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Impossibility of cloning and deleting of unknown states are important restrictions on processing
of information in the quantum world. On the other hand, a known quantum state can always be
cloned or deleted. However if we restrict the class of allowed operations, there will arise restrictions
on the ability of cloning and deleting machines. We have shown that cloning and deleting of known
states is in general not possible by local operations. This impossibility hints at quantum correlation
in the state. We propose dual measures of quantum correlation based on the dual restrictions of no
local cloning and no local deleting. The measures are relative entropy distances of the desired states
in a (generally impossible) perfect local cloning or local deleting process from the best approximate
state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual
measures of entanglement cost and distillable entanglement, the proposed measures are based on
important processes in quantum information. We discuss their properties. For the case of pure
states, estimations of these two measures are also provided. Interestingly, the entanglement of
cloning for a maximally entangled state of two two-level systems is not unity.

I. INTRODUCTION

In the classical physics description of the world, any
two objects are distinguishable. In the quantum world,
there are some objects which are indistinguishable. In
the Hilbert space description of the quantum world, in-
distinguishable objects are identified with nonorthogonal
states, with the distinguishable ones being kept as or-
thogonal. The existence of nonorthogonal states put re-
strictions on the processing of information in quantum
world.

Important such restrictions are the so-called no cloning
and no deleting theorems [1, 2, 3, 4]. The no cloning the-
orem states that nonorthogonal states cannot be copied.
On the other hand, the no deleting theorem puts re-
strictions on deleting: Nonorthogonal states cannot be
deleted in a closed system. We will make it clear, what
we mean by a closed system, when we discuss the notion
of deleting below (Section II B).

If one now considers cloning and deleting of states
shared between separated partners, when the partners
are allowed to operate only locally, then there are two
possible ways in which cloning or deleting can be hin-
dered. First, because of the existence of the no cloning
and no deleting theorems even for global operations, and
second, because of the existence of quantum correlations.
If it possible to wipe out the inefficiency present even
in the case of global operations, then the remaining in-
efficiency is solely due to quantum correlations. These
could then be entanglement measures. However if we
have a known state, then by global operations, we can
both clone and delete. Therefore for a known state, the
inefficiency to clone or to delete locally, is solely due to
quantum correlations.

In this paper we show that the “distance” between the
possibility of cloning and deleting a known state, shared
between separated partners, and the impossibility of such
phenomenon by local actions can reveal the quantum cor-
relation of the state.

In this paper, we will primarily deal with bipartite
states. However the generalisation to the multipartite

case of all the considerations is straightforward. It is
also similarly possible to define quantum correlations of
a set of states, shared between separated partners, or
even at a single location (see [5] in this regard). The es-
sential idea is just what has been spelled out in the last
two paragraphs. We hope to follow that up in a later
publication.

Let us stress here that the proposed measures of quan-
tum corelations are defined by basing on important phe-
nomena in quantum information. We hope that this will
be important to understand the resource facet of quan-
tum correlations.

We begin in Section II, by discussing no cloning and
no deleting for the case of a single system (i.e. global
operations), mainly to settle down as to what are the
operations that are allowed in cloning, and what are the
ones that are allowed in deleting. In Section III, we de-
fine entangled states, and underline the importance of
operationally defined measures. Section IV deals with
no cloning of bipartite states under local operations.
We show that for distillable states, the entanglement of
cloning is nonvanishing. The case of bound entangled
states [6, 7] is left open. Section V concerns the relevant
set of operations in case of deleting, global and local. In
Section VI, we show that no deleting of bipartite pure
states is not possible by closed local operations.

Since the notions of cloning and deleting are in a sense
dual to each other, we call the the proposed entangle-
ment measures as dual entanglement measures. The pre-
cise definitions of these measures is taken up in Section
VII. Some properties of the measures are also proven
in the same section. In next section (Section VIII), we
obtain bounds on the proposed measures for the case of
pure states of two two-dimensional systems, i.e. of two
qubits. We obtain that the entanglement of cloning is
strictly less than unity for the maximally entangled state
of two qubits (i.e. in 2 ⊗ 2). Note that for almost all en-
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tanglement measures, this state naturally gives a value of
unity. We discuss our results and its possible extensions
in Section IX.

II. NO CLONING AND NO DELETING: OPEN

AND CLOSED SYSTEMS

In this section, we briefly discuss the no cloning and no
deleting theorems for a single system, and indicate the
importance of open systems and closed systems in such
considerations.

We begin with no cloning and underline the fact that
it is true in open systems. In the second subsection, we
consider no deleting and the fact that it is true or rather
relevant only in closed systems.

A. No cloning: Open systems

In cloning, the task is to prepare a copy of an un-
known state, while keeping the input (unknown) copy
undisturbed. To be specific, let us suppose that the in-
put state is known to be either |ψ〉 or |φ〉. We want to
obtain two copies of the input, whatever it is. In the pro-
cess, we allow the environment to be possibly changed.

That is, we want to know whether the following trans-
formation is possible:

|ψ〉 |b〉 |e〉 → |ψ〉 |ψ〉 |eψ〉 ,

|φ〉 |b〉 |e〉 → |φ〉 |φ〉 |eφ〉 . (1)

Here |b〉 is the “blank” state, where the second copy is to
emerge, and |e〉, |eψ〉, |eφ〉 are states of the environment.
It was shown in Refs. [1, 2], that such transformations
do not exist in a quantum mechanical world, if |ψ〉 and
|φ〉 are nonorthogonal. The reason is that quantum me-
chanical operations are unitary, which must preserve the
inner product. One can see that the inner product is not
preserved in the transformation in Eq. (1), when |ψ〉 and
|φ〉 are nonorthogonal.

Note that in the classical world, any two objects are
orthogonal. Consequently the transformation in Eq. (1)
do exist in the classical case (|ψ〉 and |φ〉 are orthogonal
in that case), a welcome property allowing us for exam-
ple to send files over email, while keeping a copy in our
computer.

Note also that we allow the environment to be possibly
changed after the transformation. So we are considering
“open systems” here. The state of the environment, af-
ter we have obtained the two copies, may carry some
information about the state. So, cloning of nonorthogo-
nal states is not possible in open systems. We will come
back to this point in the next subsection.

B. No deleting: Closed systems

In the case of deleting, the task is somewhat dual to
that of cloning. In Refs. [3, 4], it was shown that no uni-
tary transformations [8] exist which will do the following
transformation in a closed system [9, 10] (cf. [11] in this
regard), if |ψ〉 and |φ〉 are nonorthogonal:

|ψ〉 |ψ〉 → |ψ〉 |0〉 ,

|φ〉 |φ〉 → |φ〉 |0〉 . (2)

Here |0〉 is any fixed state. This is the no deleting theo-
rem.

Again, it is possible to delete in the classical world,
where we only have orthogonal objects. This may for
example be useful in a reversible (i.e. without pollut-
ing the environment) defragmentation of the discs in our
(classical) computers.

Note here that in the case of deleting, we do not allow
leakage of information from the system into the environ-
ment. Otherwise, one can trivially delete a copy of the
state by throwing it out of the system. The point is that
even then, the information in the deleted copy must be
somewhere in the world. Speaking in the language of
the Hilbert space formalism of quantum mechanics, we
do not allow “tracing out” as a valid operation. This is
what we mean, when we say that we consider “closed sys-
tems”. On the other hand, “open systems” are those in
which we do allow tracing out as a valid operation (along
with other quantum mechanically valid operations).

The no deleting theorem is thus relevant only in closed
systems. In contrast, the no cloning theorem is true even
in open systems.

III. ENTANGLEMENT

The restrictions of no cloning and no deleting in quan-
tum mechanics comes from the superposition principle in
quantum mechanics. This is because, it is the superposi-
tion principle that leads to the existence of nonorthogonal
states. The same superposition principle gives rise to the
existence of entanglement.

In the classical physics description of the world, if a sys-
tem (in a pure state) can be divided into two subsystems,
then the sum of the information of the subsystems makes
up the complete information in the whole system. This
is no longer true in the quantum formalism as there exist
entangled states, for example the singlet 1√

2
(|01〉− |10〉),

where |0〉 and |1〉 are two orthogonal states.
In general, given a bipartite system, shared between

two partners called Alice (A) and Bob (B), the most gen-
eral state that they can create while acting locally and
communicating over a classical channel (the set of oper-
ations being called LOCC (local operations and classical
communication)) is

∑

i

pi̺
i
A ⊗ ̺iB, (3)
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where ̺iA is defined over HA, the Hilbert space of the
system which is with Alice, and similarly ̺iB is defined
over HB, the Hilbert space of the system with Bob. The
pi’s are a set of probabilities. Preparation of more gen-
eral states require using a quantum channel. Such states
possess quantum correlations, and can be used for non-
classical applications, for example in teleportation [12].
States of the form as in Eq. (3) are called separable
states, while the ones that are not of that form are called
entangled. Entangled states do exist, the singlet state
being an example.

Since entanglement is being viewed as a resource, and
since it is not as yet well-understood, it is important to
quantify it in as many ways as possible. There have been
several very fruitful attempts to quantify entanglement
[13, 14, 15, 16, 17, 18]. Two important examples of en-
tanglement measures are the entanglement cost [13, 19]
and distillable entanglement [13, 20]. Both these mea-
sures are defined operationally and are in a sense dual
to each other. The entanglement cost (EC) of a bipar-
tite state ̺AB is the asymptotic rate of singlets required
to prepare, under LOCC operations, the state ̺AB with
arbitrarily good fidelity. On the other hand, the distill-
able entanglement (ED) of ̺AB is the asymptotic rate of
singlets of arbitrarily good fidelity that can be obtained
from ̺AB, by LOCC operations. For more objective def-
initions, see Refs. [19] and [20] respectively.

Such operationally meaningful entanglement measures
are important to understand the resource perspective of
entanglement. For example, to teleport a qubit (a two-
dimensional quantum system) exactly, one requires a sin-
glet. Given a state ̺AB which is not a singlet, we will
like to know how good it is for teleportation. If we are
interested to find out how good an arbitrary qubit can be
teleported, the relevant quantity is the so-called telepor-
tation fidelity [21]. However, if we are earnest that the
qubit must be teleported (almost) exactly, then the rele-
vant quantity is distillable entanglement (or some finite-
copy variation of it [22, 23]).

Below (in Section VII) we define two operationally
motivated entanglement measures, which are again in a
sense dual to each other.

IV. NO LOCAL CLONING FOR ENTANGLED

STATES

In the case when all (quantum mechanically valid) op-
erations are allowed (this is the case considered in Section
II A), a single state can always be cloned. One simply
takes the blank copy to be the same as the known state
to be copied (see Eq. (1)).

Consider however the case where two separated par-
ties, Alice and Bob, are given the task of cloning the
known bipartite state ̺AB, and the allowed operations
are restricted to LOCC. Since Alice and Bob are sepa-
rated, they can at most prepare separable blank states
for the cloning process. Is it then possible to produce

two copies of ̺AB?
Let us make the considerations more formal. Let ̺AB

be a bipartite state defined on the Hilbert space HA⊗HB.
This state is given to Alice and Bob, who are in two far-
apart laboratories. Alice and Bob locally prepare a state
̺b
A

′
B

′ (defined on the Hilbert space H
′

A ⊗ H
′

B), which
is to act as the “blank” state. Of course, we have to
take dimHA = dimHA

′ , and dimHB = dimHB
′ . The

A
′

part of ̺b
A

′
B

′ is with Alice, and the B
′

part is with
Bob. This blank state must be a separable state, as it
is prepared locally (i.e. by LOCC) by Alice and Bob.
Note that the state ̺AB is known to Alice and Bob, and
so the blank state can depend on ̺AB. Now the task
for Alice and Bob, is to act locally (i.e. Alice acting

quantum mechanically on AA
′

, and Bob acting quantum
mechanically on BB

′

, and communicating over a classical
channel) on the state

̺AB ⊗ ̺b
A

′
B

′ (4)

and produce a state ηABA′
B

′ , such that

trABηABA′
B

′ = trA′
B

′ ηABA′
B

′ = ̺AB. (5)

This is what we mean when we say that the task of Alice
and Bob is to prepare two copies of ̺AB. In particular,
ηABA′

B
′ is not needed to be ̺AB ⊗ ̺A′

B
′ . Also we will

often not explicitly state that the allowed operations are
LOCC. See Fig. 1.

B B
′

A A
′

r r

r r

ρAB ρb
A

′
B

′

B B
′

A A
′

r r

r r

η
AA

′
BB

′

✲

FIG. 1: The left hand side of the diagram shows the initial
states shared by Alice and Bob. ρAB is the state shared by
them initially, and this is the state that we want to clone
locally, and ρb

A
′
B

′ is the separable blank state, shared by
Alice and Bob. After the cloning operation has been per-
formed locally by Alice and Bob, they will get some four
party state η

AA
′
BB

′ , depicted in the right hand side of the
diagram. If local cloning is possible, then after some lo-
cal operations, we will obtain a state η

AA
′
BB

′ , such that
trABηAA

′
BB

′ = tr
A

′
B

′ η
AA

′
BB

′ = ρAB. We have shown that
local cloning of distillable states is not possible.

In the case when ̺AB is a separable state, ηABA′
B

′ can
indeed be just ̺AB ⊗ ̺A′

B
′ , as the blank state can then

be prepared as the state ̺A′
B

′ . So separable states can
be cloned locally.



4

What if the state ̺AB is entangled? It may seem
that the statement “local cloning of entangled states is
not possible” follows directly from the famous mantra in
quantum communication, “entanglement cannot increase
under LOCC”. Maybe it is true, but here we are only
able to prove that local cloning of “distillable states” is
not possible. Distillable states are ones for which the
distillable entanglement (ED) (see Section III) is strictly
greater than 0. There exist states, the bound entangled
states, which are entangled and yet have ED = 0 [6, 7].

If ̺AB is distillable, then one cannot clone it locally
(i.e. produce two copies locally). This follows from the
fact that distillable entanglement does not increase under
LOCC (by the definition of ED), and that for a state

ηABA′
B

′ (in the AA
′

: BB
′

cut), one has (again by the
very definition of ED)

ED(ηABA′
B

′ ) ≥ ED(trABηABA′
B

′ )+ED(trA′
B

′ ηABA′
B

′ ).
(6)

Consider the distillable entanglement, in the AA
′

: BB
′

cut, of the input ̺AB ⊗ ̺b
A

′
B

′ and compare it with that
of the output ηABA′

B
′ . We have

ED(̺AB ⊗ ̺b
A

′
B

′ ) = ED(̺AB), (7)

since ̺b
A

′
B

′ is a separable state. On the other hand, if

̺AB can be cloned locally, we have (using relation (6))

ED(ηABA′
B

′ ) ≥ 2ED(̺AB).

Therefore, whenever ̺AB has nonzero distillable entan-
glement, one obtains (in the AA

′

: BB
′

cut)

ED(̺AB ⊗ ̺b
A

′
B

′ ) < ED(ηABA′
B

′ ).

This is a contradiction as ηABA′
B

′ was obtained from
̺AB ⊗ ̺b

A
′
B

′ by LOCC, and ED does not increase under
LOCC. The contradiction proves that one cannot locally
clone distillable states.

A. The case of bound entangled states

Although the case of bound entangled states is left
open, we show that under some assumptions, the case
can be resolved.

Let us consider an entanglement measureE of bipartite
states, that satisfies the following inequality:

EAA′ :C(ξ) ≥ E(trA′ ξ) + E(trAξ). (8)

Here ξAA′
C is a three-party state and for example,

EAA′ :C(ξ) denotes the entanglement (as quantified by

E) of ξ in the AA
′

: C cut. An example of an en-
tanglement measure which satisfies the inequality (8), is
“squashed entanglement”, introduced very recently [24]
(see also [25]).

Going back to our problem of local cloning, and the
four party state ηAA′

BB
′ , we can write, using Eq. (8),

EAA′ :BB′ (η) ≥ EA:BB′ (trA′ η) + EA′ :BB′ (trAη). (9)

Now, as E is a measure of entanglement,

EAA′ :BB′ (̺AB ⊗ ̺b
A

′
B

′ ) = E(̺AB), (10)

and

EA:BB′ (trA′ η) ≥ E(trA′
B

′ η)

EA′ :BB′ (trAη) ≥ E(trABη).

If we assume that ̺AB can be cloned locally, we have
that

EA:BB′ (trA′ η) + EA′ :BB′ (trAη) ≥ 2E(̺AB),

from which, using the inequality (9), we have

EAA′ :BB′ (η) ≥ 2E(̺AB). (11)

Now if E(̺AB) is strictly positive, then we have (using
relations (10) and (11))

EAA′ :BB′ (̺AB ⊗ ̺b
A

′
B

′ ) > EAA′ :BB′ (η).

This is a contradiction, as entanglement cannot increase
under LOCC. Then it follows that local cloning of the
state ̺AB is not possible, assuming that there exists an
entanglement measure E that satisfies relation (8) and
that E(̺AB) > 0.

Squashed entanglement [24] satisfies the inequality (8).
However although squashed entanglement is positive for
distillable states, it is not yet known whether it is nonzero
for bound entangled states. Hence the possibility of local
cloning for bound entangled states remain unresolved,
even with the consideration of squashed entanglement.

Our task is done if we can find an entanglement mea-
sure that satisfies the relation (6) or the relation (8), and
also is nonzero for the bound entangled states. Relative
entropy of entanglement [14, 15], defined as

ER(̺AB) = min
σAB∈S

S(̺AB|σAB), (12)

where S(̺|σ) = tr(̺ log2 ̺− ̺ log2 σ) and S is the set of
all separable states on HA⊗HB, is known to be nonzero
for bound entangled states. This is because the set of all
separable states is a closed set, and so any state outside it
(the bound entangled states being among them) cannot
be on the boundary of the separable states. However we
do not know whether ER satisfies relation (6) or (8).

Note that it is very interesting to find whether bound
entangled states can be cloned locally. It would probably
reveal at least a part of the not-well-understood physical
interpretation of bound entangled states.

V. MEASURING AND THEN FORGETTING

THE OUTCOME IS NOT A CLOSED

OPERATION

As we have already mentioned (in Section II B), in con-
siderations of deleting, the relevant set of operations are
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the set of closed operations. Unitary operations are of
course closed operations. Such operations do not leak
information into the environment. The other quantum
mechanically valid operation is measurement. Measure-
ment however is not closed. The outcome of the mea-
surement is leakage into the environment. But it may
seem that performing a measurement, and then forget-
ting the outcome is a closed operation. In this section,
we show that this is not the case. Measuring and forget-
ting the outcome leads to leaking of information about
the system into the environment, and hence is an open
operation. Thus the only operation that is closed is the
unitary operation.

When there are several partners in separated laborato-
ries, closed operations mean performing local unitaries.
Classical communication is an open operation. More-
over, since there are no measurements performed (by the
partners in their local laboratories), there is no need for
a classical communication, as the only information to be
communicated (during any local protocol) is the outcome
of any measurement performed.

We now show that measuring and forgetting the out-
come is not a closed operation. Suppose that a mea-
surement is performed in the basis {|0〉 , |1〉}, on the
state |α〉 = a |0〉 + b |1〉 (|0〉 and |1〉 are orthogonal, and
|a|2+ |b|2 = 1). Forgetting the outcome leads to the state
|a|2 |0〉 〈0| + |b|2 |1〉 〈1|. That is, the transformation is

|α〉 〈α| → |0〉 〈0| |α〉 〈α| |0〉 〈0| + |1〉 〈1| |α〉 〈α| |1〉 〈1| .
(13)

Any transformation, which is of the form

|α〉 〈α| →
∑

i

Ai |α〉 〈α|A
†
i , (14)

where
∑

iA
†
iAi is the identity operator on the Hilbert

space of |α〉, is equivalent to the unitary operator, on the
system s (i.e. the part |α〉) along with an environment e,
that effects the following transformation:

|α〉s |0〉e →
∑

i

(Ai |α〉)s |i〉e . (15)

Tracing out the environment from Eq. (15), one regains
Eq. (14). Here the |i〉’s are orthonormal states of the
environment, and the Ai’s are operators defined on the
Hilbert space of |α〉.

So the transformation in Eq. (13) is equivalent to the
unitary operator that transforms

|α〉s |0〉e → |0〉s 〈0|α〉 |0〉e + |1〉s 〈1|α〉 |1〉e .

However the right hand side is just

a |0〉s |0〉e + b |1〉s |1〉e ,

so that, after the measurement is completed and after the
observer forgets the outcome, the local state of the envi-
ronment is |a|2(|0〉 〈0|)e + |b|2(|1〉 〈1|)e, which is just the

same as the local state of the system, and which does con-
tain information about the initial state |α〉 of the system.
So as the observer (who performs the measurement) for-
gets the outcome of the measurement, the environment
also forgets the outcome. However information about the
initial state of the system (i.e. about |α〉 = a |0〉 + b |1〉)
is still in the environment. This is what we wanted to
show: The operation of a measurement and subsequent
forgetting of the outcome is not closed.

VI. NO LOCAL DELETING FOR ENTANGLED

STATES

In this section, we will consider deleting of entangled
states.

Consider the case when separated partners Alice and
Bob are given the task of locally deleting a copy from two
given copies of a state ̺AB. So Alice and Bob are given
the state

̺AB ⊗ ̺A′
B

′ , (16)

where AA
′

is with Alice and BB
′

is with Bob. Their task
is to locally (i.e. Alice acting on AA

′

and Bob acting on

BB
′

) transform the given state into ζABA′
B

′ such that

trABζABA′
B

′ (17)

is a separable state and

trA′
B

′ ζABA′
B

′ = ̺AB. (18)

This may seem to be the easiest thing in the world. One
just gets rid of the A

′

B
′

part of the input (i.e. one just
throws out ̺A′

B
′ ) and produces any separable state by

LOCC.
However as we have already stressed, the notion of

deleting is relevant only for closed operations. And from
section V, it follows that the allowed operations in that
situation are only local unitaries. Let us first show that
deleting of entangled states is at least possible under
global unitaries (Section VI A). We will then show that
for any bipartite entangled pure state, deleting by closed
local operations (i.e. by local unitaries) is not possible
(Section VI B).

Before moving on to these proofs, note that the require-
ment that trABζABA′

B
′ is a separable state, is a vital el-

ement in the considerations of local deleting. Intuitively,
in a local deleting process, we are trying to delete the
shared quantum correlations between the two parties in
the second copy, by local closed operations. Thus it is
natural that we want the second copy, after deletion has
been performed on it, to be separable.

A. Deleting of entangled states by closed global

operations is possible

In this subsection, we show that by global unitaries, it
is possible to delete entangled states.
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Let us first consider the case of pure states. For the
case of known pure bipartite states, deleting a copy from
two given copies of any state, is possible when closed
global operations are allowed. Suppose Alice and Bob are
given two copies of |ψ〉AB. Then there obviously exists a
(possibly global) unitary that implements

|ψ〉AB |ψ〉A′
B

′ → |ψ〉AB |0〉A′ |0〉B′ ,

and the deletion is done.
Moving now to the general case, consider the situation

where Alice and Bob are given two copies of ̺AB, i.e.
they are given the state

̺AB ⊗ ̺A′
B

′ .

They want to delete a copy, while keeping the second
copy, in the sense stated above (see Eqs. (16), (17),
(18)), by using closed global operations. Let us write
the spectral decomposition of ̺A′

B
′ :

̺A′
B

′ =
∑

i

pi(|ψi〉 〈ψi|)A′
B

′ .

Here pi’s are the probabilities, and |ψi〉’s are orthonor-
mal. Since ̺A′

B
′ is an arbitrary state, the |ψi〉’s may be

entangled.
To perform the deleting, Alice and Bob does nothing to

the AB part, while applies the (possibly global) unitary

operator to the A
′

B
′

part that implements the following
transformations for all i:

|ψi〉A′
B

′ → |ik〉A′ ⊗ |il〉B′ .

Here the set {|ik〉A′ ⊗ |il〉B′}kl forms an orthonormal
product basis (not necessarily biorthogonal).

After the operation, the output is

̺AB ⊗
∑

i

pi(|ik〉 〈ik|)A′ ⊗ (|il〉 〈il|)B′ .

The AB part is left intact, while the A
′

B
′

part is now
separable. And so we have been able to delete one copy
of two copies of an arbitrary bipartite state, using closed
global operations.

B. Deleting of pure entangled states by closed local

operations is not possible

We will now show that deleting of pure entangled
states, in the sense described above (see Eqs. (16), (17),
(18)), is not possible under closed local operations.

We give the proof for two qubit pure states. The case of
higher dimensions is similar. Suppose therefore that two
copies of the two-qubit state |ψ〉AB = a |00〉AB+b |11〉AB
are given to Alice and Bob. (|ψ〉AB is written in Schmidt
decomposition, so that a and b are positive numbers (with
a2+b2 = 1) and |0〉 and |1〉 are orthogonal.) So the input
is

|ψ〉AB ⊗ |ψ〉A′
B

′ . (19)

Suppose now that deletion is possible. The input in Eq.
(19) is a pure state, and so after closed local operations

(i.e. unitaries over AA
′

and BB
′

), the final state must
remain pure. Moreover, the AB part of the final state
must be in the pure state |ψ〉, as we assume that deletion
is possible. So the final state must be a tensor product
of the pure state |ψ〉 in the AB part, and another pure

state in the A
′

B
′

part. Since we assume that deletion
is possible, this state of the A

′

B
′

part in the final state
must be a pure product state. Therefore after closed local
operations, the total state must be transformed to

(a |00〉AB + b |11〉AB) ⊗
∣

∣

∣
0

′

〉

A
′

⊗
∣

∣

∣
0

′′

〉

B
′

, (20)

where
∣

∣

∣
0

′

〉

and
∣

∣

∣
0

′′

〉

are any two states of HA
′ and HB

′

respectively. But the number of nonzero Schmidt coef-
ficients in the state in Eq. (19) is four (if |ψ〉 is an en-
tangled state), while there are just two nonzero Schmidt
coefficients in the state in Eq. (20). This cannot hap-
pen under a local unitary transformation. (Similar logic
is obviously true for higher dimensions.) The contradic-
tion proves that local deletion of pure bipartite entangled
states is not possible.

The question as to whether mixed bipartite entangled
states can be deleted by closed local operations is left
open. However if we require that in local deleting of
bipartite states, the output must be of the form ̺AB ⊗
̺
sep

A
′
B

′ , where ̺sep
A

′
B

′ is some separable state (see Eqs. (16),

(17), and (18)), then we can show that for distillable
states, local deleting is not possible. Suppose therefore
that the two input copies ̺AB ⊗ ̺A′

B
′ , is by closed local

operations (in the AA
′

: BB
′

cut) taken to a state of the

form ̺AB ⊗ ̺
sep

A
′
B

′ . Then we have (in the AA
′

: BB
′

cut)

ED(̺AB ⊗ ̺A′
B

′ ) = ED(̺AB ⊗ ̺
sep

A
′
B

′ ),

as distillable entanglement is invariant under local uni-
tary operations. The left hand side is ≥ 2ED(̺AB) while
the right hand side equals ED(̺AB). This is a contradic-
tion whenever ED(̺AB) > 0. For bound entangled states
[6, 7], the problem is again open. Let us stress that the
problem of whether local deleting of entangled states is
possible is open for all mixed states. We have answered
the question (in the negative) for distillable states, only
for local deleting in a restricted sense.

VII. THE DUAL MEASURES

In the previous sections, we have seen that cloning and
deleting of a known bipartite entangled state is in gen-
eral not possible under local operations. Let us again
stress that the meaning of these statements is not very
obvious, and that they are elucidiated in Sections IV and
VI respectively. In particular, see Eqs. (4), (5) for the
meaning of local cloning and Eqs. (16), (17), (18) for
that of local deleting.
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We have also seen that it is possible to clone and delete
a known state under global operations (see at the begin-
ing of Section IV and Section VI A).

It is interesting to find the reason for such restrictions
in the case of local operations. It seems that the possi-
bility of cloning and deleting in the case of global oper-
ations, and the impossibility of such events under local
operations indicates that the “amount” of such impossi-
bility for a certain state in the case of local operations
will reveal the amount of quantum correlations in that
state.

In this section, we show just that. We obtain two mea-
sures of entanglement from the “amount” of the impos-
sibility of local cloning and local deleting respectively.
Since the process of local cloning is in a sense dual to
that of local deleting, we say that these entanglement
measures are dual to each other. This is just as for dis-
tillable entanglement and entanglement cost (see Section
III).

A. The entanglement of cloning

1. The definition

Let us consider a bipartite state ρAB shared by Alice
and Bob. Perfect cloning by local operations is not pos-
sible in general. See Eqs. (4) and (5)) for the meaning of
this statement. In particular, we do not necessarily want
to produce ̺AB ⊗ ̺A′

B
′ in a local cloning. Since per-

fect local cloning is not possible, one may like to obtain
an approximate version of it. And the relative entropy
distance of the state that we did like to obtain in the
(generally impossible) perfect local cloning from that in
the best approximate version, is defined as the “entan-
glement of cloning” of the state ̺AB.

Let us make everything more precise. First of all, the
relative entropy distance of ̺ from the state σ, denoted
as S(̺|σ), is defined as

S(̺|σ) = tr(̺ log2 ̺− ̺ log2 σ).

To begin, Alice and Bob produces a “blank” state
̺b
A

′
B

′ , by LOCC. This blank state must be a separa-
ble state, but can depend on the state ̺AB. Let L be an
LOCC map, that is applied on the input ̺AB ⊗̺b

A
′
B

′ , in

the AA
′

: BB
′

cut. Perfect cloning requires that we have

trABL(̺AB ⊗ ̺b
A

′
B

′ ) = ̺A′
B

′ (21)

and

trA′
B

′L(̺AB ⊗ ̺b
A

′
B

′ ) = ̺AB. (22)

This is not possible in general. However one may try
to perform it approximately in a way such that

S(̺AB|trA′
B

′L(̺AB ⊗ ̺b
A

′
B

′ ))

+S(̺A′
B

′ |trABL(̺AB ⊗ ̺b
A

′
B

′ )) (23)

is as small as possible. Moreover we require symmetry,
i.e. the produced copies are equal:

trA′
B

′L(̺AB ⊗ ̺b
A

′
B

′ ) = trABL(̺AB ⊗ ̺b
A

′
B

′ ). (24)

In that case, the quantity that we want to be as small as
possible is

S(̺AB|trA′
B

′L(̺AB ⊗ ̺b
A

′
B

′ )),

with the condition that Eq. (24) must be satisfied. And
we define (with Eq. (24) still to be satisfied)

CE(̺AB) = inf
L
S(̺AB|trA′

B
′L(̺AB ⊗ ̺b

A
′
B

′ )) (25)

as the “entanglement of cloning” of the state ̺AB. The
infimum, denoted as “inf” in the above equation, is taken
over all LOCC operations. In the following, we will de-
note trA′

B
′L(̺AB ⊗ ̺b

A
′
B

′ ) by L(̺AB). We will call L as
a “cloning map”.

Although the measure CE involves a minimization over
a relative entropy distance, it is very different from the
relative entropy of entanglement [14, 15] of the state ρAB,
as defined in Eq. (12). There is an obvious difference in
the motivation. Moreover in the case of relative entropy
of entanglement, the infimum is taken over a set of states
(for example, separable states in the case in Eq. (12)),
whereas in the case of CE, the infimum is taken over a
set of operations.

2. Some properties

Let us now discuss some properties of CE .
(a) CE vanishes for separable states. For a separable

state ̺AB, CE(ρAB) = 0 by the very definition of CE , as
separable states can be produced locally.

(b) Let us now deal with the monotonicity of the mea-

sure CE under LOCC operations. We will prove that

(i) CE is invariant under local unitaries,

(ii) CE is nonincreasing under addition of local ancillas.

We conjecture that CE is also nonincreasing under throw-
ing out part of the system.

Let us first show that CE is invariant under local uni-
taries, that is

CE(̺AB) = CE(UA ⊗ U
′

B̺ABU
†
A ⊗ U

′†
B ), (26)

for an arbitrary unitary UA (U
′

B) on HA (HB). We have
(where we leave out the suffix AB from ̺AB, and denote

the local unitary UA ⊗ U
′

B by U)

CE(̺) = inf
L
S(̺|L(̺))

= inf
L
S(U̺U †|UL(̺)U †)

= inf
L
S(U̺U †|UL(U †U̺U †U)U †)

≤ CE(U̺U †). (27)
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The first equality is the definition of CE. The second
equality is a property of relative entropy distance, while
the third is due to the fact that U is unitary. To obtain
final inequality, we use the fact that L

′

(·) = UL(U †·U)U †

is again a cloning map, for a local U . To get the opposite
inequality, CE(̺) ≥ CE(U̺U †), just replace U by U †, and
then ̺ by U̺U † in eq. (27). Thus we have obtained the
relation (26).

Let us next show that CE is nonincreasing under ad-
dition of local ancillas. Suppose that a separable ancilla
̺
sep
A1B1

is added to the original shared state ̺AB. AA1 is
with Alice, while BB1 is with Bob. Then we have (where
we leave out the suffixes AB and A1B1)

CE(̺⊗ ̺sep) = inf
L
S(̺⊗ ̺sep|L(̺⊗ ̺sep))

≤ S(̺⊗ ̺sep|L
′

⊗ I(̺⊗ ̺sep))

= S(̺|L
′

(̺))

= inf
L
S(̺|L(̺))

= CE(̺), (28)

where L
′

is the local cloning map at which the infimum
of CE(̺AB) is attained, and I in the second line is the
identity operator on the A1B1 part of the system. The
first and last equalities in Eq. (28) are by the definition
of CE , while the inequality in the second line follows from
the definition of infimum. The third line follows from the
definition of relative entropy distance. The fourth line is
a consequence of the choice before, that L

′

is the cloning
map at which the infimum of CE(̺AB) is attained.

(c) The measure CE is a lower bound of relative entropy

of entanglement. Suppose that for relative entropy of
entanglement of the state ̺AB (as defined in Eq. (12),
the minimum is attained for the separable state σAB . So
we have

CE(̺AB) = inf
L
S(̺AB|L(̺AB))

≤ S(̺AB|σAB)

= ER(̺AB). (29)

The inequality holds as separable states can be prepared
locally.

B. The entanglement of deleting

Just as the notion of no cloning gave rise to the en-
tanglement of cloning, motivated in a similar way, we
will now define a measure, the entanglement of deleting,
based on the nonexistence of a deleting machine.

Note that both the measures are operationally moti-
vated.

The notion of deleting being in a sense dual to that of
cloning, we call these two measures as dual to each other.

1. The definition

As we have stressed in Sections V and VI, in case of
local deleting, the relevant operations are closed local
operations, which are just local unitaries.

Perfect deleting is not possible in general by closed lo-
cal operations. (See Eqs. (16), (17), (18).) One may
however try to perform it approximately. And just as in
the definition of entanglement of cloning, entanglement
of deleting of a bipartite state ̺AB is defined as the rela-
tive entropy distance of the state given by the (generally
impossible) perfect local deleting machine from that in
the best approximate version.

To make it precise, suppose that Alice and Bob are
given two copies of the bipartite state ̺AB, so that the
input is ̺AB⊗̺A′

B
′ , with AA

′

being with Alice and BB
′

being with Bob. They apply closed local operations in
the AA

′

: BB
′

cut. Suppose that the applied operations
are the unitary operations UAA′ and UBB′ at Alice and
Bob respectively. Ideally they did like to have

trABUAA′ ⊗ UBB′̺AB ⊗ ̺A′
B

′U
†
AA

′ ⊗ U
†
BB

′

as a separable state, while

trA′
B

′UAA′ ⊗ UBB′̺AB ⊗ ̺A′
B

′U
†
AA

′ ⊗ U
†
BB

′ = ̺AB.

This being not possible in general, they may try to
obtain a machine that produces a state in the A

′

B
′

part
that is as “close” to separable as possible, and a state in
the AB part that is as “close” to ̺AB as possible. The
best approximate local deleting machine is defined to be
one that minimizes the quantity (where we have denoted
the local unitary UAA′ ⊗ UBB′ by U)

S(̺AB|trA′
B

′U̺AB ⊗ ̺A′
B

′U †)

+ min
σ
A

′
B

′ ∈S
S(σA′

B
′ |trABU̺AB ⊗ ̺A′

B
′U †),

where S is the set of all separable states on HA
′ ⊗HB

′ .
And the “entanglement of deleting” of the bipartite

state ̺AB is defined as (where U is of the form UAA′ ⊗
UBB′ )

DE(̺AB) = inf
U

1

2

[

S(̺AB|trA′
B

′U̺AB ⊗ ̺A′
B

′U †)

+ min
σ
A

′
B

′ ∈S
S(σA′

B
′ |trABU̺AB ⊗ ̺A′

B
′U †)

]

. (30)

Note that just as in the case of entanglement of cloning,
the entanglement of deleting also involves an optimiza-
tion over a set of operations.

2. A change in the definition

There is a subtlety involved in the definition of the en-
tanglement of deleting. The main idea of the definition
of entanglement of deleting (as also for entanglement of
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cloning) is that deleting is possible globally, while not
possible locally. The distance from what we ideally want
locally from what is actually possible locally is the entan-
glement of deleting. However we must be sure that what
we want ideally is possible globally or else we will have
“some amount” of distance from the global impossibility
also, and which part has nothing to do with quantum
correlations.

In the definition of DE , we take a minimization over
all separable states in HA

′ ⊗ HB
′ . However this is not

fair. This is because, under closed global operations, only
those separable states are reachable which have the same
spectrum as ̺A′

B
′ .

Henceforth, whenever we consider DE for a state ̺AB,
we will keep in mind that the minimization in the defini-
tion is over such separable states. However, for brevity,
we will continue to say that the minimization is over “sep-
arable states on HA

′ ⊗HB
′ ”.

So for example, if ̺AB is pure, the minimization is over
all pure product states. This consideration will be impor-
tant when we obtain a bound on DE for pure bipartite

states, in Section VIII B.

3. Some properties

Let us now discuss some properties of the entanglement
of deleting.

(a) The entanglement of deleting vanishes for separable

states. This follows directly from the definition of DE .

(b) We now consider the monotonicity of DE under

LOCC operations. We will show that

(i) DE is invariant under local unitary operations,

(ii) DE is nonincreasing under addition of local ancillas.

It seems probable that DE is also nonincreasing under
tracing out part of the system.

Let us first prove item (i). For any local unitary oper-
ator V on HA ⊗HB, we have

DE(̺AB) = inf
U

1

2

[

S(̺AB|trA′
B

′U̺AB ⊗ ̺A′
B

′U †) + min
σ
A

′
B

′ ∈S
S(σA′

B
′ |trABU̺AB ⊗ ̺A′

B
′U †)

]

= inf
U

1

2

[

S(V ̺ABV
†|V trA′

B
′ {U̺AB ⊗ ̺A′

B
′U †}V †) + min

σ
A

′
B

′ ∈S
S(V σA′

B
′V †|V trAB{U̺AB ⊗ ̺A′

B
′U †}V †)

]

= inf
U

1

2

[

S
(

V ̺ABV
†|trA′

B
′

{

(V ⊗ IA′
B

′ )U(V † ⊗ V †)(V ̺ABV
†) ⊗ (V ̺A′

B
′V †)(V ⊗ V )U †(V † ⊗ IA′

B
′ )
})

+ min
σ
A

′
B

′ ∈S
S
(

V σA′
B

′V †|trAB
{

(IAB ⊗ V )U(V † ⊗ V †)(V ̺ABV
†) ⊗ (V ̺A′

B
′V †)(V ⊗ V )U †(IAB ⊗ V †)

})

]

≤ DE(V ̺ABV
†). (31)

Note that the same V , which is defined on HA ⊗ HB,
is also defined on HA

′ ⊗ HB
′ , as dimHA = dimHA

′

and dimHB = dimHB
′ , since we have two copies of

the same state as input, in a deleting procedure. We
have here used the facts that for any unitary operator U ,
S(̺|σ) = S(U̺U †|UσU †), and that V is unitary. Also

we have used the relation that VAB(trCDηABCD)V †
AB =

trCD(VAB ⊗ ICD)ηABCD(V †
AB ⊗ ICD). This relation ac-

tually holds for any operation on the AB part.
Let us next prove item (ii). Suppose that a local ancilla

̺
sep
A1B1

is added to the state ̺AB, with the AA1 part being

with Alice and the BB1 part with Bob. Since ̺sepA1B1
is

produced locally, it is a separable state. Let U
′

AA
′ ⊗

U
′′

BB
′ be the local unitary operation, and let σ

′

A
′
B

′ be

the separable state at which the infimum of DE(̺AB)
is attained. We have (where U is now a local unitary

operator in the AA1A
′

A
′

1 : BB1B
′

B
′

1 cut, and S is now

the set of separable states in the A
′

A
′

1 : B
′

B
′

1 cut)

DE(̺AB ⊗ ̺
sep
A1B1

) = inf
U

1

2

[

S(̺AB ⊗ ̺
sep
A1B1

|tr
A

′
B

′
A

′

1
B

′

1

U̺AB ⊗ ̺
sep
A1B1

⊗ ̺A′
B

′ ⊗ ̺
sep

A
′

1
B

′

1

U †)

+ min
σ
A

′
B

′
A

′

1
B

′

1

∈S
S(σ

A
′
B

′
A

′

1
B

′

1

|trABA1B1
U̺AB ⊗ ̺

sep
A1B1

⊗ ̺A′
B

′ ⊗ ̺
sep

A
′

1
B

′

1

U †)
]

≤
1

2

[

S
(

̺AB ⊗ ̺
sep
A1B1

|tr
A

′
B

′
A

′

1
B

′

1

{

(U
′

AA
′ ⊗ U

′′

BB
′̺AB ⊗ ̺A′

B
′U

′†
AA

′ ⊗ U
′′†
BB

′ ) ⊗ ̺
sep
A1B1

⊗ ̺
sep

A
′

1
B

′

1

})
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+S
(

σ
′

A
′
B

′ ⊗ ̺
sep

A
′

1
B

′

1

|trABA1B1

{

(U
′

AA
′ ⊗ U

′′

BB
′̺AB ⊗ ̺A′

B
′U

′†
AA

′ ⊗ U
′′†
BB

′ ) ⊗ ̺
sep
A1B1

⊗ ̺
sep

A
′

1
B

′

1

})]

= DE(̺AB).

The inequality follows by choosing U as U
′

AA
′ ⊗ U

′′

BB
′ ⊗

I
A1A

′

1
B1B

′

1

, and σ
A

′
B

′
A

′

1
B

′

1

as σ
′

A
′
B

′ ⊗ ̺
sep

A
′

1
B

′

1

in the in-

fimum of DE(̺AB ⊗ ̺
sep
A1B1

). The last equality is by
straightforward calculation.

VIII. BOUNDS FOR PURE STATES

In this section, we will obtain bounds of our measures
of entanglement for the case of pure states.

A. Bound on entanglement of cloning for pure

states

For definiteness, let us consider the case of two qubits.
To obtain the bound, we take advantage of the fact

that a cloning machine is known, that produces two sym-
metric inexact copies out of a single unknown qubit opti-
mally [26] (see also [27]). The unitary transformation of
the cloning machine is defined on a subspace of the space
of three qubits, one of which (the third qubit in Eq. (32)
below) acts as a sort of an environment, while the other
two are the two symmetric copies. The transformation
(U

′

) is defined as follows:

U ′ |0〉 |b〉 |e1〉 =

√

2

3
|00〉 |e〉 +

√

1

6
(|01〉 + |10〉) |e⊥〉

U ′ |1〉 |b〉 |e1〉 =

√

2

3
|11〉 |e⊥〉 +

√

1

6
(|01〉 + |10〉) |e〉 ,(32)

where |b〉 is a fixed blank state (in a two-dimensional
Hilbert space), |e1〉 is the initial state of the environment,
|e〉 and |e⊥〉 being two mutually orthonormal states of the
environment Hilbert space. The two clones are to surface
at the first and second qubits. Note that the environment
has turned out to be a qubit.

In our situation, Alice and Bob are given a 2⊗ 2 state
̺AB. They want to produce two copies of it, in the sense
discussed earlier (see Eqs. (21), (22), (23)). To use the

unitary operator U
′

, they prepare local blank states and
local environment states and then both of them sepa-
rately apply U

′

, to obtain

U
′

⊗U
′

̺AB(|b〉 〈b|)A′ (|b〉 〈b|)B′ (|e〉 〈e|)Ae
(|e〉 〈e|)Be

U
′†⊗U

′†,
(33)

where the AA
′

Ae part is with Alice and the BB
′

Be part
is with Bob, so that the first U

′

is applied on AA
′

Ae, and
the second on BB

′

Be. Then Alice performs a swap op-
eration on the AA

′

part of her Hilbert space. (This swap
could obviously have been performed by either Alice or
Bob.) Alice and Bob also throws out the environmental
parts now (this could of course have been done before the
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FIG. 2: Plot of the bound S(|ψ〉 〈ψ| |̺clone) in Eq. (35), de-
noted as S in the figure, and the relative entropy of entan-
glement (ER), for pure states |ψ〉 = a |00〉 + b |11〉. Both are
upper bounds of CE, so that the curve for CE must lie below
both the curves in the figure. The right end of the horizontal
axis corresponds to the maximally entangled state (in 2⊗ 2)
1

√

2
(|00〉+ |11〉). Note that the bound rules out the possibility

of CE = 1 for this state. CE = 1 arises naturally for the max-
imally entangled state in 2 ⊗ 2, for almost all entanglement
measures.

swap). This will give us a local cloning machine and its
performance will be a bound on the performance of the
best local cloning machine.

Let us calculate the bound when Alice and Bob shares
a general pure state |ψAB〉 = a |00〉AB + b |11〉AB, shared
by Alice and Bob, in 2 ⊗ 2. Here a and b are positive,
and a2 + b2 = 1.

In that case, after the local cloning operation (adding

the local blank and environment states, applying U
′

⊗U
′

,
swapping A with A

′

, and then tracing out the environ-
ments) has been performed, the state obtained in the AB

part (which is equal to that in the A
′

B
′

part) is [28, 29]

̺cloneAB = ̺clone
A

′
B

′ =
24a2 + 1

36
|00〉 〈00| +

24b2 + 1

36
|11〉 〈11|

+
5

36
(|01〉 〈01| + |10〉 〈10|) +

4ab

9
(|00〉 〈11| + |11〉 〈00|).

(34)

Our bound on CE , for the case of the state |ψAB〉 =
a |00〉AB + b |11〉AB, is therefore given by

CE(|ψAB〉) ≤ S(|ψ〉 〈ψ| |̺clone). (35)

In Fig. 2, we plot this bound of CE for the case of
pure states. For pure states, the von Neumann entropy
of either local density martix is known to be the “good
asymptotic” measure of entanglement [30, 31]. Let us
call it E(|ψ〉). Therefore E(|ψAB〉) = S(trA(|ψ〉 〈ψ|)AB),
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where S(̺) = −tr̺ log2 ̺ is the von Neumann entropy
of ̺. We compare our bound for CE in Eq. (35), with
E(|ψ〉). Moreover note that CE is for all states bounded
above by relative entropy of entanglement ER (see Eq.
(29)), and ER for pure states coincides with E(|ψ〉) [15].
Thus the bound that we have obtained for pure states is
the minimum of E(|ψ〉) = ER(|ψ〉) and the bound in Eq.
(35):

CE(|ψ〉) ≤ min{ER(|ψ〉), S(|ψ〉 〈ψ| |̺clone)} ≡ CboundE .
(36)

The figure (Fig. 2) shows that the bound in Eq. (35) is
better than the relative entropy of entanglement bound,
for high entangled states. For low entangled states, the
relative entropy of entanglement bound is better. The
change-over of the bound from relative entropy of entan-
glement to the bound in Eq. (35) occurs at a ≈ 0.4282.

For the maximally entangled state in 2 ⊗ 2, we have

CE ≤ log2
12

7
≈ 0.777608. (37)

The cloning machine of Eq. (32) has the property of
being “isotropic”. That is, the quality of the clones at
the output is equally good, irrespective the input state. It
therefore seems that the local cloning machine considered
here to obtain the bound in Eq. (35) is optimal (i.e. it
attains the infimum in CE), for the maximally entangled
states in 2 ⊗ 2.

Similar upper bounds can be obtained for higher di-
mensional pure states, by considering higher dimensional
cloning machines.

B. Bound on entanglement of deleting for pure

states

We now try to obtain a bound on the entanglement
of deleting for the case of pure states, where again for
definiteness, we consider only states in 2 ⊗ 2.

The problem here is that an optimal deleting machine
for a single system is not known. Even if we find one,
it will be defined only on the parallel space (see [8]).
However if Alice and Bob are given two copies of |ψ〉 =
a |00〉 + b |11〉, the shared state is

(a |00〉 + b |11〉)AB ⊗ (a |00〉 + b |11〉)A′
B

′ , (38)

with AA
′

being with Alice and BB
′

with Bob. And
then the AA

′

part (as also the BB
′

part) is the whole
four-dimensional Hilbert space, instead of being just the
parallel space.

As a way out, we consider the local deleting machine
that swaps A with A

′

at Alice’s end. (The swapping
could obviously have been done at Bob’s end also.) In
that case, if the state in Eq. (38) is the input to the
deleting machine, we have (a and b are positive, and a2+
b2 = 1)

̺delete = a2 |0〉 〈0| + b2 |1〉 〈1| ⊗ a2 |0〉 〈0| + b2 |1〉 〈1|

0.1 0.2 0.3 0.4 0.5 0.6 0.7
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FIG. 3: Plot of the bound Dbound

E in Eq. (39) of entanglement
of deleting, for the pure states |ψ〉 = a |00〉 + b |11〉. We have
assumed that b ≥ a. For comparison, we have also drawn
the bound (Cbound

E ) in Eq. (35) for the same pure states.
Therefore entanglement of deleting must lie below the upper
curve, while entanglement of cloning must lie below the lower
curve. So apparantly it seems that DE is larger than CE. This
is to be expected, as the set of operations for the case of local
deleting is drastically smaller than that for local cloning.

as the output at both AB and A
′

B
′

.
The quality of this local deleting machine for pure en-

tangled inputs, is

S(〈ψ| 〈ψ| |̺delete) + minS(̺sep|̺delete),

where the minimization is over all pure product states
in 2 ⊗ 2 (see Section VII B 2). A half of this quantity is
therefore an upper bound of the entanglement of deleting
for pure states in 2⊗2. Performing the minimization, we
have for pure states in 2 ⊗ 2,

DE(|ψ〉) ≤ E(|ψ〉) − 2 log2 b ≡ Dbound
E , (39)

where we have assumed that b ≥ a. The minimization
is attained at |11〉. For the maximally entangled state in
2 ⊗ 2, we have DE ≤ 2.

We plot this bound, Dbound
E , for entanglement of delet-

ing in Fig. 3, where, for comparison, we have also plotted
the bound, CboundE (Eq. (35)), for entanglement of cloning
obtained in the preceeding subsection.

IX. DISCUSSIONS

Entanglement is a multi-faceted entity, and it seems
that it cannot be quantized or understood by a single en-
tanglement measure. Therefore it is interesting to quan-
tify it in as many ways as possible. However the mea-
sures of entanglement that has an operational meaning,
like the entanglement cost or distillable entanglement are
important in understanding the resource perspective of
entanglement.

In this paper, we have defined two entanglement mea-
sures for bipartite states which are motivated by the no
cloning and no deleting results in quantum mechanics.
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Interestingly, the entanglement of cloning (CE) has
been found to be strictly less than unity for a maximally
entangled state in 2 ⊗ 2 (Eq. (37)). Almost all entan-
glement measures turn out to be unity for the maximally
entangled states in 2⊗2. Even the single-copy pure state
entanglement transformation monotones [16, 32] of the
maximally entangled states in 2 ⊗ 2 are 1

2 and 1. Leav-
ing out the trivial measure 1 (which is a measure even
for nonmaximally entangled pure states, the other mea-
sure is just unity after applying logarithm (to the base
2) and a minus sign. It is interesting to find out whether
a normalised CE , i.e. CE divided by the value of CE for
a maximally entangled state in 2⊗ 2 is actually different
from the known entanglement measures, even for pure
states.

Let us mention here that we do not know whether
there is an order between the two proposed entangled
measures. However, since the set of operations in local
deleting is drastically reduced as compared to that in lo-
cal cloning, it seems that entanglement of deleting will in
general be larger than the entanglement of cloning (see
Fig. 3).

Let us also indicate here that both the proposed mea-
sures can be generalised to the case of multipartite states
in a straightforward manner. Such generalisation is inter-
esting, as such multipartite entanglement measures will
not quantify entanglement in the usual way. Let us try
to see this for the case of multipartite entanglement of
cloning. The bipartite as well as the multipartite entan-

glement of cloning (as well as that of deleting) will of
course have a certain continuity, following from the con-
tinuity of relative entropy. Consequently for states of the
form a |000〉 + b |111〉, the multipartite entanglement of
cloning must be vanishingly small when a is vanishing.
This is because the multipartite entanglement of cloning
must vanish for the state |111〉. Three separated partners
can produce as many copies of |111〉 as they want, by lo-
cal operations. However the state |0〉 ⊗ 1√

2
(|00〉 + |11〉)

has a finite value (whatever that is) of multipartite entan-
glement of cloning, since this state cannot be produced
by three separated partners by local actions. Both the
proposed measures can also be generalised to the case
of a set of states, even for the case of a single system
(see [5] in this regard). We will later on work on these
generalisations.
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