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Optimal allocation of water resources for various stakeholders often involves considerable

complexity with several conflicting goals, which often leads to multi-objective optimization.

In aid of effective decision-making to the water managers, apart from developing effective multi-

objective mathematical models, there is a greater necessity of providing efficient Pareto optimal

solutions to the real world problems. This study proposes a swarm-intelligence-based multi-

objective technique, namely the elitist-mutated multi-objective particle swarm optimization

technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective

water resource management problems. The EM-MOPSO technique is applied to a case study of

the multi-objective reservoir operation problem. The model performance is evaluated by

comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is

found that the EM-MOPSO method results in better performance. The developed method can be

used as an effective aid for multi-objective decision-making in integrated water resource

management.
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INTRODUCTION

Most of the water resource systems serve multiple purposes

and involve several conflicting goals. Efficient use of water

for different stakeholders imposes considerable complexity

and often leads to multi-objective optimization. In India,

reservoirs are the major control structures storing surface

water, supplying water for various purposes such as

drinking water, irrigation, hydropower, flood control,

environmental safety, etc. Owing to the scarcity of water

resources in different regions of the country, there is a

greater need to consider the different uses of water together

and develop integrated water resources management

(IWRM) models, so that the developed models can guide

water managers in efficient utilization of the available

resources. In this scenario, with conflicting goals, obtaining

optimal solutions to integrated water management

problems is always a challenging task. In a multi-objective

environment, in order to perceive the effect of a particular

decision on the performance of individual goals, first,

various alternatives need to be generated and then decisions

need to be made. To solve multi-objective problems, of

the several approaches developed to deal with multiple

objectives, tradeoff methodologies have shown promise as

effective means for considering non-commensurate objec-

tives that are to be subjectively compared in operational

domains (Haimes et al. 1990).

In the past, for optimization of water resource systems,

classical methods such as linear programming (LP),

dynamic programming (DP) and nonlinear programming

(NLP) have been widely applied to solve various types of

problems and they were also used to generate the optimal

doi: 10.2166/hydro.2009.042

79 Q IWA Publishing 2009 Journal of Hydroinformatics | 11.1 | 2009



tradeoffs between multiple objectives in reservoir operation

(Tauxe et al. 1979; Thampapillai & Sinden 1979; Liang et al.

1996). However, these conventional optimization methods

are not suitable to solve multi-objective optimization

problems, because these methods use a point-by-point

approach, and the outcome is a single optimal solution.

The enumerative based DP technique poses severe compu-

tational problems for a multi-purpose multi-reservoir

system due to the increase in the number of state variables

and the corresponding discrete states. In this method, a

linear increase in the number of state variables causes an

exponential increase in the computational time require-

ment. So, when DP is applied to larger dimensional

problems it has the major problem of the curse of

dimensionality. Also, the LP and NLP have essential

approximation problems while dealing with discontinuous,

non-differentiable, non-convex or multi-model objective

functions (Deb 2001).

Recently, there has been increasing interest in biologi-

cally motivated adaptive systems for solving optimization

problems. Apart from Evolutionary Algorithms (EAs), such

as genetic algorithms and genetic programming, swarm

intelligence (SI) algorithms are also very promising and are

receiving wider attention because of their flexibility and

effectiveness for optimizing complex systems. Among

swarm intelligence algorithms, ant colony optimization

(ACO) (Dorigo 1992), particle swarm optimization (PSO)

and honey-bees mating optimization (HBMO), are some of

the important population-based search and optimization

methods.

Inspired by the foraging behavior of real ants in finding

the shortest paths between food sources and their nest,

Dorigo (1992) proposed a stochastic search algorithm,

namely ant colony optimization, for solving hard combina-

torial optimization problems. Whereas honey-bee mating

optimization was inspired by the process of mating in real

honey-bees (Abbass 2001; Haddad & Mariño 2007). Eber-

hart & Kennedy (1995), inspired by the social behavior of

bird flocking or fish schooling, proposed the PSO as a

population-based heuristic search technique for solving

continuous optimization problems.

The swarm optimization techniques have also found

successful applications in water resources. For example,

application of ACO algorithms: Abbaspour et al. (2001)

employed ACO algorithms to estimate hydraulic parameters

of unsaturated soils; Maier et al. (2003) used ACO

algorithms to find a near global optimal solution to a

water distribution system; Nagesh Kumar & Janga Reddy

(2006) used ACO techniques for optimizing the reservoir

release policies for a multi-purpose reservoir system.

Application of honey-bees mating optimization (HBMO)

algorithms: Haddad et al. (2006) applied HBMO for single

reservoir operation and it is also applied for optimal control

and operation of an irrigation pumping station (Haddad &

Mariño 2007). Application of PSO algorithms: Nagesh

Kumar & Janga Reddy (2007) applied the PSO technique

for optimal operation of a multipurpose reservoir system

and found very good performance as compared to the

genetic algorithms.

The swarm optimization algorithms have some special

features, such as flexible operators, not needing the use of

gradients, ease in tackling mixed-integer problems, combi-

natorial problems, etc. However, it is necessary to put

together different heuristic operators to make an effective

search and they have to be tuned properly so as to make a

balance between the conflicting aspects present in an

optimization algorithm, namely exploitation of available

resources and exploration of search space. In this study, one

such swarm intelligence algorithm is improved and adapted

for multi-objective optimization in water resource systems

and its performance is evaluated by applying it to a real

world case study.

Recent studies in multi-objective optimization problems

(MOP) suggests that the conventional approaches often fail

to yield true Pareto optimal solutions when the objective

function is non-convex and consists of disconnected Pareto

solutions, and they require human expertise and a good

number of simulation runs in order to get sufficient trade-off

solutions. In contrast, the population-based multi-objective

evolutionary algorithms (MOEAs) are able to overcome

those drawbacks and evolve a wider Pareto front in a single

run without significant extra computational time over that

of a single objective optimizer (Deb et al. 2002). In recent

years, MOEAs are being widely used in diverse fields of real-

world applications. For example, applications in water

resources include operation and management of water

distribution networks (Halhal et al. 1997; Prasad & Park

2004; Farmani et al. 2006), groundwater monitoring
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(Reed et al. 2001, 2003), reservoir systems operation (Janga

Reddy & Nagesh Kumar 2006, 2007a), etc.

More recently, utilizing the basic principles of the

single-objective particle swarm optimization method,

Janga Reddy & Nagesh Kumar (2007b) have developed an

efficient and effective multi-objective algorithm, namely the

elitist-mutated multi-objective particle swarm optimization

(EM-MOPSO) algorithm and have tested its performance

for several numerical optimization problems including

engineering design problems. It was found that the

EM-MOPSO results in superior performance to that of a

standard multi-objective genetic algorithm technique,

NSGA-II. In this paper, the performance of EM-MOPSO

is further evaluated for a multi-objective water resources

optimization problem. In the following sections, the details

of the particle swarm principles and the working procedure

of EM-MOPSO are presented.

PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) technique has

evolved from a simple simulation model of the movement

of social groups such as birds and fish (Kennedy & Eberhart

2001). The basis of this algorithm is that local interactions

motivate the group behavior, and individual members of the

group can profit from the discoveries and experiences of

other members. Social behavior is modeled in PSO to guide

a population of particles (the so-called swarm) and help the

search to move towards the most promising area of the

search space. The changes to the position of the particles

within the search space are based on the social psychologi-

cal tendency of individuals to emulate the success of other

individuals.

In PSO, each particle represents a candidate solution. If

the search space is D-dimensional, the ith individual

(particle) of the population (swarm) can be represented by

aD-dimensional vector, Xi ¼ (xi1, xi2,… , xiD)
T. The velocity

(position change) of this particle can be represented by

another D-dimensional vector, Vi ¼ (vi1, vi2,… , viD)
T. The

best previously visited position of the ith particle is denoted

as Pi ¼ (pi1, pi2,… ,piD)
T. Defining g as the index of the

global guide of the particle in the swarm, and superscripts

denoting the iteration number, the swarm is manipulated

according to the following two Equations:

vnþ1
id ¼

x wvnid þ c1randðÞ p
n
id 2 xnid

� �
=Dtþ c2randðÞ pn

gd 2 xnid

� �
=Dt

h i ð1Þ

xnþ1
id ¼ xnid þ Dt vnþ1

id ð2Þ

where d ¼ 1,2,… ,D; i ¼ 1,2,… ,N; N is the size of the

swarm population; x is a constriction factor which controls

and constricts the magnitude of the velocity; w is the inertial

weight, which is often used as a parameter to control

exploration and exploitation in the search space; c1 and c2

are positive constant parameters called acceleration coeffi-

cients; rand() is a random number generator function, in

[0,1]; Dt is the time step usually set as 1 and n is the iteration

number.

ELITIST-MUTATED MULTI-OBJECTIVE PARTICLE

SWARM OPTIMIZATION

First, brief concepts of multi-objective optimization are

presented and then the EM-MOSPO algorithm is explained.

Multi-objective optimization

A general multi-objective optimization problem (MOP) can

be defined as: minimize a function f(x), subject to p

inequality and q equality constraints:

min fðxÞ ¼ {f1ðxÞf2ðxÞ…fmðxÞ}
T x [ D ð3Þ

where x [ Rn; fi : Rn ! R and

D ¼

x [ Rn : li # x # ui; ; i ¼ 1; … ;n

gjðxÞ $ 0; ; j ¼ 1; … ;p

hkðxÞ ¼ 0; ;k ¼ 1; … ; q

8>><
>>:

ð4Þ

wherem is the number of objectives;D is the feasible search

space;x ¼ {x1x2…xn}
T is the set of n-dimensional decision

variables (continuous, discrete or integer); R is the set of

real numbers; R n is an n-dimensional hyper-plane or space;

li and ui are lower and upper limits of the ith decision

variable.
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Pareto optimality

The MOP solutions are usually derived through non-

domination criteria, where the MOP should simultaneously

optimize the vector function and produce Pareto optimal

solutions. A Pareto front is a set of Pareto optimal (non-

dominated) solutions, being considered optimal, if no

objective can be improved without sacrificing at least one

other objective. On the other hand, a solution x p is referred

to as dominated by another solution x if and only if, x is

equally as good or better than x p with respect to all

objectives.

EM-MOPSO algorithm

The description of the EM-MOPSO algorithm is based on

Janga Reddy & Nagesh Kumar (2007b). The main algorithm

consists of initialization of the population, evaluation and

reiterating the search on swarm by combining PSO

operators with Pareto-dominance criteria. In this process

the particles are first evaluated and checked for dominance

relation among the swarm. The non-dominated solutions

found are stored in an external repository (ERP), and are

used to guide the search particles. A variable size ERP is

used in order to improve the performance of the algorithm

and to save computational time during optimization. If the

size of ERP exceeds the specified limit, then it is reduced by

using the crowding distance assignment operator, which

gives the density measure of the existing particles in the

function space. Also an efficient elitist-mutation strategy

was used for maintaining diversity in the population and for

more intensive exploring of the search space. Optimal

combination of various operators helps the multi-objective

algorithm to find the true Pareto optimal front. The main

operators used in this algorithm are as follows.

Variable size external repository

The selection of the global best guide of the particle swarm

is a crucial step in a multi-objective PSO algorithm. It affects

both the convergence capability of the algorithm as well as

maintaining a good spread of non-dominated solutions

(Janga Reddy & Nagesh Kumar 2007b). As ERP stores the

non-dominated solutions found in the previous iteration,

any one of the solutions can be used as a global guide. But it

is necessary that the particles in the population move

towards the sparse regions of the non-dominated solutions

and also that it should speed up the convergence towards

the true Pareto optimal region. To perform these tasks, the

global best guide of the particles is selected from the

restricted variable size ERP. This restriction on ERP is done

using a crowding distance operator. This operator provides

for those non-dominated solutions with the highest crowd-

ing distance values to be always preferred to remain in the

ERP. The other advantage of this variable size ERP is that it

saves considerable computational time during optimization.

As the ERP size increases, the computing requirement

becomes greater for the sorting and crowding value

calculations. Thus, for effective exploration of the function

space, the size is initially set to 10% of the maximum ERP,

and then the value is increased in a stepwise manner, so that

at the stage of 90% of maximum iteration, it reaches the

maximum size.

Elitist-mutation operator

To maintain diversity in the population and to explore the

search space, a strategic mechanism called elitist-mutation

is used in this methodology (Janga Reddy & Nagesh Kumar

2007a). This acts on a predefined number of particles. In the

initial phase, this mechanism tries to replace the infeasible

solutions with the mutated least-crowded particles of ERP

and at a later phase, it tries to exploit the search space

around the sparsely populated particles in ERP along the

Pareto fronts. Thus the elitist-mutation operator helps to

uniformly distribute the non-dominated solutions along the

true Pareto optimal front. The steps involved in the elitist-

mutation mechanism are given below.

1. Randomly select one of the objectives from m objectives.

Sort the fitness function of the particles in descending

order and get the index number (DSP) for the respective

particles.

2. Use the crowding distance assignment operator and

calculate the density of solutions in the external

repository (ERP) and sort them in descending order of

crowding value. Randomly select one of the least

crowded solutions from the top 10% of ERP as guide (g).
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3. Perform elitist mutation on predefined number of

particles (NMmax).

4. If the mutated value exceeds the bounds, then it is

limited to the upper or lower bound. It may be noted that

the velocity vector of the particle remains unchanged

during this elitist-mutation step.

The pseudo-code of the elitist mutation operator is

presented in Table 1.

The EM-MOPSO algorithm can be summarized in the

following steps (Janga Reddy & Nagesh Kumar 2007a).

Step 1. Initialize population. Set iteration counter

t: ¼ 0.

a. The current position of the ith particle Xi is initialized

with random real numbers within the range of the

specified decision variable; each particle velocity vector

Vi is initialized with a uniformly distributed random

number in [0,1].

b. Evaluate each particle in the population. The personal

best position Pi is set to Xi.

Step 2. Identify the particles in the current population

that give non-dominated solutions and store them in an

external repository (ERP).

Step 3. t: ¼ t þ 1.

Step 4. Repeat the loop (step through PSO operators):

a. Select randomly a global best Pg for the ith particle

from the ERP.

b. Calculate the new velocity Vi, based on Equation (1)

and the new xi by Equation (2).

c. Perform the PSO operations for all particles in the

iteration.

Step 5. Evaluate each particle in the population.

Step 6. Perform the Pareto dominance check for all the

particles: if the current local best Pi is dominated by the new

solution, then Pi is replaced by the new solution.

Step 7. Set ERP to a temporary repository, TempERP,

and empty ERP.

Step 8. Identify particles that give non-dominated

solutions in the current iteration and add them to

TempERP.

Step 9. Find the non-dominated solutions in TempERP

and store them in ERP. The size of ERP is restricted to the

desired set of non-dominated solutions; if it exceeds this,

use crowding distance operator to select the desired ones.

Empty TempERP.

Step 10. Perform elitist-mutation operation on specified

number of particles.

Step 11. Check for termination criteria: if the termin-

ation criterion is not satisfied, then go to step 3; otherwise

output the non-dominated solution set from ERP.

In order to handle the constrained optimization

problems, this study adopts the constraint handling mech-

anism proposed by Deb et al. (2002). To use all the steps

mentioned above, the EM-MOPSO approach is coded in

the user-friendly mathematical software package MATLAB

7.0 and is run on a PC/WindowsXP/512 MB RAM/2 GHz

computer. To compare and evaluate the performance of the

EM-MOPSO, a standard multi-objective genetic algorithm

technique, namely NSGA-II (Deb et al. 2002), is also

employed for the developed reservoir operation model.

CASE STUDY DESCRIPTION

To evaluate the performance of EM-MOPSO for water

resource management problems, a case study of the

Hirakud reservoir project, located in Orissa state, India is

considered. The project is situated at latitude 218320N and

longitude 838520E. The location of the Hirakud dam in the

Mahanadi river basin is shown in Figure 1. The reservoir

has a live storage capacity of 5,375Mm3 (million cubic

Table 1 | Pseudo-code for elitist mutation operator

For i ¼ 1 to NMmax

l ¼ DSP[i]

g ¼ intRnd(1, 0.1 p Rp)

For d ¼ 1 to dim

if (rand , pem)

X[l ] [d] ¼ ERP[g][d] þ Sm p VR[d] p randn

else

X[l ] [d] ¼ ERP[g][d]

End For

End For

where intRnd(a, b)—uniformly distributed integer random number in the interval [a, b];

Rp—size of repository; rand—uniformly distributed random number U(0,1); pem—

probability of mutation; Sm—mutation scale used to preserve diversity; VR[i]—range of

decision variable i; randn—Gaussian random number N(0,1).
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meters) and a gross storage of 7,189Mm3. The Hirakud

project is a multi-purpose scheme and the water available in

the dam is used in the following order of priority: for flood

control, drinking water, irrigation and power generation.

Since the drinking water requirement is very small in

quantity, this is neglected in this particular model formu-

lation. Water levels begin rising in July with the beginning of

the monsoon season in the region, and begin declining in

October, at the end of the season. During the monsoon

season, the project provides flood protection to 9,500km2

of delta area in the districts of Cuttack and Puri. The project

provides irrigation for 155,635ha in the wet season (Kharif)

and for 108,385ha in the dry (Rabi) season in the districts of

Sambalpur, Bargarh, Bolangir and Subarnpur. The water

released through the powerhouses after power generation

irrigates a further 436,000ha of command area in the

Mahanadi delta. The installed capacity of power generation

is 259.5MW from the powerhouse at Burla (PH-I) located

on the right bank and 72MW from the powerhouse at

Chiplima (PH-II) located 22km downstream of the dam.

PH-I generates energy by utilizing water discharged directly

from the Hirakud dam. Then the utilized water passes to

PH-II through a power channel to generate further power at

Chiplima. The reservoir inflow, utilization pattern and

details of the dam were collected from the Department of

Irrigation, Government of Orissa, India. The historic inflow

data was available for 36 years from 1958–1993. For model

formulation and operation, a time interval of 10 days is

adopted over a year.

MODEL FORMULATION

The multiple purposes of the reservoir system causes a

multi-objective problem, of minimizing flood risk, maximizing

hydropower production and minimizing irrigation deficits

in a year, subject to various physical and technical

constraints. Among them, the flood control objective of a

dam is in conflict with the other objectives of irrigation and

hydropower generation. While for irrigation and hydro-

power, the reservoir has to be filled up as soon as it could be

done and the level retained to be as high as possible, flood

control requires a low water level and also quick depletion

of the reservoir after a flood. As flood control is the major

goal of the project, it is given high priority, compared to

the other objectives during the monsoon season. From the

historical time series of inflows and flood-prone periods,

the reservoir authority adopts a set of safe guidelines to

minimize flood risk in the downstream area and avoid

losses to the maximum extent possible. To manage this goal,

Figure 1 | Location map of Hirakud dam in Mahanadi Basin.
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the model incorporates the flood rule curve restrictions as

constraints, so that the required priority is achieved. The

model is formulated for ten daily operations, with the

objectives of maximizing hydropower production ( f1) and

minimizing the annual sum of squared deficits of irrigation

release from demands ( f2). They are expressed as follows:

f1 ¼
XNT

t¼1

ðP1t þ P2tÞ ð5Þ

where

Pi;t ¼ ki
*RPi;t

*Hi;t ð6Þ

f2 ¼
XNT

t¼1

½minð0; IRt 2 IDtÞ�
2 ð7Þ

subject to the following constraints:

Stþ1 ¼ St þ It 2 RPt 2 IRt 2 EVPt 2OVFt ;t ð8Þ

Smin
t # St # Smax

t ;t ð9Þ

RPmin
t # RPi;t , TCi ;t; i ¼ 1;2 ð10Þ

IRmin
t # IRt # IRmax

t ;t ð11Þ

where Pi,t is the hydropower produced in MkWh in the ith

powerhouse (i ¼ 1,2) during t time period (t ¼ 1,2,… , 36);

NT ¼ total number of time periods; ki is power coefficient;

RPi,t is the amount of water released to turbines during

period t; Hi,t is the average head available during period t

and is expressed as a nonlinear function of the average

storage during that period; IRt is irrigation release in period

t; IDt is maximum irrigation demand in period t; Pt is the

total hydropower produced in period t (P1t þ P2t); RP
min
t is

minimum release to meet downstream requirements; St is

initial storage volume during time period t; It is inflow into

the reservoir; EVPt is the evaporation losses (a nonlinear

function of the average storage); OVFt is the overflow from

the reservoir; Smin
t and Smax

t are minimum and maximum

storages allowed in time period t, respectively. IRmin
t and

IRmax
t are minimum and maximum irrigation releases,

respectively, in time period t; TCi is the turbine capacity

of power plant i (i ¼ 1,2).

In addition to the above constraints (Equations (8)–

(11)), it is to be ensured that the storage at the end of the

last period of the year is greater than or equal to the initial

storage of the first period of the next year.

RESULTS AND DISCUSSION

The sensitivity analysis of the PSO model is performed with

different combinations of each parameter. During this

analysis, it is observed that by considering proper values

for the constriction coefficient (x), the inertial weight (w)

does not have much influence on the final result of

the model. So in this study the inertial weight w is fixed as

1. It is observed that the value of the constriction coefficient

x equal to 0.9 yields better results for the given model. In

this analysis, it is also found that the cognitive parameter

c1 ¼ 1.0 and social parameter c2 ¼ 0.5 result in better

quality solutions. For running the reservoir operation

model, the initial population of the EM-MOPSO is set to

200; the number of non-dominated solutions to be found is

set to 200. For the elitist-mutation step, the size of the elitist-

mutated particles is set to 30, the value of pem was set to 0.2

and the value of Sm decreases from 0.2 to 0.01 over the

iterations. The EM-MOPSO is run for 500 iterations.

To compare the performance of the EM-MOPSO, a

standard MOEA, NSGA-II, is also applied to the developed

reservoir operation model. To run the NSGA-II model, the

initial population was set to 200, crossover probability to

0.9 and mutation probability to 1/n (n is the number of real

variables). The distribution index values for real-coded

crossover and mutation operators are set to 20 and 100,

respectively. NSGA-II is also run for 500 generations.

The EM-MOPSO and NSGA-II are applied to the

developed model. A sample result of a typical run is shown

in Figure 2. Here f1 the first objective (annual sum of

irrigation deficits) is a minimization type, and f2 the second

objective (annual hydropower production) is a maximiza-

tion type objective. Both the models have generated large

numbers of solutions and it can be seen that the Pareto

optimal front is showing a nonlinear relationship between

the two objectives.

To check the performance of the EM-MOPSO and

NSGA-II models, 20 independent runs were carried out for

the reservoir operation model using both algorithms. Two

performance measures, viz. set coverage metric (SC) and
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spacing metric (SP) (Deb 2001) have been used to evaluate

the quality of the solutions. The set coverage metric gives

the relative convergence and domination of solutions

between two sets of solution vectors U and V. The SC(U,

V) metric calculates the proportion of solutions in V, which

are weakly dominated by solutions of U. SC(U, V) ¼ 1

means that all solutions in V are weakly dominated by U,

while SC(U, V) ¼ 0 represents the situation when none of

the solutions in V are weakly dominated by U. The spacing

metric (SP) aims at assessing the spread (distribution) of

vectors throughout the set of non-dominated solutions. This

indicates how far the generated non-dominated solutions

are closer and equidistantly spaced. The desired value for

this SP metric is zero, which means that the elements of the

set of non-dominated solutions are very well distributed

along the Pareto front.

Table 2 shows the resulting performance statistics for

both the EM-MOPSO and NSGA-II models based on 20

independent runs for both algorithms. It can be observed

that, with respect to the set coverage metric, the average

value of SC(U, V) is higher than the SC(V,U) value (hereU is

EM-MOPSO and V is NSGA-II). The metric SC(U, V) shows

the percentage of solutions in V that are weakly dominated

by solutions of U. Thus, in this case, EM-MOPSO is

performing better than NSGA-II. Regarding the spacing

metric, it can be observed that the mean value of the

SP metric for NSGA-II is lower than for EM-MOPSO.

This indicates that distribution of Pareto optimal solutions

is closer equidistantly distributed in NSGA-II than in

EM-MOPSO. However, Deb et al. (2002) mentioned that

it is always desired to have better performance in respect

of the set coverage metric first, since this metric tells

about which algorithm is achieving better convergence to

true Pareto optimal solutions. Thus EM-MOPSO results in

better performance. In Figure 2 also it can be seen that

EM-MOPSO results in a wide spread of Pareto optimal

solutions, with better convergence as compared toNSGA-II.

Thus the EM-MOPSO algorithm can solve the problem

for different kinds of complexities such as non-convex,

disconnected Pareto front, multiple solutions, and evolves a

widespread Pareto front in a single run without much

significant extra computational effort to that of the single-

objective optimizer. This will help the decision-maker to

analyze the trade-off solutions and to implement a suitable

policy incorporating the preferences of the various

stakeholders.

Decision-making

The operating policy corresponding to each noninferior

solution is called a satisfactory operating policy and it can be

discriminated from the optimal operating policy of the single-

objective optimization. There are many ways to select the

final compromising solution. However, this may require the

decision-maker’s analysis and interpretation. In this study for

final decision-making, the Tchebycheff metric-based com-

promise programming approach (Deb 2001) is adopted. The

method of compromise programming picks up a solution

which is minimally located from a given reference point.

From the generated solutions, first we have to fix a distance

metric d( f, z) and a reference point z for this purpose. Then

Figure 2 | Pareto optimal solutions obtained for the Hirakud reservoir operation

problem by EM-MOPSO and NSGA-II, for a typical run ( f1 ¼ annual squared

deficit for irrigation ( £ 106m3)2 and f2 ¼ hydropower

production £ 106 kWh).

Table 2 | Results of EM-MOPSO and NSGA-II for the reservoir operation model. In

SC(U, V), U is EM-MOPSO and V is NSGA-II. Bold numbers indicate the best

performing algorithm

Performance metric

Set coverage metric Spacing metric

Statistic SC(U, V) SC(V, U) SP(U) SP(V)

Best 1.0000 0.2757 100.13 12.22

Worst 0.0000 0.0000 903.75 419.96

Mean 0.5106 0.0853 354.18 124.81

Variance 0.1950 0.0083 84047.73 28336.74

SD 0.4416 0.0912 316.30 168.34
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the Tchebycheff metric is computed by

Tchebycheff metric : dðf; zÞ ¼ max
M

m¼1

ðj fmðxÞ2 zmjÞ

x1S
max ðfmðxÞ2 zmÞ

ð12Þ

where S is the entire search space; zm is a reference solution

for themth objective function. The reference point comprises

of the individual best objective function values,

z ¼ ðf
*

1; f
*

2; … ; f
*

MÞT. Since this solution is non-existent, the

decision-maker is interested in choosing a feasible solution

which is closest to this reference solution. So the solution

which has a smaller metric value is the desired one.

Using the Tchebycheff metric approach, the best

compromised solution is found at a point (2048.58,

1754.39) on the EM-MOPSO-generated Pareto front

(Figure 2). The results of this solution give the compromised

decision for the optimal reservoir operation. For each

alternative solution, the model gives detailed results. The

decisions at reservoir level include reservoir releases for

irrigation and hydropower in each time period, and other

variables of interest are the storages, evaporation losses and

overflows for each time period over a year. Figure 3 shows

the corresponding ten daily water release policies for

irrigation and hydropower purposes, and also the generated

hydropower over a year. Figure 4 shows the reservoir

storage policy for that corresponding Pareto optimal

solution.

On applying the EM-MOPSO technique to a case study

of the Hirakud reservoir project in India, it is found that the

method is effectively exploring the complex search space of

the reservoir operation model, and is providing a wide

spread of Pareto optimal solutions by simultaneously

evolving the water release policies for different purposes.

The EM-MOPSO approach generates a large number of

Pareto optimal solutions in a single run and makes it easy

for the decision-maker to choose the desired alternative as

per individual preferences. Thus the swarm intelligence-

based multi-objective algorithm, EM-MOPSO, can be used

effectively to aid decision-making for multi-objective pro-

blems in integrated water resource management.

CONCLUSIONS

In this paper a multi-objective swarm intelligence algor-

ithm, namely elitist-mutated multi-objective particle swarm

optimization (EM-MOPSO), is presented for generating

efficient Pareto optimal solutions in the operation and

management of water resources. The EM-MOPSO

approach uses several efficient operators for effective

generation of Pareto optimal solutions, such as Pareto

dominance criteria for selecting non-dominated solutions,

an external repository (ERP) for storing the best solutions

found, a crowding distance operator for creating effective

selection pressure among the swarm to reach true Pareto

optimal fronts, and incorporates an effective elitist-mutation

strategy for intensive exploration of the search space. The

developed method is applied to an integrated water

resource management problem, a case study of optimal

Figure 3 | Model results for reservoir operation using EM-MOPSO, showing the ten

daily release policies and power generated, corresponding to the

compromised optimal solution. RI ¼ release to irrigation; RP ¼ release to

hydropower production; HP ¼ hydropower.

Figure 4 | The ten daily storage operating policy (corresponding to the compromised

optimal solution) obtained for reservoir operation using EM-MOPSO.
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operation of a multipurpose reservoir system in India. The

efficiency of the EM-MOPSO approach is evaluated by

comparing it with a standard multi-objective evolutionary

algorithm, NSGA-II, and it is found that EM-MOPSO

provides a wide spread of Pareto optimal solutions with

better convergence than NSGA-II. Thus this study demon-

strates the potential of the advanced computational tech-

nique, EM-MOPSO, for solving multi-objective decision

problems in integrated water resource management and

concludes that EM-MOPSO is an effective approach, which

can guide water managers in multi-criterion decision-

making, and helps in better utilization of the available

water resources in the system.
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