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[1] A semiparametric, copula-based approach is proposed to capture the dependence
between teleconnected hydroclimatic variables for the prediction of response variable
using the information of climate precursors. The copulas have an excellent property to
study the scale-free dependence structure while preserving such dependence during
simulation. This property is utilized in the proposed approach. The usefulness of the
proposed method can be recognized in three distinct aspects: (1) It captures the
dependence pattern preserving scale-free or rank-based ‘‘measure of association’’ between
the variables. (2) The proposed method is able to quantify the uncertainty associated with
the relationship between teleconnected variables due to various factors; thus, the
probabilistic predictions are available along with information of uncertainty. (3) Instead of
parametric probability distribution, nonparametrically estimated probability densities
for data sets can be handled by the proposed approach. Thus, the proposed method can be
applied to capture the relationship between teleconnected hydroclimatic variables
having some linear and/or nonlinear cause-effect relationship. The proposed method is
illustrated by an example of the most discussed problem of Indian summer monsoon
rainfall (ISMR) and two different large-scale climate precursors, namely, El Niño–
Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO). The
dependence between them is captured and investigated for its potential use to predict the
monthly variation of ISMR using the proposed method. Predicted rainfall is shown to
correspond well with the observed rainfall with a correlation coefficient of 0.81 for the
summer monsoon months, i.e., June through September. Moreover, the uncertainty
associated with the predicted values is also made available through boxplots. The method,
being general, can be applied to similar analysis to assess the dependence between
teleconnected hydroclimatic variables for other regions of the world and for different
temporal scales such as seasonal.
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1. Introduction

[2] The hydroclimatic teleconnection between hydrologic
variables and large-scale atmospheric circulation is being
investigated across the world [Kahya and Dracup, 1993;
Dracup and Kahya, 1994; Moss et al., 1994; Eltahir,
1996; McKerchar et al., 1998; Jain and Lall, 2001;
Zubair, 2003; Chowdhury and Ward, 2004; Verdon et al.,
2004]. It is recently inferred that temporal structure of
hydrologic time series is significantly forced by large-scale
atmospheric circulation patterns through hydroclimatic
teleconnection [Jain and Lall, 2001; Maity and Nagesh
Kumar, 2006b]. The historical relationship between the

teleconnected hydroclimatic variables is the key issue of
empirical modeling approach. However, having established
the physical mechanism of their association, an advanced
statistical technique is essential to suitably capture
the dependence between the teleconnected hydroclimatic
variables. The existing techniques of statistical modeling to
capture such dependence are not adequate in various
aspects. For instance, preservation of the linear association
through Pearson product moment correlation coefficient
may not be a suitable ‘‘measure of association’’ while
capturing the dependence. This is due to the fact that a
nonlinear, complex relationship is expected in most of the
cases. So, preservation of a scale-free ‘‘measure of associ-
ation’’ is required. It may be noted that the term ‘‘scale-
free’’ or ‘‘scale-invariant’’ indicates that the measure of
association will not change under nonlinear transformations
of the random variable. Second, uncertainty associated with
the dependence pattern between teleconnected hydrocli-
matic variables needs to be quantified as it is essential
and more useful. Finally, assumption of any parametric
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probabilistic distribution may not be able to represent the
data set properly in many cases and therefore, a nonpara-
metric estimate of probability density is preferable. The
challenge lies in capturing the dependence using copula for
nonparametrically estimated probability density of the data
sets. An important advantage (and flexibility) of the copula
is that the distribution of data sets can be simulated
separately, and also they need not have to follow any
particular distribution.
[3] The usefulness of the proposed approach can be

recognized in three specific ways as follows:
[4] 1. Pearson’s product moment correlation (r), known

as ‘‘measure of linear association,’’ considers only the linear
association between random variables, whereas, scale-free
‘‘measure of association,’’ such as Kendall’s tau (t) and
Spearman’s rho (rs) are more general and robust [Wilks,
2006]. The proposed method preserves the scale-free ‘‘mea-
sure of association’’ while capturing the dependence pattern
between the teleconnected hydroclimatic variables.
[5] 2. The proposed method can provide the information

about uncertainty associated with the conditional distribu-
tion between the teleconnected hydroclimatic variables.
This is an important aspect from hydroclimatic modeling
perspective as the probabilistic predictions are made avail-
able to the user.
[6] 3. In this method, it is not necessary to consider any

parametric probabilistic distributional assumptions for the
variables as it can deal with nonparametrically estimated
probability density for the data set of the teleconnected
hydroclimatic variables. This aspect renders the method
general and hence can be applied to wide range of similar
problems, even if the data set does not follow any particular
probabilistic distributional form, which is quite possible in
many cases.
[7] The proposed method is applied in the context of

nonparametric prediction of monthly Indian summer mon-
soon rainfall (ISMR) by capturing the dependence between
monthly variation of ISMR and the large-scale climate
precursors.
[8] The variation of Indian summer monsoon rainfall

(ISMR) is crucial for the agroeconomic aspects of India.
Long-range forecast of Indian summer monsoon rainfall has
a long history since the work of Blanford [1884]. In early
twentieth century, the link between summer monsoon rain-
fall over India with the Southern Oscillation was established
by Walker [1923, 1924]. Later, several researchers had
contributed toward a reliable long-range forecast of ISMR
[Banerjee et al., 1978; Shukla and Paolino, 1983; Mooley et
al., 1986; Krishna Kumar et al., 1992; Shukla and Mooley,
1987]. Significant influence of the large-scale circulation
patterns over tropical Pacific Ocean region and Indian
Ocean region, on the variation of ISMR, is established in
earlier studies [Pant and Parthasarathy, 1981; Rasmusson
and Carpenter, 1983; Khandekar and Neralla, 1984;
Mooley and Paolino, 1989; Kane, 1998; Gadgil et al.,
2004]. Two such large-scale circulation patterns are El Niño
Southern Oscillation (ENSO) and Equatorial Indian Ocean
Oscillation (EQUINOO). ENSO is the coupled Ocean-
atmosphere mode of tropical Pacific Ocean [Cane, 1992]
and EQUINOO is the atmospheric part of Indian Ocean
Dipole (IOD) mode [Saji et al., 1999; Gadgil et al., 2004].

[9] Still the quality of the forecasts is not fully satisfac-
tory from most of the existing models [Rajeevan et al.,
2004]. This is due to the fact that the relationship between
ISMR and these large-scale circulation patterns is very
complex [Gadgil et al., 2004]. The linear association
between them is not very strong particularly at monthly
timescale, with Pearson product moment correlation coef-
ficients of 0.33 and 0.19 with ENSO index and EQUINOO
index respectively [Maity and Nagesh Kumar, 2006a].
Thus, the traditional approaches to capture the variation of
ISMR, even at seasonal timescale, are not successful
[Gadgil et al., 2005].
[10] The possibility of combined influence of ENSO and

EQUINOO on seasonal and monthly variation of ISMR is
recently established [Gadgil et al., 2004; Maity and Nagesh
Kumar, 2006b]. At seasonal timescale, all the extremes in
ISMR (greater than ± one standard deviation) from 1958 to
2003 are shown to be statistically associated with favorable
(unfavorable) phases of ENSO or EQUINOO or both
[Gadgil et al., 2004]. In monthly scale, the combined
influence of ENSO and EQUINOO on ISMR was estab-
lished and captured to predict the variation of ISMR using
Bayesian dynamic linear model (BDLM) [Maity and
Nagesh Kumar, 2006b]. However, Gaussian probability
distribution (parametric) of the data sets is the basic as-
sumption in the BDLM approach. In this paper, as an
illustration of the proposed method, the scale-free depen-
dence pattern between monthly variation of ISMR and
combined index of ENSO and EQUINOO is investigated
and the monthly variation of ISMR is nonparametrically
predicted, without the assumptions of any parametric dis-
tribution for the data sets.
[11] The rest of the paper is organized broadly as follows.

The proposed method is detailed in section 2. In section 3,
application of the proposed method to capture the depen-
dence of ISMR on the combined index of ENSO and
EQUINOO is elucidated along with the results of nonpara-
metric prediction of monthly ISMR. Summary and conclu-
sions are presented in section 4.

2. Proposed Approach

[12] The method, proposed in this study, is based on the
theory of copula. The theory was successfully applied in
many fields of application [Bouyé et al., 2000;Bagdonavicius
et al., 1999; Frees and Valdez, 1998]. Application of copula
in the field of water resources is still in its nascent stage and,
to our knowledge, mostly limited to frequency analysis
[Favre et al., 2004; Salvadori and De Michele, 2004;
Grimaldi and Serinaldi, 2006; Zhang and Singh, 2006]
and few others [Wang, 2001; Salvadori and De Michele,
2006]. A brief description of the theory of copula helps to
understand its basic advantages.

2.1. Theory of Copula

[13] A copula, C, is a function that joins or couples
multiple distribution functions to their one-dimensional
marginal distribution functions [Nelsen, 2006]. Application
of copula to probability and statistics is achieved through
Sklar Theorem [Sklar, 1959], which states that if HX,Y (x, y)
is a joint distribution function, then there exists a copula C
(u, v) such that for all x, y in �R 2 (�1, 1), HX,Y (x, y) =
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C(FX (x), FY (y)), where, FX (x) and FY (y) are the marginal
distributions of X and Y respectively.
[14] The conceptual definition of copula can be expressed

in another way also. Let X and Y be a pair of random
variables with cumulative distribution functions (CDF) of
FX (x) and FY (y) respectively. Also let their joint CDF be
HX,Y (x, y). Each pair, (x, y), of real numbers leads to a point,
(FX (x), FY (y)), in the unit square [0, 1] � [0, 1] and this
ordered pair, in turn, corresponds to a number, HX,Y (x, y), in
[0, 1]. This correspondence is indeed a function, which is
known as Copula [Nelsen, 2006].
[15] It is worthwhile to note here that such correspon-

dence is independent of the marginal distributions of the
random variables. In other words, any form of marginal
distribution can be coupled to get their joint distribution,
which is the main reason for the popularity of copula theory
in many areas of research.
[16] The theory of copula is used in this study because of

its excellent property to study the scale-free dependence
structure while preserving such dependence during simula-
tion. Kendall’s tau (t) and Spearman’s rho (rs) are the most
widely used scale-free ‘‘measures of association’’ for
dependence structure between random variables. Kendall’s
tau (t) is used in this study, which is defined as the
difference between probability of concordance and discor-
dance. The definition of concordant pair, discordant pair and
sample estimate of Kendall’s tau is explained later. It is
important to note here that Pearson’s product moment
correlation (r), is a ‘‘measure of linear association’’ between
random variables. It is obvious that the estimate of r changes
under the nonlinear transformation of random variables.
However, t and rs are scale-invariant and copulas are
able to capture those scale-invariant properties of joint
distribution which are invariant under strictly increasing
transformation [Schweizer and Wolff, 1981].
[17] The Kendall’s tau (t) can be expressed mathemati-

cally in terms of copula as

t ¼ 4

Z
C u; vð ÞdC u; vð Þ � 1 ð1Þ

where C is the corresponding copula [Nelsen, 2006]. This
mathematical form can be expressed in a much simpler way
for the class of Archimedean Copula. Among the various
classes (Elliptical, Farlie-Gumbel-Morgenstern) the class of
Archimedean Copula is most popular among researchers
because of its unique mathematical properties.
[18] A copula is classified as an ‘‘Archimedean copula’’ if

it can be expressed in terms of C(u, v) = 8[�1] (8(u) + 8(v)),
where, 8(.) is known as generator of the copula and

8[�1](.) is the ‘‘pseudo inverse’’ of 8(.). 8[�1](.) is defined
as,

8 �1½ 	 tð Þ ¼
8�1 tð Þ; 0 
 t 
 8 0ð Þ

0; 8 0ð Þ 
 t 
 1

8<
: ð2Þ

The basic properties of this class of copulas make them
suitable for most of the research applications and hence
used in this study also. Frank [1979], Clayton [1978], Ali-
Mikhail-Haq (AMH) and Gumble-Hougaard (GH) [Gumbel,
1960; Hougaard, 1986] are a few examples of copulas
belonging to the Archimedean class. The functional forms of
these copulas are provided in Table 1. It can be shown that if
X and Y are two random variables having an Archimedean
copula, C, generated by 8, equation (1) for Kendall’s tau (t)
can be reduced to [Nelsen, 2006]:

t ¼ 1þ 4

Z1

0

8q tð Þ
80
q tð Þ dt ð3Þ

[19] Dependence parameter q is estimated by replacing
the population version of Kendall’s tau with its sample
estimate (t̂), in equation (3). For some cases a close
form equation is obtained. For example, let us take
Clayton copula, for which, 8q (t) = 1

q (t�q � 1).

Thus,
8q tð Þ
80
q tð Þ = tqþ1�t

q whenq 6¼0and
80 tð Þ
80
0
tð Þ= t ln t forq=0.Finally,

usingequation(3),t = 1 + 4
R1
0

tqþ1�t
q dt) t = 1 + 4

q (
1

qþ2
� 1

2
))

t = q
qþ2

. However, for some copulas such a close form does

not exist. A numerical integration or special functions are to
be used. These calculations are well established and can be
found in standard text books [Nelsen, 2006; Zhang and
Singh, 2006]. A list of such relationships is also provided
in the Table 1.
[20] The theory explained so far is sufficient for this

paper. Further details of copula and related proofs can be
found elsewhere [Genest and MacKay, 1986a; Genest and
Rivest, 1993; Nelsen, 2006].

2.2. Methodology

[21] Before the methodology is presented, it is worth-
while to mention that assumption of some parametric
probabilistic distribution of data set is very common in
many modeling approaches because of its convenient com-
putational properties. However, a nonparametric estimate of
probability density is preferable for many cases as explained

Table 1. Functional Forms of Different Copulas Along With Their 8 (.) Functions

Copula Cq (u, v) 8q (t) q2 t=

Frank �1
q ln (1 +

e�qu�1ð Þ e�qv�1ð Þ
e�q�1

) �ln (e
�qt�1
e�q�1

) (� 1, 1), excluding 0 1 � 4
q [D1 (�q) � 1]a

Clayton [max (u�q + v�q � 1, 0)]�1/q 1
q (t

�q � 1) [1, 1), excluding 0 q
qþ2

Ali-Mikhail-Haq (AMH) uv
1�q 1�uð Þ 1�vð Þ ln

1�q 1�tð Þ
t

[�1, 1) (3q�2
q ) � 2

3
(1 � 1

q)
2 ln (1 � q)

Gumble-Hougaard (GH) exp (�[(�ln u)q + (�ln v)q]1/q) (�ln t)q [�1, 1) q�1
q

aD1, first-order Debye function; D1(q) = 1
x

Rq
0

t
exp tð Þ�1

dt for q > 0; D1 (�q) = D1 (q) + q
2
[Genest, 1987; Zhang and Singh, 2006].
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earlier. So, in this study, nonparametric estimates of prob-
ability density of data sets are used in the proposed copula-
based methodology, to capture the scale-free dependence
pattern between the teleconnected hydroclimatic variables.
However, the methodology is also applicable for parametric
probabilistic distribution of the data set as well. As it cannot
always be expected to have a parametric distributional form
of the hydroclimatic time series, the methodology is
explained for the nonparametrically estimated distribution
of the data set to make the methodology more robust and
applicable for any hydroclimatic data set.
[22] A flowchart, summarizing the proposed methodology,

is presented in Figure 1. The major steps of the
methodology are presented in the flowchart for a sequential
understanding of the method. As shown in Figure 1, there
are three major steps: (1) data analysis, (2) use of copula
theory, and (3) prediction. These steps are explained below
in detail.
2.2.1. Data Analysis
2.2.1.1. Estimation of Nonparametric Probability
Density
[23] Kernel density estimator is most popular for estima-

tion of nonparametric density [Bosq, 1998]. The kernel
estimate of probability density, for a real-valued time series
Xi, i = 1, . . . , n can be expressed as,

f̂ xð Þ ¼ 1

n

Xn
i¼1

Kh x� Xið Þ ð4Þ

where, Kh (z) = 1
h
Kr(z

h
), in which, h is the smoothing

parameter and Kr is the kernel function. Different types of
kernel functions are naı̈ve, normal and Epanechnikov,
which are used in the study. Mathematical formulations of
these kernel functions are shown below [Bosq, 1998].

Na1
::
ve Kernel : Kr uð Þ ¼ 1 � 1

2

 u 
 1

2

Normal Kernel : Kr uð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � u2

2

� 	
�1 
 u 
 1

Epanechnikov Kernel : Kr uð Þ ¼ 3

4
ffiffiffi
5

p 1� u2

5

� 	
�

ffiffiffi
5

p

 u 


ffiffiffi
5

p

[24] The cumulative probability density is obtained from
the corresponding nonparametrically estimated probability
density.
2.2.1.2. Estimation of Scale-Free Measure of
Association
[25] Let (x1, y1), (x2, y2), . . . , (xn, yn) be the paired

samples of two random variables. Two pairs (xi, yi) and (xj, yj)
are known to be concordant if (xi � xj) (yi � yj) > 0 and
discordant if (xi � xj)(yi � yj) < 0. Sample estimate of
Kendall’s tau is obtained as the difference between the
probability of concordance and probability of discordance.
Out of n paired samples, there are nC2 different ways to
select two pairs. If there are c number of concordant pairs
and d number of discordant pairs, sample estimate of
Kendall’s tau is expressed as,

t̂ ¼ P Xi � Xj


 �
Yi � Yj

 �

> 0
� 


� P Xi � Xj


 �
Yi � Yj

 �

< 0
� 


¼ c
nC2

� d
nC2

¼ c� d
nC2

ð5Þ

2.2.2. Use of Copula
2.2.2.1. Estimation of Dependence Parameter
[26] After obtaining the sample estimate of Kendall’s tau

(t̂), the dependence parameter q of an Archimedean copula is
estimated by replacing the population version of Kendall’s
tau with its sample estimate (t̂), in equation (3). Thus, paired
random variates can be simulated through this Archimedean
copula preserving their dependence structure.
2.2.2.2. Simulation of Random Variates Preserving the
Dependence Structure
[27] Such simulation can be achieved by the algorithm

[Genest and MacKay, 1986b] as explained below.
[28] 1. For an Archimedean copula, functional forms of

8[�1](.), 80(.) and 80(�1)(.) are obtained where 8q(.) is the
generator function with parameter q. Equation (2) is used to
obtain 8[�1](.). Same can be used for 80(�1)(.) also after
obtaining 80(.), which is the derivative of 8(.) with respect
to ..
[29] 2. Two independent uniformly distributed (�U(0,1))

random variates, u and r, are generated.
[30] 3. Two new variables, s and w, are obtained as s = 80

(u)/r and w = 80(�1) (s).
[31] 4. Another variable, v, is obtained as v = 8[�1](8(w)�

8(u)) [Genest and MacKay, 1986b]. The pair u and v are the
simulated pair, preserving the dependence structure.
[32] 5. Both these u and v are in the range [0 1]. These

simulated pairs of u and v are then back transformed by their
corresponding inverse cumulative distribution functions to

Figure 1. Flowchart summarizing the proposed method.
The major steps of the methodology are explained in
section 2.2 for a sequential understanding of the method.
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map them in the original scale of the random variable. In
other words, these simulated pairs of u and v are replaced by
cumulative probability density of the corresponding random
variable and the value of simulated random variable (orig-
inal scale) is obtained. Figure 2 (right) may be referred to
for a clearer visual understanding. Details of Figure 2 are
explained later. At this moment, only the principle of back
transformation may be considered.
[33] The above steps are repeated for different Archimedean

copulas considered in the analysis.
2.2.2.3. Selection of the Most Appropriate Copula
[34] Steps involved to select the most appropriate copula

are as follows [Genest and Rivest, 1993; Zhang and Singh,
2006].
[35] 1. For a particular Archimedean copula C with

generator function 8, a parametric function K(z) is defined

as K(z) = z � 8 zð Þ
80 zþð Þ. K(z) is the distribution function of

random variable, C(U, V) where u and v are the uniformly
(0,1) distributed random variables [Nelsen, 2006].
[36] 2. A nonparametric estimate of the above function,

Kn (z) is obtained as the proportion of zi < z, where zi is

zi ¼
Number of xj; yj


 �
such that xj < xi and yj < yi

N � 1ð Þ ;

where i ¼ 1;K ;N

[37] 3. A scatterplot between K(z) and Kn (z) is prepared.
[38] 4. Steps 1–3 are repeated for all the copulas

considered.

[39] 5. The better the fit, the closer the corresponding
scatter to a 45� line through origin. Sum of square
errors (SSE) from the 45� line through origin are obtained.
The copula with the least SSE is selected as the most
appropriate.
2.2.3. Prediction
2.2.3.1. Conditional Distribution of Response Variable
[40] After selecting the best copula, conditional distribu-

tion of response variable, conditioned on the observed
climate precursor, is obtained as follows [Zhang and Singh,
2006]

CX=Y¼y xð Þ ¼ @

@y
CX ;Y x; yð Þ

.
Y¼y ð6Þ

where X is the response variable and Y is the observed
climate precursor.
[41] Once this distribution is obtained, a sufficiently large

number (�103) of variates are generated. These values are
back transformed by using the nonparametrically estimated
cumulative probability density of the response variable,
obtained in step 1.
2.2.3.2. Nonparametric Prediction and Quantification
of Associated Uncertainty
[42] Statistical properties of the generated values of the

response variable, conditioned on the observed climate
precursor, are investigated through box plot. The median
of these values is used as a prediction, corresponding to the
observed value of the climate precursor. The interquartile
range (75th percentile to 25th percentile) of these values
indicates the associated uncertainty.

Figure 2. Nonparametric estimates of probability density for monthly ISMR and combined index using
Epanechnikov kernel as estimator.
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[43] It may be noted here that the association between the
teleconnected variables is simulated preserving their depen-
dence through scale-free measure of association between
them. Thus, the dependence pattern between the variables is
implicitly captured. This will be made clear in the next
section while describing the application of the proposed
methodology. Another point necessary to mention here is
that the approach needs a well representative and sufficiently
large data sets, so that a proper estimate of density functions
can be obtained.
[44] It is also necessary to mention that the estimation of

probability density is carried out nonparametrically using
kernel density estimator as stated before. It is also men-
tioned that the prediction and quantification of associated
uncertainty are also carried out nonparametrically. However,
while simulating the random variates preserving the mutual
dependence, the dependence structure is preserved through
a parameter q in copula. Thus the proposed methodology is
semiparametric.

3. Application of the Proposed Methodology

[45] The methodology presented in the previous section is
applied to capture the dependence between monthly
variation of ISMR and composite index of ENSO and
EQUINOO. The data for the period 1958–1985 are used
to develop the model and the model performance is tested
with the data for the period 1986–2003. The variation of
rainfall across the months is considered through their
anomaly values for individual monsoon months. The
dependence of these anomaly values on the composite index
is analyzed.

3.1. Data

3.1.1. Monthly ISMR Data
[46] Monthly rainfall data [Parthasarathy et al., 1994]

over entire India are obtained for the period, January 1958
to December 2003, from the Website of Indian Institute of
Tropical Meteorology (IITM), Pune, India (http://www.
tropmet.res.in/data.html). The monthly rainfall indicates
the aggregated rainfall over a month. The variation of rainfall
across the month is not considered. Monthly anomaly values
for monsoon months (June through September), are used in
the present study.
3.1.2. Monthly ENSO and EQUINOO Data
[47] Sea surface temperature anomaly from Niño 3.4

region (5�S–5�N, 120–170�W) is used as ‘‘ENSO index’’
in this study. Monthly sea surface temperature data from
Niño 3.4 region for the period, January 1958 to December
2003, are obtained from the Website of National Weather
Service, Climate Prediction Centre of NOAA (http://
www.cpc.noaa.gov/data/indices/). EQWIN, the negative of
zonal wind anomaly over equatorial Indian Ocean region
(60–90�E, 2.5�S–2.5�N), is used as ‘‘EQUINOO index’’
[Gadgil et al., 2004]. Monthly surface wind data for the
period, January 1958 to December 2003, are obtained from
National Center for Environmental Prediction (http://
www.cdc.noaa.gov/Datasets).
3.1.3. Combined Index of ENSO and EQUINOO
[48] The combined index of ENSO and EQUINOO

indices is used in the analysis using the results obtained
in an earlier study [Maity and Nagesh Kumar, 2006b]. A

brief description is presented here. Both the indices are
transformed using equations: X0(i) = X(i)* sR

sX
and X00(i) =

X0(i) + (mR � mX0) + g, where, the variable X is the observed
values of an index; sX and sR are the standard deviations of
the index and the observed monthly rainfall anomaly
respectively; mR is the mean monthly rainfall anomaly; mX0

is the mean of the transformed index X0; g is any constant to
shift the entire time series by some desirable amount. g is
selected as 20 on the basis of our earlier studies. The
transformed indices are combined as CIi,j = c1 ENi,j�k + c2
EQi,j�l, where, CI is the combined index; EN and EQ are
the ENSO and EQUINOO indices respectively; c1 and c2
are the relative weightage factors; first and second sub-
scripts are the year and month respectively. On the basis of
our earlier studies, the best values for c1, c2, k and l were
found to be 0.61, 0.39, 2 months and 1 month respectively
[Maity and Nagesh Kumar, 2006b]. These parameters are
obtained using the data for the period 1958–1985. Once
these parameters are obtained, the combined index (CI) is
constructed for each month during the testing period too.
For example, CI for July 1998 is constructed using ENSO
from May 1998 (2 months lag) and EQUINOO from June
1998 (1 month lag). The physical meaning of combined
index can be viewed as that both the ENSO and EQUINOO
have their influences on the variation of ISMR. The effect of
circulation pattern over tropical Pacific Ocean on ISMR is
modified by the circulation pattern over tropical Indian
Ocean. Thus, a joint influence is established in earlier studies
[Gadgil et al., 2004; Maity and Nagesh Kumar, 2006b].
This joint influence is being considered by the composite
index. The lags of both ENSO and EQUINOO (2 months
and 1 month respectively) indicate that the EQUINOO is
more immediate factor than ENSO, which is due to the fact
that the origin of EQUINOO is closer to India than that of
ENSO. It can be noted that the transformation of the raw
climate indices is performed to extract the climate signal
more effectively. It is observed that the performance of the
model has enhanced on using the transformed indices
[Maity and Nagesh Kumar, 2006b]. So, the indices are thus
transformed before combining them.
[49] It may be noted that the monthly rainfall anomaly

values are uncorrelated over successive time steps, which is
ensured from the autocorrelation diagram. Thus, pairwise
anomaly values are considered to be independent over
successive time steps, which are used to capture the scale-
free dependence.

3.2. Results and Discussions

[50] Kernel estimate of nonparametric probability densities
of the monthly rainfall anomaly and the combined index is
obtained by considering the Epanechnikov kernel (Figure 2,
left) based on the model development period (1958–1985).
However, it was noticed that the probability densities do not
differ much, even if ‘‘normal’’ kernel function is opted (not
shown). Corresponding cumulative probability densities are
numerically estimated through trapezoidal rule (Figure 2,
right). It may be noted that the smoothing parameter is
chosen as s( 4

3n
)
1
5

, where s is the standard deviation and n is
length of data set.
[51] The scale-free measure of association between

monthly rainfall anomaly and combined index is obtained
as 0.24, in terms of Kendall’s tau, using the data for the
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period 1958 to 1985. It may be noted that the dependence
between climate precursors and hydrologic response varia-
bles is not expected to be very high, because of the
associated uncertainty and complex nature of the relation-
ship. However, the Kendall’s tau obtained between the
combined index and ISMR is statistically significant as
tested by a standard t test. It may be noted that that a t test
is only an approximate test for t. However, the data set of
climate indices (ENSO and EQUINOO) and monthly rain-
fall anomaly follows an approximate Normal distribution
[Maity and Nagesh Kumar, 2006b]. As the composite index
is a linear combination of ENSO and EQUINOO indices,
the composite index may also be assumed to approximately
follow a Normal distribution. So the t test is adopted
here. Using a standard t test, it is observed that the null
hypothesis, t = 0, is comfortably rejected with p value as
1.76 � 10�4.
[52] Four different copulas from Archimedean family,

namely, (1) Frank, (2) Clayton, (3) Ali-Mikhail-Haq
(AMH), and (4) Gumbel-Hougaard (GH) copulas, are
selected to simulate the association between monthly rain-
fall anomaly and combined index. A large number of simu-
lated values (30,000) are shown in Figure 3 for each copula.
Observed values of monthly rainfall anomaly and combined
index, for the period 1958 to 1985, are shown by circles in
Figure 3. It is noticed that in each case, simulated values
cover the entire range of the observed data for the period
1958–1985, based on which the simulation was performed.

[53] To check visually whether the simulation covers the
possible range of unforeseen data, the observed values of
monthly ISMR and combined index, for the period 1986 to
2003, are also plotted (as shown by asterisks in Figure 3)
over the ‘‘cloud’’ of simulated values. It is found that during
this period, one data point remains as a distinct outlier in all
cases. This point corresponds to July 2002, for which the
observed rainfall was entirely unprecedented (49% below
normal). Being the historical outlier, this point correspond-
ingly remains as distinct outlier in all cases. Except for this
point, all other unforeseen data points are covered well by
the simulated cloud. However, to select the best fitted
copula, the procedure explained in step 5 of methodology
(section 2.2) is followed. Scatterplots between K(z) and
Kn(z) are prepared for all the copulas and the corresponding
sum of square errors (SSE) values are obtained. SSE values
for Frank, Clayton, Gumbel-Hougaard (GH) and Ali-
Mikhail-Haq (AMH) are 0.024, 0.057, 0.026 and 0.046
respectively. Thus, the Frank copula (SSE = 0.024)
performs best among all copulas, with GH copula (SSE =
0.026) as its close competitor. So, joint probability density
between rainfall anomaly and combined index is obtained
using Frank copula (Figure 4).
[54] Next, the nature of the rainfall anomaly is examined

for different ranges of combined index. Simulated rainfall
anomalies, corresponding to extremes of simulated com-
bined index, are compared. Rainfall anomalies are identi-
fied, corresponding to combined index lying (1) below 5th
percentile, (2) in between 5th and 95th percentile, and

Figure 3. Simulated values of monthly rainfall anomaly and combined index using different copulas.
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(3) above 95th percentile. Rainfall anomalies in each
category are presented by three different boxplots in
Figure 5. It may be noted that the number of data points
in extreme cases (�1500) as well as those in between 5th
and 95th percentile (�27000) are simulated in sufficiently
large number. On the basis of these simulated data, it is
noticed that rainfall anomalies, corresponding to combined
index below 5th percentile, are mostly below normal and
those, corresponding to combined index above 95th
percentile, are above normal. This conclusion corroborates
with earlier studies [Gadgil et al., 2004; Maity and Nagesh
Kumar, 2006b]. It is analytically cross-checked by the
proposed copula-based methodology to show that this
methodology is able to preserve the dependence.
[55] It is interesting to note from Figure 5 that the median

of rainfall anomaly, given the ‘‘low’’ combined index, is
�2.0935 cm, where as the median of rainfall anomaly,
given the ‘‘high’’ combined index, is +2.3422 cm. More-
over, interquartile range of rainfall anomaly, given the
‘‘low’’ combined index, is�4.6806 to�0.4835 cm, whereas
the same, given the ‘‘high’’ combined index, is 0.2522 to
+4.6178 cm. On the other hand, unconditional median of
rainfall anomaly is �0.4596 cm and unconditional inter-
quartile range of rainfall anomaly is �3.0167 to +2.3838 cm
(Figure 5). Thus, it is clearly observed that the conditional
distribution of rainfall anomaly, given the combined index,
is much more informative compared to the unconditional
distribution. It may be noted that the rainfall anomaly
mostly varies within the range of �5 to +5 cm and better
information about the positive and negative anomaly can be
obtained by considering the combined index.
[56] Another important point is that significant overlap of

interquartile ranges, as reflected from the corresponding
boxplots, indicates that the dependence is associated with
uncertainty. Thus the relationship is associated with uncer-
tainty and quantification of the uncertainty is necessary
while the dependence is used for prediction of monthly
ISMR.

[57] The prediction performance of the proposed method
is investigated using the data for the period 1986–2003. A
plot between the observed and predicted monthly rainfall is
shown in Figure 6. The predicted rainfall values are shown
by bar plots along with box plots to show the information
regarding uncertainty associated with the predicted values.
The magnitudes of observed rainfall are shown as asterisks
with a connecting line to visually compare the predicted
rainfall with the observed one. The climatological mean
values are also shown by circles. It is obvious that asterisks
lying above circles indicate positive anomaly and vice
versa.
[58] It can be observed that during the testing period

(1986–2003), out of 72 cases, the anomalies were correctly
indicated for 50 cases and wrongly indicated for 20 cases.
For the remaining two cases predictions are almost same as

Figure 4. Approximate joint probability density of rainfall anomaly and combined index.

Figure 5. Box plots of simulated rainfall anomalies for
different percentile ranges of combined index.
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the climatological means. Thus, predictions are successfully
made for most of the years except for July 2002. More
importantly, lower than normal rainfall in the year 1987 and
higher than normal rainfall in the year 1988, are both
successfully predicted. For other years, predictions are also
made with reasonable accuracy. In fact, predicted values
highly correspond to the observed values with a Pearson
product moment correlation coefficient of 0.81 (significant
correlation coefficient being 0.21 at 95% statistical confi-
dence level) between them. Another important point is that
the predicted values are available along with the information
of uncertainty as shown by the interquartile range of the
associated boxplots. However, the approaches based on
linear association can also provide the uncertainty estimates.
But, if the relationship is nonlinear, the approaches based on
the linear association may not be adequate and would
obviously be inferior. In such cases, the uncertainty cap-
tured by the proposed method will be superior to that by the
approaches based on linear association. The performance of
a simple linear regression model, using the information of
ENSO and EQUINOO indices, is very poor. The Pearson
product moment correlation coefficient between observed

and predicted monthly rainfall is 0.27 [Maity and Nagesh
Kumar, 2006b] as against 0.81 by the present method. This
is due to the complex relationship between ISMR and large-
scale climate precursors, which is not within the capability
of simple linear regression.
[59] The results based on the linear regression for differ-

ent cases are also worked out and presented in Table 2. The
regression analyses are carried out between ISMR and
(1) ENSO (with 2 months lag), (2) EQUINOO (with
1 month lag), (3) ENSO and EQUINOO (with 2 months
lag for ENSO and 1 month lag for EQUINOO) and
(4) composite index (CI). Both mean square error (MSE)
and Pearson product moment correlation coefficient (CC)
between observed and predicted ISMR are obtained for each
of these models. MSE and CC for the present copula-based
approach are also presented in the table for comparison. It
can be observed that the performance of proposed copula-
based approach is the best. Another point needs to be
discussed here. It is obvious that among the first three
models (1–3), model 3 is performing best. It may strike to
the mind as to why model 4 is not performing at least to be
comparable to that of model 3. The comparable results

Figure 6. Comparison between observed and predicted rainfall along with box plots, showing the
information regarding uncertainty associated with the predicted values
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would have been obtained if the composite index was
developed by simple least square technique. It should be
kept in mind that CI is not developed by simple least square
technique rather it is developed considering the dynamic
relationship between ISMR and large-scale circulation
indices (ENSO and EQUINOO) [Maity and Nagesh Kumar,
2006b]. If some index (better not to call it CI to avoid
confusion) would have been developed by least square
technique (let us denote it as CI_LST), the performance
of the regression model between ISMR and CI_LST would
probably be comparable to that of model 3. In fact, the MSE
and CC values by the regression model using CI_LST were
found to be 26.69 and 0.272 respectively (not shown in
Table 2). Still the results from the proposed copula-based
approach are seen to be much better than all these models.
[60] While investigating the prediction performance for

individual months, it is found that variances for prediction
error in June, July, August and September are 5.79 cm2,
14.61 cm2, 9.31 cm2 and 8.50 cm2 respectively. On the
other hand, variances for rainfall in June, July, August and
September are 9.25 cm2, 19.98 cm2, 7.79 cm2 and 10.75 cm2

respectively. Thus, except for the month of August, the
variance is reduced by 37.5% for June, 26.9% for July and
21.0% for September. However, for the month of August
the variance is not getting reduced. This is due to the fact
that in 1990 and 1992 the predicted values are very low
compared to the observed ones resulting in high errors. If
we exclude these two cases, the variance of error for the
month of August becomes 6.81, which is smaller than that
of observed rainfall for this month.
[61] Most important point of the proposed methodology

is that the rainfall values are successfully predicted for those
years, in which the long established negative correlation
between ENSO and ISMR was not perceived. For example,
normal rainfall in the year of 1997 is predicted successfully
even though a drought was expected because of the largest
El Niño of the nineteenth century. However, so far as
physical mechanism is concerned, this is due to the consid-
eration of EQUINOO along with ENSO [Gadgil et al.,
2004; Maity and Nagesh Kumar, 2006b]. Thus, the depen-
dence is successfully captured by the proposed method. In
the year 2002, seasonal rainfall (total rainfall during June
through September) was significantly lower than normal.
However, at monthly scale, observed rainfall values for June
and August were normal and those for July and September
were significantly lower than normal. In fact, July rainfall

was completely unprecedented being 49% below normal.
Significantly lower than normal rainfall in September and
normal rainfalls for June and August are successfully
predicted by this approach as shown in Figure 6. However,
July rainfall, being completely unprecedented, is not pre-
dicted with reasonable accuracy. Still the predicted rainfall
is below normal, thus, the direction of the anomaly is
indicated. Sudden failure of July rainfall in 2002 may be
attributed to some other factors, which are beyond the scope
of the present study. Nonetheless, the proposed method is
shown to be able to capture the overall dependence and, in
general, able to predict the monthly variation of rainfall with
reasonable accuracy, along with the information of uncer-
tainty associated with the predicted values.
[62] At a smaller spatial scale, i.e., within the homoge-

neous rainfall regions (identified by Indian Meteorological
Department), similar approach may be followed. Smaller
temporal scale (lower than monthly) may not be of much
use at this spatial scale. However, weekly or fortnightly
temporal analysis at further smaller spatial scale, for exam-
ple, river basin scale, may be of importance. In such small
spatiotemporal scale, influence of some local meteorologi-
cal variables may be significant apart from the large-scale
atmospheric circulations (i.e., ENSO and EQUINOO). Such
meteorological variables may have to include air tempera-
ture, local pressure, relative humidity, wind speed etc. Such
further analysis may be considered as a future scope.

4. Summary and Conclusions

[63] In this paper, a method is proposed to capture the
dependence between teleconnected hydroclimatic variables
for successful prediction of the response variable. The
method is based on the theory of copula, which is a function
that couples the marginal distribution of variables to their
joint distribution. The theory of copula is having very strong
theoretical background. The basic motivation to use the
copula is that it helps to study the scale-free dependence
structure and preserves such dependence during simulation.
Moreover, the distribution of data sets can be simulated
separately, and they need not have to follow any particular
distribution.
[64] The copula-based method, proposed in this paper, is

demonstrated in the context of Indian summer monsoon
rainfall and its dependence on combined index of ENSO
and EQUINOO. The performance of the model is seen to be
alluring. The proposed method is general in many aspects
and can therefore be applied to similar studies of tele-
connected hydroclimatic variables to capture the depen-
dence of any form between them. First of all, any
relationship between the teleconnected hydroclimatic vari-
ables is subject to variation under different temporal scales.
For instance, interannual, interdecadal variability of ISMR
with respect to ENSO is well documented in literature. The
proposed method is shown to be able to capture the overall
relationship. Thus, the method is able to capture the scale-
free dependence pattern between the teleconnected hydro-
climatic variables. Scale-free dependence pattern provides
the information of relationship irrespective of its nature.
[65] Second, while capturing the relationship, uncertainty

associated with the relationship is also captured. This

Table 2. Performance of Different Linear Regression Models and

Copula-Based Approach

Model
Number Model for Prediction of ISMR

Performance
Statistics

MSE CC

1 regression using ENSO
(with 2 months lag)

27.13 0.222

2 regression using EQUINOO
(with 1 month lag)

27.82 0.177

3 regression using ENSO and EQUINOO
(with 2 months lag for ENSO and
1 month lag for EQUINOO)

26.76 0.268

4 regression using CI 28.92 0.043
5 proposed copula-based approach 10.40 0.814
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enables to provide the information of uncertainty associated
with the prediction using the proposed method.
[66] Finally, kernel-based nonparametric estimates of

probability density of the data sets (Figure 2) are used in
the proposed method. This is an important aspect of the
method as it avoids any parametric probabilistic distribu-
tional assumptions for the data sets. Parametric assumptions
may not be able to suitably represent the data sets for many
cases. Thus, the method is robust with respect to the
distributional properties of the data set. In brief, while the
relationship between response and causal variables is com-
plex and uncertainty quantification in a nonparametric way
is necessary, it is recommended to use the proposed method.
[67] However, having presented the convenience of the

approach, one point, related to the theory of copula, must be
kept in mind. In some cases, bivariate data may not follow
any copula derived from one of the classical copula fami-
lies. Even though the Sklar’s theorem shows that any
multivariate distribution can be expressed in a copula form,
this does not imply that one of the ‘‘classical’’ copulas will
be adequate for this purpose. Thus, it is required to
investigate whether the assumed copula is able to accept-
ably describe the data at hand or not as explained in this
paper.
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