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[1] An accurate prediction of extreme rainfall events can significantly aid in policy
making and also in designing an effective risk management system. Frequent occurrences
of droughts and floods in the past have severely affected the Indian economy, which
depends primarily on agriculture. Data mining is a powerful new technology which helps
in extracting hidden predictive information (future trends and behaviors) from large
databases and thus allowing decision makers to make proactive knowledge-driven
decisions. In this study, a data-mining algorithm making use of the concepts of minimal
occurrences with constraints and time lags is used to discover association rules
between extreme rainfall events and climatic indices. The algorithm considers only the
extreme events as the target episodes (consequents) by separating these from the normal
episodes, which are quite frequent, and finds the time-lagged relationships with the
climatic indices, which are treated as the antecedents. Association rules are generated for
all the five homogenous regions of India and also for All India by making use of the
data from 1960 to 1982. The analysis of the rules shows that strong relationships exist
between the climatic indices chosen, i.e., Darwin sea level pressure, North Atlantic
Oscillation, Nino 3.4 and sea surface temperature values, and the extreme rainfall events.
Validation of the rules using data for the period 1983–2005 clearly shows that most of the
rules are repeating, and for some rules, even if they are not exactly the same, the
combinations of the indices mentioned in these rules are the same during validation
period, with slight variations in the classes taken by the indices.
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1. Introduction

[2] Asian monsoon greatly influences most of the tropics
and subtropics of the eastern hemisphere and more than
60% of the earth’s population [Webster et al., 1998]. While
the failure of the monsoon brings famine, an excess or
strong monsoon will result in devastating floods, particu-
larly if they are unanticipated. An accurate prediction of
these two extremes (drought and flood) can help decision
makers to improve planning to mitigate the adverse impacts
of monsoon variability and to take advantage of beneficial
conditions [Webster et al., 1998]. From the early 1900s,
various climatic and oceanic parameters had been used as
predictors for monsoon rainfall prediction. Thus, if the
association of the extremes with the climatic and oceanic
parameters can be revealed, this can be used for designing
an effective risk management system for facing the extremes.
[3] India receives major portion of its annual rainfall

during the south west monsoon season (June–September).
Even a small variation in this seasonal rainfall can have an

adverse impact on Indian economy. As per the Indian
Meteorological Department (IMD), an annual rainfall event
is considered a drought (flood) if it is less (greater) than one
standard deviation from the long-term average annual
rainfall. According to this definition, in the past 50 years,
India has experienced around 10 droughts and 9 floods with
highest intensity of drought and flood in 1972 and 1959
respectively. Two multiyear droughts also occurred in the
1960s and 1980s. The frequency and intensity of drought is
much more than of the flood.
[4] Recent studies in the variation of the Gross Domestic

Product (GDP) and the monsoon [Gadgil and Gadgil, 2006]
have showed that the impact of severe droughts is about 2 to
5% of the GDP throughout. This indicates the need for
taking proactive steps to address the impacts of both the
rainfall extremes which in turn demand for an accurate
prediction of the occurrence and nonoccurrence of the
extremes. It is also shown that the impact of deficit rainfall
(drought) on GDP is larger than that of surplus rainfall
(flood).
[5] Studies on the prediction of Indian Summer Monsoon

Rainfall (ISMR) have used various empirical and physical
(atmospheric and coupled) models. A brief history of these
studies and the models and predictors used is shown in
Table 1. A comparative study between empirical and
physical models [Goddard et al., 2001] has shown that
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empirical models continue to outperform physical models in
prediction of ISMR, as most of the physical models are
unable to simulate accurately the interannual variability of
ISMR. However the skill of any of these models in pre-
dicting the extremes is not satisfactory [Gadgil et al., 2005].

None of these models could successfully predict the droughts
of 2002 and 2004. One of the reasons for the inability of
these models to capture the relationship of the extremes with
the predictors may be due to the infrequent occurrence of the
extremes. Assuming the rainfall distribution as a normal fre-

Table 1. Models Used for Prediction of Indian Summer Monsoon Rainfall

Serial
Number Predictors Used Technique Reference

1 Darwin sea level pressure,
latitudinal position of 500-mb
ridge along 75�E

Linear regression model Shukla and Mooley [1987]

2 Arabian sea SST Nonlinear gravity model Dube et al. [1990]
3 Darwin sea level pressure,

latitudinal position of
500-mb ridge along 75�E,
May surface resultant
wind speed

Neural network Navone and Ceccatto [1994]

4 Northern Australia-Indonesia
SST, Darwin pressure

Correlation analysis Nicholls [1995]

5 Indian Ocean SST Linear regression model Clarke et al. [2000]
6 Quasi biennial oscillation,

sea surface temperature
anomalies over different
Nino regions

Correlation analysis Chattopadhyay and Bhatla [2002]

7 Darwin sea level pressure tendency,
Nino 3.4, NAO, quasi biennial
oscillation, western Pacific region
SST, eastern Indian Ocean region
SST, Arabian Sea region SST,
Eurasian surface temperature,
and Indian surface temperature

Linear regression model DelSole and Shukla [2002];
DelSole and Shukla [2006]

8 Equatorial east Indian Ocean sea
surface temperature

Correlation analysis Reddy and Salvekar [2003]

9 Indian summer monsoon rainfall Neural network + Linear regression Iyengar and Raghu Kanth [2004]
10 Arabian Sea SST, Eurasian snow cover,

northwest Europe temperature,
Nino 3 SST anomaly (previous year),
south Indian Ocean SST index,
East Asia pressure, Northern Hemisphere
50-hPa wind pattern, Europe
pressure gradient, south Indian
Ocean 850-hPa zonal wind,
Nino 3.4 SST tendency,
North Indian Ocean-North
Pacific Ocean 850-hPa zonal
wind difference, North Atlantic
Ocean SST

Power regression model Rajeevan et al. [2004]

11 Nino 3.4 and Equatorial zonal Wind INdex
(EQWIN)

Bayesian dynamic linear models Maity and Nagesh Kumar [2006]

12 First stage predictors:
North Atlantic SST anomaly,
equatorial SE Indian Ocean
anomaly, East Asia surface
pressure anomaly, Europe land
surface air temperature anomaly,
northwest Europe surface
pressure anomaly tendency,
Equatorial Pacific Warm Water Volume
(WWV) anomaly

Ensemble multiple linear regression
model and projection pursuit
regression model

Rajeevan et al. [2006]

Second stage predictors: first
three first-stage predictors,
Nino 3.4 SST anomaly tendency,
North Atlantic surface pressure
anomaly, North Central Pacific
zonal wind anomaly at 850 hPa

13 Arabian Sea SST and central
equatorial Indian Ocean SST

Simple regression model Sadhuram [2006]

14 Nino 3.4 and EQWIN Correlation and phase plane analysis Gadgil et al. [2007]
15 Nino 3.4 and EQWIN Semiparametric, copula-based approach Maity and Nagesh Kumar [2008]
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quency curve, the occurrence of either drought or flood
covers only 16% of the time (since only 16% of the distrib-
ution area is less than the mean � 1 � standard deviation).
[6] In this study, a time series data-mining algorithm

is used to generate the association rules between oceanic
and atmospheric parameters and rainfall extremes. In this
attempt, attention is given to find the relationship between
only the extremes and the predictors, without considering
the normal rainfall which is quite frequent. By using such a
data-mining algorithm in this context, one of the advantages
is that there is no need to have a prior idea about the
correlation and causal relationships between the variables.
Unlike the empirical methods, this method takes into
account the interrelationships between the predictor varia-
bles very well. The exact values of the model parameters
such as coefficients in a regression model or weights in a
neural network are of little importance in this approach.
Thus the objective here is to unearth all the frequent patterns
(episodes) of the predictors that precede the extreme epi-
sodes of rainfall using a time series data-mining algorithm.

2. Time Series Data Mining

[7] Data mining can be defined as a process in which
specific algorithms are used for extracting some new
nontrivial information from large databases. Data-mining
techniques are widely applied in business activities and also
in scientific and engineering scenarios. Various data-mining
techniques can be broadly classified into two types [Han
and Kamber, 2006]: descriptive data mining, in which the
data in the database are characterized according to their
general properties and predictive data mining, in which
predictions are made by performing inference from the
current data. Frequent patterns and association rules, clus-
tering and deviation detection come under the first category
while regression and classification come under the second
one. Almost all the studies done so far on rainfall extremes
are based on the predictive data-mining techniques. As
mentioned earlier, these studies were unable to successfully
predict the infrequent extreme episodes. Hence, in this
study, a descriptive data-mining technique is used to capture
especially the infrequent extreme episodes.
[8] Temporal data mining is concerned with data mining

of large sequential sets (ordered data with respect to some
index). Time series is a popular class of sequential data in
which records are indexed by time. The possible objectives
in the case of temporal data mining can be grouped as
follows: (1) prediction, (2) classification, (3) clustering,
(4) search and retrieval, and (5) pattern discovery [Han
and Kamber, 2006]. Among these, algorithms of pattern
interest are of most recent origin. The word ‘‘pattern’’
means a local structure in the data. The objective is to
simply unearth all patterns of interest. One common mea-
sure to assess the value of a pattern is the frequency of the
pattern. A frequent pattern is one that occurs many times in
the data. The frequent patterns thus discovered can be used
to discover the causal rules.
[9] A rule consists of a left-hand side proposition (ante-

cedent) and a right hand side proposition (consequent). The
rule states that when the antecedent occurs (is true), then the
consequent also occurs (is true). Rule based approaches are

often used to ascertain the relationships within the data set.
For example, association rules determine the rules that
indicate whether or how much the values of an attribute
depend on the values of the other attributes in the data set.
These are used to capture correlations between different
attributes in the data. In such cases, the conditional proba-
bility of the occurrence of the consequent given the ante-
cedent is referred to as the confidence of the rule. For
example, if a pattern ‘‘B follows A’’ occurs n1 times and the
pattern ‘‘C follows B follows A’’ occurs n2 times, then the
temporal association rule ‘‘whenever B follows A, C will
also follow’’ has a confidence of (n2/n1). The value of a rule
is usually measured in terms of its confidence.
[10] There are two popular frameworks for frequent

pattern discovery namely sequential patterns and episodes.
In the sequential patterns framework, a collection of sequen-
ces are given and the task is to discover the order of
sequences of the items (i.e., sequential patterns) that occurs
in sufficiently good number of those sequences. In the
frequent episodes framework, the data are given in a single
long sequence and the task is to unearth temporal patterns
(called episodes) that occur sufficiently often along that
sequence. Frequent episodes framework is used in the
present study, since one does not know in prior all the
sequences to be searched in the time series as is required in
sequential patterns framework. Also, concern is to extract
the temporal patterns of the climatic indices and extreme
events which can be done by applying frequent episodes
framework. Several algorithms were formulated [Mannila et
al., 1997] for the discovery of frequent episodes within one
sequence.

2.1. Framework of Frequent Episode Discovery

2.1.1. Event Sequence
[11] The data, referred to here as an event sequence, are

denoted by h(E1, t1), (E2, t2),. . .i where Ei takes values from
a finite set of event types e, and ti is an integer denoting the
time stamp of the ith event. The sequence is ordered with
respect to the time stamps so that, ti � ti+1 for all i = 1, 2,. . ..
The following is a sample event sequence with six event
types A, B, C, D, E and F in it:

[12] Any event sequence can be expressed as a triple
element (s, TB, TD) where s is the time-ordered sequence of
events from beginning to end, TB is the beginning time and
TD is the ending time.The above sample event sequence
can be expressed as S = (s, 9, 43) where s = h(B, 10), (C, 11),
(A, 12), (F, 13), (A, 15), . . . (C, 42)i.
2.1.2. Episode
[13] An episode a is defined by a triple element (Va, �a,

ga), where Va is a collection of nodes, �a is a partial order
on Va and ga: Va ! e is a map that associates each node in
the episode with an event type. Thus an episode is a
combination of events with a time-specified order. When
there is a fixed order among the event types of an episode, it
is called a serial episode and when there is no order at all,
the episode is called a parallel episode.
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[14] An episode is said to occur in an event sequence if
there exist events in the sequence occurring in exactly the
same order as that prescribed in the episode, within a given
time bound. For example, in the above sample event
sequence, the events (A, 19), (B, 21) and (C, 22) constitute
an occurrence of a 3-node serial episode (A ! B ! C)
while the events (A, 12), (B, 10) and (C, 11) do not, be-
cause for this serial episode to occur, A must occur before
B and C.
2.1.3. Window
[15] Now, to find all frequent episodes from a class of

episodes, the user has to define how close is close enough
by defining a time window width within which the episodes
should appear. For an episode to be interesting, the events in
an episode must occur close to each other in time span. A
window can be defined as a slice of an event sequence and
then the event is considered as a sequence of partially
overlapping windows. A window on an event sequence (s,
Ts, Te) can also be expressed as a triple element w = (w, ts,
te)., where ts < Te, te > Ts and w consists of those event pairs
from s where ts � ti � te. The time span te � ts is called the
width of the window w.
[16] Consider the example of event sequence given

above. Two windows of width 5 are shown. The first
window starting at time 10 is shown in solid line, followed
by a second window shown in dashed line. First window can
be represented as (h(B, 10), (C, 11), (A, 12), (F, 13)i, 10, 15).
Here the event (A, 15) occurred at the ending time is not
included in the sequence. Similarly, the second window can
be represented as (h(C, 11), (A, 12), (F, 13), (A, 15)i, 11, 16).
[17] For a sequence S with a given window width ‘‘win’’,

the total number of windows possible is given byW(s, win) =
Te � Ts + win. This is because the first and last windows
extend outside the sequence, such that the first window
contains only the first time stamp of the sequence and the
last window contains only the last time stamp. Hence an event
close to either end of a sequence is observed in equally many
windows to an event in the middle of the sequence. For the
sequence given above, totally there are 39 partially over-
lapping windows with first window (F, 5, 10) and last
window (F, 43, 48).
[18] The frequency of an episode is defined as the number

of windows in which the episode occurs divided by the total
number of windows in the data set. For the 3-node serial
episode (A ! B ! C), there are only two occurrences i.e.,
in windows (h(F, 18), (A, 19), (B, 21), (C, 22), 18, 23) and
(h(A, 19), (B, 21), (C, 22), (E, 23)i, 19, 24). Thus the
frequency of the episode is (2/39) � 100 = 5.13%. Now,
given an event sequence, a window width and a frequency
threshold, the task is to discover all frequent episodes in the
event sequence.
[19] Once the frequent episodes are known, it is possible

to generate rules that describe temporal correlations be-
tween events. However, there can be other ways to define
episode frequency.
2.1.4. MINEPI Algorithm
[20] One such alternative proposed by Mannila et al.

[1997] is MINEPI algorithm and is based on counting what
are known as minimal occurrences of episodes. A minimal
occurrence of an episode is defined as a window (or
contiguous slice) of the input sequence in which the episode
occurs, subject to the condition that no proper subwindow

of this window contains an occurrence of the episode. The
algorithm for counting minimal occurrences trades space
efficiency for time efficiency as compared to the windows-
based counting algorithm. In addition, since the algorithm
locates and directly counts occurrences (as against counting
the number of windows in which episodes occur), it
facilitates the discovery of patterns with extra constraints
(such as being able to discover rules of the form ‘‘if A and B
occur within 10 seconds of one another, C follows within
another 20 seconds’’).
[21] Minimal occurrences of episodes with their time

intervals are identified in the following way. For a given
episode a and an event sequence S, the minimal occurrence
of a in S is the interval [ts, te], if (1) a occurs in the window
w = (w, ts, te) on S, and if (2) a does not occur in any proper
subwindow on w. Awindow w0 = (w0, t0s, t

0
e) will be a proper

subwindow of w if ts � t0s, t0e � te, and width(w0) <
width(w). The set of minimal occurrences of an episode a
in a given event sequence is denoted by mo(a) = {[ts, te)j[ts,
te)} . For the example sequence given above, the serial
episode a = B ! C has four minimal occurrences i.e.,
mo(a) = {[10,11), [21,22), [32,36), [38,42)}.
[22] The concept of frequency of episodes explained in

the previous section is not very useful in the case of
minimal occurrences as there is no fixed window size and
also a window may contain several minimal occurrences of
an episode. Therefore Mannila et al. [1997] used the
concept of support instead of frequency. The support of
an episode a in a given event sequence S is jmo(a)j. An
episode a is frequent if jmo(a)j 	 user defined minimum
support threshold.
2.1.5. MOWCATL Algorithm
[23] The above approach was modified to handle separate

antecedent and consequent constraints and maximum win-
dow widths and also the time lags between the antecedent
and consequent to find natural delays embedded within the
episodal relationships by Harms and Deogun [2004] in
Minimal Occurrences With Constraints And Time Lags
(MOWCATL) algorithm. Although MINEPI and MOW-
CATL both use the concept of minimal occurrences to find
the episodal relationships, MOWCATL has some additional
mechanisms like (1) allowing a time lag between the
antecedent and consequent of a discovered rule, and (2)
working with episodes from across multiple sequences
[Harms et al., 2002]. Episodal rules are found out where
the antecedent episode occurs within a given maximum
window width wina, the consequent episode occurs within a
given maximum window width winc, and the start of the
consequent follows the start of the antecedent within a given
maximum time lag. This algorithm allows to find rules of
the form: ‘‘if A and B occur within 3 months, then within 2
months they will be followed by C and D occurring together
within 4 months’’.
[24] This algorithm first goes through the data sequence

and stores the occurrences of all single events for the
antecedent and consequent separately. The algorithm only
looks for the target episodes specified by the user. So it
prunes the episodes that do not meet the user specified
minimum support threshold. Then two event episodes are
generated by pairing up the single events so that the pairs of
events occur within the prescribed window width and the
occurrences of these two event episodes in the data se-
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quence are recorded. This is repeated until there are no more
events to be paired up. The process repeats for three events,
four events and so on until there are no episodes left to be
combined that meet the minimum threshold. The frequent
episodes for antecedent and consequent sequences are found
independently. These frequent episodes are combined to
form an episodal rule.
[25] An episodal rule is that in which an antecedent

episode occurs within a given window width, a consequent
episode occurs within a given window width and the start of
the consequent follows the start of the antecedent within a
user specified time lag. For example, let episode X is of the
events A and B, and episode Y is of the events C and D.
Also the user specified antecedent window width is 3
months, consequent window width is 2 months and the
time lag is 3 months. Then the rule generated would indicate
that if A and B occur within 3 months, then within 3 months
they will be followed by C and D occurring together within
2 months. The support of the rule is the number of times the
rule occurs in the data sequence. The confidence of the rule
is the conditional probability that the consequent occurs,
given the antecedent occurs. For the rule ‘‘X is followed by
Y’’, the confidence is the ratio of the Support[X and Y] and
Support[X]. Here X is a serial antecedent episode (A ! B)
and Y is a serial consequent episode (C ! D).

[26] The support and confidence are the two measures
used for measuring the value of the rule. The values of these
are set high to prune the association rules. Even after setting
the threshold of these measures high, there will be an
adequate number of rules, making the user’s task of rule
selection difficult. The user needs some quantifying meas-
ures to select the most valuable rules in addition to the
support and confidence measures. Several interestingness or
goodness measures are used to compare and select better
rules from the ones that are generated [Bayardo and
Agarwal, 1999; Das et al., 1998; Harms et al., 2002]. In
MOWCATL algorithm, J measure is used for rule ranking
[Smyth and Goodman, 1991]. The J measure is given by

J x; yð Þ ¼ p xð Þ
p yjxð Þ � log p yjxð Þ=p yð Þ½ �þ

1� p yjxð Þ½ � � log 1� p yjxð Þ½ �= 1� p yð Þ½ �f g

2
4

3
5

ð1Þ

where p(x), p(y) and p(yjx) are the probabilities of
occurrence of x, y and y given x respectively in the data
sequence. The first term in the J measure is a bias toward
rules which occur more frequently. The second term i.e., the
term inside the square brackets is well known as cross-
entropy, namely the information gained in going from the

Figure 1. Homogenous monsoon regions of India, as defined by the Indian Institute of Tropical
Meteorology.
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prior probability p(y) to a posterior probability p(yjx) [Das
et al., 1998]. Compared to other measures which directly
depend on the probabilities [Piatetsky-Shapiro, 1991],
thereby assigning less weight to the rarer events, J measure
is better suited to rarer events since it uses a log scale
(information based). As shown by Smyth and Goodman
[1991], J measure has the unique properties as a rule
information measure and is a special case of Shannon’s
mutual information.
[27] The J values range from 0 to 1. The higher the J

value the better it is. However, since drought and flood are
so infrequent, the J values are so small that all values greater
than 0.025 are to be considered.
[28] MOWCATL algorithm is used in the present study

for extracting rules between extreme episodes and climatic
indices, since this algorithm can be used for multiple
sequences and also this will capture by itself the lag
between the occurrences of climatic indices and rainfall
events.

3. Data Used for the Study

[29] The time series data sets used in this study are of the
monthly values for the period 1960 to 2005 and are defined
as follows.

[30] 1. Summer monsoonal rainfall (June to September)
for All India and also for the five homogeneous regions (as
defined by Indian Institute of Tropical Meteorology), for the
period 1960 to 2005 (http://www.tropmet.res.in).
[31] 2. Darwin sea level pressure (DSLP), (NCEP,

ftp.ncep.noaa.gov/pub/cpc/wd52dg/data/indices).
[32] 3. Nino 3.4, east central tropical Pacific sea surface

temperature (SST), 170�E–120�W, 5�S–5�N (http://
www.cpc.ncep.noaa.gov/data/indices/sstoi.indices).
[33] 4. North Atlantic Oscillation (NAO), normalized sea

level pressure difference between Gibraltor and southwest
Iceland (http://www.cru.uea.ac.uk/cru/data/nao.htm).
[34] 5. 1 � 1 degree grid SST data over the region 40�E–

120�E, 25�S–25�N (ICOADS, http://www.cdc.noaa.gov/
icoads-las/servlets/datset).

4. Association Rules for Extremes

[35] The data-mining algorithm is applied to find the
association rules of the extreme rainfall episodes with the
climatic indices and thus to find the spatial and temporal
patterns of extreme episodes throughout the country. The
geographical locations of the homogenous regions: north-
west, central northeast, northeast, west central and peninsu-
lar are shown in Figure 1.

Table 2. Threshold Values Used for the Categorization of Monthly Rainfall (mm) for Various Regions and Also for All Indiaa

Region
Extreme
Drought Severe Drought Moderate Drought Normal Rainfall Moderate Flood Severe Flood

Extreme
Flood

Northwest �150 150 < X � 500 500 < X � 850 850 < X < 1550 1550 � X < 1900 1900 � X < 2250 	2250
West central �1100 1100 < X � 1450 1450 < X � 1900 1900 < X < 2600 2600 � X < 3000 3000 � X < 3400 	3400
Central northeast �1200 1200 < X � 1600 1600 < X � 2000 2000 < X < 2850 2850 � X < 3300 3300 � X < 3700 	3700
Northeast �2200 2200 < X � 2700 2700 < X � 3100 3100 < X < 3900 3900 � X < 4300 4300 � X < 4700 	4700
Peninsular �1000 1000 < X � 1200 1200 < X � 1450 1450 < X < 1900 1900 � X < 2100 2100 � X < 2350 	2350
All India �1200 1200 < X � 1500 1500 < X � 1800 1800 < X < 2400 2400 � X < 2700 2700 � X < 2900 	2900

aRainfall in millimeters.

Figure 2. Summer monsoon rainfall for the northwest region for the period 1960–2005 indicating the
threshold values to classify droughts and floods.
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4.1. Selection of Consequent Episodes

[36] In order to identify the extreme episodes, the rainfall
for All India and also for the five homogenous regions is
divided into seven categories. The threshold values are
determined by identifying the values at ±1.5, ±1 and ±0.5
standard deviations from the average. Threshold values
calculated for each region are given in Table 2. The seven
classes thus identified are named as: moderate drought,
severe drought, extreme drought, normal rainfall, moderate
flood, severe flood and extreme flood. Although from a
hydrologic point of view, greater than normal rainfall cannot

be called as a flood, for a better classification, in this
context, greater than normal rainfall are divided into 3
categories and are called as moderate, severe and extreme
flood. Same is applicable for the classification of less than
normal rainfall also. For example, while considering the
northeast region, a rainfall value of less than or equal to
2200 mm/month is under the category of extreme drought
although it will not result to any ‘‘real’’ drought.
[37] For application of the algorithm, only the extreme

episodes (moderate drought, severe drought, extreme
drought, moderate flood, severe flood and extreme flood)

Figure 3. Summer monsoon rainfall for the west central region for the period 1960–2005 indicating the
threshold values to classify droughts and floods.

Figure 4. Summer monsoon rainfall for the central northeast region for the period 1960–2005
indicating the threshold values to classify droughts and floods.
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are specified as the target episodes. The summer monsoon
rainfall (JJAS) time series of each region and also of All
India for the period 1960–2005, indicating the threshold
values are shown in Figures 2–7.

4.2. Selection of Antecedent Episodes

[38] 1 � 1 degree grid SST data over the region 40�E–
120�E, 25�S–25�N are averaged to a 5 � 5 degree grid

data, thus reducing to 127 grids (excluding the land area
regions). Among these, the most influencing grids are
selected by plotting the correlation contour plots consider-
ing different lags for each region. Grids used for correlation
analysis (numbered 1 to 127) are shown in Figure 8. The
maximum correlation of SST with the summer monsoon is
achieved at lag 7 for all the regions. The correlation contours
for northwest region for lag 7 is shown in Figure 9. The

Figure 5. Summer monsoon rainfall for the northeast region for the period 1960–2005 indicating the
threshold values to classify droughts and floods.

Figure 6. Summer monsoon rainfall for the peninsular region for the period 1960–2005 indicating the
threshold values to classify droughts and floods.
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variation of correlation versus lag for northwest region is
shown in Figure 10 as an illustration.
[39] The climatic indices which are used as antecedents in

rule generation are thus, DSLP, Nino 3.4, NAO and SST
values of those grids which are showing maximum corre-
lation with the summer monsoon rainfall of each region.
The most influencing grids and the corresponding maxi-
mum correlation for each region are given in Table 3.

[40] The climatic indices are also categorized into seven
categories by segregating at ±1.5, ±1 and ±0.5 standard
deviations from the average. Threshold values for these
indices (except the SST grids) are given in Table 4. The
time series of the climatic indices (DSLP, NAO and Nino
3.4) for the period 1960–2005, indicating the threshold
values are shown in Figures 11–13.

Figure 7. Summer monsoon rainfall for All India for the period 1960–2005 indicating the threshold
values to classify droughts and floods.

Figure 8. SST grids of size 5� � 5� over the region 40�E–120�E, 25�S–25�N (excluding the land
regions) used for correlation analysis.
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[41] The time series algorithm employing the concepts of
minimal occurrences with constraints and time lags was
employed to find the associations between the antecedents
and consequent. Climatic indices are considered as the
antecedents and the target extreme episodes are considered
as the consequents for generating the rules. A variety of
window widths, time lags, frequency thresholds and confi-
dence thresholds were tried to find the frequent episodes

and rules. To assess the goodness (value) of a rule, both
confidence and J measure were used.

4.3. Results and Discussions

4.3.1. Association Rules for Drought
[42] The data-mining algorithm is applied to find the

association rules for all the regions and also for All India
based on the data from 1960 to 1982 (23 years). A
confidence threshold of 0.7 and a minimum J measure of

Figure 9. Correlation contours for the northwest region at lag 7.

Figure 10. Variation of maximum correlation with respect to lag for the northwest region.
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0.025 were used for the extraction of frequent rules. It is
found that rules with maximum confidence level and J
measure were obtained for an antecedent window width
of 4 months, consequent window width of 1 month and time
lag of 7 months. The selected rules thus generated are
shown in the Table 5.
[43] For almost all regions, a combination of DSLP,

NAO, Nino 3.4 and SST values of the respective most
influencing grids is causing drought episodes of varying
intensities. However, the discrete states of the precursors are
different for different regions. For example, a severe
drought is occurring in west central region, if DSLP is
between 12.5 and 14.0 (i.e., DSLP-6), NAO is between 1.0
and 1.5 (i.e., NAO-5), Nino 3.4 is between 28.0 and 28.5
(i.e., Nino-6) and lowest SST values (i.e., SST values which
are less than 1.5 standard deviation from the average). Also,
a combination of DSLP taking values between 12.5 and
14.0 (i.e., DSLP-6), NAO taking values between �1.5 and
�1.0 (i.e., NAO-3), Nino 3.4 taking values between 27.5
and 28.0 (i.e., Nino-5) and lowest SST values are causing a
moderate drought in the same station. Also, for Peninsular
region, if DSLP is between 12.5 and 14.0 (i.e., DSLP-6),
NAO is between 1.0 and 1.5 (i.e., NAO-5), Nino 3.4 is
between 28.0 and 28.5 (i.e., Nino-6) and lowest SST values
at two grids, then extreme drought is occurring with a
confidence value of 1.0. Another most repeating rule in
almost all regions is the combination of DSLP or NAO,
Nino and SST as the precursors of drought. For All India, a
severe drought is preceded by a combination of NAO, Nino
3.4, and low SST values and a moderate drought is preceded
by a combination of DSLP, Nino 3.4 and low SST values. It
can be noted that for all the repeating rules, the discrete
states taken by the precursors are different for different
regions.
[44] The rules generated are clearly showing a negative

relation with DSLP and Nino 3.4 and also a positive relation
with the SST. However, there is no such specific relation
showing up with NAO. For example, rule 3 of central
northeast region and rule 1 of northeast region are showing

both positive and negative NAO values as the precursors of
drought episodes.
[45] For some regions like northwest, west central and All

India, no rules for extreme drought show up. The reason for
this may be either no frequent episodes of antecedents are
preceding the consequent or the rules for extreme drought
are not above the given threshold for confidence and J
measure.
4.3.2. Association Rules for Flood
[46] The data-mining algorithm is applied to find the

association rules using the data from 1960 to 1982 speci-
fying target episodes as moderate flood, severe flood and
extreme flood. As in the previous case, rules with maximum
confidence level and J measure were obtained for an
antecedent window width of 4 months, consequent window
width of 1 month and time lag of 7 months. The selected
rules thus generated are shown in the Table 6.
[47] The combination of precursors is different for each

region, with indices DSLP and NAO appearing in rules for
almost all regions. A combination of DLSP, NAO and high
SST values are causing flood of varying intensities in
almost all the regions. Considering All India rainfall, higher
SST conditions, DSLP value between 6.0 and 7.5 (i.e.,
DSLP-2) and NAO value less than �1.5 (i.e., NAO-1 and
NAO-2) occurring within 4 months is succeeded by extreme
flood at a lag of 7 months. Severe flood is preceded by a
combination of the higher SST conditions, a DSLP value
between 6.0 and 7.5 (i.e., DSLP-2) and NAO value between
1.5 and 2.5 (i.e., NAO-6) occurring within 4 months. Rules
generated for flood also show a negative correlation of
rainfall with DSLP and Nino 3.4. Here also, rules for
extreme flood did not show up for northeast and peninsular
regions.

4.4. Validation of the Rules

[48] In order to validate and to check the consistency of
the rules generated, the data-mining algorithm is again used
to generate rules for drought and flood using the data for the
years 1983–2005 (23 years). The threshold values for
confidence and J measure are kept same for rule extraction.
As in training, rules with maximum confidence level and J
measure were obtained for an antecedent window width of
4 months, consequent window width of 1 month and time
lag of 7 months. The rules generated for drought and flood
are shown in Tables 7 and 8 respectively.
[49] A comparison of the rules generated during the

calibration period and the validation period shows that
almost all the rules for both drought and flood are following
the same combination of antecedents for the corresponding
consequent with slight change in the values of confidence
and J measure. The variations in these interestingness

Table 3. Most Influencing Grids and Maximum Correlation for

Each Region

Region Grid Correlation

Northwest 15, 37, 54, 75 0.2–0.27
West central 15, 21, 27, 35 0.25–0.31
Central northeast 21, 35, 56, 75 0.2–0.29
Northeast 105, 107, 123, 124 0.2–0.27
Peninsular 10, 21, 26, 31 0.2–0.24
All India 37, 72, 73, 74 0.25–0.32

Table 4. Threshold Values Used for the Categorization of Climatic Indices (Predictors)a

Index 1 2 3 4 5 6 7

DSLP (mb) �6.0 6.0 < X� 7.5 7.5 < X � 8.5 8.5 < X < 11.5 11.5 � X < 12.5 12.5 � X < 14.0 	14.0
NAO <�2.5 �2.5 < X � �1.5 �1.5 < X � �1.0 �1.0 < X < 1.0 1.0 � X < 1.5 1.5 � X < 2.5 	2.5
Nino 3.4 (�C) �25.5 25.5 < X � 26.0 26.0 < X � 26.5 26.5 < X < 27.5 27.5 � X < 28.0 28.0 � X < 28.5 	28.5

aDSLP, Darwin sea level pressure; NAO, North Atlantic Oscillation; Nino 3.4, Nino 3.4 SST.
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measures are mainly due to the difference in the number of
consequent episodes occurring in the calibration and vali-
dation periods.
[50] A considerable deviation from the calibration rules is

only in the association rules for drought for central northeast
and peninsular regions, in which different SST grids are

showing low SST values in the validation period. Instead of
grid 56 showing a low SST value in rule 2 of central
northeast, grid 35 is showing a low SST value during
validation period. Also, for rule 3, grid 56 is replaced by
grid 75. Similarly, in rule 1 of Peninsular region, grid 21 is
replaced by low SST values of grid 31.

Figure 11. Darwin sea level pressure for the period 1960–2005 indicating the threshold values of
discrete classes.

Figure 12. North Atlantic Oscillation for the period 1960–2005 indicating the threshold values of
discrete classes.
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[51] For all other regions, the combinations are exactly
the same for both drought and flood rules, with only a slight
deviation in the discrete classes taken by the antecedents.
For example, in northwest region, instead of the combina-
tion of NAO-6, Nino-5, SSTgrid37-3, SSTgrid54-3 as a
precursor of severe drought, during validation period a
combination of NAO-5, Nino-6, SSTgrid37-3, SSTgrid54-
2 is causing severe drought. A comparison of the values
taken by these indices reveals that they are taking nearby
discrete classes during calibration and validation periods.
Similarly, analyzing drought rules for other regions and also
flood rules, it can be seen that even if the rules are not
satisfied exactly, nearby classes of the indices specified in
the rules are always preceding the target episodes. This

necessitates the need for a flexible allotment of the classes
for the indices.
[52] A further analysis is done by extracting rules using

the data for the years 1960–2000 (41 years) to affirm the
rules generated during the calibration period (1960–1982).
It is found that these rules are also exactly following
the same combination as that of the calibration period.
The validation of these rules is conducted using the data
for the years 2001–2005. Drought episodes occur almost in
all regions during the years 2002 and 2004. Severe drought
episodes in these years for All India are preceded by NAO-
5, Nino-5, Nino-6 and lower SST values and are in
accordance to the drought rules generated for All India.
Similarly, analyzing drought rules for other regions and also

Figure 13. Nino 3.4 SST for the period 1960–2005 indicating the threshold values of discrete classes.

Table 5. Selected Association Rules for Droughta

Region Rule Antecedent Consequent Confidence J measure

Northwest 1 NAO-6, Nino-5, SSTgrid37-3, SSTgrid54-3 Severe drought 0.75 0.038
2 DSLP-5, Nino-5, SSTgrid54-1, SSTgrid54-3 Moderate drought 0.75 0.0394

West central 1 DSLP-6, NAO-5, Nino-6, SSTgrid15-2 Severe drought 0.75 0.038
2 DSLP-6, NAO-3, Nino-5, SSTgrid21-2 Moderate drought 1.0 0.043

Central northeast 1 DSLP-6, Nino-6, SSTgrid21-2, SSTgrid56-2 Extreme drought 1.0 0.034
2 DSLP-6, Nino-5, SSTgrid21-2, SSTgrid56-3 Severe drought 1.0 0.036
3 NAO-3, NAO-6, Nino-6, SSTgrid56-3 Moderate drought 1.0 0.035

Northeast 1 DSLP-5, NAO-3, NAO-5, SSTgrid105-2, SSTgrid123-2 Extreme drought 1.0 0.036
2 DSLP-6, NAO-2, Nino-6, SSTgrid107-2, SSTgrid123-2 Severe drought 1.0 0.038
3 NAO-7, SSTgrid105-3, SSTgrid107-3, SSTgrid123-2 Moderate drought 1.0 0.0484

Peninsular 1 DSLP-6, NAO-5, Nino-6, SSTgrid21-2, SSTgrid26-2 Extreme drought 1.0 0.039
2 DSLP-6, Nino-5, Nino-6, SSTgrid26-3, SSTgrid31-2 Severe drought 1.0 0.038
3 NAO-5, Nino-5, Nino-6, SSTgrid21-3, SSTgrid26-2 Moderate drought 0.75 0.038

All India 1 NAO-5, Nino-5, Nino-6, SSTgrid72-3, SSTgrid74-3 Severe drought .0.75 0.031
2 DSLP-5, Nino-5, SSTgrid73-2, SSTgrid74-1 Moderate drought 1.0 0.056

aDSLP, Darwin sea level pressure; NAO, North Atlantic Oscillation; Nino, Nino 3.4 SST; SST, sea surface temperature.
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flood rules, it can be seen that almost all the drought and
flood episodes are preceded by the exact combinations of
the climatic indices shown by the respective rules. In all the
cases, either the indices are taking the exact values men-
tioned in the rules or at least they are taking the nearby
classes of the indices specified in the rules. This again
demands for a flexible allotment of the classes for the
indices. Instead of defining the classes with abrupt and well
defined boundaries, a vague and ambiguous boundary by
making use of the concept of fuzzy sets, can be used for
classifying the indices into different sets.

5. Conclusions

[53] Data mining is a powerful technology to extract the
hidden predictive information from databases thus helping
in the prediction of future trends and behaviors. Data-
mining tools scour databases for hidden patterns, finding
predictive information that experts may miss because it lies
outside their expectations. Implementing this technology in
the extraction of association rules for the extreme conditions
may help decision makers to improve their fundamental
scientific understanding of drought, about its causes, pre-

dictability, impacts, mitigation actions, planning methodol-
ogies, and policy alternatives.
[54] Various rules generated for each region and also for

All India clearly indicate a strong relationship with climatic
indices chosen, i.e., DSLP, NAO, Nino 3.4 and SST values.
From the rules extracted, it can be seen that almost all the
climatic indices mentioned above are occurring as antece-
dents for drought episodes, with different combinations and
confidence values. However, for rules extracted for flood
episodes, the combinations with Nino 3.4 are confronted
only a few times.
[55] The validation of the rules, using the data from 1983

to 2005, shows good consistency of the rules in the
validation period. Almost all rules are exactly following
the same combination as that of the calibration period rules.
For some of the rules, although the combination of the
indices mentioned is followed during the validation period,
one or two climatic indices which are indicated as the
precursors to the extremes in the rules are not falling in
the same discrete range specified in the training period rules
or in other words they are taking the nearby discrete states.
Thus a better extraction of the rules may be possible if the
classification of the indices is done in a fuzzy manner and
not in a crisp manner. This fuzzy aspect can be taken up as

Table 6. Selected Association Rules for Flood

Region Rule Antecedent Consequent Confidence J measure

Northwest 1 DSLP-3, NAO-5, SSTgrid15-6, SSTgrid54-5, SSTgrid75-5 Extreme flood 1.0 0.038
2 DSLP-1, NAO-6, Nino-2, Nino-3, SSTgrid75-5 Severe flood 1.0 0.0376
3 DSLP-2, DSLP-3, NAO-3, NAO-6, SSTgrid37-5 Moderate flood 0.75 0.038

West central 1 NAO-3, NAO-6, SSTgrid21-5, SSTgrid27-6 Extreme flood 1.0 0.036
2 DSLP-3, NAO-3, SSTgrid15-6, SSTgrid27-5, SSTgrid35-5 Severe flood 1.0 0.034
3 DSLP-1, DSLP-2, NAO-1, SSTgrid35-5 Moderate flood 0.8 0.052

Central northeast 1 DSLP-3, NAO-3, SSTgrid21-5, SSTgrid56-5, SSTgrid75-7 Extreme flood 1.0 0.035
2 DSLP-3, NAO-3, Nino-3, SSTgrid21-5, SSTgrid75-6 Severe flood 1.0 0.042
3 DSLP-1, Nino-2, Nino-3, SSTgrid35-5 Moderate flood 1.0 0.060

Northeast 1 DSLP-2, NAO-6, Nino-3, SSTgrid107-5, SSTgrid123-6, SSTgrid124-5 Severe flood 1.0 0.038
2 DSLP-1, DSLP-2, NAO-2, SSTgrid124-5 Moderate flood 0.75 0.036

Peninsular 1 NAO-3, Nino-3, SSTgrid10-5, SSTgrid21-5, SSTgrid26-6 Severe flood 0.75 0.043
2 DSLP-1, NAO-6, SSTgrid10-5, SSTgrid26-6 Moderate flood 1.0 0.029

All India 1 DSLP-2, NAO-1, NAO-2, SSTgrid37-6 Extreme flood 1.0 0.058
2 DSLP-2, NAO-6, SSTgrid37-5, SSTgrid72-5, SSTgrid73-5 Severe flood 0.83 0.063
3 DSLP-2, NAO-7, Nino-3, SSTgrid37-5, SSTgrid72-5 Moderate flood 0.75 0.037

Table 7. Selected Association Rules for Drought for Validation Period

Region Rule Antecedent Consequent Confidence J measure

Northwest 1 NAO-5, Nino-6, SSTgrid37-3, SSTgrid54-2 Severe drought 0.75 0.032
2 DSLP-6, Nino-5, SSTgrid54-1, SSTgrid54-2 Moderate drought 0.75 0.034

West central 1 DSLP-7, NAO-5, Nino-6, SSTgrid15-3 Severe drought 1.0 0.060
2 DSLP-5, NAO-3, Nino-6, SSTgrid21-2 Moderate drought 0.75 0.043

Central northeast 1 DSLP-5, Nino-6, SSTgrid21-1, SSTgrid56-3 Extreme drought 1.0 0.081
2 DSLP-5, Nino-5, SSTgrid21-2, SSTgrid35-3 Severe drought 0.8 0.057
3 NAO-3, NAO-7, Nino-6, SSTgrid75-1 Moderate drought 1.0 0.054

Northeast 1 DSLP-5, NAO-3, NAO-5, SSTgrid105-2, SSTgrid123-2 Extreme drought 1.0 0.052
2 DSLP-6, NAO-3, Nino-5, SSTgrid107-2, SSTgrid123-2 Severe drought 1.0 0.034
3 NAO-6, SSTgrid105-3, SSTgrid107-1, SSTgrid123-2 Moderate drought 0.75 0.037

Peninsular 1 DSLP-6, NAO-5, Nino-6, SSTgrid26-3, SSTgrid31-2 Extreme drought 1.0 0.039
2 DSLP-6, Nino-5, Nino-6, SSTgrid26-2, SSTgrid31-2 Severe drought 1.0 0.056
3 NAO-5, Nino-5, Nino-6, SSTgrid21-3, SSTgrid26-3 Moderate drought 1.0 0.031

All India 1 NAO-5, Nino-5, Nino-6, SSTgrid72-2, SSTgrid74-3 Severe drought 0.75 0.037
2 DSLP-5, Nino-6, SSTgrid73-1, SSTgrid74-2 Moderate drought 1.0 0.047
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further study. Introducing an uncertainty in the classes taken
by the indices will help in improving the quality and
confidence of the rules generated. Inclusion of other cli-
matic and oceanic indices may also improve the quality of
the rules in identifying the relationships with the extreme
episodes.
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Table 8. Selected Association Rules for Flood for Validation Period

Region Rule Antecedent Consequent Confidence J measure

Northwest 1 DSLP-3, NAO-5, SSTgrid15-5, SSTgrid54-5, SSTgrid75-7 Extreme flood 1.0 0.038
2 DSLP-1, NAO-6, Nino-2, Nino-3, SSTgrid75-6 Severe flood 1.0 0.041
3 DSLP-2, DSLP-3, NAO-3, NAO-6, SSTgrid37-5 Moderate flood 0.71 0.031

West central 1 NAO-3, NAO-6, SSTgrid21-7, SSTgrid27-7 Extreme flood 1.0 0.042
2 DSLP-3, NAO-2, SSTgrid15-5, SSTgrid27-5, SSTgrid35-7 Severe flood 1.0 0.039
3 DSLP-1, DSLP-2, NAO-1, SSTgrid35-6 Moderate flood 0.8 0.046

Central northeast 1 DSLP-3, NAO-3, SSTgrid21-7, SSTgrid56-6, SSTgrid75-5 Extreme flood 1.0 0.045
2 DSLP-3, NAO-3, Nino-3, SSTgrid21-5, SSTgrid75-6 Severe flood 1.0 0.035
3 DSLP-2, Nino-2, Nino-3, SSTgrid35-7 Moderate flood 1.0 0.044

Northeast 1 DSLP-2, NAO-6, Nino-3, SSTgrid107-6, SSTgrid123-6, SSTgrid124-5 Severe flood 1.0 0.038
2 DSLP-1, DSLP-2, NAO-2, SSTgrid124-6 Moderate flood 0.75 0.039

Peninsular 1 NAO-3, Nino-2, SSTgrid10-7, SSTgrid21-5, SSTgrid26-5 Severe flood 1.0 0.043
2 DSLP-2, NAO-6, SSTgrid10-5, SSTgrid26-5 Moderate flood 1.0 0.034

All India 1 DSLP-2, NAO-2, NAO-3, SSTgrid37-7 Extreme flood 1.0 0.048
2 DSLP-2, NAO-7, SSTgrid37-6, SSTgrid72-5, SSTgrid73-6 Severe flood 0.75 0.040
3 DSLP-2, NAO-7, Nino-3, SSTgrid37-5, SSTgrid72-5 Moderate flood 1.0 0.030
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