is proportional
to

p(~x1, t1; ~x2, t2) ∼
〈ψ|E(−)

H (~x1, t1)E
(−)
H (~x2, t2)E

(+)
H (~x2, t2)E

(+)
H (~x1, t1)|ψ〉.

(A11)
The evolution of the field within the crystal lasts for the
time around L

c
. If the detectors are very far away from

each other, and from the crystal, then the photon field
can be treated as free-evolving. State |ψ〉 is the photon
state that leaves the crystal at the moment around L

c
:

|ψ(t = L

c
)〉 = |Ω〉+ 1

i~
e−

i

~
H0

L

c

∫ L

c

0

HNL
D (t′)dt′|Ω〉.

(A12)
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Let t = t1 i t2 = t′, and |ψ〉 = |ψ(t = L
c
)〉, then (A11)

can be written down as

p(~x1, t|~x2, t′) ≃
〈ψ|E(−)

H (~x1, t)E
(−)
H (~x2, t

′)E
(+)
H (~x1, t)E

(+)
H (~x2, t

′)|ψ〉.
(A13)

If we choose just two conjugate propagation directions
(i.e. such that fulfill the phase-matching conditions),
then approximately one has

E
(+)
H (~x, t) =

∫

dωe−iωtf1(ω)a1(ω)

E
(+)
H (~x′, t′) =

∫

dωe−iωt′f2(ω)a2(ω),

where f1 and f2 are the frequency response func-
tion which characterize the detections (or rather filter-
detector system). We assume that the response functions
are such that their maxima agree with the frequencies
determined by the phase-matching conditions. The an-
nihilation and creation operators which were used above,
are replaced by ai(ω) and its conjugate, which can be
used to describe “unidirectional” excitations of the pho-
ton field (i.e., we assume that the detectors see only the
photons of a specified duration of propagation, this a
good assumption if the detectors are far from the crys-
tal, and the apertures are narrow). The index i defines
the direction (fixed) of the wave vector. The opera-
tors satisfy commutation relation, which are a modifi-
cation of those given above to the current specific case

[ai(ω), a
†
j(ω

′)] = δijδ(ω − ω′), [ai(ω), aj(ω
′)] = 0.

Introducing an unit operator Î =
∑∞

i=0 |bi〉〈bi|, where
|bi〉 is a basis state into (A13), we obtain

p(~x1, t|~x2, t′) ≃
〈ψ|E(−)

H (~x1, t)E
(−)
H (~x2, t

′)ÎE
(+)
H (~x1, t)E

(+)
H (~x2, t

′)|ψ〉.
(A14)

Since E
(+)
H contains only the annihilation operators, they

transform the two photon state |Ψ〉 into the vacuum
state. Thus, the equation (A14) can be written down
as

p(~x1, t|~x2, t′) ≃ 〈ψ|E(−)
H E

′(−)
H |Ω〉〈Ω|E(+)

H E
′(+)
H |ψ〉,

(A15)
where the primed expressions pertain to the mo-
ment of time t′ and the position ~x2. Thus we
have p(~x1, t|~x2, t′) ≃ |A12(t, t

′)|2, where A12(t, t
′) =

〈Ω|E(+)
H (~x1, t)E

′(+)
H (~x2, t

′)|ψ〉. The state |Ψ〉 can be ap-
proximated by

|Ψ〉 = |Ω〉+
∫

dω1

∫

dω2F0δ(ω−ω1−ω2)a
†
1(ω1)a

†
2(ω2)|Ω〉.

(A16)
Then

A12(t, t
′) = 〈Ω|

∫

dω′e−iω′tf2(ω
′)a2(ω

′)
∫

dωe−iωtf1(ω)a1(ω)
∫

dω2

∫

dω2F0δ(ω0 − ω1 − ω2)

a†2.(ω2)a
†
1(ω1)|Ω〉

(A17)
Since the creation and annihilation operators for
different modes commute, and since one can use

〈Ω|ai(ω′)a†j(ω)|Ω〉 = δijδ(ω
′ − ω), we get

A12(t, t
′) = e−iω0t

′

∫

dωF0e
−iω(t−t′)f2(ω0 − ω)f1(ω).

(A18)
If F0 varies very slowly, which is a good asumption in the
case of a crystal, then we have

p(~x1, t|~x2, t′) ∼ |A12(t, t
′)|2

≃ |
∫

dωe−iω(t−t′)f2(ω0 − ω)f1(ω)|2.
(A19)

We see that the probability will depend on the difference
of the detection times.
To illustrate the above, let us assume that f1 = f2 =

f , and that they are gaussian. Then, if one assumes
that the central frequency of f is ωc = 1

2ω0 and f(ω) =

Ce−
(ωc−ω)2

σ2 , then we have f1(ω) = f2(ω0 − ω) = f(ω). If
one uses these relations the probability of detection of two
photons at the moments t and t′ satisfies the following
dependence

p(~x1, t|~x2, t′)
∼ |

∫

dωe−iω(t−t′)C2e−2 (ωc−ω)2

σ2 |2 ∼ e−
σ
2

2 (t−t′)2 .
(A20)

We see, that if σ → ∞ (that is, the detector has an
infinitely broad frequency response) then the expression
(A20) approaches the Dirac delta δ(t−t′) and this means,
that the two detectors register the two photons at the
same moment of time. However, such detectors do not
exist. Nevertheless, from equations (A19) and (A20), we
see that the degree of time correlation of the detection
of the PDC photons depends on the frequency response
of the detectors. Thus, the photons are almost perfectly
time correlated.
We have shown what are the reasons for the properties

of the PDC photons. Although the above reasoning was
done under the assumption of a monochromatic nature
of the pumping field, all this can be generalized to the
non-monochromatic case, including the most interesting
one of a pulsed pump. The distinguishing traits of this
situation can be summarized by the following remarks.
The emission from the crystal can appear only when the
pulse is within the crystal. Further, the frequency ω0 and
the wave vector are not strictly defined. If the pulse is
too short because of the relation T ≈ 1

∆ω
, where T is the

pulse width, the PDC photons are less tightly correlated
directionally.
The two photon state coming out of a PDC can then

be approximated by

|Ψ〉 =
∫

dω0F (ω0)
∫

dω1

∫

dω2×
∆(ω0 − ω1 − ω2)a

†
1(ω1)a

†
2(ω2)|Ω〉,

(A21)

where we have replaced the effective pump amplitude
by the spectral decomposition of the laser pulse F (ω0).
Since a pulse is a superposition of monochromatic waves,
we therefore integrate over the spectrum.
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Żukowski, Phys. Rev. Lett. 78, 3031 (1997).
[9] We shall not discuss here the effects linked with the

statistics of the output of the PDC sources.
[10] The partial transpose of a bipartite state ρAB = ρiµjν ,

where i and j are the indices for party A and µ and ν are
the indices for party B, with respect to part A is ρTA

AB =
ρjµiν [11]. A state ρAB is said to have positive partial

transpose if ρTA

AB is a positive operator. ρAB has non-
positive partial transpose otherwise. A state with non-
positive partial transpose is always entangled [11].

[11] A. Peres, Phys. Rev. Lett 77 1413 (1996).
[12] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Lett. A 223, 1 (1996).
[13] S. Hill and W.K. Wootters, Phys. Rev. Lett. 78, 5022

(1997); W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[14] G. Vidal, W. Dür, and J.I. Cirac, Phys. Rev. Lett. 89,

027901 (2002).
[15] M. Horodecki, A. Sen(De), and U. Sen, The rates

of asymptotic entanglement transformations for bipartite

mixed states: Maximally entangled states are not special,
to appear in Phys. Rev. A (quant-ph/0207031).

[16] P.W. Shor, J. Math. Phys. 43, 4334 (2002).
[17] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Rev. Lett. 78, 574 (1997).
[18] E.M. Rains, Phys. Rev. A 60, 179 (1999); E.M.

Rains, Phys. Rev. A 63, 019902 (2001); E.M. Rains,
A semidefinite program for distillable entanglement,
quant-ph/0008047.

[19] E.M. Rains, Phys. Rev. A 60, 173 (1999) .
[20] J.S. Bell, Physics 1, 195 (1964).
[21] R. Horodecki, P. Horodecki, and M. Horodecki, Phys.

Lett. A 200, 340 (1995).
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