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Quantum Correlation Without Classical Correlations
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We show that genuine multiparty quantum correlations can exist on its own, without a supporting
background of genuine multiparty classical correlations, even in macroscopic systems. Such possibil-
ities can have important implications in the physics of quantum information and phase transitions.

Quantum and classical correlations lie at the heart of
sciences and technologies. The emerging quantum tech-
nology crucially depends on correlations that are differ-
ent and more subtle than the ones in classical physics.
This quantum form of correlations, known as entangle-
ment [1], is currently being exploited to achieve higher
levels of security in cryptography [2] and faster rates of
information processing in computers [3]. Since quan-
tum physics contains the classical one as a special case,
we may think that reducing entanglement will in the
same way ultimately lead to the reduction of all corre-
lations to classical correlations. We will however show
that this intuition is completely false; surprisingly, gen-
uine multiparty entanglement can exist on its own with-
out the need of genuine multiparty classical correla-
tions, even for macroscopic systems. This result has
potentially fundamental implications in the physics of
quantum information and phase transitions, and in the
current characterization of the quantum to classical tran-
sition.

It is widely known that quantum correlations are of
a different kind than classical ones, and that quantum
correlations can be vanishing even when classical corre-
lations are present. However, the fact that even the op-
posite is true has so far eluded us. We present a general
method to obtain that multiparty quantum and classical
correlations are independent for a certain class of mul-
tiparty states, shared between an arbitrary odd number
of two-dimensional systems (qubits). This phenomenon
cannot happen for quantum systems with two subsys-
tems; neither can it happen for pure multiparty states.

Quantum and classical correlations. We begin by dis-
cussing in generality how to distinguish quantum corre-
lations and specifically genuine multiparty correlations,
as well as the analogous classical notions. For an n-party
state ρ, it is established usage to call it separable (or, pre-
cisely, fully separable) if it is a probability mixture (i.e.,
convex combination) of n-party product states [4]; oth-
erwise the state is (somehow) entangled. A more strin-
gent notion is that of genuine n-party entanglement [5],
which demands that the state is not in the convex hull
of tensor products over any bipartition of the n systems.
[See [5] for a whole hierarchy of notions, k-separability
and the complement, genuine (n + 2 − k)-party entan-

glement, for k = 2, . . . , n.]

All this is fairly canonical – though one might con-
sider the idea of defining quantum correlations via the
violation of some Bell inequality [6], which is a strictly
different concept, already in the bipartite case [4, 7]. We
shall come back to this issue, but for the present pa-
per, we stick with this more encompassing notion. On
the other hand, defining correlations in general, and in
particular genuinely multiparty classical correlation in a
state, seems more contentious.

We propose the following point of view. First of all,
classical correlations are to be about the values of (local)
observables. Furthermore, taking the bipartite case as
a model, it is easy to see that a state ρAB is correlated
(i.e., not equal to a product state ρA ⊗ ρB) if and only if
there are local observables X and Y such that the clas-
sical variables X and Y are correlated. This in turn can
be determined by looking at covariances Cov(X,Y ) =
〈

(X − 〈X〉)(Y − 〈Y 〉)
〉

: it is again not hard to see that
if these are zero for all choices of local observable then
the state must be a product, and vice versa. Unless men-
tioned otherwise, we shall restrict here to traceless ob-
servablesX , Y , and if the states under consideration are
such that 〈X〉 = 〈Y 〉 = 0, then the covariances men-
tioned reduce to correlators 〈XY 〉 = Tr ρ(X ⊗ Y ), well-
known quantities in statistical physics.

Encouraged by these observations, we take as our
(at least sufficient) criterion of genuine n-party corre-
lation, in a state ρ12...n, that for some choice of local
observables Xj , the “covariance” Cov(X1, . . . , Xn) =
〈

(X1 − 〈X1〉) · · · (Xn − 〈Xn〉)
〉

is nonzero. The ques-
tion how to define genuine n-party correlations has been
considered before; e.g. Zhou et al. [8] have proposed
a set of axioms for n-party correlation measures. It can
be shown that, at least for three parties and states with
maximally mixed marginals, our criterion implies that
of Ref. [8]. We shall only have occasion to look at states
with maximally mixed marginals, so that it is enough if
we stick to traceless observables, in which case this ex-
pression reduces to the higher correlator 〈X1 · · ·Xn〉 =
Tr ρ(X1⊗· · ·⊗Xn). It is in this sense that we shall exam-
ine the presence of genuine n-party classical correlations
in a state. We do not claim to have a well-established
definition of genuine n-party correlations. All we want
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to say is that if all n-party covariances of an n-party state
vanish, then the state should be considered to have no
genuine n-party correlations.

It is curious to remark that the majority of Bell’s in-
equalities, including multiparty ones, is actually ex-
pressed in terms of n-party correlators [9, 10, 11, 12].
Also, note that for an n-qubit state, as we shall look at,
the absence of genuine n-party (more generally k-party)
correlations means just that in the Pauli basis expansion
all terms of n (k) proper Pauli ({σx, σy , σz}) operators
are vanishing.

The example. For an integer n ≥ 3, consider the
W -state [13, 14] of n two-dimensional quantum sys-
tems (qubits) |W 〉 = 1√

n

(

|00 . . .001〉 + |00 . . .010〉 +

. . . + |10 . . . 000〉
)

, where |0〉 and |1〉 are eigenstates of

the σz Pauli operator, and its “complement” |W 〉 =
1√
n

(

|11 . . .110〉 + |11 . . . 101〉 + . . . + |01 . . .111〉
)

=

σ⊗n
x |W 〉, and form the state

ρp = p|W 〉〈W |+ (1− p)|W 〉〈W |,

which is just a mixture of |W 〉 and |W 〉 with probabilities
p and 1− p. We must of course have 0 ≤ p ≤ 1.

Quantum correlations exist. We first show that this
state is genuinely multiparty entangled; in fact, we show
that the subspace S spanned by |W 〉 and |W 〉 contains
no product vector |ϕ〉A|ψ〉B for any partition A ∪ B of
the sites {1, . . . , n}. The subspace S is the support of the
state ρp: Any decomposition of ρp must be a probabilis-
tic mixture of pure states from S. Therefore if we are
able to show that S does not contain any product state,
ρp cannot be written as a probabilistic mixture of prod-
uct pure states in any bipartite splitting. Consequently,
ρp will be genuinely multiparty entangled.

The subspace S has a lot of symmetry, which we will
exploit: it is invariant under permutations of the sites,
and under bit flip at all the sites (i.e. under σ⊗n

x ). On
the other hand, it is only two-dimensional, which will
eventually result in a contradiction if we assume the ex-
istence of a product unit vector |ϕ〉A|ψ〉B ∈ S.

By the permutation symmetry, we may assume, with-
out loss of generality, that A = {1, . . . , k} and B =
{k + 1, . . . , n}. Now, we first focus on the “weights”
of the vectors involved, i.e., the numbers of |1〉’s in the
expansion in the computational basis (the σ⊗n

z eigenba-
sis). Observe that in S, only weights 1 and n − 1 occur.
Let the set of weights occurring in |ϕ〉 be F , and G the
corresponding set for |ψ〉; then the weights in the tensor
product |ϕ〉A|ψ〉B are precisely all pairwise sums, F +G.
Since this has to be a subset of {1, n − 1}, only |F | = 1,
|G| ≤ 2 and symmetrically |G| = 1, |F | ≤ 2 are possi-
ble, and we may, without loss of generality, restrict to
the former possibility. (|Λ| denotes the cardinality of the
set Λ.) Therefore only one weight, say r, occurs in |ϕ〉.

Now consider the projectors P1 and Pn−1 in the
n-qubit system, where Pk projects onto the subspace

spanned by basis vectors of weight k. Clearly, P1S is
just the line spanned by |W 〉, and Pn−1S is that by |W 〉.

The first observation is that

P1|ϕ〉A|ψ〉B = |ϕ〉A|ψ′〉B , (1)

Pn−1|ϕ〉A|ψ〉B = |ϕ〉A|ψ′′〉B, (2)

with vectors |ψ′〉 and |ψ′′〉, which have only one weight
occurring, namely 1− r and n− 1− r, respectively. This
is because |ϕ〉 is already in a constant weight subspace,
so the projection only ends up affecting |ψ〉.

But we observed already that the vectors in Eqs. (1)
and (2) must be proportional to |W 〉 and |W 〉, respec-
tively, which are not product across any cut, so the right
hand sides above must both be zero, and we arrive at
the desired contradiction. This concludes the proof of
the statement that the state ρp has genuine multiparty
entanglement, whenever the state is composed of three
or more qubits, and for any p in [0, 1].

Before proceeding further, let us note that the key
ingredients in the above demonstration were the sym-
metries of the state ρp, and the low dimensionality
of the support S of ρp. We expect to be able to re-
lax the second ingredient – other small, but more than
two-dimensional subspaces will have the same prop-
erty of being “completely entangled”. The first property
should also not be strictly necessary, since it is clear that
with S, also a sufficiently small perturbation S ′ will con-
tain no product vectors.

No classical correlations. We now show that for any
odd number n (greater than one) of qubits, the state ρ :=
ρ1/2 does not have any genuine n-partite classical corre-
lations. More precisely, we show that the average value
of any tensor product of traceless observables in the state
is vanishing. First, we observe that ρ can be written as
an equal mixture of the states |V±〉 = 1√

2
(|W 〉 ± |W 〉).

We have σ⊗n
x |V±〉 = ±|V±〉. Thus

〈V±|σA1

k1
⊗ · · · ⊗ σAn

kn
|V±〉 = 〈V±|σ̄A1

k1
⊗ · · · ⊗ σ̄An

kn
|V±〉

= (−1)n2+n3〈V±|σA1

k1
⊗ · · · ⊗ σAn

kn
|V±〉, (3)

where n1, n2, and n3 are respectively the numbers of
occurences of the Pauli matrices σx, σy , and σz , in the

sequence σA1

k1
⊗· · ·⊗σAn

kn
, with σAi

ki
being a Pauli operator

at the ith site (i = 1, 2, . . . , n, ki = x, y, z), and σ̄ki
=

σxσki
σx. It is clear that if n2 + n3 is an odd number, we

have Tr(ρσA1

k1
⊗ · · · ⊗ σAn

kn
) = 0. If n2 + n3 is an even

number, we have

Tr(ρσA1

k1
⊗ · · · ⊗ σAn

kn
) = 〈W |σA1

k1
⊗ · · · ⊗ σAn

kn
|W 〉. (4)

Due to the permutation symmetry of the state |W 〉, the
above expression is equal to

〈W |
n1
⊗

i=1

σAi

x

n1+n2
⊗

i=n1+1

σAi

y

n
⊗

i=n1+n2+1

σAi

z |W 〉, (5)
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with, as above, n2 + n3 being an even num-
ber. For convenience, let us define Σ(n1, n2, n3) =
⊗n1

i=1
σAi

x

⊗n1+n2

i=n1+1
σAi

y

⊗n
i=n1+n2+1

σAi

z . The state |W 〉
is a superposition of n pure n-qubit states having only
one qubit in the state |1〉 and the rest in the state |0〉.
This means that Σ(n1, n2, n3)|W 〉

= iδn1+n2,2
(−1)n−2

√
n

(|100 . . .0〉 − |010 . . .0〉) +

(1− δn1+n2,2)|W (n1, n2, n3)〉, (6)

where 〈W (n1, n2, n3)|W 〉 = 0. Clearly, this implies that
〈W |Σ(n1, n2, n3)|W 〉 = 0, which ends the proof.

Discussion. Consequently, for odd n, the state

ρ =
1

2
|W 〉〈W |+ 1

2
|W 〉〈W |

has no genuine n-partite classical correlations, despite
the fact, as we have already shown, that it has genuine
n-partite quantum correlations. Note, as an aside, that it
does have (n − 1)-party correlations, in the sense speci-
fied initially. Note also that if instead of looking at corre-
lators, we look at the covariances Cov(X1

′, . . . , Xn
′), of

arbitrary observables X1
′, . . . , Xn

′ (which are not neces-
sarily traceless), then such covariances vanish for ρ.

The states of rank unity (pure states) do not lend
themselves to the phenomenon under study, while al-
ready rank-two states are shown to be eligible. Also,
while bipartite systems cannot show this phenomenon,
already a three-qubit system is qualified; for three
qubits, an example of a state like ours here has previ-
ously been found [16].

It is interesting to find whether the state has an un-
derlying local realistic model [6]. Since the classical cor-
relations of the state ρ are vanishing, we cannot apply
the existing multiparty Bell inequalities [9, 10, 11, 12]
to test for violation of local realism, as they are based
on genuine n-partite classical correlations. For example,
the necessary and sufficient conditions, for existence of
underlying local realistic models, in Ref. [9, 10, 11, 12],
can only predict that ρ has a local realistic description
for certain numbers of measurement settings of the ob-
servers. The existence of such multiparty states requires
the derivation of multiparty Bell inequalities that are
based on probabilities, à la Clauser-Horne inequalities
[17], or on the concepts of mutual information, entropy,
etc. If it happens that ρ does have a local realistic model,
then we will have a curious scenario, of a “classical
state” (in the sense that it has a local realistic description
even with general tests of local realism that not necessar-
ily involves correlators (cf. [18])) which has no genuine
classical correlations.

Another approach to address the problem of local re-
alism (at least numerically), as presented in the Ref. [19],
is to numerically check if the full set of probabilities in-
volved in an experiment on the n-particle state ρ, where

the k-th observer (k = 1, 2, . . . , n) chooses from a set
of mk von Neumann measurements on their qubit, ad-
mits a local realistic description. This powerful method
gives a sufficient and necessary conditions for the exis-
tence of a local realistic description. We have performed
numerical simulations for the state ρ, for three and five
qubits, using the above approach. The simulation was
made under the assumption that each observer chooses
up to four measurement settings on their qubit. In all
the cases, a local realistic description exists. Interest-
ingly, the state ρǫ = (1

2
+ ǫ)|W 〉〈W | + (1

2
− ǫ)|W̄ 〉〈W̄ |

violates local realism for ǫ > 10−3 (numerical precision
used in the simulation was 10−5), indicating that even a
small perturbation to the state ρ, drastically changes its
behavior, from the point of view local realistic theories.
Note that for any ǫ > 0 the state ρǫ has genuine n-partite
classical correlations.

It is important to mention here that multipartite W -
states have been prepared in the laboratory by several
groups in different systems (see e.g. [20, 21]). Therefore,
it is reasonable to hope that the effect discussed in this
paper can be seen in the laboratory, especially because
the effect can already be seen for three qubits. A possible
way to experimentally prepare the state ρ is by prepar-
ing an n + 1 qubit pure state 1√

2

(

|a〉 ⊗ |W 〉+ |b〉 ⊗ |W 〉
)

where |a〉 and |b〉 are orthogonal states of the n + 1th
qubit, and subsequently tracing out the n + 1th qubit.
In fact, very recently, this four qubit pure state for n =
3 has been experimentally prepared by using sponta-
neous parametric down converted photons [22].

Conclusion. We have proposed a plausible notion of
genuine n-party classical correlations in a multipartite
quantum state, and demonstrated by an explicit exam-
ple that it is possible for a state to be genuinely n-party
entangled without it having genuine n-party classical
correlation – at least for odd n (we expect the same to
occur for even n but don’t have an example as yet).

One possible reaction to this is to dispute the sound-
ness of our definition of classical correlations – how-
ever, it is not at all straightforward to come up with a
reasonable notion instead (e.g., there is no ready-to-use
entropic correlation measure for n-party systems, other-
wise we could try to follow in the steps of [23]), apart
from insisting that quantum correlations should imply
classical correlations. One should be cautious, however,
with this intuition, too: in [24] examples of asymptoti-
cally large bipartite states are presented with almost no
mutual information (i.e., classical correlation) compared
to almost maximal entanglement of formation. See also
the recent preprint [25] (cf. [26]), where a different way
of separating quantum from classical correlations is ex-
plored, with similar results.

Hence, for the moment, we have to be prepared to
accept the paradoxical statement that quantum correla-
tions can exist without accompanying classical correla-
tions. What are the consequences? One is to the Bell’s in-
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equalities, most of which – as already remarked – are ex-
pressed in terms of n-party correlators. For bipartite sys-
tems, there already exist Bell inequalities that use statis-
tics beyond correlators [17, 27, 28, 29]! However, in mul-
tipartite systems, such inequalities are absent. The ex-
ample provided in this paper leads to the need for new
Bell inequalities, based on concepts different than clas-
sical correlations to detect multiparticle nonclassicality.

The boundary between the classical and the quantum
worlds is a long-standing and arguably hard problem
in the foundations of physics. There are many ways of
looking at this boundary. We believe that the existence
of a state that has quantum correlations and yet has van-
ishing classical correlators is a splendid example to deal
with the question, e.g., by using “local realism” to char-
acterise the classical world.

Along with its direct effects in the science of quantum
information, the fact can have important consequences
in the physics of phase transitions [30], where so far the
usual method to detect a phase transition is to look at
the scaling of classical and quantum correlations in the
system; see [23] for an indication that most recently con-
densed matter physicists are abandoning correlators in
favour of universal, entropic, measures of correlation.
These tools, however, are restricted to bipartite correla-
tions. The existence of states with vanishing classical
correlations but with non-vanishing quantum correla-
tions opens up the possibility of phase transitions that
are detectable by quantum correlations only.

Finally let us mention here that important examples
exist where two-body correlations are not enough to de-
scribe the important phases/properties of the system.
And then researchers have resorted to many-body pa-
rameters. This, for instance, is the case in the Affleck-
Kennedy-Lieb-Tasaki system, where a certain “string or-
der” is necessary (see e.g. [31], and references therein).
The concept of “localizable entanglement” from quan-
tum information, has been a very successful one in de-
scribing many-body systems, and again it depends on
all the particles of the system [32]. Note also that the
usual intractability of many-body parameters of con-
densed matter systems may change in foreseeable fu-
ture, with the advent of experimentally realizable quan-
tum simulators: Many-body quantum correlated states
are being realized in several physical systems, ranging
from ion traps to down-converted photons in several
laboratories around the globe.
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