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We consider experimentally feasible chains of trapped ions with pseudo-spin 1/2, and find models
that can potentially be used to implement error-resistant quantum computation. Similar in spirit
to classical neural networks, the error-resistance of the system is achieved by encoding the qubits
distributed over the whole system. We therefore call our system a quantum neural network, and
present a quantum neural network model of quantum computation. Qubits are encoded in a few
quasi-degenerated low energy levels of the whole system, separated by a large gap from the excited
states, and large energy barriers between themselves. We investigate protocols for implementing a
universal set of quantum logic gates in the system, by adiabatic passage of a few low-lying energy
levels of the whole system. Naturally appearing and potentially dangerous distributed noise in
the system leaves the fidelity of the computation virtually unchanged, if it is not too strong. The
computation is also naturally resilient to local perturbations of the spins.

I. INTRODUCTION

Quantum computers, if realized in laboratory, are
known to be capable of solving problems much faster than
classical computers. Two famous examples are the Shor
algorithm [1] for factoring a nonprime integer N in poly-
nomial time in the number of binary digits of N , and the
Grover algorithm [2], which can find a single object from

an unsorted database of N objects in an order of
√
N

calls to the database in a quantum computer. While the
latter task requires an order of N calls to the database
in a classical computer, the former is strongly believed
to require exponentially large time in the same.

One of the most challenging problems that occur when
trying to build a quantum computer is decoherence. The
system interacts with its environment, and the quantum
logical gates cannot be implemented perfectly. A num-
ber of schemes for protecting quantum information have
been developed, including fault tolerance codes [3], deco-
herence free subspaces [4], noiseless subsystems [5], dy-
namic decoupling [6], topological quantum computation
[7], and geometric quantum computation [8].

Our approach to error resistant quantum computation
is based on the idea of neural networks, which, classi-
cally, can offer robust (i.e. noise resistant) storage and
manipulation of classical data by encoding the classical
memory patterns in a distributed way in the whole neu-
ral network (see e.g. [9]). A typical classical neural net-
work has a large number of metastable energy minima
with large basins of attraction, which can be used for
this purpose. A classical neural network is also typically
characterized by long range interactions. Moreover, these
interactions are usually disordered and “frustrated”. The
disordered interactions are motivated by realistic situa-
tions: The bonds that carry information between neu-
rons in a brain are typically quite irregular, and fluctu-
ate. Such disordered interactions have the effect that the
different metastable energy minima are statistically inde-
pendent, so that for large systems, their overlaps vanish.

“Frustration” in a network can be defined as a situation,
where one cannot find a configuration of the “particles”
(that make up the network) by satisfying all the inter-
actions (bonds) between them. While there are physical
(or biological) reasons for considering frustrated interac-
tions, it is also (believed to be) important for having a
large number of low lying metastable and “orthogonal”
(in the sense of Hamming distance (see e.g. [10])) energy
patterns.

Just as distributed classical information encoding in
classical neural networks is good for classical data manip-
ulation, we show that distributed quantum information

encoding in their quantum analogs (we call them “quan-
tum neural networks” (QNN)) can potentially be used
for robust manipulation of quantum data: error resis-
tant quantum computation. The system that we have in
our minds for a possible implementation of the protocols
that we describe in this paper, are systems of cold ions
in a trap (see [13, 14, 15] and references therein). The
state-of-the-art of current experiments (see e.g. [11, 12],
and references therein) show, that such systems allow for
a high degree of control of the parameters, and in par-
ticular, of the interactions. Consequently, in such sys-
tems, we are able to manipulate strictly orthogonal (in
the usual sense of orthogonality of pure states in a Hilbert
space) states of the whole system, without making use of
disordered interactions. Moreover, this is possible with a
mesoscopic number of ions in the system.

We propose to encode quantum data in the energy lev-
els of the system, and perform quantum gates by adia-
batic passage of these levels. Thus, a too large number
of low lying energy levels will typically be detrimental
for our purposes: the finer an avoided crossing is, the
larger is the probability of the system to leak into higher
excitations. Therefore, we also do not want frustration
effects to dominate in our system and produce such low
energy states.

Using such a quantum neural network, we show that
one can implement not only one-qubit gates, but also
universal two-qubit gates in a naturally error resistant
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way. The idea of the gate implementations is the fol-
lowing. Suppose that a (unitary) gate is defined as a
transfer of an initial orthogonal set of vectors into a final
one. We choose the initial parameters of the Hamiltonian
of the system in such a way, that the initial orthogonal
set of vectors can be encoded onto a few lower eigen-
states of the initial Hamiltonian. Subsequently, the sys-
tem parameters are changed (slowly, i.e. adiabatically),
such that the final orthogonal set of vectors of the uni-
tary gate, turns out be (approximately) the correspond-
ing lower instantaneous eigenstates of the final Hamilto-
nian. The change in the Hamiltonian is brought about by
the changing of certain external (parallel and transverse)
fields, and these are the sole (external) parameters that
needs to be changed for the adiabatic passage.

In a certain sense, our system resembles systems with
topological order and topologically protected qubits, such
as proposed in Ref. [7]. In those systems there exist sev-
eral degenerated ground states that are separated from
the excited states by a large energy gap and which are
used to store the qubits. Local perturbations of such
states are very insufficient: one has to go to very high
orders of the perturbation theory in order to transfer one
of the protected states into another, i.e. change the topo-
logical charge.

In our case, the situation is rather similar for most
practical purposes. As we showed in Ref. [16], we can
control the ion trap potential in such a way that the sys-
tem has a quasi-degenerate low energy manifold. As the
classical analysis in our earlier Letter (Ref. [16]) shows,
all of these states are local minima of energy, which are
stable with respect to multiple spin flips, just as in stan-
dard classical neural networks. We therefore have a num-
ber of states that are separated by a large gap from the
higher excited states, and are separated between them-
selves by large barriers. This implies that also in our case,
local perturbations are inefficient. The system (QNN)
is thus intrinsically robust to local noise for quantum
computational purposes - qubit states, when slightly per-
turbed locally, transform under gate operations, almost
similarly as ideal qubit states. On top of that, the sys-
tem exhibits even a different mechanism of error resis-
tance, as we shall see below. In constructing the QNN,
in a natural manner one obtains noise terms, which have
a distributed character: they act globally on the whole
system. Such terms are potentially dangerous and may
seriously diminish the performance of the model. Fortu-
nately, also in this case, energy gaps and barriers assure
protection.

The paper is organized as follows. In Sect. II, we
briefly describe the adiabatic theorem. In Sect. III, we
give a description of the model of our QNN and intro-
duce our noise models: local perturbations and the nat-
urally appearing distributed noise. The quantum neural

network model of quantum computation consists of two
main steps: The distributed encoding of the qubits, and
the implementation of the quantum gates by adiabatic
passage. The encoding of the qubits is described in Sect.

IV. Sect. V defines the two gates, namely the H gate
and the Bell gate, whose protocols for implementation
are presented in Sect. VI. Sect. VII contains the re-
sulting fidelities of the gates. In Sect. VIII, we apply the
adiabaticity condition to our system, and give constraints
on the time of the evolution. We discuss our results in
Sect. IX.

II. THE ADIABATIC THEOREM

The quantum adiabatic theorem [17, 18] states that a
physical system that is initially in one of its nondegener-
ate eigenstates will remain in the corresponding instanta-
neous eigenstate, provided that the Hamiltonian is varied
“sufficiently” slowly.
The time evolution of the system is given by the time

dependent Schrödinger equation

i~
d

dt
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (1)

where we let our system evolve from t = 0 until the time
t = T . If we scale the time evolution by introducing a
scale factor s = t

T
, where 0 ≤ s ≤ 1, the Schrödinger

equation becomes

i~
d

ds
|Ψ(s)〉 = TH(s)Ψ(s). (2)

The time evolution of the system is described completely
by the Hamiltonian and the initial state. The develop-
ment of the system is considered as “adiabatic”, so that
the adiabatic theorem holds, if the change of the Hamil-
tonian is small as compared to the gap g(s) between the
energy levels; more precisely, if

T ≫ ~
‖ d

ds
H(s) ‖
g(s)2

, (3)

where ‖ Λ ‖ is the operator norm of Λ, defined as the
square root of the maximal eigenvalue of Λ†Λ. If one
desires to adiabatically transport the ith eigenstates at
a certain time to the ith eigenstate at a different time,
the gap g(s) is the minimum of the energy gaps to the
(i− 1)th and the (i+1)th energy levels. If the adiabatic-
ity condition is fulfilled, an evolution starting out in the
ith eigenstate of H(0) will end up, at time t = T , with
high probability, in the ith eigentstate of the Hamiltonian
H(T ).
In this paper, adiabatic transport of superpositions of

a few energy levels is considered. For a superposition
of say the 2nd and the 3rd levels, the gap g(s) is the
minimum of the gaps between 1st and 2nd levels, 2nd and
3rd levels, and 3rd and 4th levels. When applying the
adiabatic theorem to superpositions of eigenstates, the
phases are also relevant to the calculations. For example,
a superposition

a|2(0)〉+ b|3(0)〉 (4)
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of the 2nd energy level |2(0)〉 and the 3rd level |3(0)〉 of
the Hamiltonian H(0), will end up, at time T , with high
probability, in the superposition

aeiΦ2 |2(T )〉+ beiΦ3 |3(T )〉 (5)

of the 2nd energy level |2(T )〉 and the 3rd level |3(T )〉 of
the Hamiltonian H(T ). The phases Φi are given by the
sums of the dynamical and Berry phases [18, 19, 20, 21]
for the corresponding eigenstates. The dynamical phase
is given by

ΦD
i = −

∫ T

0

Ei(t)dt, (6)

and the Berry phase is defined as

ΦB
i = i

∫ T

0

〈Ei(t)|
d

dt
|Ei(t)〉 dt. (7)

The instantaneous eigenvalues of the Hamiltonian H(t)
are denoted as Ei(t) (i = 0, 1, 2, . . .), with E0(t) <
E1(t) < E2(t) < . . ., for all time t. The instantaneous
ith eigenstate is denoted as |Ei(t)〉. The ground state
|E0(t)〉 will also be denoted as |G(t)〉.
Since the work of Farhi and Gutmann [22] (see also

[23, 24], and references therein), the adiabatic theorem
has been used for quantum information processing, and
has been called “adiabatic quantum computation”. A
methodological difference between the above set of works
and the present paper, is that in their case, the system is
always in the ground state, while our system is typically
a superposition of a few lower excited levels along with
the ground state. Among other things, this may affect
the adiabaticity condition. Perhaps even more important
differences are as follows:

(i) “Special purpose” Hamiltonian versus “universal”

Hamiltonian: Adiabatic quantum computation
typically considers a certain quantum algorithm,
and depending on the algorithm, a certain Hamil-
tonian is considered. It was shown in Ref. [24]
that the set of 2-local Hamiltonians is enough for
this purpose. We, however, have a single quantum
Hamiltonian (the QNN), that we will show below
to be enough for all quantum algorithms, as our
Hamiltonian implements universal gates (like the
Bell gate, defined in Sect. V), which can be applied
to simulate arbitrary quantum algorithms. In this
sense, the QNN Hamiltonian is a universal Hamil-
tonian for quantum computation.

(ii) Noise-resistance mechanism: Below, we will ob-
serve that quantum computing in a system de-
scribed by the QNN Hamiltonian is resistant to
noise, and this resistance is related to the fact that
the system mimics a neural network: the quan-
tum information is distributed in the eigenstates
of the whole system. Resistance to noise in adia-
batic quantum computation has apparently a dif-
ferent origin, as the typical Hamiltonians there, are
not fully connected [24].

III. THE QUANTUM NEURAL NETWORK

HAMILTONIAN AND OUR NOISE MODELS

In this paper we will consider a system of trapped spin-
1/2 particles with long range interactions, that are sub-
ject to slowly changing (in real time (t)) external mag-
netic fields. Such a system can be implemented with
ions in a trap, where two internal states of each ion serve
as the “up” and “down” states (denoted as |↑〉 and |↓〉
respectively) of the pseudo spin-1/2 particles (see Refs.
[13, 14]). As shown in the above references, such a sys-
tem offers a wide variety of spin models, which can be
implemented by changing the system parameters. We are
interested in long range Ising interactions. As shown in
Refs. [16, 25], the Hamiltonian of the system depends
crucially on the geometry of the external trap poten-
tial. For the case of a harmonic trap, the time dependent
Hamiltonian of a system of eight spins can be approxi-
mated by

H(t) = −λ
[

r1 (Sz1 + Sz2 + Sz3 + Sz4)
2

+r2 ((Sz1 + Sz2)− (Sz3 + Sz4))
2

+r3((Sz1 − Sz2)− (Sz3 + Sz4))
2

+A(t)(Sx1 + Sx2 + Sx3 + Sx4)

+B1(t)(Sz1 + Sz2) +B2(t)(Sz3 + Sz4)
]

, (8)

where, typically, r1 is much greater than r2 and r3. The
ri corresponding to higher modes are even smaller and
are thus neglected. Here

Sαi = σα
2i−1 + σα

2i, i = 1, 2, 3, 4, (9)

and A, B1 and B2 are external magnetic fields. The
overall factor λ, which has the units of energy, in the
Hamiltonian H(t) has the effect of making the rest of the
parameters in the Hamiltonian dimensionless. As we will
show, such a system (i.e., one in which r1 ≫ r2, r3) can be
used for implementing one-qubit gates, but is apparently
not suitable for two-qubit universal gates. However, for
trap potentials of the form |x|γ , with γ ≈ 0.5, one obtains
a situation where r1 ≈ r2 ≫ r3 [16, 25]. The trap for
which γ = 0.5 may be called a fountain trap. We show
below that this latter case can be used for implementing
both one- qubit and two-qubit gates. The consideration
of eight spins in our system is motivated by the number
of spins that is currently viable in ion trap experiments
(see e.g. [12]).
We will now discuss two possible sources of noise that

act on the system. We first consider a “distributed
noise”, i.e. noise that arises globally in the system. Sec-
ondly, we will discuss a “local noise”, i.e. noise that acts
on the states of the system via local perturbations.

A. Distibuted Noise

The terms in the quantum neural network Hamilto-
nian H(t) corresponding to r1, r2, and r3 (r4, r5, etc.
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are neglected here) stem respectively from the first, sec-
ond, and third (and further) vibrational modes of the
trapped ions system, since the phonons are the carriers
of interactions between the spins. Therefore, in the case
when r1 ≈ r2 ≫ r3, one can consider the r3 (as well as
r4, r5, etc., if present) term as a distributed, and thus
potentially dangerous, noise in the system. This noise
model is motivated by taking into account the following
points:

(i) Increasing the effect of the third (and also higher)
vibrational mode, which in the undisturbed case is
much smaller than the first and second ones, covers
inaccuracies in the trapping potential.

(ii) Moreover, decreasing the eigenfrequency of the
third vibrational mode (i.e. increasing r3) intro-
duces a disturbance in the motion of the ions.

(iii) In addition, this introduces noise in the spin, as it
is the phonon modes that are the carriers of inter-
action between the effective spins.

Similarly, in the case when r1 ≫ r2, r3 (e.g. in the case
of the harmonic trap), the r2 term can be considered as
a model of noise in the system.

B. Local Noise

We will now discuss our model for local noise that can
potentially act on our system, by considering local per-
turbations to the states of the system. Let us note that
the term “local noise” in this manuscript does not mean
that the noise is local with respect to the spins (ions). It
means that the noise is local in the configuration space of
the system. We consider imperfections to the initial state
of the system by superposing it with the states where one
spin is flipped. For the “all down” state |↓↓↓↓↓↓↓↓〉, for
example, we consider the transformation

|↓↓↓↓↓↓↓↓〉 → |↓↓↓↓↓↓↓↓〉+ ε |W8〉 , (10)

as a model of noise. The output of the noise effect is
not yet normalized. Here |W8〉 is the eight spin W-state,
defined as the normalized symmetric superposition of all
states with one spin up and the rest spins down [26]. The
parameter ε is the strength of the perturbation. In Sect.
VII, we will study the influence of this local noise on the
gate fidelities.

IV. DISTRIBUTED ENCODING OF THE

QUBITS

As noted before, the quantum neural network model
of quantum computation consists of two steps, beginning
with an encoding of the qubits in a distributed way: The
qubits are encoded, as we discuss now, as eigenstates of
the whole neural network.

We assume that the Hamiltonian H(t) changes in a
continuous way from a certain initial value H(0) at time
t = 0 to a certain final value H(T ) at time t = T . Note
that the change in the Hamiltonian is brought about
solely by changes in the fields. We choose the initial fields
in the QNN Hamiltonian such that the ground state and
the three lowest excited states at the initial time t = 0
are respectively

|G(0)〉 = |↑↑↑↑↑↑↑↑〉 ,
|E1(0)〉 = |↓↓↓↓↓↓↓↓〉 ,
|E2(0)〉 = |↑↑↑↑↓↓↓↓〉 ,
|E3(0)〉 = |↓↓↓↓↑↑↑↑〉 . (11)

For implementing one-qubit gates, we will use the fol-
lowing encoding:

|0〉 = |G(0)〉 = |↑↑↑↑↑↑↑↑〉 ,
|1〉 = |E1(0)〉 = |↓↓↓↓↓↓↓↓〉 . (12)

The extreme left hand sides of the above equations denote
the logical states of the qubit.
On the other hand, for two-qubit gates, we will encode

one qubit in the first four spins and the other qubit in
the remaining four spins:

|00〉 = |G(0)〉 = |↑↑↑↑↑↑↑↑〉 ,
|11〉 = |E1(0)〉 = |↓↓↓↓↓↓↓↓〉 ,
|01〉 = |E2(0)〉 = |↑↑↑↑↓↓↓↓〉 ,
|10〉 = |E3(0)〉 = |↓↓↓↓↑↑↑↑〉 . (13)

Again the extreme left hand sides of the above equations
denote the logical states of the two qubits.

V. THE H GATE AND THE BELL GATE

We consider implementations of a one-qubit, as well as
a two-qubit gate. The two-qubit gate is an entangling
one, so that along with one-qubit gates, a universal set
of quantum gates is formed [29]. The one-qubit gate, in
the logical basis, is given by

|0〉 → |+〉 ≡ |0〉+ |1〉√
2

, |1〉 → − |−〉 ≡ −|0〉 − |1〉√
2

.

(14)
Note that this transformation, which we call the H

gate, is closely related to the Hadamard transformation
that takes

|0〉 → |+〉 and |1〉 → |−〉 . (15)

The two-qubit gate that we consider here acts as

|00〉 → |φ+〉 ≡ |00〉+ |11〉√
2

, (16)

|11〉 → − |φ−〉 ≡ −|00〉 − |11〉√
2

, (17)
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FIG. 1: (Color online.) Fidelity of the H gate, as a function of
time: Effect of distributed noise. The fidelities are calculated
for r1 = 10, and r2 = 9.5, for different values of r3. The
(parallel and transverse) fields for which the calculations are
performed are depicted in Fig. 5. As seen in the figure, the
maximal fidelities are obtained a little after t = T/2. T is a
time that satisfies Eq. (3), which with our chosen parameters
mean T ≫ 7×106~/λ. Note that the fidelity does not change
appreciably with the increase of the distributed noise level
r3. The local noise is assumed to absent (i.e. ε = 0). The
horizontal line at 2/3 denotes the limit above which the gate
fidelity is quantum.

|01〉 → |ψ+〉 ≡ |01〉+ |10〉√
2

, (18)

|10〉 → − |ψ−〉 ≡ −|01〉 − |10〉√
2

. (19)

The gate is manifestly entangling, and we call it the Bell
gate.

VI. THE GATE IMPLEMENTATION

PROTOCOLS: ADIABATIC PASSAGE

The second and final step of our quantum neural net-
work model of quantum computation consists in the im-
plementation of the quantum gates, by adiabatic passage
of the whole system by adiabatic tuning of parallel and
transverse magnetic fields.

A. Protocol for the H gate

Let us first consider the protocol for implementing the
single qubit H gate. Note that in this case, the encoding
is given by Eq. (12). To implement the H gate, a qubit
that is initially in the state

a0 |0〉+ a1 |1〉 (20)

0 T
0.55
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0.70

0.75

0.80

0.85

0.90

Fi
de

lit
y

Time

FIG. 2: (Color online.) Fidelity of the H gate, as a function
of time: Effect of local noise. The fidelities are calculated
for r1 = 10, r2 = 9.5, and r3 = 0, for different values of
ε. Just like in the case of distributed noise in Fig. 1, the
(parallel and transverse) fields for which the calculations are
performed are depicted in Fig. 5. And again, the maximal
fidelities are obtained a little after t = T/2, where T is a
time that satisfies Eq. (3), which with our chosen parameters
mean T ≫ 7× 106~/λ. The fidelity does not show a marked
diminish with the increase of the level of local noise ε. The
distributed noise is assumed to be absent (i.e. r3 = 0). The
horizontal line at 2/3 denotes the limit above which the gate
fidelity is quantum. Note that the ε = 0 curve in this figure
is the same as the r3 = 0 curve in Fig. 1.

(in the logical basis), should evolve into the state

a0 |+〉 − a1 |−〉 . (21)

Here a0 and a1 are complex numbers, with |a0|2+ |a1|2 =
1. Using the encoding in Eq. (12), the qubit is initially
in the state

a0 |G(0)〉+ a1 |E1(0)〉 . (22)

We now adiabatically change the fields in the QNN
Hamiltonian up to a certain time t = T , in which case,
the system that was initially in the state in Eq. (22),
evolves, in accordance with the adiabatic theorem, to the
state

a0e
iΦ0 |G(T )〉+ a1e

iΦ1 |E1(T )〉 , (23)

where the phases Φi are given by the sums of the dynam-
ical and Berry phases for the corresponding eigenstates
[18, 19, 20, 21]. The eigenvectors of the Hamiltonian that
appear in our calculations of the fidelities of the H gate
as well as the Bell gate, are all real in at least one ba-
sis. Consequently, the corresponding Berry phases van-
ish. Therefore, the total phase is given by the dynamical
phase:

Φi = ΦD
i = −

∫ T

0

Ei(t)dt, i = 0, 1, 2, . . . . (24)
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FIG. 3: (Color online.) Fidelity of the H gate: Combined
effect of distributed and local noise. We plot the maximal
fidelity of theH gate as a function of the local noise parameter
ε, when the distributed noise parameter r3 is vanishing and
0.5. The time for calculation of the fidelities is chosen to
be the one for which maximal fidelity is obtained for ε = 0
and r3 = 0. Again the fields are changed as in Fig. 5, and
adiabaticity requires that the time of fidelity calculation be
≫ 7 × 106~/λ. The horizontal line at 2/3 denotes the limit
above which the gate fidelity is quantum.

Our aim is to change the fields in such a way that
the final (time evolved) state in Eq. (23) is “as close as
possible” to the H rotated state a0 |+〉 − a1 |−〉, i.e. to

a0
|G(0)〉+ |E1(0)〉√

2
− a1

|G(0)〉 − |E1(0)〉√
2

. (25)

The measure of closeness that we use is described in Sub-
sect. VIC).

B. Protocol for the Bell gate

In the case of the Bell gate, the encoding is as in Eq.
(13). Here, two qubits that are initially in the state

a00 |00〉+ a11 |11〉+ a01 |01〉+ a10 |10〉 (26)

(in the logical basis), should evolve into the state

a00 |φ+〉 − a11 |φ−〉+ a01 |ψ+〉 − a10 |ψ−〉 . (27)

Using the encoding in Eq. (13), the two qubits are ini-
tially in the state

a00 |G(0)〉+a11 |E1(0)〉+a01 |E2(0)〉+a10 |E3(0)〉 . (28)

Again, adiabatic changes in the fields in the QNN Hamil-
tonian up to a certain time t = T , changes the state in
Eq. (28) into the state

a00e
iΦ0 |G(T )〉+ a11e

iΦ1 |E1(T )〉+ a01e
iΦ2 |E2(T )〉

+a10e
iΦ3 |E3(T )〉 .(29)
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FIG. 4: (Color online.) Fidelity of the Bell gate, as a function
of time. Just like in the case of the H gate in Fig. 1, the fi-
delities here are calculated for r1 = 10, and r2 = 9.5, and the
fields are depicted in Fig. 5. As seen in the figure, for mod-
erate values of the distributed noise r3, the maximal fidelities
are obtained around t = 3T/4. The local noise is assumed to
be absent here. The dip in the fidelity curve around t = 3T/4
for the very high noise (r3 = 0.9r1) case, is due to the fact that
the energy gap between the 1st excited state and the 2nd ex-
cited state becomes comparable to that between the 3rd and
the 4th. Again, T is a time that satisfies Eq. (3), which with
our chosen parameters mean T ≫ 7 × 106~/λ. There is no
appreciable decrease in the fidelity upto about r3 = 0.5r1.
The horizontal line at 2/5 denotes the limit above which the
Bell gate fidelity is quantum.

Our strategy in this case is again to change the fields in
such a way that the final (time evolved) state in Eq. (29)
is as close as possible to the Bell rotated state

a00
|G(0)〉+ |E1(0)〉√

2
− a11

|G(0)〉 − |E1(0)〉√
2

+a01
|E2(0)〉+ |E3(0)〉√

2
− a10

|E2(0)〉+ |E3(0)〉√
2

. (30)

C. Fidelity of a gate

The fidelity f of a gate is defined as the overlap be-
tween the required output state |Ψ〉 of the gate and the
actual final state |Ψout〉, averaged over the Hilbert space
of input states |ψ〉:

f =

∫

d (|ψ〉) | 〈Ψ|Ψout〉 |2. (31)

Note that both the ideally required output |Ψ〉, and the
actual final state |Ψout〉, depends on the input state |ψ〉.
We compare the fidelities of our gates to the “classical”

fidelity, a term which is commonly used in the following
context: Suppose that a quantum gate takes a d level
quantum system as its input. Consider a situation where,
instead of using the quantum gate, one uses the strategy
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of measuring the input (thus making the information in
the quantum input as classical), and then preparing an
output from the information obtained from the measure-
ment on the input. The maximal fidelity that is obtain-
able in this way is said to be the classical fidelity of the
gate. Note that the only parameter of the quantum gate
that is used here is the dimension of the input space of
the gate. The classical fidelity of a quantum gate that
takes d level systems at its input is (see e.g. [27])

2

d+ 1
. (32)

VII. FIDELITIES OF THE H AND BELL GATES

We now study the fidelities for the H and the Bell
gates. Starting with the H gate, we investigate the be-
havior of the fidelity as a function of time, for an exem-
plary set of values of the parameters in the QNN Hamil-
tonian. We consider the influence of distributed noise in
Fig. 1, whereas in Fig. 2 we show the fidelity for dif-
ferent levels of local noise. Notice that in both cases of
noise, even substantial increases in the noise level do not
change the fidelity very much. Moreover, there is a large
region of the time axis where the fidelity is larger than
the classical limit 2/3 ≈ 0.667.

We have so far considered the influences of local noise
and distributed noise separately. In a more realistic sce-
nario, however, the two sources of noise act simultane-
ously. We investigate this situation in Fig. 3. We note
again that even substantially increasing both the noise
levels does not affect the fidelity in a dramatic way.

The corresponding calculations for the Bell gate lead
to qualitatively similar results. The values obtained for
the fidelities, for exactly the same system parameters as
for the H gate in Fig. 1, are displayed in Fig. 4. Note
that the classical limit in this case is 2/5 = 0.4.

The changes of the fields that we make for the above
implementation of the gates are the same for both the
gates, and are shown in Fig. 5.

The gate fidelities as shown in Figs. 1, 2, 3, and 4,
are for the case when r1 ≈ r2 ≫ r3, and as shown in
Ref. [16, 25], the latter requirement cannot be met in
a harmonic confinement of the ions. Many experimental
strategies, however, consider a harmonic confinement, in
which case one has r1 ≫ r2, r3 [16, 25], and as we show
in Fig. 6, one can implement a noise resistant H gate in
such a trap.

Let us note here that in all the above figures, where
fidelities of gates are plotted with respect to time, the
curves for the fidelities have small curvatures at and
around the positions of maximum fidelities. This implies
that in an implementation of the presented protocols,
small errors in the time of measurement (of the fidelity),
does not affect the gate fidelities appreciably.

0 T
H

0

4

8

12

16

Time

 B
 A

FIG. 5: (Color online.) The adiabatic change in the fields
that effects the H and Bell gates as shown in Figs. 1,2, 3,
and 4, as implemented in a fountain trap, as well as in the
implementation of the H gate in Fig. 6 in a harmonic trap.
The fields are A(t)λ and B1(t)λ = 10−5B(t)λ and B2(t)λ =
10−6B(t)λ, where A(t) and B(t) are as shown in the figure.
For this choice of the fields, adiabaticity requires that TH ≫

7 × 106~/λ. This time TH corresponds to the time at which
the fidelity of the H gate, for r3 = 0, attains its maximum.

VIII. ADIABATICITY AND THE AVOIDED

CROSSINGS

The above calculations were performed by keeping in
mind that we must respect the adiabaticity condition. As
we have noted before, the adiabaticity condition demands
that we should have

T ≫ ~
‖ d

ds
H(s) ‖
g(s)2

. (33)

For the case of the one-qubit gate considered, there
are two energy levels involved. They are respectively the
ground and the first excited state of the whole system
(the QNN). In the case of the two-qubit gate we con-
sidered, there are four energy levels involved. They are
the ground state, and the first, second and third excited
states of the whole system. The maximal gate fidelities
are reached after the system passes through a “double”
avoided crossing. One of the avoided crossings is be-
tween the ground state and the first excited state, while
the other is between the second and the third excited
states. They appear almost at the same time. In Fig. 7,
we show the dynamics of the five lowest energy eigenval-
ues, when r1 = 10, r2 = 9.5, and r3 = 0, and the fields
as in Fig. 5. A typical value for the energy gap at the
avoided crossing is λ× 0.03. Note that for the adiabatic
transfer in the implementation of the H gate, the three
lowest levels are the relevant ones, while for the Bell gate
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FIG. 6: (Color online.) Fidelity of the H gate, as a function of
time, in a harmonic confinement. The fidelities are calculated
for r1 = 10, and the fields are as in Fig. 5. T is a time that
satisfies Eq. (3), which with our chosen parameters mean
T ≫ 7 × 106~/λ. Note that the distributed noise parameter
is now r2, in contrast to that in Figs. 1, 2, 3, and 4. The
local noise is assumed to be absent. Again the fidelities do
not change appreciably with the increase of the noise level r2.
The horizontal line at 2/3 denotes the limit above which the
gate fidelity is quantum.

implementation, the five lowest levels are relevant. For
the above values of r1 and r2, and for values of r3 up to
≈ 0.9r1, the typical energy gap (at the avoided crossing),
remains approximately at λ × 0.03. For higher values
of the distributed noise level r3, i.e. for the case when
r1 ≈ r2 ≈ r3, this gap collapses, and hence it is no more
possible to implement the gates in the presented way.
We denote by TH , the point of time at which the max-

imal fidelity is reached for the H gate, for vanishing dis-
tributed noise r3, and vanishing local noise ε, in the foun-
tain trap. In the same situation, the maximal fidelity of
the Bell gate is attained approximately at the same point
of time. The avoided crossing is approximately at 3TH/4.
Adiabaticity demands that

TH ≫ 7× 106
~

λ
. (34)

IX. DISCUSSION

We suggest a realization of universal quantum com-
puting on an experimentally viable system of distributed
qubits: The qubits are encoded in the (low) energy lev-
els of the whole system. As in classical neural networks,
where the distributed storage of classical information al-
lows for robustness to noise, we show that our quantum
system is resistant to high levels of noise. The one- and
two-qubit quantum gates described in this paper are re-
alized via adiabatic passage of the system from one set of

0 T
H

-10

0
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40

50

60
 Ground state
 1st excited state
 2nd excited state
 3rd excited state
 4th excited state

En
er
gy

Time

FIG. 7: (Color online.) Distribution of the five lowest energy
levels for the time evolution (with the system parameters be-
ing just as in Fig. 1, with r3 = 0), up to the point of maximal
fidelity for the H gate in Fig. 1 (for r3 = 0). The maximal
fidelity for the Bell gate in Fig. 4 is obtained not long after
that of the H gate in Fig. 1. Note that the energy gap be-
tween the ground state and first excited state, as well as that
for the second excited and third excited state, are scaled up
by a factor of 300 (in the figure), for better visibility. Also the
actual energy gaps as shown in the figure are to be multiplied
by λ, to have the correct unit and value.

energy eigenstates to another set of corresponding eigen-
states. The adiabatic transfer is effected by a slow change
of parallel and transverse fields. We perform numerical
simulations to obtain the gate fidelities, and show that
for a certain slow change of the fields, the gate fideli-
ties are indeed much higher than their classical limits.
We also observe that the fidelities typically have small
curvatures near their maxima. Therefore, the gate fideli-
ties will not change appreciably for small errors, in the
time of measuring of the fidelities, in the experiments.
The scalability issue is like in other proposals and ex-
periments in ion-trap quantum computing [28], and may
potentially be overcome by connecting mesoscopic clus-
ters of trapped ions by flying qubits.

In this paper, we have considered the implementations
of two gates: A one-qubit gate, which we have called the
H gate, because of its similarity to the Hadamard gate,
and a two-qubit gate, which we call the Bell gate, be-
cause the output states for an input computational basis,
are the Bell states (up to phases). For the implementa-
tion of the H gate, there are two energy levels involved:
the ground state and the first excited state of the whole
system (the quantum neural network). For the imple-
mentation of the Bell gate, there are four energy levels
involved: the ground state, and the first three excited
states of the whole system. We observe that the max-
imal gate fidelities are reached after the system passes
through a “double” avoided crossing. One of the avoided
crossings is between the ground state and the first ex-
cited state, while the other is between the second and
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third excited states, and they appear almost at the same
point of time. We find the condition under which the
adiabaticity is realized.
The approach to noise management in both classi-

cal and quantum computational networks can broadly
be divided into two categories: “active” and “passive”
schemes. In a typical active noise-management scheme,
the classical or quantum information is encoded in sev-
eral bits or qubits, so that if noise occurs, it can be de-
tected, and subsequently corrected. The active scheme
is followed, for example, for data storage in a typical
compact disc of our classical computers. There is also
a corresponding theory of quantum error correction and
fault tolerant quantum computation [3], that acts in an
active way to correct errors. Typically, such a scheme
will require encoding the quantum information into mul-
tiqubit entangled states, detecting any possible noise ef-
fect by multiqubit measurements, and reverting the effect
of noise by a multiqubit unitary (which can be replaced
by single-qubit and two-qubit unitaries).
A typical passive noise-management tries to identify

a system that is already resistant to errors. Classical
systems that manage noise effects in this way is are neu-
ral network models of brains. Examples of such noise-
management in quantum circuits include the theories of
decoherence-free subspaces [4] and topological quantum

computation [7]. Our model of quantum computation
by using a quantum neural network also falls into this
category. A similarity between our scheme and a typical
active noise-management scheme [3] is that both require
to deal with several qubits: While the methods in Refs.
[3] encode the quantum information in several qubits so
that a possible noise effect is detectable and reversible,
our quantum neural network model of quantum compu-
tation encodes the quantum information in a mesoscopic
number of qubits so that the system is resilient towards
noise. However, our model does not require encoding into
multiqubit entangled states, or measurements onto mul-
tiqubit bases. Moreover, the step to revert the effect of
noise is absent.
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Cambridge, 1989); M. Mézard, G. Parisi, and M.A. Vi-
rasoro, Spin Glass Theory and Beyond: An Introduction
to the Replica Method and Its Applications (World Sci-
entific, Singapore, 1987).

[10] T.M. Cover and J.A. Thomas, Elements of Information
Theory (Wiley, New York, 1991).

[11] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B.
Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J.D.
Jost, C. Langer, R. Ozeri, R. Reichle, and D.J. Wineland,
Nature 438, 639 (2005).
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