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Nonergodicity of entanglement and its complementary behavior to magnetization in

infinite spin chain

Aditi Sen(De), Ujjwal Sen, and Maciej Lewenstein
Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany

We consider the problem of the validity of a statistical mechanical description of two-site en-
tanglement in an infinite spin chain described by the XY model Hamiltonian. We show that the
two-site entanglement of the state, evolved from the initial equilibrium state, after a change of the
magnetic field, does not approach its equilibrium value. This suggests that two-site entanglement,
like (single-site) magnetization, is a nonergodic quantity in this model. Moreover we show that these
two nonergodic quantities behave in a complementary way.

Entanglement plays a key role in the rapidly grow-
ing field of quantum information processing [1], where so
far, most of the discussions of entanglement concern few
body systems. Recently, however, the properties of en-
tanglement has been also used to study and understand
behavior of “complex” quantum systems. For instance,
entanglement in quantum many body systems such as
spin chains or Bose-Einstein condensates were studied
(see e.g. [2, 3, 4]). The role of “entanglement length” in
quantum phase transitions was pointed out in Ref. [5].

The aim of this paper is to deal with the statistical
properties of entanglement, or rather the validity of a sta-
tistical mechanical approach to entanglement in realistic
many body systems. The relation of entanglement with
important notions in statistical mechanics is important
to understand the behavior of entanglement in quantum
many body systems. We will restrict ourselves to one-
dimensional infinite spin systems. Entanglement in such
systems was considered e.g. in Refs. [2, 3, 6]. These pa-
pers deal exclusively with the properties of entanglement
of an infinite spin chain, which is either in a ground state
or in a thermal equilibrium state. Such states are “static”
states of the system, as they do not explicitly depend on
time. Exceptions include the recent studies of entangle-
ment in quantum dynamics, which allowed to formulate
novel types of unprecedentedly efficient numerical codes
for simulation of quantum systems [7] (see also [8, 9]).

The validity of a statistical mechanical description of
a quantity, characterizing a physical system, depends on
the behavior of that quantity as the system evolves in
time. More precisely, a necessary condition for validity of
statistical mechanical description of a physical quantity
is that it must be “ergodic”. A physical quantity is said
to be ergodic if the time average of the quantity matches
its ensemble average. This is usually a hard question to
check, even for classical systems. However, an indication
of whether a given quantity is ergodic or not, can be
obtained by comparing the time evolved state with the
equilibrium state.

To deal with such questions, we will therefore consider
real time evolution of an infinite one-dimensional spin
chain. We will suppose that the spin chain is described
by the so-called XY model (see Eq. (1) below). We
will show that for large times, the nearest neighbor en-
tanglement of the evolved states, does not approach to

the corresponding entanglement of the equilibrium state.
This suggests that nearest neighbor entanglement in this
spin system is nonergodic [10], indicating that one cannot
describe entanglement in such models by equilibrium sta-
tistical mechanics. Temporal dynamics of entanglement
in spin systems is important in quantum information and
computation tasks. For instance, the temporal dynamics
of entanglement in a spin system has been used in Ref.
[8] to obtain the one-way quantum computer. For the
infinite spin chain in the XY model, it is known that the
single-site magnetization is also a nonergodic observable
[11]. We will show that (two-site) entanglement has a
complementary temporal behavior to (single-site) mag-
netization in this model. We will also show that the
(two-site) entanglement and magnetization of the evolved
state saturates for low temperatures, for a given time.
The XY model (see Eq. (1)) that we consider here is

integrable [12]. For classical systems, integrable models
possess a large number of constants of motion, and are
usually not ergodic (see e.g. [13]). However, such ob-
servations are valid for the case of systems that have a
finite (and usually small) number of degrees of freedom.
In our case, we deal with an infinite spin chain, and our
considerations are distinctly quantum. Hence, questions
about ergodicity, or its absence are nontrivial.
A one dimensional spin system (a one-dimensional ar-

ray (lattice) of spin-1/2 particles) with nearest neigh-
bor interactions is described by a (dimensionless) Hamil-
tonian of the form Hint =

∑

i(ASx
i S

x
i+1 + BSy

i S
y
i+1

+
CSz

i S
z
i+1), where the Sx

i , S
y
i , S

z
i are one-half of the Pauli

spin matrices σx, σy , σz at the i-th site of the array,
and A,B, C are coupling constants. Here, we take A 6= B
and C = 0. We introduce also an external field into the
Hamiltonian, so that the total Hamiltonian of the system
is H(t) = Hint − h(t)Hmag. To ensure that this external
field has nontrivial effects on the evolution, we must have
[Hint, Hmag] 6= 0. The simplest way in which this can be
effected is by choosing Hmag =

∑

i S
z
i , and A = 1 + γ,

B = 1− γ, γ 6= 0. In this way we arrive at the XY model
in the transverse field

H(t) =
∑

i

[

(1 + γ)Sx
i S

x
i+1 + (1− γ)Sy

i S
y
i+1

− h(t)Sz
i

]

,

(1)
where γ 6= 0. In the following, we set ~ = 1. A spin
chain whose dynamics is described by H(t), is said to
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be described by the “XY model”. For a finite number,
N , of spins, we assume a periodic boundary condition,
~SN+1 = ~S1. Ultimately, we will be interested in the
thermodynamic limit N → ∞. Such systems can be
realized in atomic gas in an optical lattice (see e.g. [14]).
At a given time t, the (thermal) equilibrium state

is given by ρeqβ (t) = exp(−βH(t))/Z, where Z =

tr(exp(−βH(t))). Here β = 1/kT , where k is the Boltz-
mann constant, and T denotes the (absolute) tempera-
ture. To consider questions about ergodicity, we will be
interested in the behavior of the evolved state. The evo-
lution is governed by the Hamiltonian H(t), from a given
initial state. Since we will compare the properties of the
evolved state, with those of the equilibrium state, it is
natural to suppose that the initial state (at t = 0), is the
equilibrium state at t = 0. We denote the evolved state
by ρα(t), where the suffix corresponds to the tempera-
ture of the initial equilibrium state ρeqα (0) = ρα(0). For
later times, properties of the evolved state ρα(t) will be
compared to those of the equilibrium state ρeqβ (t), so that
they have the same energies:

tr(H(t)ρα(t)) = tr(H(t)ρeqβ (t)). (2)

For simplicity, we will consider the case of sudden switch
of the field h(t), as h(t) = a, for t ≤ 0, and = b, for t > 0.
Both ρα(t) and ρeqβ (t) are states of an infinite num-

ber of spin-1/2 particles. For our purposes, it will be
sufficient to consider single-site and two-site density ma-
trices. Let us first consider the single-site density matrix
for the state ρeqβ (t). By symmetry, the single-site density
matrices of the chain are all the same. We will denote
it by ρeq1 (t) (hiding the suffix β). Now ρeq∗1 (t) = ρeq1 (t),
when the complex conjugation is taken in the compu-
tational basis, which (for each site) is the eigenbasis of
Pauli matrix σz. Therefore tr(Syρeq1 (t)) = 0. Moreover
the Hamiltonian H(t) has the global phase flip symmetry
([H,ΠiS

z
i ] = 0), from which it follows that tr(Sxρeq1 (t)) =

0. Consequently, the single-site density matrix of the
equilibrium state is of the form ρeq1 (t) = 1

2
I+2M eq

z (t)Sz,
where I is the 2 × 2 identity matrix. The evolved state
does not necessarily have the property of being equal to
its complex conjugation, and consideration of the global
phase flip symmetry is complicated by the fact that the
Hamiltonian is explicitly dependent on time. However,
using the Wick’s theorem, as in [11, 12, 15], the single-
site density of the evolved state turns out to be of the
form ρ1(t) =

1

2
I + 2Mz(t)S

z .
For the case of the two-site density matrix ρeq

12
(t) of

the equilibrium state ρeqβ (t), we can again use the global
phase flip symmetry and the fact that it is equal to its
complex conjugate, so that it is of the form

ρeq12(t) =
1

4
I ⊗ I +M eq

z (t)(Sz ⊗ I + I ⊗ Sz)

+
∑

j=x,y,z

T eq
jj (t)S

j ⊗ Sj, (3)

where the correlation functions, T eq
jj (t), are defined as

T eq
jj (t) = 4tr(Sj ⊗ Sjρeq12(t)), j = x, y, z. In the case

of the two-site density matrix of the evolved state, the
yz and zx correlations are absent (via use of the Wick’s
theorem). However the xy correlations does not vanish,
just as the xx, yy, and zz correlations. Thus the two-site
density matrix of the evolved state ρα(t) is of the form

ρ12(t) =
1

4
I ⊗ I +Mz(t)(S

z ⊗ I + I ⊗ Sz)

+Txy(t)(S
x ⊗ Sy + Sy ⊗ Sx) +

∑

j=x,y,z

Tjj(t)S
j ⊗ Sj , (4)

where the correlation functions, Tjk(t), are defined as
Tjk(t) = 4tr(Sj ⊗ Skρ12(t)), j, k = x, y, z.
Let us consider the (single-site) magnetization and the

(two-site) entanglement in an infinite chain for the two
states of interest. The magnetization of the equilibrium
state is M eq

z (t) = tr(Szρeq1 (t)), while that for the evolved
state is Mz(t) = tr(Szρ1(t)). For studying entanglement
[16, 17], we will use logarithmic negativity (LN) [18] as
our measure of entanglement. LN of a bipartite state
ρAB is defined as EN (ρAB) = log2 ‖ρ

TA

AB‖1, where ‖.‖1 is

the trace norm, and ρTA

AB denotes the partial transpose
of ρAB with respect to the A-part [19]. Note that the
two-site density matrices in our case acts on C2 ⊗ C2.
Consequently, a positive value of the LN implies that the
state is entangled and distillable [19, 20], while EN = 0
implies that the state is separable [19].
The (single-site) magnetizations of the equilibrium

state and the evolved state are respectively given by [11]

M eq
z (t) =

1

2π

∫ π

0

dφ
tanh

(

1

2
βΛ(h(t))

)

Λ(h(t))
(h(t)−cosφ), (5)

and

Mz(t) =
1

2π

∫ π

0

dφ
tanh(1

2
βΛ(a))

Λ(a)Λ2(b)

×
[

cos(2Λ(b)t)γ2(a− b) sin2 φ

− (cosφ− b)[(cosφ− a)(cosφ− b) + γ2 sin2 φ
]

,

(6)

where Λ(a) and Λ(b) can be obtained from Λ(h(t)) =

[γ2 sin2 φ+ (h(t) − cosφ)2]
1

2 .
For definiteness, let us consider the case where γ =

0.5, α = 200, a = 0.5, b = 0. For these values of the
parameters, Eq. (2) gives β ≈ 3.9. The equilibrium
magnetization M eq

z (t) has an initial value of ≈ 0.148328
and then jumps down to zero for all later times. The
magnetization Mz(t) of the evolved state, on the other
hand, is an oscillating function (see Fig. 1), which of
course starts at the same initial value [21] as M eq

z (t),
but remains positive for long times. This suggests that
the magnetization of the spin system in the XY model is
nonergodic [11] (cf. [22]).
The nearest neighbor correlations for the equilibrium

state are given by [15, 23] T eq
xx(t) = −Geq(−1, t), T eq

yy(t) =

−Geq(1, t), T eq
zz (t) = 4[Mz(t)]

2 − Geq(1, t)Geq(−1, t),
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where Geq(R, t), for R = ±1, are given by

Geq(R, t) =
γ

π

∫ π

0

dφ cos(φR) sinφ
tanh

(

1

2
βΛ(h(t))

)

Λ(h(t))

−
1

π

∫ π

0

dφ cos(φR)(cosφ− h(t))
tanh

(

1

2
βΛ(h(t))

)

Λ(h(t))
. (7)

We can now calculate the equilibrium LN Eeq
N (t) of

the two-site density matrix ρeq12(t) of the equilibrium state
ρeq(t) via the prescription in Eq. (3). For the same values
of the parameters as above, so that β ≈ 3.9 via Eq. (2),
the equilibrium LN of the two-site equilibrium state has
an initial value of ≈ 0.132635. Then Eeq

N (t) jumps up

to ≈ 0.157188 for all t > 0. Note that the equilibrium
magnetization M eq

z (t) jumps down in the same situation.
So with more entanglement, we have more local disorder
(cf. [24]).
Our interest is to compare this equilibrium two-site

entanglement with the two-site entanglement of the
evolved state. The nearest neighbor correlations of the
evolved state are given by [15] Txy = S(1, t)/i, Txx(t) =
−G(−1, t), Tyy(t) = −G(1, t), Tzz(t) = 4[Mz(t)]

2 −
G(1, t)G(−1, t) + S(1, t)S(−1, t), where G(R, t) and
S(R, t), for R = ±1, are given by

G(R, t) =
γ

π

∫ π

0

dφ sin(φR) sin φ
tanh

(

1

2
βΛ(a)

)

Λ(a)Λ2(b)

×
[

γ2 sin2 φ + (cosφ− a)(cosφ− b)

+(a− b)(cosφ− b) cos(2Λ(b)t)
]

−
1

π

∫ π

0

dφ cos(φR)
tanh

(

1

2
βΛ(a)

)

Λ(a)Λ2(b)

×
[

{γ2 sin2 φ + (cosφ− a)(cosφ− b)}(cosφ− b)

−(a− b)γ2 sin2 φ cos(2Λ(b)t)
]

, (8)

S(R, t) =
γ(a− b)i

π

∫ π

0

dφ sin(φR) sinφ
sin (2tΛ(b))

Λ(a)Λ(b)
.

(9)

The LN EN (t) of the two-site density matrix ρ12(t)
of the evolved state ρ(t) can now be calculated by using
Eq. (4). The behavior of LN of the evolved state for
the same parameters as above, is shown in Fig. 1. With
time, the entanglement converges to a fixed value. As γ
approaches 1, the time taken for convergence is longer,
until for γ = 1, the revivals occur for all times. Hence-
forth, we consider γ 6= 1.
As we see, the two-site entanglement of the state ob-

tained from the time evolution (from an initial equilib-
rium state) is not approaching to the two-site entangle-
ment of the equilibrium state for large times. This sug-
gests that, just like the (single-site) magnetization, the
two-site entanglement of an infinite one-dimensional spin
system in the XY model is nonergodic.
We will now compare these two nonergodic quantities

of the XY chain. We will show that their temporal be-
haviors are in a sense complementary. First note that the

20 40 60 80 100
-0.05

0.05

0.1

0.15

0.2

0.25
EN(t)

t

Mz(t)

FIG. 1: Comparison of temporal behavior of the nearest
neighbor entanglement to the magnetization, with time, of
the evolved state of the infinite spin chain in XY model: We
plot EN(t) and Mz(t) for γ = 0.5, α = 200, a = 0.5, b = 0.

magnetization Mz(t) of the evolved state is a damped
oscillatory function. For our choice of parameters, the
damping decreases the amplitude of the oscillation, but
the mean value of the oscillation is more or less fixed
(see Fig. 1). Therefore, long time average of Mz(t) can
essentially be considered to be a constant at ≈ 0.02, af-
ter starting with an initial higher value of ≈ 0.148328.
Similar feature was seen before for M eq

z (t).
The opposite is true when we compare the two-site

entanglements of the equilibrium state and the evolved
states. The two-site LN EN (t) of the evolved state con-
verges to ≈ 0.18, after starting from an initial lower value
of ≈ 0.132635 (see Fig. 1). Again a similar behavior was
seen in the equilibrium state. It is in this sense that we
say that the two-site entanglement and (single-site) mag-
netization has a complementary behavior in the infinite
spin chain in the XY model.
The magnetization and nearest neighbor entanglement

in the evolved state are plotted in Fig. 1. We note here
that the next-nearest neighbor correlation functions are
also known [15]. Using them, we have calculated the
LN for the next-nearest neighbor of the evolved state.
It turns out that it is smaller than the nearest neighbor
LN. For example, for the parameters as above, the next-
nearest neighbor LN is vanishing already at t = 0.8 (and
never going over ≈ 0.0071), while the nearest neighbor
LN is about 0.18, on average, for large times.
Let us now consider the the behavior of the magneti-

zation and nearest neighbor entanglement of the evolved
state, for different values of the temperature, but for a
fixed time t = 1. (See Fig. 2.) As expected, for high tem-
peratures, the (nearest neighbor) entanglement is vanish-
ing. Note, that both magnetization and nearest neighbor
entanglement ultimately saturate, with decreasing T .
Summarizing, we have presented evidence that in the

thermodynamic limit of an infinite one-dimensional chain
of spin-1/2 particles described by the XY model Hamil-
tonian, the two-site entanglement is nonergodic. The
two-site entanglement of the evolved state does not ap-
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FIG. 2: The behavior in the evolved state, with temperature
T , of nearest neighbor entanglement and magnetization of the
infinite spin chain in XY model are compared for a fixed time
t = 1 and for γ = 0.5, a = 10, b = 0. We actually plot the
curves with respect to β, where β = 1/kT .

proach its equilibrium value. That is, entanglement in
such systems does not, by itself (i.e. without contact with
external reservoirs), relax to its equilibrium value, after
a change of the external magnetic field. This indicates
that entanglement in such systems cannot be described
by equilibrium statistical mechanics. We also show that
the entanglement has a complementary temporal behav-
ior with respect to magnetization. We believe that such
studies of the dynamics of entanglement in spin systems
will help us to implement quantum information process-
ing tasks in such systems (cf. [8]).
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