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Trapped Ion Chain as a Neural Network: Error Resistant Quantum Computation
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Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
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We demonstrate the possibility of realizing a neural network in a chain of trapped ions with
induced long range interactions. Such models permit one to store information distributed over
the whole system. The storage capacity of such network, which depends on the phonon spectrum
of the system, can be controlled by changing the external trapping potential. We analyze the
implementation of error resistant universal quantum information processing in such systems.

The Cirac-Zoller proposal of trapped ion computer [1]
has become one of the paradigmatic models to imple-
ment a quantum computer [2]. Recently, spectacular ex-
perimental progress in realization of simple algorithms
and implementation of quantum logic has been achieved
using a few ionic qubits (c.f. [3]). Although the achieve-
ment of an all-purpose quantum computer in the near
future seems difficult, one can be quite optimistic about
the applications of chains of trapped ions as quantum
simulators. Recently, it has been shown that long range
(LR) pairwise interactions between individual spins are
induced in an ion trap, when applying an additional
state-dependent force acting on the ions [4, 5]. Also a
state-dependent optical force can evoke LR couplings and
has been proposed to simulate spin 1/2 chain systems [6].

Here we show that ion spin systems can serve to re-
alize a neural network (NN) model. NN are a proto-
type model of parallel distributed memory [7, 8], and
have been intensively studied by physicists since the fa-
mous paper by Hopfield [9]. These disordered systems
with LR interactions, typically present a large number
of metastable (free) energy minima, like in spin glasses
[8]. These states can be used to store information dis-
tributed over the whole system. The patterns stored
have large basins of attraction in the thermodynamical
sense, so that even fuzzy ones are recognized as perfect
ones. For this reason, attractive NN’s can be used as as-
sociative memory. At the same time, NN are robust, so
that destroying even a large part of the network does not
necessarily diminish its performance. The above listed
properties make NN’s interesting for distributed quantum
information (QI), where quantum bits do not correspond
to the internal states (spins) of individual ions, but to
patterns of the internal states of the whole chain (all-up,
all-down, half-up-half-down, etc.). These patterns echo

the lowest energy vibrational modes of the system. The
sign of the displacement of each ion with respect to its
equilibrium position in a given mode fixes the up/down
state of the spin in the associated spin pattern. Some

approaches to exploit the potential of NN models for QI
processing have been discussed [10], also with respect to
entanglement generation [11]. Here we propose, for the
first time, a feasible implementation of NN, and the re-
alization of distributed QI using a chain of trapped ions.

We first remind the readers the main features of the
Hopfield model [9], and discuss its similarities with the
effective Hamiltonian derived in Ref. [5, 6], that suggest
the possibility of using a chain of trapped ions as a NN.
We find the ion-chain storage capacity and its robust-
ness the most appealing features of NN for distributed
QI. Thus, the question of ergodicity and, therefore, the
ability of the system to act as an associative memory
is not considered here. We show that the storage ca-
pacity, which is determined by the phonon spectrum of
the system, can be controlled by modifying the shape of
the external axial trapping potential and/or by applying
longitudinal magnetic fields. Although this is a classi-
cal property of the network, spin ion systems also permit
to study quantum NN by applying a transverse magnetic
field or an optical field that effectively simulates it. Here,
we exploit the storage capacity of the system to perform
distributed QI i.e. single and two-qubit gates by applying
appropriate external axial and transverse magnetic fields.
Transverse magnetic fields should also permit tunneling
processes between stored patterns and to realize, for ex-
ample, quantum stimulated annealing [8, 12]. This study
is beyond the scope of this Letter and will be treated else-
where.

Following the models of Hopfield [9] and Little [13], a
neuron can be viewed as an Ising spin with two possible
states: “up” (S = +1) and “down” (S = −1) depending
on whether the neuron has or has not fired an electro-
magnetic signal, in a given interval of time [7]. The state
of the network of N neurons at a certain time is defined
by the instantaneous configuration of all the spins {Si}
at this time. The dynamic evolution of these states is de-
termined by the symmetric interactions among neurons,
Jij = Jji. Also, full connectivity is assumed, i.e., every
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neuron can receive an input from any other one, and send
an output to it. The Hamiltonian reads:

H = −1

2

N
∑

i,j

JijSiSj + h
N
∑

i

Si, (1)

where h corresponds to an external magnetic field. The
interactions are determined by the patterns or configura-
tions of spins to be stored in the network. These patterns
will be learned if the system is able to accommodate them
as attractors, implying that a large set of initial configu-
rations of the network will be driven dynamically to those
patterns. A possible choice of the interactions is

Jij =
1

N

p
∑

µ=1

ξµi ξ
µ
j , (2)

with i 6= j. The p sets of {ξµi } = ±1 are the patterns to
be stored. The network will have the capacity of storage
and retrieval of information, if the dynamical stable con-
figurations (local minima) reached by the system {Si}
are correlated with the learned ones {ξµi }. Although the
interactions have been constructed to guarantee that cer-
tain specified patterns are fixed points of the dynamics,
the non-linearity of the dynamical process may induce
additional attractors, the so-called spurious states.
Recently it has been shown that the Hamiltonian de-

scribing a linear chain of harmonically trapped ions ex-
posed to a magnetic field gradient [5] or interacting with
convenient laser fields [6] can be transformed into an ef-
fective spin-spin hamiltonian with LR interactions (Jα

ij),
mediated by the collective motion of the ions:

H = −1

2

∑

α,i,j

Jα
ijσ

α
i σ

α
j +

∑

α,i

Bα
i σ

α
i , (3)

Jα
ij =

(Fα)2

m

∑

n

Mα
i,nM

α
j,n

ω2
α,n

, (4)

with α = x, y, z, (i, j) label the ions, σ are the Pauli
matrices, Fα the force in the α direction experimented
by the ions, m the ion mass and ωα,n the angular fre-
quency of the vibrational mode n. Mα

i,n are the unitary
matrices that diagonalize the vibrational Hamiltonian:
Mα

i,nκ
α
i,jM

α
j,m = ω2

α,nδnm , where κα
i,j are the elastic con-

stants of the chain [14]. The coefficient Mα
i,n gives the

scaled amplitude of the local oscillations of ion i around
its equilibrium position, when the collective vibrational
mode n is excited. Thus, the eigenvectors of M describe
each ion’s contribution to a given vibrational mode, while
the eigenvalues provide the frequencies, ωα,n of the col-
lective modes.
The external trapping frequencies are chosen such that

the laser cooled ions crystallize in a linear chain (i.e.
ωx,1 = ωy,1 ≫ ωz,1) and the external forces act on the

z−axis (i.e. F x = F y = 0), so that the index α is
dropped. Henceforth, we consider zero magnetic fields
Bi = 0 [15]. If we substitute the Pauli matrices in Eq.(3)
by Ising spins S = ±1 (where the effective spin corre-
sponds to the internal state of the ion), we recover Eq.(1)
and the possibility to implement a classical NN with this
system arises. Nevertheless, there are some differences
between both models. First, in the Hopfield model, the
interactions (Eq.(2)) are determined by the patterns to
be stored {ξµi } = ±1, while in the trapped ion chain,
the interactions are fixed by the collective modes of the
system, i.e., the coefficients Mi,n that do not necessarily
equal ±1. Second, in Eq.(2), p corresponds to the num-
ber of patterns to be stored, which in the limit of large N
(number of spins), is bounded from above by p = 0.14N
[7]. In Eq.(4), the sum extends over the total number of
vibrational modes which is larger than the total number
of stored patterns (spin configurations that the system is
able to recover). And finally, in the Hopfield model all
the patterns have the same weight while in the ion chain
each vibrational mode is weighted by 1/ω2

n (Eq.(4)). To
reproduce as closely as possible a NN behavior, the most
relevant requirement is the degeneracy of the vibrational
modes. Moreover, the corresponding patterns must have
large basins of attraction, i.e. they should correspond
to sufficiently different spin configurations, so that each
one is dynamically recovered, even if several spins are
randomly flipped.

To check the feasibility of implementing a NN model
in these ion spin systems, we first find the phonon spec-
trum using a standard diagonalization procedure, and
impose the learning rule i.e., we calculate the spin inter-
actions Jij , mediated by the collective modes of the ions
(Eq.(4)). Then, we map a given vibrational mode into
a spin configuration (initial spin configuration), evaluate
its energy (Eq.(3)) and check its dynamical stability un-
der spin flips using a standard Metropolis algorithm in
a classical Monte Carlo code. This stability is essential
for adiabatic QI processing. Explicitly, from the initial
configuration we randomly flip r spins, and let the sys-
tem evolve towards equilibrium assuming a noiseless sce-
nario. If the system recovers the initial configuration, it
is stable under the flip of r spins. We define the initial
overlap as mi = (N − r)/N . After dynamical evolution,
the final overlap is given by mj = (N − s)/N where s
is the number of spins that differ from the initial con-
figuration. We repeat this process over M initial con-
figurations each with r random spin flips. We evaluate
statistically the final overlap with the initial configura-
tion as: mf = (

∑N
j=1

mjnj)/M , being nj the number
of times that the system reaches the configuration with
mj . The value of mi for which significant decrease of
mf occurs, is a good measure of the size of the pattern’s
basin of attraction. For the harmonic trapping potential,
the two lowest vibrational modes are the center of mass
(CM) (all spins parallel, with ω1) and the breathing (B)
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FIG. 1: (a) Ratio between the frequencies of the second and
first vibrational modes as a function of the exponent of the
trapping potential for 20 Ca+ ions. (b) Final overlap aver-
aged over 500 initial configurations as a function of the initial
overlap, for the patterns associated with the two lowest vi-
brational modes of 40 ions in a potential V = ρ|x|0.5 with

ρ = 6.6 × 10−20J/m1/2. The black squares (triangles) corre-
spond to the first (second) pattern.

mode (half up, half down, with ω2 =
√
3ω1) [16]. We

find that the pattern associated with the CM mode is
stable up to the flip of half of the spins, while the one
associated with the B mode is already unstable under a
single spin flip. Thus, only the spin configuration associ-
ated with the CM mode can be recovered (i.e., stored).
To increase the storage capacity of the network, we con-
sider here V (x) = ρ | x |γ , achievable using additional
control by dc electrodes ([4](b), see also [17]). We cal-
culate the ratio ω2/ω1, as a function of γ, for Ca+ ions.
For N ≥ 20, this ratio depends neither on the number
of ions, nor on the value of ρ. For γ ≥ 1, the ratio is
≈

√
3, and as in the harmonic case, severe limitations

on the storage capacity appear (see Fig.1(a)). However,
for 0.25 < γ < 0.8, the two lowest modes become nearly
degenerate. The storage capacity for a system of 40 Ca+

ions trapped in a potential with γ = 0.5 is displayed in
Fig. 1(b), where the final overlap is depicted as a func-
tion of the initial overlap for the patterns associated with
the two lowest vibrational modes. mf is close to 1 up to 8
spin flips, meaning that the system is able to recover four
patterns (the two associated with the two lowest modes
plus the two corresponding to a global spin flip). The
system sometimes reaches a slightly deformed configura-
tion, which differs only in 1 spin flip from the original
one (spurious states), making mf slightly smaller than 1.
Specifically, the probability of recovering the two modes
is above 98%, up to 3 initial random spin flips, and above
97% up to 8 (mi = 0.8).

Having shown that our system can be robust for clas-
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FIG. 2: (Color online) Fidelities of the H gate (left) and the
Bell gate (right), with respect to time (r2 = 0.95r1). The
classical fidelity bounds are 2/3 and 2/5, respectively (hori-
zontal dashed lines). The inset in gray shows the fields Aλ
and B1λ = 10−5Bλ and B2λ = 10−6Bλ with respect to time.
For adiabaticity, the chosen fields require T ≫ 7 × 106~/λ.
The fidelities are largely independent of the actual dynamics
of the fields.

sical information storage, we explore now its capability
for distributed quantum computing in an error resistant
way (cf. [18]), i.e. robust with respect to the partial
damage of the system. To this aim, we consider a system
of 8 spin-1/2 particles (as in [19]) in a trapping potential
with γ ≃ 0.5. The vibrational spectrum is, except for the
lowest two modes, highly non-degenerate, with rapidly
increasing eigenvalues. Thus, we consider only the con-
tributions of the spin configurations associated with the
three lowest motional modes which, up to a gauge trans-
formation, correspond to: all-up, half-up-half-down, 2-
up-4-down-2-up. We encode the information in the first
two, and consider the third one as noise. The phonon
mode amplitudes are approximated as Mi,m = ξmi = ±1
(exact for periodic boundary conditions). Additionally,
time dependent “magnetic” fields in the z (B1, B2) and x
(A) directions are applied leading to the following expres-
sion for a Quantum Neural Network (QNN) Hamiltonian:

HQNN (t) = −λ
[

r1(S
z
1 + Sz

2 + Sz
3 + Sz

4 )
2 +

r2(S
z
1 + Sz

2 − Sz
3 − Sz

4)
2 + r3(S

z
1 − Sz

2 − Sz
3 + Sz

4 )
2

+A(Sx
1 + Sx

2 + Sx
3 + Sx

4 )

+B1(S
z
1 + Sz

2 ) + B2(S
z
3 + Sz

4 )
]

, (5)

where Sα
i = σα

2i−1+σα
2i, i = 1, . . . , 4, and r1 ≈ r2 ≫ r3 >

0. With λ in energy units, all the other parameters in
HQNN are dimensionless. B1, B2, and A are chosen ini-
tially (t = t0) such that the ground |G(t0)〉, and the first
three excited states |Ej(t0)〉 correspond to: | ↑↑↑↑↑↑↑↑〉z,
| ↓↓↓↓↓↓↓↓〉z, | ↑↑↑↑↓↓↓↓〉z, and | ↓↓↓↓↑↑↑↑〉z.
To demonstrate universality we focus first on a single

qubit operation. Identifying |0〉 = |G(t0)〉, |1〉 = |E1(t0)〉,
we consider a single distributed-qubit operation, with a
generic qubit a0|G(t0)〉 + a1|E1(t0)〉, evolving adiabati-
cally under the changes of the magnetic fields, to a final
state a0|G(t = T )〉+ a1|E1(t = T )〉. We choose the time
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dependence of the fields so that the final state is approx-
imately the H-rotated state of the input one, where H
acts on the logical states as |0〉 → |+〉, |1〉 → −|−〉,
where |±〉 = (|0〉 ± |1〉)/

√
2. This one-qubit gate H is

reminiscent of the Hadamard gate that takes |0〉 → |+〉,
|1〉 → |−〉. The H operation is achieved by changing
the positive initial values of B1 and B2 adiabatically to
zero, and simultaneously increasing the zero initial A to
a positive value much larger than the initial B1, B2 (in-
set Fig. 2). Since we deal with superpositions of en-
ergy eigenstates, we consider in the adiabatic transport
the dynamical, as well as the Berry phases [20]. The fi-
delity of the H gate is shown in Fig. 2(left) as a function
of time for different noise ratio r3/r1. Note that artifi-
cially increasing the ratio r3/r1 imitates inaccuracies in
the trapping potential, disturbance in the motion of the
ions, as well as noise in the spin (as the phonons are the
carriers of interaction between the spins). The fidelity is
quite insensitive to high noise levels, and is larger than
the classical (measure and prepare) bound of 2/3.
Let us move now to the two-qubit gates, and treat

the 4 left spins as one qubit, and 4 right ones as an-
other, so that: |00〉 = | ↑↑↑↑↑↑↑↑〉z, |01〉 = | ↑↑↑↑↓↓↓↓〉z,
etc. (We have checked that the H gate fidelity is ro-
bust in this encoding also.) We demonstrate here, a
way to implement an entangling universal gate [21] act-
ing as |00〉 → (|00〉+ |11〉)/

√
2, |11〉 → (−|00〉+ |11〉)/

√
2,

|01〉 → (|01〉+ |10〉)/
√
2, |10〉 → (−|01〉+ |10〉)/

√
2. We

denote this gate as Bell gate. We now encode an arbi-
trary two-qubit state

∑

i,j=0,1 aij |ij〉, into a00|G(t0)〉 +
a11|E1(t0)〉 + a01|E2(t0)〉 + a10|E3(t0)〉. The same vari-
ation of the magnetic fields as in the H gate leads now
to the Bell-gate rotated state (Fig. 2 (right)), with fi-
delity that is noise insensitive and surpasses the classical
bound of 2/5. Note that in addition to being resistant
against noise induced by increasing r3/r1, the fidelities
are also robust against spin-flip errors, as we have en-
coded the qubit(s) in the two (four) lowest energy levels,
for the H (Bell) gate, which we have already shown to be
metastable against spin-flips. The time scales for which
both H and Bell gate fidelities reach maximum values
are long enough to ensure robust implementation and
also robustness against errors in time of observation.
Summarizing, we have shown that spin-ion systems

can be used to implement NN models. We have calcu-
lated their storage capacity and robustness against spin
flips as well as their dependence on the trapping poten-
tial. Identifying the qubits with configurations of spins
that echo the lowest vibrational modes of the system, we
have shown that the system can perform error resistant
universal distributed QI processing. We have demon-
strated that by applying adiabatically-varying time de-
pendent “magnetic” fields, the system realizes single and
two distributed-qubit operations in a robust way [22].
The scalability issue is like other proposals and experi-
ments in ion-trap quantum computing [23], and may po-

tentially be overcome by connecting mesoscopic clusters
of trapped ions for instance, by “flying” qubits.
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