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Entanglement Enhances Security in Secret Sharing
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2ICREA and 3ICFO-Institut de Ciències Fotòniques, E-08860 Castelldefels (Barcelona), Spain

We analyze tolerable quantum bit error rates in secret sharing protocols, and show that using
entangled encoding states is advantageous in the case when the eavesdropping attacks are local. We
also provide a criterion for security in secret sharing – a parallel of the Csiszár-Körner criterion in
single-receiver cryptography.

In the last few years, the role of entanglement in dif-
ferent branches of physics has been studied extensively,
ranging from many-body physics [1, 2] to quantum in-
formation processing [3]. In particular, the qualities and
thresholds of entanglement for optimal quantum commu-
nication performance have been found, e.g. with regard
to teleportation [4], dense coding [5], and cryptography
[6]. The necessity of entanglement in quantum computa-
tion is still under investigation (see e.g. [7]). In a different
context, there is an ongoing research on the behavior of
entanglement in e.g. quantum phase transitions [2], local
cloning [8], and local state distinguishing [9].

In this paper, we will investigate the advantage of en-
tanglement in the security of a quantum communication
task, known as secret sharing [10, 11], which is a com-
munication scenario in which a sender Alice (A) wants
to provide a (classical) message to two recipients (Bobs
– B1, B2), in a way that each of the Bobs individually
knows nothing about the message, but they can recover
its content once they cooperate. In order to transmit a bi-
nary message string {ai}, Alice can then take a sequence
of completely random bits {b1,i}, send it to B1, and at
the same time send a sequence {b2,i} = {ai⊕ b1,i} to B2,
where ⊕ denotes addition modulo 2. Thus ai = b1,i⊕b2,i,
assuring that the Bobs can recover the message if they co-
operate, and yet none of them can learn anything on the
message of Alice on his own, since the sequences {b1,i},
{b2,i} are completely random.

An important issue is of course security, i.e. distribut-
ing the message in a way that no third (actually fourth!)
party learns about it. This can be achieved using quan-
tum cryptography (e.g. by the BB84 scheme [12]). Al-
ice simply has to establish secret random keys, indepen-
dently, with both Bobs, and use them as one-time pads to
securely send bits in the way required by secret sharing.
We call this the BB84⊗2 protocol. It has been argued [10]
that a more natural way of using quantum states in secret
sharing is to send entangled states to the Bobs, and as a
result, avoid establishing random keys with each of the
Bobs separately, by combining the quantum and classical
parts of secret sharing in a single protocol. We call the
protocol in [10, 11] as E4 (since it uses four entangled
states).

In this paper, we consider security thresholds for both
E4 and BB84⊗2, i.e. the highest quantum bit error rates

(QBERs) below which one-way distillation of secret key
is possible. There are three main results proven in the
paper. First, we provide a criterion for security of se-
cret sharing, for which one-way classical distillation of
secret key is possible between the sender and the re-
ceivers: the parallel of the Csiszár-Körner criterion in
(single-receiver, classical) cryptography [13]. Secondly,
we find the optimal quantum eavesdropping attacks on
both E4 and BB84⊗2, that are individual, without quan-
tum memory, and most importantly, local. Note that an
attack which acts by local operations and classical com-
munication (LOCC) on the particles sent through the two
channels (A → B1 and A→ B2) is physically more rele-
vant in this distributed receivers case. We show that the
threshold QBER for E4 is about 18.2 % higher than that
of BB84⊗2. This shows, to our knowledge for the first
time, that it is more secure to use entangled encoding
states in secret sharing. Thirdly, we provide an interest-
ing general method for dealing with local eavesdropping
attacks.
The protocols. In our setting, a secret sharing protocol

can be characterized by {|ψj,0〉, |ψj,1〉, σj,k
1 ⊗σj,k

2 }, where
j labels the different encoding “bases” used, |ψj,a〉 are
two-qubit states send by Alice to the Bobs if she uses ba-
sis j and wants to communicate the logical value a, while
σj,k
1 ⊗σj,k

2 is a set of observables compatible with basis j
(so that if the corresponding measurement is performed
by the Bobs, it allows them to recover a proper logical
bit of Alice). In practice, B1 (B2) randomly measures

the observables σj,k
1 (σj,k

2 ) on states received from Alice
in each round. After the transmission is completed, the
Bobs announce the observables they have used in each
round to Alice, who, judging on whether this combina-
tion of observables is present in σj,k

1 ⊗σj,k
2 for the partic-

ular j she had used in that round, tells the Bobs whether
to keep or reject their measured results for that round –
this is called the sifting phase. The BB84⊗2 protocol is
defined as

j |ψj,0〉 |ψj,1〉 σj,k
1 ⊗ σj,k

2

1 |x+〉|x+〉, |x−〉|x−〉 |x+〉|x−〉, |x−〉|x+〉 σx ⊗ σx
2 |x+〉|y+〉, |x−〉|y−〉 |x+〉|y−〉, |x−〉|y+〉 σx ⊗ σy
3 |y+〉|x+〉, |y−〉|x−〉 |y+〉|x−〉, |y−〉|x+〉 σy ⊗ σx
4 |y+〉|y+〉, |y−〉|y−〉 |y+〉|y−〉, |y−〉|y+〉 σy ⊗ σy

where |x±〉 (|y±〉) are eigenstates of the Pauli σx (σy)
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matrix. The fact that there are two states corresponding
to a given |ψj,a〉 simply means that each of them is sent
randomly with probability 1/2. The E4 protocol [10] (see
also [15]), on the other hand, is defined as

j |ψj,0〉 |ψj,1〉 σj,k
1 ⊗ σj,k

2

1 |ψ+〉 |ψ−〉 σx ⊗ σx, −σy ⊗ σy
2 |ψi

+〉 |ψi
−〉 σx ⊗ σy, σy ⊗ σx,

where |ψ±〉 = (|00〉±|11〉)/
√

2, |ψi
±〉 = (|00〉± i|11〉)/

√
2,

and |0〉, |1〉 are eigenstates of the Pauli σz opera-
tor. The question is which of these protocols toler-
ates a higher QBER. After the sifting phase, let the
bits of Alice and the Bobs, obtained in a given set
of rounds, be described by the probability distribution
pAB1B2

(a, b1, b2). The corresponding QBER is QBER =
∑

a,b1,b2
pAB1B2

(a, b1, b2)[1 − δa,b1⊕b2 ].
Error correction and privacy amplification. Knowing

QBER, we want to perform an one-way error correction
procedure, such that all errors are corrected with ar-
bitrarily high probability. In standard (single-receiver)
cryptography, error correction can be performed either
from the sender to the receiver, or vice-versa. In secret
sharing, there are two separated receivers, and each of
them individually has bits that are completely random.
So there is no way for Alice to perform one-way error
correction to Bobs – whatever she sends to each of them
individually, it will not be enough for them to correct
errors, unless she sends the total information which is of
course not the solution we are after.

The only remaining option is that each of Bobs sends
some information to Alice, judging on which she is able
to correct her bits {ai} in a way that for every i: ai =
b1,i⊕b2,i. Fortunately, this is indeed possible. We present
here an idea how this can be achieved. We will adapt for
our needs, a standard method in classical communica-
tion theory – namely, that of random coding (see e.g.
[16–18]). Let each of the three parties have n bits after
the sifting phase. The error correction procedure uses a
random coding function f : {0, 1}n → {0, 1}m, known
to all three parties (and the rest of the world), where
m ≤ n will be chosen later. This function assigns a ran-
dom m-bit codeword to each of 2n possible n-bit strings.
Error correction goes as follows: B1 and B2 calculate
f({b1,i}) and f({b2,i}) respectively, and send their m-bit
codewords to Alice. After this, Alice looks for all n-bit
sequences {b′1,i}, {b′2,i} such that f({b′1,i}) = f({b1,i}),
f({b′2,i}) = f({b2,i}), and chooses a pair {b′1,i}, {b′2,i},
for which the Hamming distance dist({ai}, {b′2,i ⊕ b′2,i})
is minimal. It can be shown that in the limit n → ∞,
this strategy is successful with arbitrarily high probabil-
ity, provided

m ≥ n[1 + h(QBER)]/2, (1)

where h(p) = −p log2 p− (1− p) log2(1− p) is the binary
entropy function. This result is quite intuitive, since in a

standard bipartite error correction, the length of a code-
word has to fulfill m ≥ nh(QBER). In secret sharing
however, the two Bobs together have to provide Alice
with nh(QBER) + n bits. These additional n bits are
needed, since a sequence of one of Bobs taken separately
is completely random for Alice. As a result each of Bobs
has to send a code of length given by Eq. (1).

After the error correction stage is completed, Alice and
the Bobs need to perform privacy amplification, in order
to obtain a possibly shortened, but a completely secure
key, on which an eavesdropper has no information. Pri-
vacy amplification presents no additional difficulty in a
secret sharing scenario, as compared to standard bipar-
tite cryptography, since its performance, in principle, re-
quires no additional communication between Alice and
the Bobs. It is enough that all parties apply the same
hashing function [14] for shortening the key, and if there
were no errors, in the sense that for all i, ai = b1,i ⊕ b2,i,
then there will be no errors in the shortened key.

LOCC attacks. We will analyze security of the proto-
cols with the following restrictions imposed on an eaves-
dropper: (i) Eavesdropper can perform only individual
attacks; (ii) Individual attacks are LOCC operations with
respect to partition of the encoding states between B1

and B2; (iii) Eavesdropper is not allowed any kind of
quantum memory. The restriction (i) means that an
eavesdropper can interact, in a given round, with only
the quantum state send by Alice to Bobs in that round.
Restriction (ii) is at the heart of the problem we analyze,
and is natural in the distributed receivers scenario. Note
here that if no LOCC condition is imposed, then the se-
curity analyses of the two-receiver E4 and single-receiver
BB84 protocols are isomorphic. The justification of (iii)
is based on current technology limitations – no long last-
ing quantum memory has been developed so far.

Let the probability distribution pABE(a, b, e) describe
single-round bit values, a of Alice, b = b1⊕b2 of the Bobs,
and e of an eavesdropper, after the eavesdropper’s attack
and after the sifting stage is completed. In single-receiver
cryptography, the maximal one-way secret key distilla-
tion rate K is given by the Csiszár-Körner criterion [13]:
K = I(A : B) − min(I(A : E), I(B : E)), where I( : )
is the mutual information between the corresponding par-
ties. As discussed in previous paragraphs, error correc-
tion in secret sharing can be performed only in one direc-
tion (from Bobs to Alice). Thus the secret key distillation
rate in case of secret sharing is K = I(A : B)− I(B : E),
which is therefore the parallel of the Csiszár-Körner cri-
terion in (single-receiver) cryptography [13].

In order to analyze eavesdropping attacks, consider the
state |ψj,a〉 being sent from Alice to Bobs. Collaborat-
ing eavesdroppers E1, E2, acting on channels conecting
A with B1 and B2 respectively, can perform an arbitrary
LOCC operation E (completely positive trace-preserving
LOCC map) to create ρj,aB1B2E1E2

= E(|ψj,a〉〈ψj,a|).
The operation is LOCC with respect to the partition
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B1, E1 | B2, E2. Subsequently, E1, E2 perform an LOCC
measurement on their subsystems in order to obtain in-
formation about the bit shared by Alice with Bobs, while
sending possibly-perturbed subsystems B1, B2 to their
legitimate recipients. Without loosing generality, we can
restrict this measurement to have only two possible out-
comes (0 or 1), since only the value of a transmitted bit
is of interest to the eavesdroppers. Hence we model the
measurement by a two element positive operator valued
measurement (POVM): ΠE1E2

(0), ΠE1E2
(1). Obviously

ΠE1E2
(e) ≥ 0, and ΠE1E2

(0) + ΠE1E2
(1) = 11E1E2

, but
here we additionally impose the constraint that the mea-
surements are LOCC-based.

The probability distribution pABE(a, b, e) is given
by

∑

j p(j, a)Tr[E(|ψj,a〉〈ψj,a|)ΠB1B2
(j, b) ⊗ ΠE1E2

(e)],
where p(j, a) is the probability that A sends the state
|ψj,a〉 in a given round, whereas {ΠB1B2

(j, b)} is a POVM
corresponding to Bobs’ measurement in basis j (com-
patible with the state sent by Alice), where the sum of
their individual measured values, modulo 2, is equal b:
b = b1 ⊕ b2. Probability normalization condition reads
ΠB1B2

(j, 0) + ΠB1B2
(j, 1) = 11B1B2. We assume the con-

vention that if one of Bobs (locally) performs a mea-
surement characterized by a Pauli matrix σi, then he
ascribes the bit value 0 or 1, once in a measurement
he projects on an eigenvector with eigenvalue −1 or 1
respectively. To make pABE(a, b, e) more revealing, we
introduce non-trace-preserving completely positive oper-
ations E0, E1 : Hin

B1
⊗ Hin

B2
7→ Hout

B1
⊗ Hout

B2
acting on

the input and output Hilbert spaces of the Bobs, and
defined as Ee(̺B1B2

) = TrE1E2
[E(̺B1B2

)ΠE1E2
(e)]. Ee

represents the disturbance experienced by a state trans-
mitted to the Bobs, once the eavesdroppers have obtained
a particular value e in their measurement. Notice that
even though each operation Ee is not trace-preserving
the operation E0 + E1 is – it corresponds to a situation
when one averages over the results of the eavesdrop-
pers’ measurement. We can now write pABE(a, b, e) =
∑

j p(j, a)Tr[Ee(|ψj,a〉〈ψj,a|)ΠB1B2
(j, b)]. It is now clear,

that the eavesdropping strategy is completely defined by
specifying the two operations E0, E1, and for a given pro-
tocol yields a joint probability distribution pABE(a, b, e).

To calculate the QBER threshold, one should now look
for the highest value of QBER, for which it is still possible
to find eavesdropping LOCC operations Ee, so that the
resulting probability distribution pABE enjoys the prop-
erty I(A : B) = I(B : E). Forgetting for the moment
about the LOCC constraint, the problem of finding the
QBER threshold is a semi-definite program. To see this,
let us denote Hout = Hout

B1
⊗Hout

B2
, Hin = Hin

B1
⊗Hin

B2
and

recall the Jamio lkowski isomorphism [19] between com-
pletely positive maps Ee and positive semi-definite oper-
ators PEe

∈ L(Hout ⊗ Hin): PEe
= Ee ⊗ I (|Ψ+〉〈Ψ+|),

where |Ψ+〉 =
∑dimHin

i=1
|i〉⊗|i〉 is an unnormalized maxi-

mally entangled state in the space Hin⊗Hin, and I is an

identity operation on Hin. Hence our problem variables
are entries of two 16× 16 matrices, which are required to
be positive semi-definite. Trace-preservation condition of
E0 + E1 translates to a condition on positive operators:
TrHout (PE0

+ PE1
) = 11Hin . This condition is obviously

linear in the matrix elements of PEe
. Similarly, pABE is

also linear, and hence the security condition is linear. Fi-
nally, the QBER, which we want to maximize, is linear.
In order to deal with an LOCC constraint, we will im-
pose the weaker “PPT constraint”: positivity after par-
tial transposition of the PEe

operators – we transpose
subsystem Hout

B2
⊗Hin

B2
. This is a strictly necessary con-

dition for LOCC [20]. However, we will show that the
optimal PPT maps are also LOCC.

Entangled vs. product encoding. We now present the
solutions for maximal tolerable QBER for BB84⊗2 and
E4 protocols found by solving the corresponding semi-
definite programs, using the SeDuMi package. Although
solving a semi-definite program provided us only with nu-
merical solutions, we were able to recognize their analyt-
ical form, and hence all results presented are analytical.

For the BB84⊗2 protocol, the optimal
P
EBB84⊗2

0

, in the computational basis, =
1

18
diag[4, 2, 2, 1, 2, 4, 1, 2, 2, 1, 4, 2, 1, 2, 2, 4] + the

16x16 matrix (αi,j) whose only nonzero elements
are α1,4 = α5,8 = α5,12 = α9,12 = α13,16 = α∗

1,13 =
α∗
2,14 = α∗

2,15 = α∗
3,14 = α∗

3,15 = α∗
4,16 = α∗

8,9 = i/9,
α1,16 = α6,11 = 2/9, α2,3 = α5,9 = α6,7 =
α6,10 = α7,11 = α8,12 = α10,11 = α14,15 = 1/9,
α7,10 = −α4,13 = 1/18, and hermitian conjugates.
The optimal P

EBB84⊗2

1

has the same entries on the

diagonal, and the anti-diagonal, while the remain-
ing ones are multiplied by −1. These optimal PPT
maps will later on proven to be LOCC. The optimal
QBER(BB84⊗2) = 5/18 ≈ 0.2778.

Moving now to the E4 protocol, the optimal PEE4

0

=

diag[a, b, b, d, b, a, d, b, b, d, a, b, d, b, b, a] + the 16x16 ma-
trix (βi,j) whose only nonzero entries are β1,4 = β∗

1,13 =
β∗
4,16 = β13,16 = c, β1,16 = a, β4,13 = f∗, and the

hermitian conjugates, where a = 3 − 2
√

2, b = a/
√

2,
c = b exp(iπ/4), d = a/2, f = id. The optimal PEE4

1

is
the same as PEE4

0

, but with c replaced by −c. Again these
optimal PPT maps will later on proven to be LOCC. The
optimal QBER(E4) = 2(

√
2 − 5/4) ≈ 0.3284. Interest-

ingly therefore, QBER(E4) is about 18.2 % higher than
QBER(BB84⊗2), which indicates that indeed the pro-
tocol using entangled states is more secure, in the case
of LOCC eavesdropping. In Fig.1, we show the maxi-
mum achievable secret-key rates for the two protocols as
a function of measured QBER. It is clear that E4 is bet-
ter not only because of its higher QBER threshold, but
because of its higher key rate for all QBER (see Fig. 1,
more details will be presented elsewhere [21])

Explicit LOCC forms of the optimal attacks. We now
show that the optimal attacks are separable. We will
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FIG. 1: Maximal achievable secret-key rates K = I(A : B) −
I(B : E) for E4 and BB84⊗2, against local attacks.

subsequently show that the attacks are actually LOCC.
Separability of the optimal attack for the BB84⊗2 case

is evident once we write it in the form (the procedure
leading to this form will be presented elsewhere [21])

EBB84
⊗2

e (ρ) =
∑

φ1,φ2∈{0,π}

Kφ1,φ2

e,B1
Kφ1,φ2

e,B2
ρKφ1,φ2†

e,B1
Kφ1,φ2†

e,B2
,

where the local Kraus operators Kφ1,φ2

e,B1
, Kφ1,φ2

e,B2
are

1√
6

[

(−1)e
√

2 exp[i(φ1 − π/4]

exp[i(φ2 + π/4)] (−1)e
√

2 exp[i(φ1 + φ2)]

]

,

1

2
√

3

[ √
2 exp[−i(φ1 + π/4)]

exp[−i(φ2 − π/4)]
√

2 exp[i(φ1 + φ2)]

]

respectively. Since Ke,B2
does not depend on e

(equivalently, Ke,B1
can also be chosen to be so),

we write it as KB2
. The full operation EBB84

⊗2

=

EBB84
⊗2

0 + EBB84
⊗2

1 can be written as =
∑

φ1,φ2∈{0,π} 11⊗
Kφ1,φ2

B2
(
∑1

e=0
Kφ1,φ2

e,B1
⊗11 ρ Kφ1,φ2†

e,B1
⊗11)11⊗Kφ1,φ2†

B2
, which

shows that it is indeed LOCC, since it can be realized as
follows. First an operation given by the four Kraus oper-
ators Kφ1,φ2

B2
is performed on the second subsystem, and

the measurement result (φ1, φ2) is transmitted to the first
subsystem. For given values of (φ1, φ2) received by the
first subsystem, an operation using the two Kraus opera-
tors Kφ1,φ2

0,B1
, Kφ1,φ2

1,B1
is performed on the first subsystem.

This is a legitimate deterministic LOCC operation since
∑

φ1,φ2∈{0,π}K
φ1,φ2†
B2

Kφ1,φ2

B2
= 11, and for every (φ1, φ2),

∑1

e=0
Kφ1,φ2†

e,B1
Kφ1,φ2

e,B1
= 11. Note that it requires only one-

way classical communication. Summing up, EBB84
⊗2

e are
separable trace-decreasing operations, such that when
added together, they form a trace-preserving LOCC op-
eration EBB84

⊗2

, and hence they can both be realized via
LOCC.

In a similar way, we can show that the optimal PPT at-
acks on the E4 protocol are also LOCC. Separable Kraus
decompositions of EE4

e read

EE4
e (ρ) =

∑

Kφ1,φ2,φ3

e,B1
Kφ1,φ2,φ3

B2
ρKφ1,φ2,φ3†

e,B1
Kφ1,φ2,φ3†

B2
,

where the sum runs over φ1, φ2, φ3 ∈ {0, 2π/3, 4π/3}, and

Kφ1,φ2,φ3

e,B1
, Kφ1,φ2,φ3

e,B2
are respectively

√

1 +
1√
2

[

(−1)e21/4 exp(iφ1)

exp(iφ2) (−1)e21/4 exp(iφ3)

]

,

1
√

27(1 +
√

2)

[

21/4 exp[−i(φ1 + π/4)]

exp[−i(φ2 − π/4)] 21/4 exp(−iφ3)

]

.

Again we can write the full operation
EE4 = EE4

0 + EE4
1 as

∑

φ1,φ2,φ3∈{0,2π/3,4π/3} 11 ⊗
Kφ1,φ2,φ3

B2

(

∑1

e=0
Kφ1,φ2,φ3

e,B1
⊗ 11 ρ Kφ1,φ2,φ3†

e,B1
⊗ 11

)

11 ⊗
Kφ1,φ2,φ3†

B2
,, which shows that it is an LOCC, since

it can be realized by performing an operation on
the second subsystem using the 27 Kraus opera-
tors Kφ1,φ2,φ3†

B2
, communicating the measurement

result (φ1, φ2, φ3) to the first subsystem, on which
an appropriate operation using the two Kraus oper-
ators Kφ1,φ2,φ3

e,B1
(e = 0, 1) is performed. Note that

∑

φ1,φ2,φ3∈{0,2π/3,4π/3}K
φ1,φ2,φ3†
B2

Kφ1,φ2,φ3

B2
= 11, and for

every (φ1, φ2, φ3),
∑1

e=0
Kφ1,φ2,φ3†

e,B1
Kφ1,φ2,φ3

e,B1
= 11.

Typical noise. Judging the usefulness of the two pro-
tocols by comparing their QBER thresholds, may apriori
be not sensible from an experimental point of view, as
in an experiment, we face noise caused by natural fac-
tors, as well as by the eavesdropper. Hence a relevant
question is: Which protocol allows a secure key trans-
mission in presence of a higher level of noise, of the type
present in an experiment? Consider a typical situation
when we send the qubits via two fibers. A usual model
of noise here would be that each channel (fiber) is an
isotropically depolarizing channel – and they are inde-
pendent. Given a channel with a fixed level of depolar-
ization, we ask: Can we securely extract some secret key
using either the E4 or the BB84⊗2 protocol? This may
not be equivalent to comparing QBER thresholds, be-
cause different states are used in the two protocols, which
under the same noise level, may behave differently, and
result in different QBERs – in particular it could hap-
pen that in such situation it might be advantageous to
apply a protocol with lower QBER threshold. In this
environment, however, the QBERs for E4 and BB84⊗2

depend in the same way on the depolarization parame-
ter. If an isotropically depolarizing qubit channel acts
as D(ρ) = (1 − p)ρ + p11/2, then the QBER caused by
the D⊗2 channel is QBER = p(1− p/2) for both the pro-
tocols. Comparing protocols using QBER thresholds as
a figure of merit is legitimate both from theoretical and
practical point of view.
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Summary. We have for the first time shown that entan-
glement in the encoding states provide a better security
in secret sharing. The security was judged by calculat-
ing QBER threshold for secure communication, under
assumption of local individual quantum attacks without
quantum memory. We have found the optimal attacks
in such scenario for the two paradigmatic protocols: one
using product states and the other using entangled ones
for encoding. Further results include the parallel of the
Csiszár-Körner criterion for security in (single-receiver)
cryptography in the distributed-receivers case, and use-
fulness of the protocols in the presence of a depolarizing
environment.
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