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Abstract:

A multi-objective particle swarm optimization (MOPSO) approach is presented for generating Pareto-optimal solutions for
reservoir operation problems. This method is developed by integrating Pareto dominance principles into particle swarm
optimization (PSO) algorithm. In addition, a variable size external repository and an efficient elitist-mutation (EM) operator
are introduced. The proposed EM-MOPSO approach is first tested for few test problems taken from the literature and evaluated
with standard performance measures. It is found that the EM-MOPSO yields efficient solutions in terms of giving a wide spread
of solutions with good convergence to true Pareto optimal solutions. On achieving good results for test cases, the approach
was applied to a case study of multi-objective reservoir operation problem, namely the Bhadra reservoir system in India. The
solutions of EM-MOPSOs yield a trade-off curve/surface, identifying a set of alternatives that define optimal solutions to the
problem. Finally, to facilitate easy implementation for the reservoir operator, a simple but effective decision-making approach
was presented. The results obtained show that the proposed approach is a viable alternative to solve multi-objective water
resources and hydrology problems. Copyright  2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Most of the water resources and hydrology problems are
characterized by multiple objectives and/or goals, which
often conflict and compete with one another. Optimiza-
tion of multi-purpose reservoir systems involves solving
multi-objective problems. For example, for a reservoir
system having hydropower and flood control as key pur-
poses, the two major objectives can be maximization of
the hydropower generation from the reservoir and mini-
mization of flood risk or flood damage. Obviously, these
two objectives are in conflict and compete with each
other. The higher the level of the reservoir, the more
the hydropower generation possible because of the high
water head, yet less water storage will be available for
flood control purposes and vice-versa. Clearly, one can
identify, within the active storage capacity of that reser-
voir, a Pareto optimum region where the enhancement of
the first objective can be achieved only at the expense or
degradation of the second, namely flood control (Haimes
et al., 1990). Also the units of these two objectives are
non-commensurable. The first objective, which maxi-
mizes the hydroelectric power, is generally measured in
units of energy and not necessarily in monetary units,
whereas the second objective can be measured in terms
of acres of land, livestock, or human lives saved. If the
objectives are non-commensurate, the classic methods
of optimization cannot be applied easily. Of the several
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approaches developed to deal with multiple objectives,
tradeoff methodologies have shown promise as effec-
tive means for considering non-commensurate objectives
that are to be subjectively compared in operation deter-
mination (Cohon and Marks, 1975). Therefore efficient
generation of a set of alternatives for multiple objectives
is very important with minimum computational require-
ments.

Scope for multi-objective optimization using
meta-heuristic techniques

Reservoir operation modeling has an exhaustive liter-
ature presenting various optimization techniques in order
to solve various kinds of problems (Yeh, 1985). How-
ever, in order to focus on the goal of this paper, a
brief overview is given here. Most of the researchers
on reservoir operation problems have tried conventional
techniques to generate tradeoffs among multiple objec-
tives. For example, Tauxe et al. (1979) have applied a
multi-objective dynamic programming (DP) model for
analyzing a reservoir operation problem involving three
conflicting objectives. Thampapillai and Sinden (1979)
and Mohan and Raipure (1992) analyzed the tradeoffs
for multiple objective planning through linear program-
ming (LP). To handle multiple objectives, many studies
have used either the weighing approach or the constraint
method. The constraint method was used for generation
of noninferior set and trade-off curves for reservoir oper-
ation problems (e.g. Croley and Rao, 1979; Yeh and
Becker, 1982; Liang et al., 1996 and Wang et al., 2005).
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The conventional optimization methods such as DP,
LP, and non-linear programming (NLP) are not suitable
to solve multi-objective optimization problems (MOOP),
because these methods use a point-by-point approach, and
the outcome of these classical optimization methods is a
single optimal solution. For example, the weighted sum
method will convert the MOOP into a single objective
optimization. By using a single pair of fixed weights, only
one point on the Pareto front can be obtained. Therefore,
if one would like to obtain the global Pareto optimum,
all possible Pareto fronts must first be derived. This
requires the algorithms to be executed iteratively, so as
to ensure that every weight combination has been used.
Obviously, it is impractical to reiterate the algorithms
continually to exhaust all the weight combinations. Hence
the algorithms should have an ability to ‘learn’ from
previous performance to direct the proper selection of
weights in further evolutions. Also conventional methods
may face problems, if the optimal solution lies on non-
convex or disconnected regions of function space (Deb,
2001).

Recently, meta-heuristic techniques such as evolu-
tionary algorithms (EAs) and swarm intelligence tech-
niques are becoming increasingly popular for solving
optimization problems. In the recent past, evolution-
ary techniques have been successfully applied for single
objective optimization (Oliveira and Loucks, 1997; Ward-
law and Sharif, 1999; Raju and Nagesh Kumar, 2004)
and MOOPs (Yapo et al., 1998; Vrugt et al., 2003; Khu
and Madsen, 2005), due to their efficiency and ease in
handling non-linear and non-convex relationships of real-
world problems. These techniques have some advantages
over the classical optimization techniques (Deb, 2001).
They use a population of solutions in each iteration and
offer a set of alternatives in a single run. They use ran-
domized initialization and stochastic search in their oper-
ation. Therefore, they can locate the search at any place
over the entire search space and are able to overcome
the problems of local optima. Thus population based
stochastic search techniques are more appropriate to solve
MOOPs. Achieving a well-spread and diverse Pareto
solution front is the primary goal of MOOP. Among the
elitist multi-objective EAs (MOEAs), strength Pareto EA
(SPEA) (Zitzler and Thiele, 1999), Pareto-archived evo-
lutionary strategy (PAES) (Knowles and Corne, 2000)
and non-dominated sorting genetic algorithm (NSGA-II)
(Deb et al., 2002) have been successfully demonstrated
for solving MOOP.

Among the meta-heuristic techniques, until recently
particle swarm optimization (PSO) was applied only to
single objective optimization tasks. However, the high
speed of convergence of the PSO algorithm attracted
researchers to develop multi-objective optimization algo-
rithms using PSO (Kennedy and Eberhart, 2001). Also,
the PSO seems to have some advantages in terms of
the better exploration and exploitation provided by local
and global search capabilities of the algorithm. In the
present study, a novel approach for multiple-objective

PSO (MOPSO) is developed. To demonstrate the effi-
ciency of the proposed approach, results obtained are
compared with NSGA-II, and evaluated with standard
performance measures that are frequently used for per-
formance evaluation of MOEAs.

The proposed approach for solving a multi-objective
decision problem in reservoir operation has a great
potential for application, due to its attractive feature of
generation of large number of well spread Pareto optimal
solutions in a single run. The other approaches suggested
in this paper for decision making, provide an opportunity
for the reservoir operator to choose the desired alternative
from a set of Pareto-optimal solutions.

PARTICLE SWARM OPTIMIZATION

Swarm intelligence is a new area of research, from
which the PSO technique has been evolved through
a simple simulation model of the movement of social
groups such as birds and fish (Kennedy and Eberhart,
2001). The basis of this algorithm is that local inter-
actions motivate the group behaviour, and individual
members of the group can profit from the discoveries
and experiences of other members. Social behaviour is
modeled in PSO to guide a population of particles (so-
called swarm), moving towards the most promising area
of the search space. The changes of the position of
the particles within the search space are based on the
social psychological tendency of individuals to emulate
the success of other individuals. In PSO, each particle
represents a candidate solution. If the search space is
D-dimensional, the ith individual (particle) of the popu-
lation (swarm) can be represented by a D-dimensional
vector, Xi D �xi1, xi2, . . . , xiD�T. The velocity (position
change) of this particle, can be represented by another
D-dimensional vector, Vi D �vi1, vi2, . . . , viD�T. The best
previously visited position of the ith particle is denoted as
Pi D �pi1, pi2, . . . , piD�T. Defining g as the index of the
global guide of the particle in the swarm, and superscripts
denoting the iteration number, the swarm is manipulated
according to the following two equations:

vnC1
id D �[w vn

id C c1rn
1 �pn

id � xn
id�/t

C c2rn
2 �pn

gd � xn
id�/t] �1�

xnC1
id D xn

id C t vnC1
id �2�

where d D 1, 2, . . . , D; i D 1, 2, . . . , N; N is the size of
the swarm population; � is a constriction factor which
controls and constricts the velocity’s magnitude; w is
the inertial weight, which is often used as a parameter
to control exploration and exploitation in the search
space; c1 and c2 are positive constant parameters called
acceleration coefficients; r1 and r2 are random numbers,
uniformly distributed in [0,1]; t is the time step usually
set as 1 and n is iteration number.

The successful application of PSO in many single
objective optimization problems reflects its effectiveness,
and it seems to be particularly suitable for multiobjective
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optimization due to its efficiency in yielding better
quality solutions while requiring less computational time
(Kennedy and Eberhart, 2001). The main difficulty in
extending PSO to multi-objective problems is to find the
best way of selecting the guides for each particle in the
swarm. The difficulty is noticeable, as there are no clear
concepts of local and global bests that can be clearly
identified, when dealing with many objectives rather than
a single objective. Recently a few proposals on extensions
of PSO technique to multi-objective optimization have
been reported (for example, Parsopoulos and Vrahatis,
2002; Hu et al., 2003; Li, 2003; Coello et al., 2004).

In this paper, an efficient method is presented for
PSO to solve MOOPs. The approach uses Pareto dom-
inance criteria for selecting non-dominated solutions;
an external repository (ERP) for storing best solutions
found (elitism); crowding distance operator for creating
effective selection pressure among the swarm to reach
true Pareto optimal fronts; and incorporates an effective
elitist-mutation (EM) strategy for effective exploration
of the search space. The proposed elitist-mutated multi-
objective particle swarm optimization (EM-MOPSO)
algorithm is discussed in detail in the following sections.

MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION

Brief concepts of multi-objective optimization are pre-
sented first and then the proposed algorithm is explained.

Multi-objective optimization and Pareto optimality

A general MOOP can be defined as: minimize a
function f�x�, subject to p inequality and q equality
constraints.

min . f�x� D ff1�x�f2�x� . . . fm�x�gT

x 2 D �3�

where x 2 Rn, fi : Rn ! R and

D D
{ x 2 Rn : li � x � ui, 8i D 1, . . . ., n

gj�x� ½ 0, 8j D 1, . . . ., p
hk�x� D 0, 8k D 1, . . . ., q

�4�

where m is number of objectives; D is feasible search
space; x D fx1x2 . . . xngT is the set of n-dimensional
decision variables (continuous, discrete or integer); R is
the set of real numbers; Rn is n-dimensional hyper-plane
or space; and li and ui are lower and upper limits of i-th
decision variable.

The MOOP should simultaneously optimize the vector
function and produce Pareto optimal solutions. Pareto
front is a set of Pareto optimal (non-dominated) solutions,
being considered optimal, if no objective can be improved
without sacrificing at least one other objective. On the
other hand, a solution xŁ is referred to as dominated by
another solution x, if and only if, x is equally good or
better than xŁ with respect to all objectives (Haimes et al.,
1990).

Elitist-mutated multi-objective particle swarm
optimization

The main algorithm consists of initialization of pop-
ulation, evaluation, and reiterating the search on swarm
by combining PSO operators with Pareto-dominance cri-
teria. In this process, the particles are first evaluated and
checked for dominance relation among the swarm. The
non-dominated solutions found are stored in an ERP, and
are used to guide the search particles. It uses variable size
ERP, in order to improve the performance of the algo-
rithm to save computational time during optimization.
If the size of ERP exceeds the restricted limit, then it
is reduced by using the crowded comparison operator,
which gives the density measure of the existing parti-
cles in the function space. Also, an efficient EM strategy
is employed for maintaining diversity in the population
and for exploring the search space. The combination of
these operators helps the algorithm to effectively prop-
agate the search towards true Pareto optimal fronts in
further generations.

EM-MOPSO algorithm

The developed EM-MOPSO algorithm can be summa-
rized in the following steps.

Step 1. Initialize population. Set iteration counter t D 0.
1. The current position of the i-th particle Xi is

initialized with random real numbers within
the specified decision variable range; each
particle velocity vector Vi is initialized with
uniformly distributed random number in [0,1].

2. Evaluate each particle in the population. The
personal best position Pi, is set to Xi.

Step 2. Identify particles that give non-dominated solu-
tions in the current population and store them in
an ERP.

Step 3. t D t C 1.
Step 4. Repeat the loop (step through PSO operators):

1. Select randomly a global best Pg for the i-th
particle from the ERP.

2. Calculate the new velocity Vi, based on
Equation (1), and the new Xi by Equation (2).

3. Repeat the loop for all the particles.
Step 5. Evaluate each particle in the population.
Step 6. Perform the Pareto dominance check for all the

particles: if the current local best Pi is dominated
by the new solution, then Pi is replaced by the
new solution.

Step 7. Set ERP to a temporary repository, TempERP
and empty ERP.

Step 8. Identify particles that give non-dominated solu-
tions in current iteration and add them to
TempERP.

Step 9. Find the non-dominated solutions in TempERP
and store them in ERP. The size of ERP is
restricted to the desired set of non-dominated
solutions; if it exceeds, use the crowding dis-
tance operator to select the desired ones. Empty
the TempERP.
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Step 10. Perform EM operation on specified number of
particles.

Step 11. Check for termination criteria; if the termination
criterion is not satisfied, then go to step 3;
otherwise output the non-dominated solution set
from ERP.

The main operators used in this algorithm are explained
below.

Variable size external repository

The selection of the global best guide of the parti-
cle swarm is a crucial step in a multi-objective PSO
algorithm. It affects both the convergence capability of
the algorithm as well as maintaining a good spread of
non-dominated solutions. As ERP stores non-dominated
solutions found in the previous iteration, any one of the
solutions can be used as global guide. But we want to
ensure that the particles in the population move towards
the sparse regions of the non-dominated solutions and
speed up the convergence towards the true Pareto opti-
mal region. To perform these tasks, the global best guide
of the particles is selected from a restricted variable size
ERP. This restriction on ERP is done using the crowding
distance operator. This operator ensures that those non-
dominated solutions with the highest crowding distance
values are always preferred to be in the ERP. The other
advantage of this variable size ERP is that it saves con-
siderable computational time during optimization. As the
ERP size increases, the computing requirement becomes
greater for sorting and crowding value calculations. Thus
for effective exploration of the function space, the size
is initially set to 10% of maximum ERP, and then the
value is increased in a stepwise manner, so that at the
start of 90% of maximum iterations, it reaches the max-
imum size of ERP. Selecting different guides for each
particle from a restricted repository allows the particles
better exploration of the true Pareto optimal region. This
kind of selection is novel and it effectively improves the
performance of the algorithm.

Crowding distance assignment operator

This operator is adopted from Deb et al. (2002). The
crowding distance value of a solution provides an esti-
mate of the density of solutions surrounding that solu-
tion. Crowding distance is calculated by first sorting the
set of solutions in ascending objective function values.
The crowding distance value of a particular solution is
the average distance of its two neighboring solutions.
The boundary solutions that have the lowest and high-
est objective function values are given infinite crowding
distance values, so that they are always selected. This
process is done for each objective function. The final
crowding distance value of a solution is computed by
adding all the individual crowding distance values in each
objective function. For sorting, an efficient quick sorting
procedure is used. The pseudo-code of crowding distance
computation is given below.

1. Get the number of non-dominated solutions in the ERP

l D jERPj
2. Initialize distance.

For i D 1 to l

ERP[i].dist D 0

3. Compute the crowding distance of each solution.
For each objective m,
Sort using objective value.

ERP D sort �ERP, m�

Set the boundary points to a large value so that they
are always selected.

ERP[1].dist D ERP[l].dist D 1
For i D 2 to (l-1)

ERP[i].dist D ERP[i].dist C �ERP[i C 1].m

� ERP[i � 1].m�/�fmax
m � fmin

m �

Elitist-mutation operator

To maintain diversity in the population and to explore
the search space, a novel strategic mechanism called
EM is incorporated into the algorithm. This acts on a
predefined number of particles. In the initial phase of
this mechanism, it tries to replace the infeasible solutions
with the mutated least crowded particles of ERP and at
the later phase, it tries to exploit the search space around
the sparsely populated particles in ERP along the Pareto
fronts. This is a special strategic mechanism, which
enhances the performance of MOPSO while extending
from traditional PSO algorithm. Thus the EM operator
helps to uniformly distribute the non-dominated solutions
along the true Pareto optimal front. The pseudo-code of
the elitist mutation mechanism is given below.

1. Randomly select one of the objectives from m objec-
tives. Sort the fitness function of particles in descend-
ing order and get the index number descending order
sorted particles (DSP) for the respective particles.

2. Use crowding distance assignment operator and calcu-
late the density of solutions in the ERP and sort them in
descending order of crowding value. Randomly select
one of the least crowded solutions from the top 10%
of ERP as guide (g).

3. Perform EM on a predefined number of particles
(NMmax).

Let Rp —be the size of repository; pem - probability
of elitist mutation; Sm - mutation scale used to preserve
diversity; rand - uniformly distributed random number
U(0,1); intRnd (a, b) - uniformly distributed integer
random number in the interval [a, b]; randn - Gaussian
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random number N(0,1); and VR[i]- range of decision
variable i.

For i D 1 to NMmax

l D DSP[i]

g D intRnd�1, 0Ð1 ð Rp�

For d D 1 to dim

if �rand < pem�

X[l] [d] D ERP[g][d] C Sm
Ł VR[d]Ł randn

else

X[l] [d] D ERP[g][d]

End For

End For

If the mutated value exceeds the bounds, then it is
limited to the upper or lower bound. The velocity vector
of the particle remains unchanged during this EM step.

Constraint handling

In order to handle the constrained optimization prob-
lems, this study adopts the constraint handling mecha-
nism proposed by Deb et al. (2002). This is a simple,
but very effective procedure reported in the literature. In
this approach, a solution i is said to be a constrained-
dominate solution j if any of the following conditions
hold good:

1. Solution i is feasible and solution j is not.
2. Both solutions i and j are infeasible, but solution i has

a smaller overall constraint violation.
3. Both solutions i and j are feasible and solution i

dominates solution j.

By using all the above steps, the EM-MOPSO
approach is coded in user friendly mathematical software
package MATLAB 6Ð5 and is run on PC/WindowsXP/
256MB RAM/2GZ computer. The applicability and effi-
ciency of the proposed approach is demonstrated in the
following sections.

EM-MOPSO APPLICATION AND PERFORMANCE
EVALUATION

In order to demonstrate the efficiency of the proposed
EM-MOPSO, it is first tested for a few standard test
problems taken from the MOEAs literature and its
performance is evaluated with results of NSGA-II.

Test problems

The four test functions considered to test the perfor-
mance of the proposed algorithm are given in Table I
(Deb, 2001). The first test problem (BNH) is a MOOP,
with two objectives subject to two constraints. The sec-
ond test problem (KITA) is a MOOP, with maximiza-
tion of two objectives subject to three constraints. This
problem has non-convexity in its Pareto optimal region.
The third test problem (CONSTR) is a MOOP, with
two objectives subject to two constraints. This problem
has the difficulty that a part of the unconstrained Pareto
optimal region is not feasible. Thus the resulting con-
strained Pareto optimal region is a concatenation of the
first constraint boundary and some part of unconstrained
Pareto optimal region. The fourth test problem (SRN) is
a MOOP, with two objectives subject to two constraints.
Here the constrained Pareto optimal set is a subset of
the unconstrained Pareto-optimal set, which gives diffi-
culty in finding the true Pareto optimal region for the
algorithm.

Sensitivity of EM-MOPSO parameters

The sensitivity analysis of the PSO model is performed
with different combinations of each parameter. In this
analysis, it is observed that by considering the proper
value for the constriction coefficient, the inertial weight
does not have much influence on the final result of the
model (Nagesh Kumar and Janga Reddy, 2006). So in
this study the inertial weight (w) is fixed as 1. Also, it
is found that the value of constriction coefficient � equal
to 0Ð9 yields better results for the given model. After a
number of trials, it was found that constant parameters
c1 D 1Ð0 and social parameter c2 D 0Ð5 resulted in better
quality solutions. The same values are used for all the
test problems.

Table I. Test problems used in the study

Problem Variable bounds Objective functions Constraints

BNH x1 2 [0, 5] Minimize g1�x� D �x1 � 5�2 C x2
2 � 25

x2 2 [0, 3] f1(x) D 4x2
1 C 4x2

2 g2�x� D �x1 � 8�2 C �x2 C 3�2 ½ 7Ð7
f2(x) D �x1 � 5�2 C �x2 � 5�2

KITA xi 2 [0, 7] Maximize g1�x� D x1/6 C x2 � 6Ð5 � 0
i D 1, . . . , 3 f1�x� D �x2

1 C x2 g2�x� D 0Ð5x1 C x2 � 7Ð5 � 0
f2�x� D 0Ð5x1 C x2 C 1 g3�x� D 5x1 C x2 � 30 � 0

CONSTR x1 2 [0Ð1, 1Ð0] Minimize g1�x� D x2 C 9x1 ½ 6
x2 2 [0, 5] f1(x) D x1 g2�x� D �x2 C 9x1 ½ 1

f2(x) D �1 C x2�/x1

SRN xi 2 [�20, 20] Minimize g1�x� D x2
1 C x2

2 � 225
i D 1, 2 f1(x) D �x1 � 2�2 C �x2 � 1�2 C 2 g2�x� D x1 � 3x2 � �10

f2(x) D 9x1 � �x2 � 1�2
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Size of elitist-mutated particles (NMmax ). The number
of particles to be elitist mutated is selected after ensuring
that the population does not lose control on search at the
cost of exploring for better non-dominated solutions. To
experiment with the size of elitist mutated particles, the
number of particles is varied as 5, 10, 15, 20, 25 and 30
for the problems having a maximum population of 100.
The best results are found for NMmax D 20 and is kept
constant for all the test problems considered in this study.

Probability of elitist mutation (pem). pem is varied from
0 to 0Ð5 for sensitivity analysis. It is found that best
performance occurs at pem D 0Ð2, and is kept constant
for all the test problems considered in the study.

Elitist-mutation operator mutation scale (Sm). The
other parameter used in EM operation is mutation scale
(Sm). After various experiments, it is found that a value
of Sm in the range of 0Ð2 to 0Ð01 gives good performance.
This is selected after ensuring that at the initial stage it
did not deteriorate the search while exploring the search
space or stagnate the search at the end of iterations.

Simulation results

To run the EM-MOPSO algorithm, the following
parameters are used: size of population D 100; constant
parameters c1 D 1Ð0 and c2 D 0Ð5; inertial weight w D 1;
constriction coefficient � D 0Ð9; size of ERP D 100; the
size of elitist-mutated particles is set to 20, the value
of pem was set to 0Ð2; and the value of Sm decreases
from 0Ð2 to 0Ð01 over the iterations. To run the NSGA-II
model, the initial population was set to 100, crossover
probability to 0Ð9, and mutation probability to 1/n
(n is the number of real variables). The distribution index
values for real-coded crossover and mutation operators
are set to 20 and 100 respectively (Deb et al., 2002).
Maximum number of iterations in a run is set to 250 for
both the algorithms. The same parameter settings were
used for all the problems. To evaluate the performance
of the proposed EM-MOPSO algorithm, this study uses
two performance measures, set coverage metric (SC) and
spacing metric (SP) (Deb, 2001). The details of these
performance metrics are presented in APPENDIX- A.

Table II shows the best, worst, mean, variance and
standard deviation (SD) values of the two performance
metrics (SC and SP) obtained from 10 independent
runs using EM-MOPSO and NSGA-II. The set coverage
metrics SC (A, B) and SC (B, A) give a measure of how
many solutions of A are covered by B and vice versa.
Here, the value SC �A, B� D 1 means that all solutions
in B are weakly dominated by A, while SC �A, B� D 0
represents the situation when none of the solutions in
B are weakly dominated by A. It can be seen that
with respect to the SC metric, the average performance
of EM-MOPSO is the best for test functions BNH,
KITA and SRN, whereas NSGA-II performs best for
the CONSTR problem. This metric shows the efficiency
of EM-MOPSO in achieving better convergence to true

Table II. Resulting statistics by EM-MOPSO and NSGA-II for
test problems, considered in the study. In SC(A, B), A is
EM-MOPSO and B is NSGA-II. Bold numbers indicate the best

performing algorithm

Test Statistic Performance metric
problem

Set coverage
metric (SC)

Spacing
metric (SP)

SC(A, B) SC(B,A) EM-
MOPSO

NSGA-II

Best 0Ð1400 0Ð1200 0Ð6357 0Ð6408
Worst 0Ð0900 0Ð0500 0Ð7559 0Ð8928

BNH Mean 0.1111 0Ð0877 0.6941 0Ð7756
Variance 0Ð0003 0Ð0005 0Ð0015 0Ð0053
SD 0Ð0176 0Ð0233 0Ð0385 0Ð0727
Best 0Ð2900 0Ð2400 0Ð0374 0Ð0496
Worst 0Ð1200 0Ð1300 0Ð4254 0Ð5117

KITA Mean 0.2400 0Ð1811 0.1359 0Ð1464
Variance 0Ð0015 0Ð0013 0Ð0196 0Ð0227
SD 0Ð0394 0Ð0355 0Ð1401 0Ð1507
Best 0Ð1600 0Ð1700 0Ð0374 0Ð0372
Worst 0Ð0700 0Ð1000 0Ð0431 0Ð0487

CONSTR Mean 0Ð1181 0.1344 0.0406 0Ð0437
Variance 0Ð0008 0Ð0004 0Ð0000 0Ð0000
SD 0Ð0281 0Ð0201 0Ð0017 0Ð0041
Best 0Ð1400 0Ð1400 1Ð0768 1Ð3402
Worst 0Ð0400 0Ð0400 1Ð3929 1Ð7073

SRN Mean 0.0978 0Ð0944 1.2439 1Ð5860
Variance 0Ð0014 0Ð0009 0Ð0114 0Ð0179
SD 0Ð0370 0Ð0305 0Ð1055 0Ð1337

Pareto optimal fronts than NSGA-II. With regard to the
spacing metric (SP), as compared to NSGA-II, EM-
MOPSO gives smaller SP values for all the test problems
considered in the study. The smaller SP indicates that
the algorithm gives better distribution of solutions. Thus
EM-MOPSO maintains the best distribution of solutions
for all the test problems. For illustration purposes, a
sample result for each of the test problems considered is
shown in the plots in Figure 1. Thus the results obtained
clearly show that the proposed method does not have any
difficulty in achieving a good spread of Pareto optimal
solutions for constrained multi-objective optimization.

CASE STUDY

To demonstrate the efficacy of the proposed approach,
the Bhadra reservoir system in India is taken up as a
case study for developing optimal reservoir operation
policy. Figure 2 shows the location map of the Bhadra
reservoir system. The Bhadra dam is located at latitude
13°420 N and longitude 75°3802000 E. The Bhadra reser-
voir is a multi-purpose project providing facilities for irri-
gation, hydropower generation and meeting water quality
requirements downstream. The schematic diagram of the
reservoir system is given in Figure 3.

Most of the inflows into the reservoir are received dur-
ing the monsoon season of 4 months. But the demands
are distributed throughout the year. The reservoir pro-
vides water for irrigation of 6367 ha and 87 512 ha under
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Figure 1. Non-dominated solutions obtained using EM-MOPSO and NSGA-II for the test problems (a) BNH, (b) KITA, (c) CONSTR and (d) SRN

left and right bank irrigation canals respectively. The
irrigated area spread over the districts of Chitradurga,
Shimoga, Chikmagalur, and Bellary in Karnataka state,
comprises predominantly of red loamy soil, except in
some portions of the right bank canal area, which consists
of black cotton soil. Major crops grown in the com-
mand area are paddy, sugarcane, permanent garden, and
semidry crops. Also under this project there are three sets
of turbines, one set each on the left bank canal and the
right bank canal and the other set at the river bed level
of the dam, generating hydropower. The operating head
above river bed, ranges from 38Ð56 m to 54Ð41 m for the
right bank turbine (PH2), and from 36Ð88 m to 56Ð69 m
for left bank turbine (PH1) and bed turbines (PH3). The
mean tail water levels of right bank, left bank, and bed
turbines are at 32Ð736 m, 12Ð802 m and 6Ð706 m above
the bed level respectively. It can be noted that the water
released to left bank and right bank canals goes through
turbines only when the water is within the limits of tur-
bine operating range, otherwise it will be released directly
for irrigation. Water quality is also a major concern to the
reservoir authorities due to continuous development of
industries in the downstream region. So the water qual-
ity objective requires certain minimum water levels to be
maintained in the river downstream.

Salient features of the reservoir are given in Table III.
Data pertaining to monthly inflows and other details were
collected from water resources development organiza-
tion (WRDO), Bangalore covering a period of 69 years
(from 1930–1931 to 1998–1999). The monthly crop
water requirements were calculated using Food and Agri-
cultural Organization (FAO) Penman-Monteith method
(Allen et al., 1998).

Model formulation

The objectives of the reservoir operation model
are: minimizing the irrigation deficits, maximizing the
hydropower generation and maximizing the satisfaction
level of water quality. These are conflicting and/or com-
petitive objectives. For example, conflict may arise during
dry periods: for minimization of irrigation deficits, more
water is to be released to satisfy irrigation demands; while
for maximization of hydropower production, higher level
of storage in the reservoir is required to produce more
hydropower energy; and for maximizing the satisfaction
level of water quality, steady release of water is required
to meet river water quality requirements downstream.
Thus, solving the allocation problems of this reservoir
system is interesting from the multi-objective perspec-
tive. In order to simplify the water quality objective,
in this study it is assumed that if we discharge a pre-
specified amount of water into the downstream river, the
river water quality can be maintained. The water quality
demands are chosen after carefully studying the historical
data and previous studies on river water quality mainte-
nance. To maintain even distribution of irrigation deficits
if any, the irrigation objective is taken as squared devi-
ation of demand to release. The competing objectives of
the system are expressed as follows:

Minimize sum of squared deviations for irrigation
annually:

SQDV D
12∑

tD1

�D1,t � IR1,t�
2 C

12∑
tD1

�D2,t � IR2,t�
2 �5�

where SQDV is the sum of squared deviations of
irrigation demands from releases. D1,t and D2,t are the
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Figure 2. Location map of the Bhadra project command area

Left bank canal
capacity = 10 m3/s

Irrigated area = 6, 367 ha
Annual demand = 227 Mm3 

Irrigated area = 87, 512 ha
Annual demand = 1, 911 Mm3

PH1PH2
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Bhadra river

Reservoir 

Left turbine
capacity = 2,000 kW

Bed turbine
capacity=24,000 kW

Right turbine
capacity = 13,200 kW

Right bank canal
capacity= 71 m3/s

Figure 3. Schematic diagram of the Bhadra reservoir project

irrigation demands for the left bank canal and right bank
canal command areas respectively in period t in Mm3;
IR1,t and IR2,t are the irrigation releases into the left and
right bank canals respectively in period t in Mm3.

Table III. Salient features of Bhadra reservoir system

Description Quantity

Gross storage capacity 2025 Mm3

Live storage capacity 1784 Mm3

Dead storage capacity 241 Mm3

Average Annual inflow 2845 Mm3

Left bank canal capacity 10 m3/s
Right bank canal capacity 71 m3/s
Left bank turbine capacity (PH1) 2000 Kw
Right bank turbine capacity (PH2) 13 200 Kw
Riverbed turbine capacity (PH3) 24 000 kW

Maximize annual hydropower production:

P D
12∑

tD1

p�R1,tH1,t C R2,tH2,t C R3,tH3,t� �6�
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where P is the total energy produced in M kWh; p is
power production coefficient; R1,t, R2,t and R3,t are the
releases to left bank, right bank and river bed turbines
respectively in period t in Mm3. H1,t, H2,t, H3,t are the
net heads available to the left bank, right bank and bed
turbines respectively in meters during period t (here,
head is a nonlinear function of initial and final reservoir
storage).

Maximize satisfaction level of river water quality:

WQ D min
8tD1,2,...,12

��t� �7�

where, �t is satisfaction level of water quality in period
t and is given by,

�t D




0 if R3,t � QDmin,t
�R3,t � QDmin,t�

�QDmax,t � QDmin,t�
if QDmin,t �R3,t �QDmax,t

1 if R3,t ½ QDmax,t
�8�

where, QDmin,t and QDmax,t are the minimum and maxi-
mum water demands to maintain water-quality in period
t in Mm3 for the river downstream of the dam.

The optimization is subject to the following con-
straints:

Storage continuity:

StC1 D St C It � �R1,t C R2,t C R3,t C Et C Ot�

8t D 1, 2, . . . , 12 �9�

where St D Active reservoir storage at the beginning
of period t in Mm3; It D inflow into the reservoir during
period t in Mm3; Et D the evaporation losses during
period t in Mm3 (here, Et is a nonlinear function of initial
and final storages of period t); Ot D overflow from the
reservoir in period t in Mm3;

Storage limits:

Smin � St � Smax 8t D 1, 2, . . . , 12 �10�

where Smin and Smax are the minimum and maximum
active storages of the reservoir in Mm3.

Maximum power production limits:

pR1,tH1,t � E1,max 8t D 1, 2, . . . , 12 �11�

pR2,tH2,t � E2,max 8t D 1, 2, . . . , 12 �12�

pR3,tH3,t � E3,max 8t D 1, 2, . . . , 12 �13�

where, E1,max, E2,max, and E3,max are the maximum
amounts of power in M kWh, that can be produced
(turbine capacity) by the left, right and bed level turbines
respectively.

Canal capacity limits:

IR1,t � C1,max 8t D 1, 2, . . . , 12 �14�

IR2,t � C2,max 8t D 1, 2, . . . , 12 �15�

where, C1,max and C2,max are the maximum canal carrying
capacities of the left and right bank canals respectively.

Irrigation demands:

D1 min,t � IR1,t � D1 max,t 8t D 1, 2, . . . , 12 �16�

D2 min,t � IR2,t � D2 max,t 8t D 1, 2, . . . , 12 �17�

where, D1 min,t and D1 max,t are minimum and maxi-
mum irrigation demands for left bank canal respectively;
D2 min,t and D2 max,t are minimum and maximum irriga-
tion demands for right bank canal respectively in time
period t.

Water Quality Requirements:

R3,t ½ MDTt 8t D 1, 2, . . . , 12 �18�

where, MDTt D minimum release to meet downstream
water quality requirement in Mm3.

It can be noted that, in this study, under favorable range
of reservoir storage for power production, the releases
made through power turbines also serve to meet irrigation
demands of the left bank and right bank canals during
irrigation requirement periods. However, if the reservoir
storage is not within the limits of the turbine power
production range, then the water is released only to meet
irrigation demands through sub-ways to irrigation canals.
Since the water released for irrigation is restricted to its
demands, any excess water is not a penalizing problem
in the first objective function as given in Equation (5).

RESERVOIR OPERATION MODEL APPLICATION
AND RESULTS

To apply the EM-MOPSO for reservoir operation model,
the following parameters are selected. The initial popula-
tion of the EM-MOPSO is set to 200; c1 and c2 are set to
1Ð0 and 0Ð5 respectively; w is set to 1Ð0; and � is set to
0Ð9; the number of non-dominated solutions to be found
is set to 200. For the EM step, the size of elitist-mutated
particles is set to 30, the value of pem was set to 0Ð2; and
the value of Sm decreases from 0Ð2 to 0Ð01 over the iter-
ations. Then EM-MOPSO is run for 500 iteration steps.
To run the NSGA-II model, the initial population was set
to 200, crossover probability to 0Ð9, and mutation prob-
ability to 1/n (n is the number of real variables). The
distribution index values for real-coded crossover and
mutation operators are set to 20 and 100 respectively.
NSGA-II is also run for 500 generations. The average
monthly inflow into the reservoir computed for each cal-
endar month over a period of 69 years (from 1930–1931
to 1998–1999) is used as inflow data to implement the
above model.

Two-objective model

To show the effectiveness of the proposed MOPSO, for
solving the reservoir operation problem, first it is applied
to irrigation and hydropower as two objectives of the
model. The reservoir operation model consists of mini-
mizing irrigation deficits (Equation (5)) and maximizing
the hydropower (Equation (6)) subject to satisfying the
constraints from Equations (9) to (18).
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To check the performance, 10 independent runs were
carried out for the two-objective reservoir operation
model using both the algorithms. Table IV shows the
resulting statistics for both the EM-MOPSO and NSGA-
II models. It can be observed that with respect to set
coverage metric, the average value of SC(A, B) is higher
than the SC(B, A) value (here A is EM-MOPSO and B is
NSGA-II). The metric SC(A, B) refers to the percentage
of solutions in B that are weakly dominated by solutions
of A. Thus in this case, EM-MOPSO is performing better
than the NSGA-II. Similarly, for the spacing metric, from
Table IV it can be observed that the mean value of SP
metric for EM-MOPSO is lower than that for NSGA-II.
This indicates that best distribution of Pareto solutions is
obtained in EM-MOPSO. For demonstration purposes a
sample result corresponding to median value of SC(A,B)
is shown in Figure 4. It can be seen that EM-MOPSO
is able to generate a set of well-distributed Pareto-
optimal solutions. In this case NSGA-II fails to yield
the extreme solutions, whereas our proposed method
is able to provide extreme solutions comfortably (the
minimum squared deviation of irrigation as 0 �Mm3�2 and
maximum hydropower production as 227Ð845 MkWh).
Thus again these results demonstrate that the proposed
method is very useful for real life systems application.

Three-objective model

The reservoir operation model for three objectives con-
sists of minimizing the irrigation deficits (Equation (5)),
maximizing the hydropower (Equation (6)) and maximiz-
ing the satisfaction level of water quality (Equations (7)
and (8)) subject to satisfying the constraints from
Equations (9) to (18). Figure 5 shows the results of 200
non-dominated solutions obtained using EM-MOPSO
after 500 iterations. There are a number of alternatives
that can be chosen at various satisfaction levels of the
multiple objectives. Depending on the circumstances pre-
vailing under the reservoir system and by analyzing the
tradeoff between the multiple objectives, the reservoir
operator can make an appropriate decision. The details
of decision making for application are presented in the
following section.

Table IV. Resulting statistics by EM-MOPSO and NSGA-II for
the two-objective reservoir operation model. In SC(A,B), A is
EM-MOPSO and B is NSGA-II. Bold numbers indicate the best

performing algorithm

Statistic Performance metric

Set coverage metric
(SC)

Spacing metric
(SP)

SC(A, B) SC(B,A) EM-MOPSO NSGA-II

Best 0Ð2000 0Ð0400 206Ð1277 246Ð2255
Worst 0Ð8788 0Ð6350 294Ð1276 787Ð7765
Mean 0.5582 0Ð2878 258.2752 504Ð3212
Variance 0Ð0435 0Ð0317 1419Ð9885 32 583Ð4308
SD 0Ð2085 0Ð1780 37Ð6827 180Ð5088
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Figure 4. Non-dominated solutions obtained using EM-MOPSO and
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Decision making

In any application, for final decision making, the deci-
sion maker might be interested in minimum possible
number of well representative solutions for further analy-
sis. So it is important that after obtaining many solutions
which are true Pareto Optimal with uniform spread and
wide coverage, we need to reduce the large set of solu-
tions to a few representative solutions. In order to do
that, various clustering algorithms are available. A sim-
ple clustering algorithm, which reduces the large number
of final Pareto solutions (N) to a few representative solu-
tions (N), is described here.

Clustering technique

First each solution in ERP is considered to reside in
a separate cluster. Thus initially there are N clusters.
Thereafter the cluster distances between all pairs of
clusters are calculated. Then the two clusters with the
minimum cluster distance are combined together to form
one big cluster. The procedure is repeated by calculating
the cluster distances for all the pairs of clusters obtained
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by merging the two closest clusters. This process of
merging clusters is continued until the number of clusters
in the ERP is reduced to N. Thereafter, in each cluster,
the solution with the minimum average distance from
other solutions in the cluster is taken as a representative
solution for that cluster. The step-by-step procedure of
the algorithm is given below (Deb, 2001).

1. Initialize cluster set C; each individual i in ERP
constitutes a distinct cluster. i.e. Ci D fig, so that
C D fC1, C2, . . . ., CNg

2. If, jCj � N go to Step 5, otherwise go to Step 3.
3. For each pair of clusters, calculate the cluster-distance

by using Equation (19).

d12 D 1

jC1j.jC2j
∑

i2C1,j2C2

d�i, j� �19�

where the function d12 reflects the distance between two
individuals i1 and i2 (here the distance in objective space
is used).
4. Find the pair (i1, i2) which corresponds to the mini-

mum cluster-distance. Merge the two clusters Ci1 and
Ci2 together. This reduces the size of C by one. Go to
Step 2.

5. Choose only one solution from each cluster and remove
all others from the cluster. The solution having the
minimum average distance from other solutions in the
cluster is chosen as the representative solution of the
cluster (centroid method).

To reduce the large number of alternatives, the num-
ber of clusters is chosen as 20. According to the clus-
ter algorithm described above, this reduces the large
set of non-dominated solutions to a few representative
solutions. Figure 6 shows the 20 representative clustered
Pareto-optimal solutions for the three-objective reservoir
operation model.

To facilitate final decision making, (i.e. to understand
how each of the objectives can influence the decision) a

0
0.5

1
1.5

2

x 105

100

150

200

250
0

0.2

0.4

0.6

0.8

1

f1f2

f3

Figure 6. Representative non-dominated solutions obtained from clus-
tering of EM-MOPSO generated solutions. f1-sum of squared deficits
of irrigation releases �Mm3�2; f2-hydropower production, M kWh;

f3-satisfaction level of water quality

simple procedure called Pseudo-weight vector approach
is employed in this study and the details of the procedure
are given below.

Pseudo-weight vector approach

In this approach, a pseudo-weight vector is calculated
for each obtained solution. For minimization problems,
the approach is described here. From the obtained set of
solutions, the minimum fmin

i and maximum fmax
i values

of each objective function i are noted. Thereafter the
Equation (20) is used to compute the weight wi for the
i-th objective function (Deb, 2001):

wi D �fmax
i � fi�x��/�fmax

i � fmin
i �

M∑
mD1

�fmax
i � fm�x��/�fmax

i � fmin
m �

�20�

This equation calculates the relative distance of the
solution from the worst (maximum) value in each objec-
tive function. Thus, for the best solution for the i-th
objective, the weight wi is to be a maximum. The numer-
ator in the right side of the above equation ensures that
the sum of all weight components for a solution is equal
to one. Once the weight vectors are calculated, a simple
strategy is to choose the solution closer to a user-preferred
weight vector. For example, if an 80% weightage for f1

and a 20% weightage for f2 are desired, the correspond-
ing weight vector closer to that non-dominated solution
can be selected for final decision making.

Based on pseudo-weight vector approach, the weights
that can be given for each objective are shown in Table V,
which gives the objective values for each of the represen-
tative Pareto optimal solutions and its respective weight
(shown in parenthesis) for each alternative. This provides
ease in decision making for policy implementation. After
analyzing the available alternatives, based on individual
preferences, the final decision can be made. Suppose the
reservoir operator decides to implement a policy with
weights 0Ð5, 0Ð1 and 0Ð4 for irrigation deficit, hydropower
production and water quality satisfaction levels respec-
tively, then a solution closer to that set of weights i.e.
9th solution from the Table V can be selected. The model
readily gives the corresponding policy for implementa-
tion. Figure 7 shows the corresponding releases to be
made into the left bank canal, right bank canal and bed
turbine. Figure 8 shows the corresponding initial stor-
ages required for ensuring such releases. Thus this kind
of analysis can be implemented effectively with the pro-
posed EM-MOPSO technique for derivation of reservoir
operation policies.

CONCLUSIONS

In this study, a novel approach for multi-objective
optimization based on swarm intelligence principles is
proposed and applied to develop efficient operating
alternatives for multi-objective reservoir operation. The
proposed MOPSO approach combines PSO technique

Copyright  2007 John Wiley & Sons, Ltd. Hydrol. Process. 21, 2897–2909 (2007)
DOI: 10.1002/hyp



2908 M. J. REDDY AND D. NAGESH KUMAR

Table V. Filtered or representative Pareto optimal solutions for
the three-objective reservoir operation model. The values in
brackets show the pseudo weights obtained for the respective

objective

Sl. No. Sum of squared
deficits of irrigation
releases �Mm3�2

Hydropower
(M kWh)

Water quality
satisfaction level

1 868Ð18 (0Ð60) 146Ð94 (0Ð02) 0Ð66 (0Ð39)
2 32 580Ð11 (0Ð56) 199Ð25 (0Ð44) 0Ð03 (0Ð00)
3 1 56 619Ð52 (0Ð00) 232Ð14 (0Ð50) 1Ð00 (0Ð50)
4 99 357Ð97 (0Ð16) 223Ð42 (0Ð40) 1Ð00 (0Ð44)
5 64 860Ð54 (0Ð28) 209Ð53 (0Ð36) 0Ð77 (0Ð36)
6 40 728Ð10 (0Ð31) 202Ð89 (0Ð28) 1Ð00 (0Ð42)
7 24 705Ð84 (0Ð37) 192Ð85 (0Ð24) 0Ð91 (0Ð39)
8 252Ð88 (0Ð93) 144Ð72 (0Ð00) 0Ð11 (0Ð07)
9 2796·60 (0·51) 161·66 (0·10) 0·77 (0·39)

10 1903Ð16 (0Ð68) 161Ð25 (0Ð13) 0Ð31 (0Ð20)
11 69 078Ð16 (0Ð25) 210Ð89 (0Ð34) 0Ð89 (0Ð40)
12 8392Ð71 (0Ð56) 177Ð37 (0Ð22) 0Ð40 (0Ð23)
13 1 30 367Ð73 (0Ð08) 227Ð08 (0Ð45) 1Ð00 (0Ð47)
14 9315Ð25 (0Ð47) 178Ð42 (0Ð19) 0Ð67 (0Ð33)
15 9851Ð96 (0Ð50) 179Ð74 (0Ð21) 0Ð55 (0Ð29)
16 44 503Ð89 (0Ð38) 205Ð14 (0Ð37) 0Ð47 (0Ð24)
17 3686Ð70 (0Ð74) 170Ð16 (0Ð22) 0Ð07 (0Ð03)
18 19 680Ð38 (0Ð58) 189Ð37 (0Ð34) 0Ð16 (0Ð09)
19 81 005Ð89 (0Ð21) 217Ð66 (0Ð36) 1Ð00 (0Ð43)
20 1542Ð24 (0Ð74) 160Ð49 (0Ð13) 0Ð20 (0Ð13)
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Figure 7. Release policy obtained for selected optimal point, showing
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Figure 8. Monthly initial storages to be maintained in the reservoir
corresponding to the selected optimal point

with Pareto dominance criteria to evolve non-dominated
solutions. It uses a variable size ERP and a crowded

comparison operator to promote solution diversity. In
addition, a special EM operator is incorporated into
the algorithm. This strategic mechanism keeps diversity
in the population and consequently helps for effective
exploration of Pareto optimal front. The proposed EM-
MOPSO was first tested for a few standard test problems
from the literature and it was found that the approach is
quite robust and very competitive to NSGA-II in terms of
yielding a diverse set of solutions along the true Pareto
optimal fronts.

On achieving satisfactory performance for test prob-
lems, EM-MOPSO is applied to a reservoir operation
problem, namely the Bhadra reservoir project. The multi-
ple objectives involve minimization of irrigation deficit,
maximization of hydropower and maximization of sat-
isfaction level of downstream water quality require-
ments. First a two-objective model is solved and EM-
MOPSO efficiency is demonstrated by comparing it with
the results of NSGA-II. The results obtained clearly
show the superiority of the proposed approach. Then the
EM-MOPSO approach is extended to a three-objective
model and many Pareto optimal solutions are generated.
A clustering algorithm is employed to reduce the large
set of Pareto optimal solutions to a small number of
convenient representative alternatives. To facilitate ease
in decision making, a pseudo-weight vector approach
is employed. This provides an idea about the relative
weight of each alternative and its preference over others.
By analyzing the weight combinations, depending on the
preference of the reservoir operator, a suitable policy can
be implemented.

The main advantages of the proposed EM-MOPSO
approach are that it is easy to implement and easy to
use, and yet robust in yielding efficient Pareto frontiers.
Hence it can be concluded that, for multi-objective
water resources and hydrology problems, the proposed
technique is a viable tool for multi-objective analysis
and decision making, and can be used in any practical
situation.

APPENDIX A

Set coverage metric

This metric gives the relative spread of solutions
between two sets of solution vectors A and B. The set
coverage metric calculates the proportion of solutions in
B, which are weakly dominated by solutions of A (Deb,
2001).

C�A, B� D jfb 2 Bj9a 2 A : a � bgj
jBj �21�

the value C(A, B) D 1 means that all solutions in B are
weakly dominated by A, while C(A, B) D 0 represents
the situation when none of the solutions in B are weakly
dominated by A. Since the domination operator is not
symmetric, i.e. C(A, B) is not necessarily equal to 1-C(B,
A), it is necessary to calculate both C(A, B) and C(B, A)

Copyright  2007 John Wiley & Sons, Ltd. Hydrol. Process. 21, 2897–2909 (2007)
DOI: 10.1002/hyp



MOPSO FOR GENERATING OPTIMAL TRADE-OFFS IN RESERVOIR OPERATION 2909

to understand how many solutions of A are covered by
B and vice versa.

Spacing metric

The spacing metric aims at assessing the spread
(distribution) of vectors throughout the set of non-
dominated solutions. It is calculated with a relative
distance measure between consecutive solutions in the
obtained non-dominated set (Deb, 2001):

S D
√√√√ 1

jQj
jQj∑
iD1

�di � d�2 �22�

where di D mink2Q^k 6Di
∑M

mD1 jfi
m � fk

mj and d is the

mean value of the distance measure d D ∑jQj
iD1 di

/
jQj.

fk
m and fi

m are the values of m objective function for k
and ith member in the population. The desired value for
this metric is zero, which means that the elements of the
set of non-dominated solutions are equidistantly spaced.
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