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Cloning of orthogonal mixed states entails irreversibility
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Orthogonal pure states can be cloned as well as deleted. However if there is an initial disorder
in the system, that is for orthogonal mixed states, one cannot perform deletion. And cloning, in
such cases, necessarily produces an irreversibility, in the form of leakage of information into the
environment.

Nonorthogonal states cannot be cloned [1]. And or-
thogonal states can be cloned. However we will show that
if there is an initial disorder in the system, one necessarily
produces “irreversibility”, even when cloning orthogonal
states.

Consider two arbitrary mixed orthogonal states. For
definiteness, we take them to be of rank two each. This
restriction does not change the generality of the state-
ments that are made below. Suppose therefore that the
two orthogonal mixed states are

̺0 = p |0〉 〈0| + q |2〉 〈2| ,
̺1 = r |1〉 〈1| + s |3〉 〈3| ,

(1)

where of course p, q, r, s are nonnegative numbers such
that p + q = 1, and r + s = 1, and |0〉, |1〉, |2〉, |3〉 are a
set of mutually orthonormal states.

Consider now the task of cloning the two states, ̺0 and
̺1, if any one is given. So we want to create ̺i ⊗ ̺i from
̺i coupled with a blank state (that is, a state that has
no information about i, i = 0, 1). There is a trivial way
to do that. One simply makes a measurement onto the
(rank-two) projection operators

P0 = |0〉 〈0| + |2〉 〈2| ,
P1 = |1〉 〈1| + |3〉 〈3| .

If P0 clicks, then the conclusion is that the given state was
̺0. Otherwise, the state was ̺1. After finding out what
the state is, one can just prepare the required extra copy
of the state that is indicated by the measurement. Note
that one may deliberately perform the finer measurement
onto the orthonormal basis consisting of the states |0〉,
|1〉, |2〉, |3〉. That would destroy the information about
the mixing probabilities (p, q, and r, s) in the states ̺0
and ̺1. But we assume that these mixing probabilities
are known. So if, for example, |2〉 clicks in such a finer
measurement, the conclusion is that the given state was
̺0. One can then prepare two copies of ̺0.

However, for the case when q = s = 0, that is when ̺0
and ̺1 are pure, and are respectively |0〉 〈0| and |1〉 〈1|,
there is another way to clone. It is by using a gate that
takes

|0〉
S
|0〉

B
→ |0〉

S
|0〉

B
,

|1〉
S
|0〉

B
→ |1〉

S
|1〉

B
.

(2)

This could for example be the CNOT gate, which addi-
tionally takes

|0〉 |1〉 → |0〉 |1〉 ,
|1〉 |1〉 → |1〉 |0〉 .

To see the cloning of the states, consider the states
marked by S in eq. (2) as the original copy, and those
marked by B as the blank copy. One then obtains the
two copies of the original on the right-hand-side of eq.
(2).

Note an important difference in the two ways of
cloning. In the first method, a measurement step is in-
volved. This measurement, results in making the process
“open”. After the whole process of cloning has been com-
pleted, there is information about the system (precisely,
the result of the measurement) left in the environment.
Let us call this method of cloning orthogonal states as
“open cloning”.

Now contrast this method of cloning with the sec-
ond method of cloning orthogonal pure states, by using
CNOT-type gates. In this case, after the cloning pro-
cess has been completed, there is no information about
the system that is left in the environment. Let us call
this method of cloning orthogonal pure states as “closed
cloning”.

Open cloning is thus an irreversible process. It leads
to production of some “garbage” in the environment.
Closed cloning, on the other hand, is a “clean” process.
There is no left out garbage in this case. We will show
that cloning of orthogonal mixed states will always pro-
duce garbage. Such states cannot be cloned by closed
cloning.

Consider the state ̺i (i = 0, 1). We want to produce
two copies of ̺i. That is, we want to produce ̺i ⊗ ̺i.
At the input, we take a blank copy ̺b (along with ̺i).
Therefore our input is ̺i ⊗ ̺b, i = 0, 1. And we want
̺i ⊗ ̺i at the output. If we do not want the information
about i to get leaked into the environment, this evolution
must be done unitarily. Clearly, this cannot be done. To
see this, just note that unitary evolution preserves the
spectrum. But ̺i ⊗ ̺b cannot have the same spectrum
as ̺i ⊗ ̺i for both i = 0 and 1. Therefore cloning of
two orthogonal mixed states is not possible in a closed
system. To implement this cloning, one is bound to do a
measurement, so that the cloning is an open cloning.

Let us now consider the deleting process. In deleting
[2], one requires to have ̺i ⊗ ̺b at the output, when
̺i ⊗ ̺i is fed at the input. And we know that deleting
must necessarily be considered in a closed system (see
[3, 4] in this regard). So the same reasoning as above,
renders such deleting impossible by a unitary evolution.
Thus we have that deleting of orthogonal mixed states is
not possible.
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In the case of orthogonal pure states (|0〉 and |1〉), one
can clone (as in eq. (2)), and by the inverse operation,
one can delete. To see this, note that the inverse opera-
tion takes

|0〉 |0〉 → |0〉 |0〉 ,
|1〉 |1〉 → |1〉 |0〉 .

However in the case of orthogonal mixed states, consid-
ered in this paper, one cannot delete, while cloning is
possible if one considers an open system. Therefore for
orthogonal mixed states, cloning and deleting are not in-
verse processes of each other.
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