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Abstract:

It is well recognized that the time series of hydrologic variables, such as rainfall and streamflow are significantly influenced
by various large-scale atmospheric circulation patterns. The influence of El Niño-southern oscillation (ENSO) on hydrologic
variables, through hydroclimatic teleconnection, is recognized throughout the world. Indian summer monsoon rainfall (ISMR)
has been proved to be significantly influenced by ENSO. Recently, it was established that the relationship between ISMR
and ENSO is modulated by the influence of atmospheric circulation patterns over the Indian Ocean region. The influences
of Indian Ocean dipole (IOD) mode and equatorial Indian Ocean oscillation (EQUINOO) on ISMR have been established in
recent research. Thus, for the Indian subcontinent, hydrologic time series are significantly influenced by ENSO along with
EQUINOO. Though the influence of these large-scale atmospheric circulations on large-scale rainfall patterns was investigated,
their influence on basin-scale stream-flow is yet to be investigated. In this paper, information of ENSO from the tropical
Pacific Ocean and EQUINOO from the tropical Indian Ocean is used in terms of their corresponding indices for stream-flow
forecasting of the Mahanadi River in the state of Orissa, India. To model the complex non-linear relationship between basin-
scale stream-flow and such large-scale atmospheric circulation information, artificial neural network (ANN) methodology has
been opted for the present study. Efficient optimization of ANN architecture is obtained by using an evolutionary optimizer
based on a genetic algorithm. This study proves that use of such large-scale atmospheric circulation information potentially
improves the performance of monthly basin-scale stream-flow prediction which, in turn, helps in better management of water
resources. Copyright  2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Prediction of stream-flow is an important factor for water
resources management. It helps in flood control, devising
agricultural strategy, reservoir operation, etc. Use of the
inherent statistical properties of time series for predic-
tion is practised widely with the intuitive assumption of
stationarity. Recently, it is understood that the temporal
structure of a hydrologic time series is significantly influ-
enced by large-scale atmospheric circulations (Jain and
Lall, 2001). However, it is scientifically and mathemat-
ically challenging to use such signals for the prediction
of basin-scale hydrologic variables.

Hydroclimatic teleconnection between the large-scale
rainfall pattern over India and the large-scale atmospheric
circulation patterns from the tropical Pacific Ocean and
Indian Ocean is established (Rasmusson and Carpenter,
1983; Parthasarathy et al., 1988; Krishna Kumar et al.,
1999; Ashok et al., 2001; Li et al., 2001; Gadgil et al.,
2003; Gadgil et al., 2004; Maity and Nagesh Kumar,
2006a). A brief description of large-scale atmospheric
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circulations, which are established to have a significant
link with Indian summer monsoon rainfall (ISMR), is
presented along with the physical mechanism.

El Niño and Southern Oscillation

El Niño and southern oscillation is the coupled ocean-
atmosphere mode of the tropical Pacific Ocean (Cane,
1992). It is a large scale anomalous warming of sea
surface temperature (SST) over the central and eastern
Pacific Ocean with associated change in pressure field.
In normal years, SST of the western part of the equa-
torial Pacific Ocean remains warmer than that of the
eastern part and pressure at the eastern part of the Pacific
Ocean is higher than that of the western part. During
anomalous years, SST of the eastern part of the equa-
torial Pacific Ocean becomes warmer-than-normal and
the pressure field is reversed, i.e. the anomalous pres-
sure in the eastern part of the Pacific Ocean becomes
lower than that in the western part. A contrary situation
may also occur. Anomalous warming (cooling) of SST
over the eastern part of the Pacific Ocean is known as El
Niño (La Niña) whereas anomalous sea-saw variation of
the pressure field, between the eastern and western parts
of the Pacific Ocean, is called the Southern Oscillation.
Acting together, the oceanic and atmospheric parts are
jointly known as El Niño-southern oscillation (ENSO)
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phenomenon. It is established that ISMR is significantly
related to ENSO through oceanic-atmospheric telecon-
nection (Rasmusson and Carpenter, 1983; Parthasarathy
et al., 1988). However, contrary to the long recog-
nized negative correlation between the ISMR and ENSO,
some discrepancies have been observed in recent years
(Krishna Kumar et al., 1999; Li et al., 2001; Gadgil
et al., 2004). These unanticipated experiences suggest
that the response of the monsoon to El Niño is not yet
assessed adequately (Gadgil, 2003; Gadgil et al., 2003)
or more pertinently that there are some other causative
climate forcing events, which are also influencing the
Indian rainfall concurrently.

Indian Ocean dipole (IOD) mode and equatorial Indian
Ocean oscillation (EQUINOO)

Indian Ocean Dipole (IOD) mode is a pattern of inter-
nal variability with anomalously low sea surface temper-
atures off Sumatra and high sea surface temperatures in
the western Indian Ocean, with accompanying wind and
precipitation anomalies (Saji et al., 1999). There are two
coupled components of IOD—oceanic and atmospheric.
The dipole mode index (DMI) is the oceanic component
(Saji et al., 1999) of the IOD mode, which is defined
as the difference in SST anomaly between the tropical
western Indian Ocean (50 °E–70 °E, 10 °S–10°N) and
the tropical south-eastern Indian Ocean (90 °E–110 °E,
10 °S–0°). However, statistical correlation of the DMI
with precipitation over the Asian monsoon regime does
not yield a significant relationship. Thus the relation-
ship of the DMI to the ISMR variability is not clear
(Saji et al., 1999). However, the equatorial Indian Ocean
oscillation (EQUINOO), which is the atmospheric com-
ponent of the IOD mode, is established to have significant
influence on the ISMR (Gadgil et al., 2004). The con-
vection over the eastern part of the equatorial Indian
Ocean (EEIO, 90° –110 °E, 10 °S–0°) is negatively corre-
lated to that over the western part of the equatorial Indian
Ocean (WEIO, 50° –70 °E, 10 °S–10 °N). The anomalies

in the sea level pressure and the zonal component of the
surface wind along the equator are consistent with the
convection anomalies. When the convection is enhanced
(suppressed) over the WEIO, the anomalous surface pres-
sure gradient is towards the west (east) so that the anoma-
lous surface wind along the equator becomes easterly
(westerly). The oscillation between these two states is
known as EQUINOO. The equatorial zonal wind index
(EQWIN) is considered as an index of EQUINOO which
is defined as the negative of the anomaly of the zonal
component of surface wind in the equatorial Indian Ocean
region (60° –90 °E, 2Ð5 °S–2Ð5 °N). Northward propaga-
tion of a large scale convective system generated over the
Indian Ocean indicates the physical link between ISMR
and EQUINOO (Gadgil et al., 2004). Recently it was
observed that ISMR is influenced by both ENSO and
EQUINOO, at seasonal time-scale (Ashok et al., 2001;
Gadgil et al., 2004) as well as at monthly time-scale
(Maity and Nagesh Kumar, 2006a).

Basin-scale stream-flow and large-scale atmospheric
circulation

Although the strength of the hydroclimatic telecon-
nection decreases for smaller spatio-temporal scale, sig-
nificant influence still exists for subdivisional scale too
for some particular geographical locations. However, the
nature of the relationship varies for different subdivisions
and different seasons (Kane, 1998; Maity and Nagesh
Kumar, 2006b).

The basin-scale stream-flow, used in this study, is
measured at Basantpur, a few kilometres upstream of
Hirakud reservoir, one of the most important multipur-
pose reservoirs, located in the state of Orissa in India
(Figure 1). The upstream catchment of Basantpur site is
mostly located in the Chattisgarh state in India. Though
the spatial variation of ISMR across subdivisions is con-
siderable, ISMR is highly correlated with rainfall over
Chattisgarh rainfall (0Ð603, p-value being 0Ð00 with null

Figure 1. Location map of catchment and sub-basins of Mahanadi River
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hypothesis as no correlation). Thus a physical relation-
ship between ISMR and ENSO and EQUINOO can
be ingenuously assumed to exist, effecting rainfall over
Chattisgarh subdivision. The seasonally averaged rain-
fall is also highly correlated with the seasonally averaged
stream-flow. However, at monthly time-scale, the hydro-
climatic teleconnection between basin-scale stream-flow
and large-scale atmospheric circulation pattern is more
complex and cannot be recognized easily. One of the
most important reasons is the complex non-linear rela-
tionship between rainfall over upstream catchment and
the stream-flow. However, the affect of the rainfall pat-
tern on stream-flow is obvious on a monthly scale. Hence,
the influence of ENSO and EQUINOO on stream-flow
on a monthly scale is supposed to exist as there exists a
link between rainfall pattern and ENSO and EQUINOO.
However, the influence of these large-scale atmospheric
circulation phenomena on the rainfall pattern over Chat-
tisgarh subdivision, on a monthly scale, is not discernible
in terms of correlation coefficients. Thus, the initial moti-
vation for this study of the large-scale atmospheric cir-
culation pattern and the basin-scale stream-flow is rather
logical than statistical.

The objective of this study is to investigate the influ-
ence of large-scale atmospheric circulation information
on the basin-scale stream-flow variation and possible
improvement of stream-flow prediction by incorporating
the information of such large-scale atmospheric circu-
lations. An artificial neural network (ANN) approach
is adopted to model the complex relationship between
stream-flow and large-scale atmospheric circulations
(ENSO and EQUINOO). ANN architecture is decided
using a genetic algorithm (GA) based evolutionary opti-
mizer. A description of the algorithm is presented in a
later section. Predictability of stream-flow is investigated
with the trained networks. Improvement of prediction
performance and advantage of considering the large-scale
atmospheric circulation information are also investigated.

DATA

Sea surface temperature anomaly (SSTA) from the
Niño 3Ð4 region (120° –170 °W, 5 °S–5 °N) is used
as the ENSO index in this study. Monthly SSTA
data is obtained from the website of the National
Weather Service, Climate Prediction Centre of NOAA
(http://www.cpc.noaa.gov/data/indices/) for the period
January 1972–December 2003.

Similarly, EQWIN is used as EQUINOO index.
Monthly surface wind data for the period January
1972–December 2003 is obtained from the National Cen-
tre for Environmental Prediction (http://www.cdc.noaa.
gov/Datasets).

Monthly stream-flow data at Basantpur site is obtained
from the office of Executive Engineer, Mahanadi Divi-
sion, Central Water Commission (CWC), Burla, Orissa
for the period January 1972–December 2003.

METHODOLOGY

Stream-flows are modelled on a monthly time-scale using
the information of large-scale atmospheric circulations of
ENSO and EQUINOO in terms of their corresponding
indices, which were discussed earlier.

Potential influencing variables

As mentioned earlier, the catchment of Basantpur site
is mostly located in the Chattisgarh state in India and
ISMR is highly correlated with rainfall over Chattisgarh
state. Correlation analysis between large-scale circula-
tion indices (both ENSO and EQUINOO) and monthly
variation of summer monsoon rainfall over India shows
that for June rainfall, both ENSO and EQUINOO indices
from March; for July rainfall, both ENSO and EQUINOO
indices from June; for August rainfall, both ENSO and
EQUINOO indices from July; and for September rainfall,
ENSO index from August and EQUINOO index from
July are highest correlated (Maity and Nagesh Kumar,
2006c). However, such correlations between large-scale
indices and stream-flows are not so conspicuous due to
the complex non-linear relationship between rainfall over
upstream catchment and the stream-flow. Still it is worth-
while to note that stream-flow for the month of June is
highest correlated with large-scale indices for the month
of March as that between rainfall and large-scale indices.
Thus, for June stream-flow, both ENSO and EQUINOO
indices from March, are used in this study. For other
months (July through October), even if the correlation
coefficients (provides only the information about lin-
ear association) are not conspicuous (due to complex
non-linear relationship between rainfall over upstream
catchment and the stream-flow), intuition from the cor-
relation analysis between large-scale circulation indices
and monthly variation of summer monsoon rainfall over
India is used in a broad sense. Thus, for the months
July through October, large-scale circulation information
is used from the immediate previous month.

Apart from the large-scale atmospheric circulation,
information of stream-flow of previous month(s) is (are)
also used as serial autocorrelation is significant. Results
of the correlation analysis between stream-flow of succes-
sive months are presented in Table I. It can be observed
from Table I that, stream-flow in the month of June is
not correlated with that of May, because there is hardly
any stream-flow in May. Thus for June, previous month
stream-flow information is not used. For July, August
and October, correlation coefficients are significant only
up to one lag and thus, stream-flow information from
the previous month is considered. However, for Septem-
ber, correlation coefficient between the stream-flows in
September and July is higher than that between Septem-
ber and August. It may not be logical to use the stream-
flow information from July without considering the same
from the immediate previous month, i.e. August. Hence,
stream-flow information of both July and August are con-
sidered for the month of September. The complete set of
input variables for different months is shown in Table II.
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Table I. Correlation coefficient between stream-flow in different
months

June July August September October

May 0Ð01 �0Ð15 �0Ð41 — —
June 1Ð00 0Ð69 0Ð21 0Ð04 —
July — 1Ð00 0Ð41 0Ð32 0Ð18
August — — 1Ð00 0Ð16 0Ð05
September — — — 1Ð00 0Ð65
October — — — — 1Ð00

Artificial neural network (ANN)

ANN is used in this study to predict stream-flow using
the input variables as described earlier. All the input
variables and stream-flow values are scaled between 0
and 1 before using in ANN.

ANN can capture the non-linear relationship between
two time series, if any, and does not depend on the dis-
tributional form of the data set. Details of ANN approach
and its application in various fields of engineering can be
found elsewhere (Haykin, 1999; ASCE, 2000a,b). One
important aspect of ANN methodology is the design of
network architecture. In most of the studies, network
architecture is decided based on heuristic. Selection of
optimum neural network architecture can be obtained
by pruning the neural network. Optimal brain damage
(Le Cun et al., 1990) and optimal brain surgeon (Hassibi
et al., 1993) can be mentioned in this regard. However, in
this study, an evolutionary optimizer based on GA is used
to decide the optimum architecture of feed forward net-
work. The back propagation algorithm (Rumelhart et al.,
1986; Yu and Chen, 1997) is used to train the network.
The evolutionary optimizer based on GA approach has
been used in some other studies also (Nagesh Kumar
et al., 2005). The design of the network architecture and
its training is performed using the data for the period
1972–1991.

GA based evolutionary optimizer

The evolutionary optimizer uses the principle of GA
(Goldberg, 1989) to obtain optimal network architecture.
The main steps involved in evolutionary optimizer are as
follows:

(a) Parameters initialization: All the parameters like pop-
ulation size (N), number of maximum generations,
probability of crossover (Pc) and probability of muta-
tion (Pm) are set to specific values. In this study, N, Pc

and Pm are selected as 50, 0Ð2 and 0Ð04, respectively.
(b) Generation of initial population: At initial generation,

the evolutionary optimizer randomly creates N net-
works for the initial population, where N is equal to
the size of the population.

(c) Training of the network and fitness evaluation: All the
networks within the current generation are trained by
back propagation algorithm and their fitness values
are determined according to the goals to be achieved.
These goals are: (i) maximum number of neurons

used in the network, (ii) the network’s mean square
deviation and (iii) maximum square deviation on
pattern set reproduction. Thus this is a multiobjective
GA, objectives of which are to minimize the above
goals so that they satisfy the threshold of each goal.
Weighted average (explained as percentage) of the
goal parameters is used as the fitness of the individual
network. It can be mentioned here that the mean
square deviation and maximum square deviation of
GA based evolutionary optimizer are subjectively
chosen in such a way that the performance of the
network is comparable for both training and testing
data set. Moreover, in the final generation, among
the various networks, the network which satisfies all
the goals, is used for testing dataset. The network
providing the best performance is selected. Thus,
the chances of over-training and under-training are
avoided.

(d) Evolution of new generation: A new generation of
networks will be created from the present generation
according to the following procedure. It must be noted
that the following operations are carried out with
the ‘network architecture’, but not with the trained
network. Once the population of the new networks
is formed, the networks undergo a ‘fresh’ training as
explained in step (c).

(i) Two ‘parent’ networks will be chosen out of the
old generation. The selection algorithm will choose
networks with a high fitness by a higher probability.
(ii) Two ‘children’ networks will be created from
the two ‘parent’ networks. Using the cross over
probability Pc, the two ‘parent’ networks will be
crossed over, i.e. they will swap a portion of the
network with each other.
(iii) The ‘children’ will be mutated with a mutation
probability Pm. Here, mutation means insertion or
deletion of a layer and/or insertion or deletion of a
neuron into a layer.
(iv) A few elitist members of the population in
current generation are carried to the next generation.
The selection continues until the new generation also
has N members. After completion the new generation
will be evaluated.

(e) Checking for termination criteria: Evolution is stop-
ped, if the target goals are achieved at least for one
network in the population or maximum number of
generations is reached. Otherwise, generation counter
is increased by one and steps (c) and (d) are repeated.

RESULTS AND DISCUSSIONS

The procedure of the evolutionary optimizer is applied to
each of the individual monsoon months. For each case,
the best network in the final generation, which fulfils the
target goals, is shown in Table II. Correlation coefficients
between observed and modelled stream-flows for the
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Table II. Set of input variables and best networks for different
months of the monsoon period

Month of
stream-flow

Input
variablesa

Best
network

CC TPb

June March EN 2-4-5-3-1 0Ð68
March EQ

July June SF 3-3-5-1 0Ð88
June EN
June EQ

August July SF 3-6-5-1 0Ð97
July EN
July EQ

September July SF 4-3-2-1 0Ð87
August SF
August EN
August EQ

October September SF 3-5-1 0Ð87
September EN
September EQ

a SF, Stream-flow; EN, ENSO index; EQ, EQUINOO index.
b CC TP, correlation coefficient during training period (1972–1991).

Figure 2. Observed and predicted stream-flows during the validation
period, 1992–2003

training period (1972–1991) are also shown in Table II.
Performances of trained networks are tested using data for
the period, 1992–2003. A comparison between observed
and predicted stream-flows is shown in Figure 2.

It is observed that the prediction performance is
reasonably good for all months. However, for June, it
is not as good as that for other months. The reason
for this poor performance can be attributed to the high
amount of variance associated with stream-flow during
this month. Coefficient of variation, � , (� D �/�, where
� is the standard deviation and � is the mean) for this
month, is observed to be 1Ð91 whereas for the months
July through October values of � are 0Ð90, 0Ð49, 0Ð68
and 0Ð97, respectively. This indicates that variability
associated with June stream-flow is much higher than
that with stream-flow during other months. However, it
is also true that the stream-flow during June is much
lower than that in the other months. Thus, this poorer
prediction performance is not very problematic from a
water resources management point of view.

For July, very high stream-flow (1994) as well as very
low stream-flow (1992, 1993 and 1997) are successfully
captured. However, stream-flows are over predicted dur-
ing 2001, 2002 and 2003. Most successful prediction is
observed for the month of August. More or less accu-
rate stream-flows are predicted almost for all the years.
It is worth noting that maximum amount of stream-flow
occurs during the months of July and August. Model per-
formance during these high stream-flow months can be
appreciated. Stream-flows are predicted with reasonable
accuracy for the months of September and October too,
except for September 2003.

Prediction performance for all monsoon months is
investigated in ordinal scale also. An ordinal scale con-
veys the information of rank order. Sometimes, particu-
larly in case of stream-flow, the analysis in ordinal scale
is also useful to decision-makers. However, it is true that
as the observed and predicted stream-flows are compared
numerically, ordinal scale analysis is not that useful. Still
the analysis is presented to show the potential of the
model at ordinal scale.

In ordinal scale stream-flow categories may be termed
as ‘high’, ‘normal’ and ‘low’. Thus, prediction in ordinal
scale is meant to indicate whether the ensuing season
will have high, normal or low stream-flow. Stream-flow
is defined as ‘normal’, if it lies within the range of
š50% of standard deviation (SD) from mean. Stream-
flow, which lies above (below) this range is defined as
‘high’ (‘low’) stream-flow. In Figure 2, two lines (mean
š0Ð5 SD) are shown demarcating the high, normal and
low stream-flows for each of the monsoon months. It
may be noted that ‘mean’ and ‘standard deviation’ are of
observed values.

Categorical correspondence between observation and
prediction can be visually assessed from these plots. For
statistical investigation, a contingency table is prepared
showing the correspondence between the observed and
predicted stream-flows (Table III). Polychotomous (more
than two category) forecast performance can be investi-
gated by Heidke skill score (HSS) (Wilks, 2006). HSS is
defined as:

HSS D �CF � CFrand�/�N � CFrand�
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Table III. Contingency table showing the correspondence bet-
ween the observed and predicted stream-flows

Stream-flow
category
Observed

Predicted

Low Normal High

Low 12 6 3
Normal 3 20 4
High 0 3 9

where CF is the number of correct forecasts, CFrand is the
correct forecast by chance of random forecast and N is the
total number of forecasts or maximum number of correct
forecasts that can be achieved. HSS ranges from �1
to 1. Higher value of HSS indicates better performance.
A value, greater than 0Ð15, indicates a reasonably good
forecast.

For the present case (Table III), N D 60, CF D 41 and
CFrand D 20, being a chance of one-third of a case to
be correctly predicted. Thus, the value of HSS is 0Ð525,
which indicates that categorical stream-flow information
for the ensuing month can be provided by this approach
with an applaudable accuracy.

An obvious question may come to mind, whether
the commendable results are owing to the considera-
tion of stream-flow information of previous month(s).
The analysis is repeated and the performance of stream-
flow prediction is checked using only stream-flow infor-
mation of previous month(s), i.e. information of large-
scale atmospheric circulation is discarded. Results are
shown in Table IV. Model performance is measured in
terms of correlation coefficient (CC), mean absolute error
(MAE) and root mean square error (RMSE) between
observed and predicted stream-flows for the model vali-
dation period (1992–2003). It can be observed that, pre-
diction performances are poorer while using stream-flow
information of previous month(s) alone. This observa-
tion is conspicuous for the high stream-flow months,
i.e. July, August and September. A minor inconsistency
for the months June and October is discussed later. In
general, improvement of the prediction performance, by
considering both the information of stream-flow of pre-
vious month(s) and large-scale atmospheric circulations
can be easily appreciated. This is because the auto-
correlation structure of stream-flow series, varies con-
siderably for different parts of the stream-flow series.
In other words, higher-than-normal (lower-than-normal)
stream-flow of previous month does not always assure
higher-than-normal (lower-than-normal) stream-flow for
the present month.

For the month of June, apparently poorer values
of MAE and RMSE are obtained while considering
both stream-flow and large-scale atmospheric circulation
information than those while considering stream-flow
information of previous month alone. However, the
correlation coefficient is much better while considering
both stream-flow and large-scale atmospheric circulation

information. Moreover, it may be noted that, if the
information of ENSO and EQUINOO are ignored, very
low stream-flows are predicted for all the years and the
high flow in the year 1994 is not predicted at all. As
the magnitude of stream-flows are small for the month
of June (already mentioned), resulted MAE and RMSE
values are also low.

A small deviation for the month of October is also
observed. This is due to the fact that summer mon-
soon rainfall in India ends in the months of September.
Stream-flow for the month of October is mainly sourced
by surface storage of the upstream catchment and sub-
surface flow. Basically October is the transition period
from high stream-flow to low stream-flow. This indicates
a correspondence between the September stream-flow
and October stream-flow. Eventually, stream-flow in the
month of October is well related to the September stream-
flow. Thus, a marginally better model performance is
achieved for the month of October only while using
September stream-flow alone. However, for other months
(July, August and September), improvement of the pre-
diction performance, by considering both the informa-
tion of stream-flow of previous month(s) and large-scale
atmospheric circulations can be easily appreciated.

The effect of considering the information of large-
scale atmospheric circulation alone is also investigated. A
similar observation, i.e. poorer prediction performances
are noticed in such cases too (Table IV). This is due
to the fact that prevailing conditions/characteristics of
watershed are very important factors for stream-flow
prediction. While considering stream-flow of previous
month(s), some information of such conditions/characteri-
stics is being considered. Moreover, to investigate
the relative importance of ENSO and EQUINOO on
stream-flow, one of the large-scale indices (ENSO and
EQUINOO) is considered at a time and the performance
of stream-flow prediction is investigated. It is found that,
prediction performances are poorer while considering
either one of ENSO and EQUINOO as compared to that
while considering both the large-scale indices simulta-
neously. Logically, this is due to the fact that, variation
of ISMR can be better explained and modelled by the
combined information of ENSO and EQUINOO as these
indices jointly influence the variation of ISMR as men-
tioned earlier (Gadgil et al., 2004; Maity and Nagesh
Kumar, 2006a).

Thus, the overall observation of this study indicates
the significant influence of large-scale atmospheric cir-
culation patterns from the tropical Pacific and Indian
Ocean on basin-scale stream-flow. Use of such informa-
tion improves the prediction performance of stream-flow,
which will be very useful for better management of water
resources.

Finally, the role of GA based evolutionary optimizer
is worth mentioning here. It is obvious that performance
of ANN significantly depends on its architecture, which
is generally decided by heuristics and experience of
the researcher. However, with such procedure, it may
not be possible to achieve the best possible results for
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many cases, particularly for unknown new problems. The
proposed approach, in this study, assures the best possible
results for different cases as mentioned earlier. This is
due to the application of GA which decides the best
network architecture. The approach may be used for other
applications of ANN.

CONCLUSIONS

In this study, the possible influence of large-scale atmo-
spheric circulation phenomena on basin-scale monthly
stream-flow variation is investigated. Information of two
large-scale atmospheric circulation phenomena namely,
ENSO from the tropical Pacific Ocean and EQUINOO
from the Indian Ocean, are used. ANN approach is used
to capture the complex relationship between basin-scale
monthly stream-flow and the large-scale atmospheric cir-
culation phenomena. Instead of heuristic basis, a GA
based evolutionary optimizer is used to identify the opti-
mum network architecture for a particular pattern set.

It is shown that the basin-scale stream-flow is influ-
enced by large-scale atmospheric circulations phenom-
ena. Information of stream-flow from previous month(s)
alone, as used in most of the traditional modelling
approaches, is shown to be insufficient. It is successfully
established that incorporation of large-scale atmospheric
circulation information significantly improves the predic-
tion performance for the monthly scale. Again, prevailing
conditions/characteristics of watershed are also impor-
tant. Thus, consideration of both the information of previ-
ous stream-flow and large-scale atmospheric circulations
is important for basin-scale stream-flow prediction for
the monthly time scale. Adopting this approach, monthly
stream-flows are predicted with better accuracy which
is a very useful input for better management of water
resources for the downstream area.
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