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We study the dynamics of entanglement in the infinite asymmetric XY spin chain, in an applied
transverse field. The system is prepared in a thermal equilibrium state (ground state at zero tem-
perature) at the initial instant, and it starts evolving after the transverse field is completely turned
off. We investigate the evolved state of the chain at a given fixed time, and show that the nearest
neighbor entanglement in the chain exhibits a critical behavior (which we call a dynamical phase
transition), controlled by the initial value of the transverse field. The character of the dynamical
phase transition is qualitatively different for short and long evolution times. We also find a non-

monotonic behavior of entanglement with respect to the temperature of the initial equilibrium state.
Interestingly, the region of the initial field for which we obtain a nonmonotonicity of entanglement
(with respect to temperature) is directly related to the position and character of the dynamical
phase transition in the model.

I. INTRODUCTION

Exploring the properties of entanglement has recently
attracted a lot of interest, due to the usefulness of en-
tanglement in quantum information processing tasks [1].
Recently, several authors have begun to study the prop-
erties of entanglement in real physical many body sys-
tems, such as cold atomic gases in optical lattices (e.g.
[2]) or in trapped gaseous Bose-Einstein condensates (e.g.
[3]). It turns out that such investigations help us to un-
derstand the physics of quantum phase transitions (e.g.
[4, 5, 6, 7, 8]). Moreover, they are important for imple-
mentations of quantum computation, or other quantum
information processing tasks in such physical systems.

Among the potential candidates for implementing
quantum computation are various models of spin sys-
tems that can be realised with ultracold atoms in op-
tical lattices (see e.g. [9, 10]). There is therefore a strong
motivation behind the study of entanglement in spin sys-
tems (see e.g. [4, 5, 6, 7, 8, 11, 12, 13, 14, 15] and ref-
erences therein). Moreover, studies of entanglement in
spin models help us to relate entanglement to the fun-
damental concepts, such as quantum phase transitions.
In particular, it was shown that near a phase transition
in the ground state of an exactly solvable spin model in
one dimension (Ising model in a transverse field), two-
particle entanglement remains short ranged, while two-
particle correlation length diverges [4, 5]. The behavior
of bipartite, as well as multipartite entanglement in the
ground states and (thermal) equilibrium states of spin
rings and chains has been studied from several perspec-
tives [4, 5, 6, 11, 14, 15]. It has been shown that, us-
ing the concept of localizable entanglement [8, 16] (cf.
[17, 18]), bounded from above by entanglement of as-
sistance [19], and from below by correlation functions,
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one can define an entanglement correlation length that
diverges at the criticality, and majorizes the standard
correlation length (see also [20]).

Studies of entanglement of the time-evolved state of
spin models has also been carried out [13, 14, 21, 22, 23,
24]. In particular, implementation of the “one-way quan-
tum computer” and short range teleportation [25] of an
unknown state has been proposed by using the dynam-
ics of spin systems in [22, 23, 24, 26, 27]. In Ref. [14], it
was shown that the nearest-neighbor entanglement of the
time-evolved state in an infinite spin chain (asymmetric
XY model in a transverse field), after an initial distur-
bance, does not approach its equilibrium value (noner-
godicity of entanglement). Previous studies of quantum
dynamics of spin models after a rapid change of the field
include Refs. [28, 29], while effects of a sudden switching
of the interaction in arrays of oscillators were studied in
Ref. [30].

In this paper, we study the dynamics of nearest-
neighbor entanglement in the evolution of an infinite spin
chain described by the asymmetric XY model in a trans-
verse field (see Eq. (2) below). We take the initial state
of the evolution to be the equilibrium state at zero tem-
perature, and suddenly turn off the transverse field at
zero time. The system is thus given an initial distur-
bance, and its properties are then studied at later times.
We find that the nearest-neighbor entanglement in the
evolved state at a fixed time shows a criticality (which
we call a dynamical phase transition (DPT)) with respect
to the transverse external field. We refer to the region
of the initial transverse field for which the entanglement
is nonvanishing (vanishing), at a fixed time, as the “en-
tangled phase” (“separable phase”). Interestingly, the
nature of the DPT depends on whether we are near, or
far from the time of initial disturbance. Moreover, for
values of the initial transverse field near the criticalities,
as well as in the separable phase, and for short times,
the nearest-neighbor entanglement shows nonmonotonic-
ity with respect to temperature. Accordingly, we call the
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criticalities as “critical regions”, signifying that “critical”
effects persist for a small region around the critical value
of the transverse field. Such nonmonotonicity of entan-
glement with respect to temperature was also found in
Ref. [31], in the Jaynes-Cummings model. Study of non-
monotonicity of entanglement with respect to tempera-
ture is interesting, as preservation of entanglement in a
hostile environment is one of the main challenges in quan-
tum computation and quantum information in general. A
common belief is that temperature is a form of noise, i.e.
it destroys the subtle quantum correlations. However, we
show that for the infinite spin chain modelled by the XY
Hamiltonian, at least in some situations, entanglement is
not always monotonically decreasing with temperature,
and interestingly, this is related to the appearance of a
dynamical phase transition in that model.
As we have mentioned above, we characterise the DPT

in the asymmetric XY chain by magnetic field and tem-
perature, the usual control parameters used in statistical
physics for characterising phase transitions. However,
note that we also use time (t) as one of our control pa-
rameters in the characterisation. As we will see in this
paper, significant change of behavior is observed in the
DPTs, as we change the parameter t.
The paper is organised as follows. In Sec. II, we will

recollect some facts about the XY spin model and fix
some notations. In order to explore the properties of en-
tanglement, one has to fix the measure with which one
quantifies entanglement. In Sec. III, we define the en-
tanglement measure that will be considered in this paper.
The concept of dynamical phase transition is discussed
in Sec. IV. The nonmonotonicity of entanglement of the
evolved state with respect to temperature of the initial
state, and its connection to the dynamical phase transi-
tion, are discussed in Sec. V. We summarize our results
in the final section (Sec. VI).

II. THE XY MODEL IN THE TRANSVERSE

FIELD

A. Description of the model

For a one-dimensional spin chain of spin 1/2 particles,
a simple form of the Hamiltonian with nearest neighbor
interactions is given by

Hint =
∑

i

(ASx
i S

x
i+1 + BSy

i S
y
i+1 + CSz

i S
z
i+1), (1)

where A, B, and C are coupling constants, and Sx
i , S

y
i ,

Sz
i are spin 1/2 operators (one-half of the Pauli matri-

ces) at the i-th site. One can also introduce an exter-
nal magnetic field in the Hamiltonian, so that the total
Hamiltonian is

H = Hint − h(t)Hmag,

where h(t) is a time-dependent function, to be specified
below. To obtain a non-trivial effect on the dynamics

due to the field part of the Hamiltonian, one must choose
the magnetic field and other parameters in such a way
that the interaction part and the field part of the total
Hamiltonian do not commute.
A simple way to attain that is to choose the field part

as

Hmag =
∑

i

Sz
i ,

and A = 1+γ, B = 1−γ, C = 0 (with γ 6= 0). Therefore
the total Hamiltonian that we study in this paper takes
the form (γ 6= 0)

H =
∑

i

(

(1 + γ)Sx
i S

x
i+1 + (1− γ)Sy

i S
y
i+1

)

− h(t)
∑

i

Sz
i .

(2)
This Hamiltonian is called the asymmetric XY model in
a transverse field.
Such a system can be realized in atomic gas in an opti-

cal lattice (e.g. [9, 10]). Note that the condition of non-
vanishing anisotropy γ is required, as otherwise the field
part commutes with the interaction part. This model
is exactly solvable by succesive Jordan-Wigner, Fourier,
and Bogoliubov transformations [32]. We still have to
specify the time dependence of the magnetic field, which
we choose to be a step function. Precisely, we choose h(t)
to be

h(t) =
{

a, t ≤ 0
0, t > 0

,

with a 6= 0. The system is thus given an initial distur-
bance, as the field is turned off. The properties of the
evolved state are then studied at later times.
We will mainly be interested in studying the dynamics

of nearest neighbor entanglement of the evolved state of
such model. The state that we consider, evolves accord-
ing to the Hamiltonian H , given in Eq. (2). But it also
depends on the initial state, from which it starts evolv-
ing. Let us denote the (thermal) equilibrium state at the
initial time, and at absolute temperature T as ρeqβ :

ρeqβ = exp[−βH(0)]/Zβ.

Here Zβ is the partition function, given by

Zβ = tr(exp[−βH(0)]),

and β = 1
kT

, where k is the Boltzmann constant. Hence-
forth, we set k = 1. In all cases studied here, we will be
choosing an equilibrium state ρeqβ as our initial state. In
particular, we will consider the case of zero temperature,
i.e. when β → ∞.

B. Single and two particle reduced density

matrices

Although our main intention is to study the behavior of
nearest neighbor entanglement, we will also calculate the
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single-site property of magnetization in this model. As
we will see, the behavior of magnetization (in particular,
its nonmonotonicity) does not depend on whether we are
near, or far from the DPT discussed in this paper. Let
us therefore find out the single-site and two-site reduced
density matrices of the evolved state. Let us suppose
that the evolution starts off from the initial state ρeqβ of
the infinite chain, and let the evolved state of the infinite
spin chain be denoted by ρβ(t). Due to symmetry, all
the single-site density matrices of the evolved state (at a
particular instant t, and for a particular temperature T )
are equal. The same is true for the nearest neighbor den-
sity matrices (as for the other two-site density matrices).
We denote them as ρ1β(t) and ρ12β (t), respectively.

Our system is an infinite spin chain of spin-1/2 parti-
cles, and so our single-site density matrix ρ1β(t) acts on
the two-dimensional complex Hilbert space. A general
single qubit (two-dimensional quantum system) density
matrix can be written as

ρ1β(t) =
1

2
I + 2Mz

β(t)S
z + 2Mx

β (t)S
x + 2My

β (t)S
y ,

where Mz
β(t), M

x
β (t), M

y
β (t) are the unknown parameters

to be determined. Using Wick’s theorem, as in Refs.
[32, 33, 34], we have that

Mx
β (t) = My

β (t) = 0. (3)

Therefore the single-site density matrix of the evolved
state is of the form

ρ1β(t) =
1

2
I + 2Mz

β(t)S
z,

so that we are left with determining just the single pa-
rameter

Mz
β(t) = tr

(

Szρ1β(t)
)

,

which is the (transverse) magnetization of the system.
Let us now consider the two-site density matrix ρ12β

of the evolved state. A general two-qubit state is of the
form

ρ12β (t) =
1

4
I ⊗ I +

∑

j=x,y,z

M j
β(t)(S

j ⊗ I + I ⊗ Sj)

+
∑

j,k=x,y,z

T jk
β (t)Sj ⊗ Sk, (4)

where

T jk
β (t) = 4tr

(

Sj ⊗ Skρ12β (t)
)

are the two-site correlation functions. We already have
Mx

β (t) = My
β (t) = 0. By applying Wick’s theorem again,

one can find that the x− z and the y− z correlations are
vanishing. Therefore, the two-site density matrix of the
evolved state is of the form

ρ12β (t) =
1

4
I ⊗ I +Mz

β(t)(S
z ⊗ I + I ⊗ Sj)

+ T xy
β (t)(Sx ⊗ Sy + Sy ⊗ Sx)

+
∑

j=x,y,z

T jj
β (t)Sj ⊗ Sj . (5)

To find out the remaining (nonvanishing) parameters
of the single and two particle states (ρ1β(t) and ρ12β (t)

respectively), explicit use of diagonalizing transforma-
tions (Jordan-Wigner, Fourier, and Bogoliubov transfor-
mations) must be made [32, 33, 34]. Using them, one
finds that the (transverse) magnetization of the evolved
state is given by [33]

Mz
β(t) =

1

2π

∫ π

0

dφ
tanh(12βΛ(a))

Λ(a)Λ2(0)

×
{

[

cos(2Λ(0)t)γ2a sin2 φ
]

− cosφ
[

(cosφ− a) cosφ+ γ2 sin2 φ
]

}

,

(6)

where Λ(a) and Λ(0) are obtained from Λ(h(t)) =

[γ2 sin2 φ + (h(t) − cosφ)2]
1

2 . The nearest neighbor
correlations of the evolved state are given by [34]
T xy
β (t) = Sβ(1, t)/i, T xx

β (t) = −Gβ(−1, t), T yy
β (t) =

−Gβ(1, t), T zz
β (t) = 4[Mz

β(t)]
2 − Gβ(1, t)Gβ(−1, t) +

Sβ(1, t)Sβ(−1, t), where Gβ(R, t) and Sβ(R, t), for R =
±1, are given by

Gβ(R, t) =
γ

π

∫ π

0

dφ sin(φR) sinφ
tanh

(

1
2βΛ(a)

)

Λ(a)Λ2(0)

×
[

γ2 sin2 φ + (cosφ− a) cosφ

+a cosφ cos(2Λ(0)t)
]

−
1

π

∫ π

0

dφ cos(φR)
tanh

(

1
2βΛ(a)

)

Λ(a)Λ2(0)

×
[

{γ2 sin2 φ + (cosφ− a) cosφ} cosφ

−aγ2 sin2 φ cos(2Λ(0)t)
]

, (7)

Sβ(R, t) =
γai

π

∫ π

0

dφ sin(φR) sin φ
sin (2tΛ(0))

Λ(a)Λ(0)
.

(8)

III. MEASURE OF ENTANGLEMENT:

LOGARITHMIC NEGATIVITY

Let us now specify the measure of entanglement, which
we will use to quantify entanglement of the nearest neigh-
bor spins of our infinite spin chain. There are several
ways to quantify entanglement (see e.g. [19, 35]), and
in fact there exists no “canonical” entanglement mea-
sure. In this paper, we will consider logarithmic negativ-
ity (LN) [36]. It should be stressed, however, that the
results do not depend on the choice of the entanglement
measure. To define logarithmic neagativity, let us first
introduce negativity. The negativity N(ρAB) of a bipar-
tite state ρAB is defined as the absolute value of the sum
of the negative eigenvalues of ρTA

AB, where ρTA

AB denotes
the partial transpose of ρAB with respect to the A-part
[37]. The logarithmic negativity is defined as

EN (ρAB) = log2(2N(ρAB) + 1).
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In our case, the bipartite states are states of two qubits,
so that ρTA

AB has at most one negative eigenvalue [38].
Moreover, for two-qubit states, a positive LN implies that
the state is entangled and distillable [37, 39], while EN =
0 implies that the state is separable [37].

IV. DYNAMICAL PHASE TRANSITION OF

THE XY SPIN CHAIN

In this section, we consider the nearest neighbor en-
tanglement of the evolved state in the XY model of the
infinite spin chain, at a fixed time t. We assume that
the initial state is a state of thermal equilibrium at zero
temperature, in the presence of the transverse field. We
find that the nearest neighbor entanglement shows a crit-
ical behavior, which we call a dynamical phase transition.
Precisely, the nearest neighbor logarithmic negativity of
the evolved state, when considered at a given time, shows
a criticality as a function of the initial transverse field.
Moreover, the character of this dynamical phase transi-
tion depends on whether we are near or far from the ini-
tial time of disturbance. The observed phase transition
is generic, as it occurs for a wide range of the anisotropy
γ.
Note here that the evolved state at the time t may be

considered as a stationary state of the system, provided
the dynamics is turned off after time t, i.e. the Hamilto-
nian (2) is set to zero at time t. We stress that turning
off the Hamiltonian at time t is experimentally feasible
[9, 10].
Let us first consider the behavior of the nearest neigh-

bor entanglement with respect to the initial transverse
field a, at a time t that is near the initial time of dis-
turbance. In Fig. 1, we plot the nearest neighbor LN
of the evolved state with respect to a, at t = 1, and for
the anisotropy γ = 0.5. Entanglement exhibits criticali-
ties, as the system parameter a, i.e. the initial transverse
field is changed: EN vanishes at a critical value ac and
revives at another critical value ac. Note that a similar
phenomenon is absent for magnetization. We will see in
the succeeding section that for values of the initial field
that is close to the critical regions, entanglement of the
evolved state behaves nonmonotonically as a function of
the temperature of the initial equilibrium state.
Similar DPT’s of entanglement, as the system param-

eter a changes, can be seen for other values of the time
t, sufficiently near to the initial moment of disturbance,
as well as for other values of the anisotropy γ.
However, as the time grows, the nature of the DPT

changes significantly. In Fig. 2, we plot the nearest
neighbor LN for a time that is comparatively far away
from t = 0, against the initial field a. Again, a dynami-
cal phase transition is observed, but one that is different
from the one observed in Fig. 1. In Fig. 2, the system
undergoes a phase transition from the entangled phase
to the separable phase at ac, but no re-entrance behavior
is observed. Moreover, in the suceeding section, we show

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Mz

EN

EN

a

Figure 1: The nearest neighbor logarithmic negativity (EN)
of the evolved state, plotted as a function of the initial trans-
verse field a, at a time that is near the time of initial distur-
bance (t = 1). We fix the anistropy at γ = 0.5. The initial
state of evolution is a state of thermal equilibrium at zero
temperature. EN vanishes at a critical value ac and revives
at ac. We will show in Sec. V that for values of the initial
field in the region near the phase transitions, entanglement
behaves nonmonotonically with respect to the temperature of
the initial equilibrium state. The transverse magnetization
(Mz) of the evolved state is also plotted; it does not show a
similar critical behavior as a function of a.

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

EN

a

ac








y

Figure 2: The nearest neighbor logarithmic negativity (EN)
of the evolved state ρ12β (t) is plotted against the initial trans-
verse field a, at t = 10, which is comparatively large, as com-
pared to that of Fig. 1. We again fix the anistropy γ = 0.5,
and β → ∞, as in Fig. 1. Here we observe again a kind of
criticality, but of a significantly different character than the
one in Fig. 1. In Section V, we show that entanglement be-
haves monotonically as a function of temperature of the initial
equilibrium state, for a ≈ ac in this regime of t’s.
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Figure 3: The nearest neighbor logarithmic negativity (EN)
of the evolved state ρ12β→∞

(t) is plotted against the initial
transverse field a and time t for the anisotropy γ = 0.5. On
the EN = 0 plane, there are two curves of DPTs, both of
which start at around {a = 0.8, t = 0}, and then they diverge
off with increasing t, forming a “river” of separable states
between themselves. The t = 1 and t = 10 slices of this
surface were already discussed before. For the t = 0 slice,
entanglement is seen to vanish, as it should, as a grows. Note
that this is different from the t = 1 slice behavior, where the
entanglement converges to a positive value.

that the nonmonotonicity of entanglement is no longer
present in this case of large t. A signature of dynami-
cal phase transition is absent for magnetization for both
small and large t.
To obtain a global perspective of the behavior of en-

tanglement, we plot it with respect to both t and a, at
a fixed value of the anisotropy γ (γ = 0.5) in Fig. 3.
Note that a similar behavior is absent in magnetization,
as seen in Fig. 4.
An interpretation of the results for small and large a

(as compared to the region of phase transitions) is the
following: For small a, the initial state is entangled, and
its entanglement survives even for long times t (see Fig.
2). On the other hand, for large a, the initial state is close
to a separable state. This state is however, very different
from any eigenstate of the Hamiltonian, and is thus very
strongly affected by the dynamics, generating significant
entanglement for small times t. The case of large a is
therefore similar to that in Refs. [22, 26], where the
time-independent Ising Hamiltonian with interaction in
the z-direction, is made to act on a product of eigenstates
of σx.
Note here that in contrast to the case of small a, there

is no revival of entanglement with respect to time t, for

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5

a

t

Mz

Figure 4: The magnetization (Mz) of the evolved state
ρ12β→∞

(t) is plotted against the initial transverse field a and
time t for the anisotropy γ = 0.5.

large a and large t (compare Fig. 1 and Fig. 2). This
feature is different from that in the Ising Hamiltonian,
or from that in spin glass [40], where the state re-enters
to the entangled and separable phases again and again
after certain time intervals. The continuous character of
the spectrum of the infinite XY chain is most probably
responsible for this effect: The dynamics is mixing the
states in such a way that for large a, the revival of en-
tanglement is possible only for relatively short times t, or
alternatively, that for large t, there is no entanglement
at large a.

V. NONMONOTONICITY OF

ENTANGLEMENT WITH TEMPERATURE

In the preceding section, we have obtained the DPT of
nearest neighbor entanglement of the evolved state of the
infinite spin chain. The DPT was controlled by the trans-
verse field a. The initial state of the evolution, however,
was taken to be the equilibrium state at zero tempera-
ture. In this section, we will study this criticality and
the monotonicity of nearest neighbor entanglement, con-
sidered as a function of the temperature of the initial
equilibrium state.
For definiteness, consider the dynamical phase transi-

tion of Fig. 1, observed for the nearest neighbor entan-
glement of the evolved state at time t = 1, and for the
anisotropy γ = 0.5. The evolution there had started from
the equilibrium state at zero temperature. Consider now
the evolution in which the initial state is the equilibrium
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0
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0.04

0.06

0.08

0.1

0.12

5 10 15 20 25 30

EN

Mz

β

Figure 5: The logarithmic negativity EN of the state ρ12β (t),
is plotted as a function of the inverse temperature β of the
initial equilibrium state ρ

eq

β . We choose t = 1 and γ = 0.5,
just as in Fig. 1. The transverse field a is chosen to be
0.5, which is supposed to be comparatively far away from the
critical regions in Fig. 1 (in comparison to the values of a

used in Figs. 7 and 8 below). We find that entanglement
increases monotonically with decreasing T (increasing with
β). For reference and comparison, we also plot the transverse
magnetization Mz of ρβ(t).

state ρeqβ , at a certain temperature T = 1/β. We again
look at the nearest neighbor entanglement of the evolved
state at time t = 1 and for anisotropy γ = 0.5, but now
as a function of the temperature T of the initial equilib-
rium state, and for a given value of the initial transverse
field. It turns out that the behavior of entanglement
(with respect to temperature) is qualitatively different,
depending on whether we are near or far away from the
dynamical phase transition of entanglement in Fig. 1.
We find that it is possible to obtain three qualitatively
different regions of the transverse field a, according to
the behavior of entanglement with respect to the tem-
perature of the initial equilibrium state.

(i) The initial transverse field a is far away (either
lower or higher) from the critical regions : In this
case, the nearest neighbor LN is monotonic with
respect to the temperature of the initial equilib-
rium state. As temperature is lowered, LN in-
creases monotonically, and ultimately converges to
a nonzero value. This is illustrated in Fig. 5, for an
exemplary value of a = 0.5, that is comparatively
far away from the critical region (in comparison to
the cases considered in item (iii)).

(ii) The initial field is within the separable phase: The
nearest neighbor LN is nonmonotonic with respect
to the temperature of the initial equilibrium state.
In particular, there are regions of temperature for

0
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0.04
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0.08

0.1

0.12

0.14

0.16

0.18

5 10 15 20 25 30

EN

Mz

β

Figure 6: The logarithmic negativity EN of the state ρ12β (t),
is plotted as a function of the inverse temperature β of the
initial equilibrium state ρ

eq

β . We choose t = 1 and γ = 0.5,
just as in Fig. 1. The transverse field a is chosen to be 0.78,
which is within the separable phase in Fig. 1. We find that en-
tanglement is nonmonotonic with respect to temperature. In
particular, therefore, there is range of temperature, for which
entanglement is increasing with increasing temperature. For
sufficiently low T (and, as expected, for high T ), entangle-
ment is vanishing, in contrast to the situation in Figs. 7 and
8 below. Again, for reference and comparison, we also plot
the transverse magnetization Mz of ρβ(t).

which entanglement increases with increasing tem-
perature (see also Ref. [31] in this respect). A plot
of nearest neighbor LN with respect to the initial
temperature, is given in Fig. 6, for an exemplary
value of the transverse field in the separable phase.
Note that entanglement in this case is nonvanish-
ing only for moderate values of T . For very high
and very low T , entanglement vanishes. This is
different than in item (iii) below.

(iii) The initial field is in the critical region of the en-
tangled phase: If the transverse field is sufficiently
close to the critical region, but still being in the
entangled phase, the nearest neighbor LN is again
nonmonotonic with respect to the temperature of
the initial state. However, the added feature is that
the entanglement converges to a nonvanishing value
for low T . In case (ii), the entanglement is vanish-
ing for sufficiently low T (and hence for sufficiently
large β) (see Fig. 6). For sufficiently high T , entan-
glement is of course again vanishing, just as in the
items (i) and (ii) above. The nearest neighbor LN,
plotted for two exemplary values of a in the region
under consideration, are given in Figs. 7 and 8.

We stress that although we have considered here the
case only for γ = 0.5, the results are generic and have
been numerically checked for several values of γ.
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Figure 7: The logarithmic negativity EN of the state ρ12β (t), is
plotted as a function of the inverse temperature β of the initial
equilibrium state ρ

eq

β . We choose t = 1 and γ = 0.5, just as
in Fig. 1. The transverse field a is chosen to be 0.74, which
is in a critical region in Fig. 1, but in the entangled phase
(the first entangled phase). Just as in Fig. 6, we find that
entanglement is nonmonotonic with respect to temperature.
However, in contrast to the case in Fig. 6, entanglement is
nonvanishing for low T . For sufficiently low T , entanglement
converges to a nonvanishing value. For comparison, we also
plot the transverse magnetization Mz of ρβ(t).
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Figure 8: The logarithmic negativity EN and the transverse
magnetization Mz of the state ρ12β (t), are plotted as functions
of the inverse temperature β of the initial equilibrium state
ρ
eq

β . We choose t = 1 and γ = 0.5, just as in Fig. 1. The

transverse field a is chosen to be 0.81, which is again (just as
in Fig. 7) in a critical region of Fig. 1, but in the entangled
phase (the second entangled phase). The qualitative features
of EN are just as in Fig. 7 above.

It is to be noted that the behavior of transverse mag-
netization does not seem to alter considerably as we pass
from one entangled phase to another, through the sep-
arable phase, as is seen in Figs. 5, 6, 7, 8. The ab-
sence of this feature in magnetization, and its presence
in entanglement, once again underlines that complexity
of physical phenomena can be understood in terms of
entanglement.

With respect to the nonmonotonicity of entanglement
with the temperature of the initial state, let us note here
that the usual intuition is that entanglement is a fragile
quantity, and therefore it decays with noise. It is also
usual to see an increase of temperature as a model of
increase of noise in the system. This is for instance cor-
roborated here in Figs. 5, 6, 7, 8, where entanglement
vanishes for sufficiently large temperatures. However, we
see here that for moderate values of T , the fragility of
entanglement is a more complex issue. There can be
ranges of temperatures for which entanglement actually
increases with temperature.

Until now, we have been discussing the temperature
effects for the dynamical phase transitions that were ex-
emplified in Fig. 1 of the preceding section. A different
sort of DPT was also obtained in the preceding section,
as exemplified in Fig. 2. Surprisingly, in this case, the
nearest neighbor entanglement does not behave as in the
case of Fig. 1.

In Fig. 2, we plotted the nearest neighbor LN of the
evolved state at time t = 10, which is comparatively far
away from the point of initial disturbance in the trans-
verse field. The plot was with respect to the system pa-
rameter a, and a criticality was obtained at a ≈ 0.8, for
the anisotropy γ = 0.5. We consider now the nearest
neighbor entanglement of the evolved state at the time
t = 10 and for γ = 0.5, as a function of the temperature
of the initial equilibrium state. As we see, in contrast to
the case of the phase transitions in Fig. 1, the nearest
neighbor entanglement does not change its behavior as
we choose different values of the transverse field a. In
particular, the nearest neighbor LN of the evolved state
is monotonic with temperature, and converges to a non-
vanishing value for low T (large β). In Fig. 9, we plot
the nearest neighbor LN with respect to the initial tem-
perature, for a = 0.8, t = 10, γ = 0.5. However this
feature is generic. We have also obtained similar features
for several values of γ.

In Ref. [8], the authors define an entanglement length
(range of quantum correlations), which is shown to di-
verge at the critical points for a wide range of spin sys-
tems. The definition is in terms of a quantity called local-
izable entanglement, which is usually hard to compute.
However, there is a useful upper bound of this quantity
in terms of the entanglement of assistance [19]. Consider-
ing this upper bound for the case of the nearest neighbor
density matrix, as well as for the next-nearest neighbor
density matrix, we have checked that such definition of
entanglement length does not seem to be able to charac-
terise the dynamical phase transitions discussed in this
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Figure 9: The logarithmic negativity EN of the state ρ12β (t), is
plotted as a function of the inverse temperature β of the initial
equilibrium state ρ

eq

β . We choose t = 10 and γ = 0.5, just as
in Fig. 2. The transverse field a is chosen to be 0.8, which
is approximately just the point of phase transition in Fig. 2.
Although we are almost on the point of phase transition, we
find that in contrast to the case of near-time phase trasnition,
entanglement is monotonic with respect to temperature. For
comparison, we also plot the transverse magnetization Mz of
ρβ(t).

paper. This indicates that the quantum phase transi-
tions considered in Ref. [8] are of a different character
from the ones discussed here. Moreover, the behavior
of entanglement with temperature of the system, can be
seen as an independent candidate for understanding the
phase transitions in the system.

VI. DISCUSSION

In this paper, we have investigated the dynamics of
entanglement in the evolution of the infinite asymmetric
XY spin chain, in an initial transverse field. One moti-
vation behind our study is that the dynamics of entan-
glement in the evolution of many-body spin-systems have
been used to implement quantum computation and short
range quantum communication [22, 23]. We also hope to
be able to understand the physical phenomena in com-
plex systems with the help of entanglement [4, 5, 8, 13].
For short times, we found a critical behavior of nearest

neighbor entanglement of the system, with respect to the

initial transverse field. The nearest neighbor entangle-
ment vanishes for a certain value of the initial transverse
field, to enter into the separable phase from an entangled
phase. For a higher value of the field, there is a revival of
entanglement, and the system re-enters into the entan-
gled phase. For long times, there is again a criticality as
the system moves from an entangled phase to a separable
phase. However, there is no re-entrance into the entan-
gled phase. In both cases studied, the system evolved
from an initial (thermal) equilibrium state at zero tem-
perature, and then we consider the nearest neighbor en-
tanglement of the system at a fixed time. We refer to
the regions of the transverse field, where the transition
from entangled phases to separable phases occur, as the
critical regions.

Surprisingly, we have shown that the nearest neighbor
entanglement is nonmonotonic with respect to temper-
ature in these critical regions, for short times. Similar
behavior can also be seen in the separable phase. How-
ever for values of the transverse field that is deep inside
the entangled phases, entanglement is strictly decreasing
with temperature, both for short and long times.

Finally, let us note that it is important to consider the
behavior of entanglement with respect to temperature in
many body systems, as one of the main challenges in
implementing quantum information processing tasks is
to preserve entanglement in a noisy environment. Tem-
perature is a usual intuitive way to model noise in such
systems. Our findings indicate that the behavior of en-
tanglement with respect to temperature, at least for mod-
erate values of temperature, is quite complex. In particu-
lar, we found that for some ranges of temperature, entan-
glement in the system can grow with increasing temper-
ature. It is interesting to look for similar nonmonotonic
behavior of entanglement with respect to noise in the
system, in other physical models, to find out how general
such behavior can be.
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