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ABSTRACT: In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining
projections of monthly mean maximum and minimum temperatures (Tmax and Tmin) to river-basin scale. The effectiveness
of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha
reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted
from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978–2000, and
(2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios
A1B, A2, B1 and COMMIT for the period 1978–2100. The predictor variables are classified into three groups, namely
A, B and C. Large-scale atmospheric variables such as air temperature, zonal and meridional wind velocities at 925 mb
which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as
latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth’s
surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups
A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor
variables by the CGCM3 and to study the predictor-predictand relationships. The impact of trend in predictor variables on
downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest
of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of
predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables,
was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance
of SVM models for downscaling Tmax and Tmin. Copyright  2008 Royal Meteorological Society
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1. Introduction

Information concerning spatio-temporal patterns of tem-
perature and their variability is necessary to model vari-
ous surface processes at global and local scales in disci-
plines like hydrology, anthropology, agriculture, forestry,
environmental engineering and climatology. Temperature
influences biological events like diseases (Collinson and
Sparks, 2004), phenological events (e.g. the timing of
natural events such as flowering, breeding) and agronomy
(Croxton et al., 2006), and is as an indicator of climate
change. Hence, there is a need to access the past and
assess the future temperature and its variability at dif-
ferent time scales to study the impact of climate change
at both global and local scales. In general, local scale is
defined based on geographical, political or physiographic
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considerations and is of the order of hundreds of square
kilometers.

A proper assessment of probable future temperature
and its variability is to be made for various climate sce-
narios. These scenarios refer to plausible future climates,
which have been considered for explicit use in investigat-
ing the potential consequences of anthropogenic climate
change and natural climate variability. Since climate sce-
narios envisage assessment of future developments in
complex systems, they are often inherently unpredictable,
insufficiently assessed, and have high scientific uncer-
tainties (Carter et al., 2001). Therefore it is preferable to
consider a range of scenarios in climate impact studies, as
such an approach better reflects the uncertainties of pos-
sible future climate change (Houghton et al., 2001). The
scenarios which are studied in this paper are relevant to
Intergovernmental Panel on Climate Change’s (IPCC’s)
fourth assessment report (AR4) which was released in
2007.

Global climate models (GCMs) are among the most
advanced tools which use transient climate simulations to
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simulate climatic conditions on earth, hundreds of years
into the future. In a transient simulation, anthropogenic
forcings, which are mostly decided based on IPCC cli-
mate scenarios, are changed gradually in a realistic pat-
tern. The GCMs are usually run at coarse-grid resolution
and as a result they are inherently unable to represent
sub-grid-scale features like orography and land use, and
dynamics of mesoscale processes. Consequently, outputs
from these models cannot be used directly for climate
impact assessment on a local scale. Hence in the past
decade, several downscaling methodologies have been
developed to transfer the GCM-simulated information to
local scale.

The present study is motivated to develop effec-
tive models for downscaling temperature using a
novel machine-learning technique called support vector
machine (SVM). The role of predictors on the down-
scaled temperature and the implications of climate change
on temperature in the Malaprabha river basin of India are
studied. The river basin is considered to be a climatically
sensitive region. In general, a river basin refers to the
portion of land drained by many streams and creeks that
flow downhill to form tributaries to the main river.

The remainder of this paper is structured as follows:
Section 2 presents an overview of the study. Section 3
provides a description of the study region and motiva-
tion for its selection. Section 4 provides details of data
used in the study. Section 5 describes how the various

predictor variables behave for the different scenarios and
the reasons for selection of the probable predictor vari-
ables for downscaling. Section 6 explains the proposed
methodology for development of the SVM model for
downscaling Tmax and Tmin to the river basin. Section
7 presents the results and discussion. Finally, Section 8
provides a summary of the work presented in the paper
and the conclusions drawn from the study.

2. Overview of the study

This section briefly outlines the objectives of the study.
The various downscaling methods available in literature,
the advantages of SVM for downscaling, the fundamental
principle of SVM and its formulation are discussed in
detail in Anandhi et al. (2008) and Tripathi et al. (2006).

A review of the latest literature on downscaling of
temperature by using transfer functions is presented
in Table I. Details pertaining to selection of predictors
for downscaling temperature are given in Schoof et al.
(2007) from articles catalogued up to 2004. To the knowl-
edge of the authors, no studies have so far been carried
out in India for downscaling temperature to a river-basin
scale, nor was there any prior work aimed at downscal-
ing third-generation Canadian Coupled Global Climate
Model (CGCM3) simulations to temperature at river-
basin scale for various IPCC emission scenarios. Further,

Table I. Literature Review on predictors used for statistical downscaling of temperature by using transfer functions.

Sl. no Predictor Predictand Data Technique Region Author

1 ua 5, va 5, zg 5,
ua 7, va 7, zg 7

Daily near
surface
lapse rates

NCEP–NCAR
reanalysis datasets

Extrapolation Canada Marshall
et al. (2007)

2 Mgeos, Mz 5, Mz 8
Mrh850/Mhus850,
mslp, Mzgt 8 5 for
downscaling Tmin

Daily Tmax

and Tmin

HadCM3 and
CGCM2 simulations
for SRES A2
scenario, and
NCEP–NCAR and
ECMWF reanalysis
data sets

MLR USA (26
stations)

Schoof
et al. (2007)

Mgeow, Mz 5, Mz 8
mslp, Mzgt 8 5 for
downscaling Tmax

3 mslp, afs s, afs 5,
afs 8, ua s, ua 5,
ua 8, va s, va 5, va 8,
zg 5, zg 8, di s, di 8,
wd 5, wd 8, rh ns,
hus ns, hus 5, hus 8,
ta 2m, Z s, Z 5, Z 8

Daily Tmax

and Tmin

CGCM1 simulations
for IS92a scenario,
NCEP data for grid
point closest to
watershed

TNN and multiple
regression based
SDSM

Canada
(river basin)

Dibike and
Coulibaly
(2006)

4 ta ns, mslp Daily
temperature

CSIRO/Mk2,
HadCM3, PCM, and
ECHAM4 datasets for
SRES A2 and B2
scenarios

Regression models Slovenia Bergant
et al. (2006)

Note: Abbreviations are explained in Appendix.

Copyright  2008 Royal Meteorological Society Int. J. Climatol. 29: 583–603 (2009)
DOI: 10.1002/joc



ROLE OF PREDICTORS IN DOWNSCALING TEMPERATURE FOR IPCC SCENARIOS USING SVM 585

Table I. (Continued ).

Sl. no Predictor Predictand Data Technique Region Author

5 Monthly Tmax for
downscaling Tmax

Daily and
monthly
Tmax and
Tmin

HadCM3 projections
for GGa emissions
scenario

Transfer function for
spatial downscaling
from GCM grid box
to station, CLIGEN
for temporal
downscaling from
monthly to daily scale

USA (one
station in
Oklahoma)

Zhang
(2005)

Monthly Tmin for
downscaling Tmin

6a va ns, hus ns, hus 8,
zg 5, ta m

Daily Tmax CGCM1 datasets for
IS92a scenario, and
NCEP–NCAR
reanalysis datasets

SDSM Canada
(river basin)

Dibike and
Coulibaly
(2005)

6b va ns, zg ns, hus ns,
hus 8, zg 5, ta m

Daily Tmin

7 Tmean Monthly
temperature

HadCM3, ECHAM4
datasets for SRES A2
and B2 scenarios

LS Sri Lanka Droogers
and Aerts
(2005)

8 zg 5, zgt 0 5 Monthly
Tmean, Tmin

and Tmax

NCEP–NCAR
reanalysis data sets

SSA, PCA, CCA Turkey (62
stations)

Tatli et al.
(2005)

9 Mslp, ta 8, prw, zg 0,
zg 5, zgt 0 5

Daily Tmin

and Tmax

NCEP–NCAR
reanalysis data sets,
simulations from
three AOGCMs -
BMRC, CSIRO,
LMD

AM France (17
stations)

Timbal
et al. (2003)

10 zg 5 Winter
monthly
temperature

NCEP–NCAR
reanalysis data sets

CCA China (147
stations)

Chen and
Chen (2003)

11 Tmax and Tmin value
for previous day,
Tmean 2m, hus ns,
rh ns, mslp, ua, va, F,
Z, zg 5

Daily Tmax

and Tmin

NCEP–NCAR
reanalysis data sets,
CGCM1 dataset for
greenhouse-gas-plus-
sulphate-aerosols
experiment

SDSM Canada
(region
Toronto)

Wilby et al.
(2002)

12 ta 2m, slp Monthly
Tmean

ECHAM4 EOF Norway
(gridded
region)

Benestad
(2001)

Note: Abbreviations are explained in Appendix.

it is noted that latent heat (LH), sensible heat (SH), short-
wave and longwave radiation fluxes, which control the
temperature at the surface, have not been considered as
plausible predictor variables for downscaling tempera-
ture.

In the present study, the least square-support vector
machine (LS-SVM) model is introduced to downscale
Tmax and Tmin to a river-basin scale. The effectiveness
of the SVM is demonstrated through application to
downscale Tmax and Tmin in catchment of Malaprabha
reservoir from simulations of CGCM3 for latest IPCC
scenarios given in Special report of Emission scenarios
(SRES), namely, A1B, A2, B1 and COMMIT. Each of
the scenarios is explained briefly in Table II.

The effectiveness of the LS-SVM in downscaling
precipitation to the river-basin scale has been brought out
in Anandhi et al. (2008). Therein, the climate of the study
region is stratified into two seasons (wet/monsoon season
and dry season) based on precipitation to effectively
capture the relationship between precipitation and its
predictor variables in each season.

Though conceptually the work carried out in this study
is similar to Anandhi et al. (2008), there are certain
differences in the actual procedure of implementation
and validation. The surface temperature in a region is
dominated by localized effects such as evaporation, SH
flux and vegetation in the region. Therefore, the predictor
variables influencing surface temperature in the study
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Table II. A brief explanation of the scenarios considered in the study.

Dataset Description IPCC
name

Dates

Climate of the 20th
century (20c3m)

Atmospheric CO2 concentrations and other input
data are based on historical records or estimates
beginning around the time of the Industrial
Revolution.

20C3M 1870–2000

Year 2000 CO2

maximum (COMMIT)
Atmospheric CO2 concentrations are held at year
2000 levels. This experiment is based on
conditions that already exist (e.g. ‘committed’
climate change).

COMMIT 2001–2100

550 ppm CO2 maximum
(SRES B1)

Atmospheric CO2 concentrations reach 550 ppm
in the year 2100 in a world characterized by low
population growth, high GDP growth, low energy
use, high land-use changes, low resource
availability and medium introduction of new and
efficient technologies.

SRES B1 2001–2100

720 ppm CO2 maximum
(SRES A1B)

Atmospheric CO2 concentrations reach 720 ppm
in the year 2100 in a world characterized by low
population growth, very high GDP growth, very
high energy use, low land-use changes, medium
resource availability and rapid introduction of new
and efficient technologies.

SRES A1B 2001–2100

850 ppm CO2 maximum
(SRES A2)

Atmospheric CO2 concentrations reach 850 ppm
in the year 2100 in a world characterized by high
population growth, medium GDP growth, high
energy use, medium/high land-use changes, low
resource availability and slow introduction of new
and efficient technologies.

SRES A2 2001–2100

region are stratified based on location (i.e. whether the
surface is land or ocean) to assess the impact of using
predictor variables pertaining to (1) only land grid points,
and (2) both ocean and land grid points on downscaled
temperature. As there are no distinct seasons based on
temperature, seasonal stratification as in the case of
precipitation is not relevant. Further, in this study, (1) in
addition to the predictors generally used for downscaling
temperature, a new set of predictors namely the LH, SH,
shortwave and longwave radiation fluxes which control
the temperature at the surface, have been additionally
considered as plausible predictor variables; (2) effect of
length of the calibration period on the downscaled results
is examined; (3) relationship between the trend of the
predictors and predictand is analysed; (4) sensitivity of
the projections obtained for temperature to the predictor
group is studied.

3. Study region

The study region is the catchment of Malaprabha reser-
voir in the Karnataka state of India. It covers an area
of 2564 km2 situated between 15°30′N and 15°56′N lat-
itudes and 74°12′E and 75°15′E longitudes. The mean
monthly Tmax in the catchment varies from 25 to 34 °C
and mean annual Tmax is 28 °C. The mean monthly Tmin

ranges from 17 to 21 °C (Figure 1). The day temperatures
rarely fall below 25 °C. The hottest months are April
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Figure 1. Maximum and minimum temperature in the study region.

and May with mean maximum temperature of around
34 °C. December and January are the coldest months
with mean minimum temperature of around 17 °C. On
annual basis, the diurnal difference between the maxi-
mum and the minimum temperatures is in the range of
8–13 °C. The Malaprabha basin is one of the major life-
lines for the arid regions of north Karnataka (possibly
the largest arid region in India outside the Thar desert).
Malaprabha reservoir supplies water for irrigation to the
districts of northern Karnataka with an irrigable area of
218 191 hectares. The location map of the study region
is shown in Figure 2.

Regions with arid and semi-arid climates could be
sensitive even to insignificant changes in climatic
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Figure 2. Location map of the study region in Karnataka State of India. The latitude, longitude and scale of the map refer to Karnataka State.
The data extracted at CGCM3 and 1.9° grid points are re-gridded to the nine 2.5° NCEP grid points. This figure is available in colour online at

www.interscience.wiley.com/ijoc

characteristics (Linz et al., 1990). Temperature affects
the evapotranspiration (ET, Jessie et al., 1996), evapora-
tion and desertification processes and is also considered
as an indicator of environmental degradation and cli-
mate change. Changes in variables such as ET and soil
evaporation affect soil moisture content (Pitman, 2003).
Increase in temperature would result in increase in ET
which is a major cause of water depletion from river-
ine systems in arid and semi-arid climates (Dahm et al.,
2002). Interestingly, investigations of Roderick and Far-
quhar (2005) indicate a decline in potential evaporation
in India for the period 1961–1992, despite increase in
near-surface air temperature. This is because temperature
is only one of the factors that determines the evapora-
tive demand of the atmosphere, the others being vapour-
pressure deficit, wind speed and net radiation. The change
in evaporative demand depends on how those factors
change, as well as on the change in temperature (Rosen-
berg et al., 1989).

The motivation for the present study is to assess
plausible impact of climate change on Tmax and Tmin in
the study region, which indirectly have implications on
inflows into the Malaprabha reservoir, water availability
for irrigation and the ET in the command area.

4. Data extraction

The reanalysis data of the monthly mean atmospheric
variables and fluxes of the study region prepared by
National Centers for Environmental Prediction (NCEP;

Kalnay et al., 1996), are extracted for the period January
1978 to December 2000. The atmospheric variables are
extracted for nine grid points whose latitude ranges from
12.5 to 17.5 °N, and longitude ranges from 72.5 to 77.5 °E
at a spatial resolution of 2.5°. The atmospheric fluxes are
extracted for 20 grid points whose latitude ranges from
12.3 to 20.0 °N and longitude ranges from 73.5 to 77.5 °E
at a spatial resolution of approximately 1.9°.

The Tmax and Tmin are estimated at monthly time scale
using records available from two temperature gauging
stations. One of them is located in Santhebastwadi at
15°46′N latitude and 74°27′E longitude and the other
is situated in Gadag at 15°25′N latitude and 75°38′E
longitude. The gauging station at Santhebastwadi lies
within the study region and data is available for the
period January 1992 to December 2000. The station at
Gadag, lies in the Malaprabha command area and data
is available for the period January 1978 to December
2000. Primary source of the data is Water Resources
Development Organization, Government of Karnataka,
Bengalooru, India.

The GCM data used in the study are simulations
obtained from CGCM3 of the Canadian Center for Cli-
mate Modeling and Analysis (CCCma), through its web-
site http://www.cccma.bc.ec.gc.ca/. The data comprise of
present-day (20C3M) and future simulations forced by
four emission scenarios, namely A1B, A2, B1 and COM-
MIT. A brief description of these scenarios is provided
in Table II. The climate data are extracted at monthly
time scale for the period January 1978 to December
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2100, for nine grid points whose latitude ranges from
12.99 °N to 20.41 °N, and longitude ranges from 71.25 °E
to 78.75 °E. The grid spatial resolution of CGCM3 is uni-
form along the longitude with grid box size of 3.75° and
nearly uniform along the latitude (approximately 3.75°).
The spatial domain of climate variables is chosen as nine
grid points. In general, the explanatory power of a given
predictor will vary both spatially and temporally for a
given predictand. The use of predictors directly over-
lying the target grid box fails to capture the strongest
correlations (between predictor and predictand), as this
domain may be geographically smaller in extent than the
circulation domains of the predictors. Hence the compar-
ison of different predictors with a larger spatial domain
is found useful in downscaling as they may be critical
factors affecting the realism and stationarity of the down-
scaled predictand (Wilby and Wigley, 2000). However,
the correlation between the predictors and a given predic-
tand vary both seasonally and geographically. The spatial
domain selected is subjective to the predictor, predictand,
season and geographical location and for this purpose no
fixed rules are available. The nine grid points surround-
ing the study region are selected as the spatial domain
of the predictors to adequately cover the various circula-
tion domains of the predictors considered in this study.
However, while working on location-based stratification,
the spatial domain could be reduced to only land grid
points as the predictand in the region is dominated by
land effects. The GCM data and the information extracted
on atmospheric fluxes is re-gridded to a common 2.5°

using grid analysis and display system (GrADS; Doty
and Kinter, 1993).

The development of downscaling models for each
of the predictand variables Tmax and Tmin, begins with
selection of potential predictors, followed by training
and validation of the SVM downscaling model. The
developed model is then used to obtain projections of
Tmax and Tmin from simulations of CGCM3.

5. Selection of the probable predictors

The selection of appropriate predictors for downscaling
predictands is one of the most important steps in a down-
scaling exercise (Hewitson and Crane, 1996; Cavazos and
Hewitson, 2005). The choice of predictors could vary
from region to region depending on the characteristics of
the large-scale atmospheric circulation and the predictand
to be downscaled. Any type of variable or index can be
used as predictor as long as it is reasonable to expect
that there exists a relationship between the predictor and
the predictand (Wetterhall et al., 2005). Often, in climate
impact studies, such predictors are chosen as variables
that are: (1) reliably simulated by GCMs and are readily
available from archives of GCM output and reanalysis
datasets, (2) strongly correlated with the predictand and
(3) based on previous studies.

For this study, predictor variables which have a phys-
ically meaningful relationship with each of the two pre-
dictands (Tmax and Tmin) are classified into three groups

A, B and C. Large-scale atmospheric variables, namely
air temperature, zonal and meridional wind velocities at
925 mb, which are often used for downscaling tempera-
ture, are considered as predictors in Group A. Surface flux
variables namely LH, SH, shortwave radiation and long-
wave radiation fluxes fall in Group B. Group C comprises
of all the predictor variables in both the Groups A and B.
To the best of our knowledge, the predictors in Group B
have not been considered for downscaling temperature in
the past. In this study, these variables have been tried as
they control the temperature of the earth’s surface. The
incoming solar radiation is the source of heating the sur-
face, while LH flux, SH flux and longwave radiation will
cool the surface.

Scatter plots and cross-correlations are in use to
select predictors (Dibike and Coulibaly, 2006). In this
study, scatter plots are prepared and cross-correlations
are computed to investigate the presence of nonlinear-
ity/linearity in dependence structure (1) between the pre-
dictor variables in NCEP and GCM datasets (Figures 3
and 4) and (2) between the predictor variables in NCEP
dataset and each of the predictands (Figure 5). The cross-
correlations are estimated using three measures of depen-
dence namely, product moment correlation (Pearson,
1896), Spearman’s rank correlation (Spearman, 1904a
and b) and Kendall’s tau (Kendall, 1951). Scatter plots
and cross-correlations between each of the predictor vari-
ables in NCEP and GCM datasets are useful to verify if
the predictor variables are realistically simulated by the
GCM. The same between the predictor variables in NCEP
dataset and each of the predictands are useful to verify if
the predictor and predictand are well correlated.

6. Development of SVM downscaling model

This section outlines the procedure to develop a SVM
model for downscaling temperature. A separate SVM
model was developed for downscaling each predictand
(Tmax and Tmin). Further, each group of predictors (A, B
and C) from each of the two domains (land, land and
ocean) is considered as input to the model for down-
scaling each predictand. Furthermore, for downscaling
Tmax, each model is calibrated using shorter and longer
records to examine the sensitivity of performance of the
model to the length of the record. Thus, 18 SVM mod-
els are developed, one for each combination of predictor
group, predictand, calibration period and spatial domain
of climate variables (Table III). The methodology used
for developing all the 18 SVM downscaling models is
unique as explained below.

The procedure for downscaling the predictands starts
with the selection of seven predictors that are divided
into Groups A, B and C. m1 indicates the number of
probable predictors in each group. For Groups A, B and
C, the values of m1 are 3, 4 and 7 respectively. Scatter
plots and cross-correlation bar plots are used to study the
predictors and their relationship with Tmax and Tmin.

On an annual basis, the surface temperature difference
between the hottest and coolest months is about 3 °C on
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(a)

(b)

Figure 3. Scatter plots prepared to investigate dependence structure between probable predictor variables in NCEP and GCM datasets. (a) and
(b) denote plots based on Group A and Group B predictors, respectively. In each plot, ordinate denotes GCM value of predictor variable, whereas

abscissa represents NCEP value of the predictor variable. This figure is available in colour online at www.interscience.wiley.com/ijoc

(a)

(b)

Figure 4. Bar plots for cross-correlation computed between probable predictors in NCEP and GCM datasets. (a) and (b) denote plots based on
Group A and Group B predictors respectively. P, S and K represent product moment correlation, Spearman’s rank correlation and Kendall’s tau

respectively. This figure is available in colour online at www.interscience.wiley.com/ijoc

the oceans and about 8 °C on land. On the other hand, the
same at 925 mb is about 6 °C on oceans and about 8 °C
on land. Therefore, in the second step, to assess the effect
of variation of temperature patterns on land and sea,
location-based stratification was carried out to form two

domains, one comprising of predictor variables pertaining
to only land grid points (number of grid points = 6) and
the other containing those pertaining to both ocean and
land (number of grid points = 9). From the m1 probable
predictors, m2 potential predictors for downscaling are

Copyright  2008 Royal Meteorological Society Int. J. Climatol. 29: 583–603 (2009)
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(a)

(b)

(c)

(d)

Figure 5. Scatter plots prepared to investigate dependence structure between probable predictor variables in NCEP data and the observed
Tmax and Tmin. (a) and (b) denote plots based on Group A and Group B predictors, respectively, for the predictand Tmax, while (c) and
(d) denote plots based on Group A and Group B predictors, respectively, for the predictand Tmin. This figure is available in colour online

at www.interscience.wiley.com/ijoc

selected by specifying two threshold values (Tng1 and
Tnp). For example, for Group A m2 = 3 × number of
grid points, and for Group B m2 = 4 × number of grid
points. The Tng1 is for cross-correlation between NCEP
and GCM datasets, whereas the same between NCEP
and predictand datasets is Tnp. The three dependence

measures (product moment correlation, Spearman’s rank
correlation and Kendall’s tau) were considered for com-
putation of cross-correlation. The m2 predictors with cor-
relations above the threshold values are selected as the
potential predictors. The data of potential predictors is
first standardized. Standardization is widely used prior to

Copyright  2008 Royal Meteorological Society Int. J. Climatol. 29: 583–603 (2009)
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Table III. Different SVM downscaling model variants used in the study for obtaining projections of predictands Tmax and Tmin.

Predictand Predictor Spatial domain Time period of
downscaling

Calibration
period

Model
number

Tmax Group A Land (small domain) 1992–2100 1992–1997 Model 1
1978–2100 1978–1993 Model 2

Land + sea (large domain) 1992–2100 1992–1997 Model 3
1978–2100 1978–1993 Model 4

Group B Land (small domain) 1992–2100 1992–1997 Model 5
1978–2100 1978–1993 Model 6

Land + sea (large domain) 1992–2100 1992–1997 Model 7
1978–2100 1978–1993 Model 8

Group C Land (small domain) 1992–2100 1992–1997 Model 9
1978–2100 1978–1993 Model 10

Land + sea (large domain) 1992–2100 1992–1997 Model 11
1978–2100 1978–1993 Model 12

Tmin Group A Land (small domain) 1992–2100 1992–1997 Model 13
Land + sea (large domain) 1992–2100 1992–1997 Model 14

Group B Land (small domain) 1992–2100 1992–1997 Model 15
Land + sea (large domain) 1992–2100 1992–1997 Model 16

Group C Land (small domain) 1992–2100 1992–1997 Model 17
Land + sea (large domain) 1992–2100 1992–1997 Model 18

statistical downscaling to reduce bias (if any) in the mean
and the variance of GCM predictors with respect to that
of NCEP-reanalysis data (Wilby et al., 2004). The proce-
dure typically involves subtraction of mean and division
by the standard deviation of the predictor. The data of
standardized NCEP predictor variables is then processed
using principal component analysis to extract principal
components (PCs) which are orthogonal and which pre-
serve more than 98% of the variance originally present
in it. A feature vector is formed for each month of the
record using the PCs. The feature vector is the input to
the SVM model, and the contemporaneous value of pre-
dictand is the output. The PCs account for most of the
variance in the input data and are also independent of
each other. Hence, the use of PCs as input to a down-
scaling model helps in making the model more stable and
also reduces the computational burden.

To develop the SVM downscaling model, the feature
vectors which are prepared from NCEP record are
partitioned into a training set and a test set. The training
set comprises approximately the first 75% of the feature
vectors, and the remaining form the test set. Feature
vectors in the training set are used for calibrating the
model, and those in the test set are used for validation.
The normalized mean squared error (NMSE) under
validation is used as an index to assess the performance
of the model.

The training of SVM involves selection of the model
parameters σ and C. The width of radial basis function
(RBF) kernel σ provides an idea of the smoothness of the
derived function. Smola et al. (1998), while explaining
the regularization capability of the RBF kernel, have
shown that a large kernel width acts as a low-pass filter in
frequency domain. It attenuates higher-order frequencies,
resulting in a smooth function. On the other hand, RBF
with small kernel width retains most of the higher-order

frequencies leading to an approximation of a complex
function by the learning machine. In this study, grid
search procedure (Gestel et al., 2004) is used to find
the optimum ranges for the parameters. Subsequently,
the optimum values of parameters are obtained from
the selected ranges using stochastic search technique of
genetic algorithm (Haupt and Haupt, 2004).

The feature vectors that are prepared from GCM simu-
lations are run through the calibrated and validated SVM
downscaling model to obtain future projections of predic-
tand for each of the four emission scenarios (i.e. A1B,
A2, B1 and COMMIT). Subsequently, for each scenario,
the projected values of predictand are segregated into five
parts (2001–2020, 2021–2040, 2041–2060, 2061–2080
and 2081–2100) to determine the future trend in projec-
tions.

The performance of the developed SVM models is
evaluated using the following statistical measures and
product moment correlation coefficient (CC).

1. Sum of squares of errors (SSE), defined as

SSE =
N∑

i=1

(yi − ŷi )
2 (1)

2. Mean square error (MSE), given as

MSE = 1

N

N∑
i=1

(yi − ŷi )
2 (2)

3. Root mean square error (RMSE), defined as

RMSE =
√√√√ 1

N

N∑
i=1

(yi − ŷi )2 (3)
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4. NMSE, (Zhang and Govindaraju, 2000), given as

NMSE =

1

N

N∑
i=1

(yi − ŷi )
2

(Sobs)
2 (4)

5. Nash-Sutcliffe error estimate (Ef, Nash and Sutcliffe,
1970), defined as

Ef = 1 −

1

N

N∑
i=1

(yi − ŷi )
2

1

N

N∑
i=1

(yi − yi)
2

(5)

6. Mean absolute error (MAE, Johnson et al., 2003),
given as

MAE = 1 −

N∑
i=1

|(yi − ŷi)|
N∑

i=1

|(yi − yi)|
(6)

7. Mean cumulative error (MCE, Johnson et al., 2003),
defined as

MCE = 1 −

∣∣∣∣∣∣∣∣∣∣∣∣

√√√√√√√√√√

N∑
i=1

ŷi

N∑
i=1

yi

−

√√√√√√√√√√

N∑
i=1

yi

N∑
i=1

ŷi

∣∣∣∣∣∣∣∣∣∣∣∣

(7)

where N represents the number of feature vectors pre-
pared from the NCEP record, yi and ŷi denote the
observed and the simulated values of predictand respec-
tively, yi and Sobs are the mean and the standard deviation
of the observed predictand.

7. Results and discussion

Downscaling models are developed following the
methodology described in Sections 5 and 6. The results
and discussion are presented in this section.

7.1. Probable predictor selection

The most relevant probable predictor variables necessary
for developing the SVM downscaling model are identified
by using scatter plots and the three measures of depen-
dence following the procedure described in Section 5.
The scatter plots and cross-correlations enable verifying
the reliability of the simulations of the predictor vari-
ables by the GCM and to study the predictor–predictand
relationships. For Groups A and B, the scatter plots
between the probable predictor variables in NCEP and

GCM datasets are shown in Figure 3, while the cross-
correlations computed between the same are shown in
Figure 4. In general, the predictor variables in Groups A
and B are realistically simulated by the GCM. From the
scatter plots shown in Figure 3, it can be inferred that
predictors in Group A are simulated better than those in
Group B by the GCM. Further, it is noted that zonal wind
velocity at 925 mb (Ua 925) is the most realistically sim-
ulated variable with a CC greater than 0.9, while LH flux
is the least correlated variable between NCEP and GCM
datasets (CC = 0.56; Figures 3 and 4). It is to be noted
that these figures represent how well the predictors sim-
ulated by NCEP and GCM are correlated. Generally, the
correlations are not very high due to the differences in
the simulations of GCM (e.g. for different runs) and pos-
sible errors in NCEP-reanalysis. In addition, the inherent
errors due to re-gridding from GCM scale to NCEP scale
also contribute to low correlation.

To investigate the relationship between the proba-
ble predictors and predictands, scatter plots and cross-
correlation bar plots between the probable predictor vari-
ables in NCEP data and each of the predictands (Tmax

and Tmin) are presented in Figures 5 and 6 respectively.
From a perusal of the scatter plots, it appears that the
linear dependence structure between predictor variables
and predictands is weaker for Tmin when compared to
Tmax. From the two figures, it can be observed that Ta
925 and shortwave radiation (SWR) flux have high cor-
relation with both the predictands, while Ua 925, Va 925,
LH and longwave radiation (LWR) fluxes have less cor-
relation with the same. Ta 925, Ua 925, SH, and LWR
have a positive correlation with both Tmax and Tmin. LH,
Va 925 and SWR have a negative correlation with both
the predictands. Among the two predictands, the Tmax is
more correlated with the predictors.

The predictors can be ranked based on the relative
magnitude of cross-correlations estimated by each mea-
sure of dependence. Results show similar (or nearly
equal) rank for any chosen predictor by all the three
dependence measures considered, indicating that the
results are reliable. The results of this analysis indicate
that Ta 925 is a better predictor in the Group A, while
SWR and SH are better predictors in the Group B, while
all these three (Ta 925, SWR and SH) are better pre-
dictors in the Group C, since Group C is a combination
of predictors in Groups A and B. These results give an
overall picture of relationships between predictors and
predictands over all the nine grid points considered.

7.2. Analysis of selected GCM and NCEP probable
predictors

At each of the NCEP grid points, the trend in the GCM
data and bias in the mean and variance of the same
relative to that of the NCEP data are assessed using
box plots for the period 1992–2100. The span of the
box represents the interquartile range of the predictor
variable. The whiskers extend from the box to 5 and
95% quantiles on the lower and the upper side of the
box, respectively. In Figure 7, typical results of the box
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(a) (b)

(c) (d)

Figure 6. Bar plots for cross-correlation computed between probable predictors in NCEP data and observed Tmax and Tmin. (a) and (b) denote
plots based on Group A and Group B predictors, respectively, for the predictand Tmax, while (c) and (d) denote plots based on Group A and
Group B predictors, respectively, for the predictand Tmin. P, S and K represent product moment correlation, Spearman’s rank correlation and

Kendall’s tau, respectively. This figure is available in colour online at www.interscience.wiley.com/ijoc

plots that are prepared by using NCEP and GCM data at
NCEP grid point 5, are presented in (i). The same results
using GCM data for the future (2001–2100), for the four
scenarios A1B, A2, B1 and COMMIT are shown in (ii),
(iii), (iv) and (v), respectively (Figure 7).

The impact of the temporal trend in predictor vari-
ables on downscaled temperature was studied. For a
variable, the trend is determined by comparing the mean
of the historical (observed) values with the mean esti-
mated for future projections simulated by GCM, using
20-year intervals (2001–2020, 2021–2040, 2041–2060,
2061–2080 and 2081–2100). It can be seen from
Figure 7(a) that the predictor variable, Ta 925, shows an
increasing trend, while the rest of the predictors show no
trend. The projected increase in Ta 925 is high for A2
scenario (Figure 7(a) (iii)), while it is least for B1 sce-
nario (Figure 7(a) (iv)), whereas no trend is discerned
with the COMMIT scenario (Figure 7(a) (v)). This is
because among the scenarios considered, the scenario A2
has the highest concentration of carbon dioxide (CO2) of
850 ppm, while the same for A1B, B1 and COMMIT
scenarios are 720, 550 and ≈370 ppm respectively. Rise
in the concentration of CO2 in the atmosphere causes the
earth’s average temperature to increase. In the COMMIT
scenario, where emissions are kept at the same levels as
in the year 2000, no significant trend in the pattern of
projected future temperature could be discerned. Analy-
sis of land surface temperature data extracted from GCM
shows a similar trend as Ta 925 for all the scenarios.

Mean, and variance (which is reflected by interquartile
range of each box in the box plot) estimated for each
of the probable predictor variables in NCEP and GCM

datasets are presented in part (i) of Figure 7 for grid
point 5, for brevity. Bias is seen in the mean and the
variance of the GCM data relative to the NCEP data
for almost all the predictor variables. The magnitude of
this bias is found to vary from one predictor to another,
and from one grid point to another. The mean statistic
estimated for Va 925, LH and SH fluxes simulated by
the GCM is deflated with respect to that estimated for
the respective NCEP variables. On the other hand, the
statistic computed for SWR and LWR simulated by the
GCM are inflated. Further, it may be noted that the
interquartile ranges for Ua 925, Va 925, SWR and LWR
simulated by the GCM are large compared to those for
respective NCEP variables. The relative bias observed for
predictor variables in Group A is less than that estimated
for the variables in Group B. This is in agreement with
observations based on visual interpretation of scatter
plots (Figure 3). Hence the standardization of predictor
variables prior to developing the downscaling models is
justified. The standardization is useful to reduce bias in
the mean and variance of GCM predictors relative to
NCEP data, while maintaining the trend in the predictor
variables.

7.3. Selection of the potential predictors

For downscaling each of the two predictands (Tmax and
Tmin), the potential predictor variables are identified for
each group of probable predictors by using scatter plots
and the three measures of dependence described in Sec-
tion 6. The selected potential predictors, which are listed
in Table IV, are used to develop the SVM downscaling
models. From the Table it can be observed that air
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7. Typical results for determining the trend of the predictor variables. Air temperature at 925 mb, zonal wind velocity at 925 mb,
meridional wind velocity at 925 mb, latent heat flux, sensible heat flux, longwave radiation flux, and shortwave radiation flux for grid point 5
are denoted as (a), (b), (c), (d), (e), (f) and (g), respectively. The horizontal line in the middle of the box represents median. The circle and
star denote the mean values of predictor variable for NCEP and GCM datasets respectively. The gap between star and circle denotes bias in the
predictor. The line joining squares depicts the mean trend projected by GCM for the predictor variable. In (ii), (iii), (iv) and (v) the line that joins
the circles indicates the historical trend of the predictor variable. This figure is available in colour online at www.interscience.wiley.com/ijoc

temperatures and meridional wind velocities at 925 mb
are selected as potential predictors from Group A. For
downscaling maximum temperature SH, longwave and

shortwave radiation fluxes are selected as potential pre-
dictors from Group B, whereas air temperatures and
meridional wind velocities at 925 mb, SH and shortwave

Copyright  2008 Royal Meteorological Society Int. J. Climatol. 29: 583–603 (2009)
DOI: 10.1002/joc



ROLE OF PREDICTORS IN DOWNSCALING TEMPERATURE FOR IPCC SCENARIOS USING SVM 595

Table IV. List of probable and potential predictors selected for use in this study for downscaling Tmax and Tmin. The model
numbers are defined in Table III.

Model number Probable predictors Potential predictors selected

Names NCEP grid points

1 ta 925, ua 925, va 925 ta 925
va 925

2,3,5,6
2,5

2 ta 925, ua 925, va 925 ta 925
va 925

2,3,5,6
2,5

3 ta 925, ua 925, va 925 ta 925
va 925

1,2,3,4,5,6,7,8,9
1,2,4,5,7,8,9

4 ta 925, ua 925, va 925 ta 925
va 925

1,2,3,4,5,6,7,8,9
1,2,4,5,7,8,9

5 LH, SH, LWR, SWR SH
LWR
SWR

2,3,5,6
2,6
2,3,5,6

6 LH, SH, LWR, SWR SH
LWR
SWR

2,3,5,6
2,3,6
2,3,5,6

7 LH, SH, LWR, SWR SH
LWR
SWR

1,2,3,5,6,8,9
3,6
1,2,3,4,5,6,7,8,9

8 LH, SH, LWR, SWR SH
LWR
SWR

1,2,3,5,6,8,9
3,6,9
1,2,3,4,5,6,7,8,9

9 ta 925, ua 925, va 925, LH, SH, LWR, SWR SH
SWR
ta 925
va 925

2,3,5,6
2,3,5,6
2,3,5,6
2

10 ta 925, ua 925, va 925, LH, SH, LWR, SWR SH
SWR
ta 925
va 925

2,3,5,6
2,3,5,6
2,3,5,6
2

11 ta 925, ua 925, va 925, LH, SH, LWR, SWR SH
SWR
ta 925
va 925

1,2,3,5,6,8,9
1,2,3,4,5,6,7,8,9
2,3,4,5,6,7,8,9
2

12 ta 925, ua 925, va 925, LH, SH, LWR, SWR SH
SWR
ta 925
va 925

1,2,3,5,6,8,9
1,2,3,4,5,6,7,8,9
2,3,4,5,6,7,8,9
2

13 ta 925, ua 925, va 925 ta 925
va 925

2,3,5,6
2,5

14 ta 925, ua 925, va 925 ta 925
va 925

1,2,3,4,5,6,7,8,9
1,2,4,5,7,9

15 LH, SH, LWR, SWR SH
SWR

2,3,6
2,3,5,6

16 LH, SH, LWR, SWR SH
SWR

1,2,3,6
1,2,3,4,5,6,7,8,9

17 ta 925, ua 925, va 925, LH, SH, LWR, SWR ta 925
SWR

2,3,6
2,3,5,6

18 ta 925, ua 925, va 925, LH, SH, LWR, SWR ta 925
SWR

2,3,4,5,6,7,8,9
1,2,3,6

radiation fluxes are selected as potential predictors from
Group C. The decision on selection of these potential pre-
dictors is further justified by scatter plots, and the cross-
correlation bar plots for the three measures of dependence
prepared for this purpose, but not shown here to save
space.

7.4. Developing SVM downscaling models

From the standardized data of potential predictors, PCs
are extracted to form feature vectors. These feature
vectors are provided as input to develop SVM downscal-
ing model following the procedure described in Section 6.
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For obtaining the optimal range of values of SVM param-
eters, kernel width (σ ) and penalty term (C), the grid
search procedure is used. Typical results of this analysis
are presented in Figure 8. From this figure, the ranges
of σ and C having the least NMSE are selected as the
optimum parameter ranges. The NMSE values are indi-
cated in the bar code provided close to the figure. Using
genetic algorithm, the optimum value of each parame-
ter is selected from its optimum range. For each of the
18 SVM models developed, the selected parameters are
shown in Table V.

Typical results of downscaled predictands (Tmax and
Tmin) obtained from the three groups of predictors are
presented in Figures 9 and 10. In part (i) of these figures,
the Tmax and Tmin downscaled using NCEP and GCM
datasets are compared with the observed Tmax and Tmin

Table V. Parameters of SVM downscaling models developed
in this study. The model numbers are defined in Table III.

SN Model number SVM model parameter

Kernel
width (σ )

Penalty
term (C)

1 1 2050 2050
2 2 2050 2050
3 3 2050 2050
4 4 2050 2050
5 5 50 2050
6 6 50 250
7 7 50 250
8 8 50 2050
9 9 250 850
10 10 450 850
11 11 2050 2050
12 12 250 450
13 13 1050 50
14 14 1050 50
15 15 50 1050
16 16 1050 50
17 17 4050 4050
18 18 1050 50

for the study region using box plots. The projected
precipitation for 2001–2020, 2021–2040, 2041–2060,
2061–2080 and 2081–2100, for the four scenarios A1B,
A2, B1 and COMMIT are shown in (ii), (iii), (iv) and
(v) respectively.

7.5. Performance of the downscaling models

In this section, investigations are carried out to study
three aspects. The first is assessment of the effect of
length of calibration period on performance of the down-
scaling model, and the second is assessment of impact
of location-based stratification of predictor variables on
downscaling. The sensitivity of the SVM models to the
different groups of predictors is the third aspect exam-
ined.

On an annual basis, the surface temperature difference
between the hottest and coolest months is about 3 °C on
the oceans and about 8 °C on land. On the other hand,
the same at 925 mb is about 6 °C on oceans and about
8 °C on land. To assess the effect of this variation on
the results of downscaling, location-based stratification
was carried out to form two domains, one comprising
of predictor variables pertaining to only land grid points,
and the other containing those pertaining to both ocean
and land.

To address the first aspect, the observed records of
temperature at two stations are analysed. Santhebastewadi
gauging station is located in the study region and has a
shorter period of record (1992–2000). Gadag gauging
station is located just outside the study region and
has a longer period of record (1978–2000). The cross-
correlation between contemporaneous records of Tmax

at these stations is found to be high. Therefore, a
relationship is established between the contemporaneous
records of Tmax at these stations. This relationship is used
to obtain correlative estimates of monthly Tmax and Tmin

for the missing period for Santhebasthewadi station from
the records of Gadag station. Details of the procedure
adopted are available in Gupta (1989).

From the results presented in Table VIA and B it can
be observed that increasing the period of calibration from

(a) (b)

Figure 8. Typical results of the domain search to estimate optimal values of the parameters (kernel width, σ ; penalty, C) for downscaling Tmax

and Tmin from predictor variables in Group C are shown as (a) and (b) respectively. The bar code shows the NMSE values. The ranges of
parameters for which NMSE is least are selected.
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(a)

(b)

(c)

Figure 9. Typical results from the SVM-based downscaling model graphed using box plots for the predictand Tmax. (a), (b) and (c) denote results
based on Group A, Group B and Group C predictors respectively. The horizontal line in the middle of the box represents median. The circles
denote the mean value of Tmax, and the darkened square represents the mean value of simulated Tmax. The gap between darkened square and
circle denote bias in the Tmax simulated by the downscaling model for NCEP and GCM data sets. In (ii), (iii), (iv) and (v) the solid line that
joins the circles indicates the historical trend of Tmax, while the line connecting the solid squares depicts the mean trend of Tmax projected by

GCM. This figure is available in colour online at www.interscience.wiley.com/ijoc

6 to 16 years did not result in significant improvement
in the performance of the downscaling model. These
results indicate that a smaller period of records at
Santhebasthewadi station would as well be sufficient to
develop an efficient downscaling model using SVM that
implements the structural risk minimization principle by
striking a right balance between the training error and the
ability of the machine to learn any training set without
error (Tripathi et al., 2006). Hence, for predictand Tmin,

Santhebasthewadi station data alone was used to develop
the downscaling model.

To address the second aspect, the results of downscal-
ing obtained using each of the two domains (land; land
and ocean) of the climate variables for each combina-
tion of predictor group and predictands are shown in
Table VIC and D. It can be seen that use of predictor
variables from the smaller spatial domain covering the
land area improves the overall performance of the
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(a)

(b)

(c)

Figure 10. Typical results from the SVM-based downscaling model graphed using box plots for predictand Tmin. (a), (b) and (c) denote results
based on Group A, Group B and Group C predictors, respectively. The horizontal line in the middle of the box represents median. The circles
denote the mean value of Tmin, and the darkened square represents the mean value of simulated Tmin. The gap between darkened squares and
circles denote bias in the Tmin simulated by the downscaling model for NCEP and GCM datasets. In (ii), (iii), (iv) and (v) the solid line that
joins the circles indicates the historical trend of Tmin, while the line connecting the solid squares depicts the mean trend of Tmin projected by

GCM. This figure is available in colour online at www.interscience.wiley.com/ijoc

downscaling models. These results are strengthened by
the fact that variations in patterns of temperature at the
earth’s surface and at 925 mb are different for the land
and the ocean (Table VII).

Finally, to address the third aspect, the sensitivity of
the SVM models to the predictor group is studied. The
SVM models developed to downscale Tmax using Group
C predictors (Models 9–12) are seen to perform better
than those developed based on predictors in the other
groups, for both small and large spatial domains. This
implies that both surface flux variables and large-scale

atmospheric variables have to be considered as predictors
for effective downscaling of Tmax.

Overall, the results of the SVM downscaling models
indicate that between the two predictands, Tmax is better
simulated than Tmin (Figures 11 and 12).

7.6. Impact of trend in predictor variables on
downscaled temperature

From the box plots of downscaled predictands (Figures 9
and 10), it can be observed that Tmax and Tmin are pro-
jected to increase in future for A1B, A2 and B1 scenarios,
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Table VIA. Error statistics computed for Tmax downscaled from predictor variables pertaining to land and ocean grid points using
the entire record. Minimum values of MSE, RMSE, NMSE, and maximum of Ef, MAE, MCE and CC indicate optimal values

of error statistics. The model numbers are defined in Table III.

Length of
record

Model
no

MSE RMSE NMSE Ef MAE MCE CC

1992–2000 3 0.7941 0.8911 0.1069 0.8921 0.6792 0.9985 0.9450
7 0.9147 0.9564 0.1231 0.7570 0.6661 0.9963 0.9380

11 0.7140 0.8450 0.0961 0.9030 0.7078 0.9998 0.9510
1978–2000 4 0.7765 0.8812 0.1095 0.8901 0.6776 0.9997 0.9440

8 0.9237 0.9611 0.1303 0.8693 0.6557 0.9974 0.9330

12 0.7152 0.8457 0.1009 0.8988 0.7025 0.9986 0.9480

Table VIB. Error statistics computed for Tmax downscaled from predictor variables pertaining to land grid points using the entire
record.

Length of
record

Model
no

MSE RMSE NMSE Ef MAE MCE CC

1992–2000 1 0.8901 0.9434 0.1198 0.8791 0.6354 0.9983 0.9380
5 1.0477 1.0236 0.1410 0.8576 0.6221 0.9979 0.9270

9 0.7439 0.8625 0.1001 0.8989 0.7093 0.9996 0.9480
1978–2000 2 1.1886 1.0902 0.1676 0.8318 0.5743 0.9993 0.9120

6 0.8900 0.9443 0.1258 0.8738 0.6568 0.9979 0.9360

10 0.7612 0.8725 0.1073 0.8923 0.6757 0.9994 0.9420

Table VIC. Error statistics computed for downscaled predictand Tmax for different spatial domains of predictor variables for the
validation period.

Spatial domain Model
no

SSE MSE RMSE NMSE Ef MAE MCE CC

Land (small domain) 1 28.41 1.1836 1.0879 0.1945 0.7971 0.5348 0.9923 0.8983
5 31.84 1.3267 1.1518 0.2180 0.7725 0.5431 0.9971 0.9060
9 41.87 1.7446 1.3208 0.2867 0.7009 0.4681 0.9921 0.8439

Land + ocean (large domain) 3 29.70 1.2376 1.1125 0.2033 0.7878 0.5312 0.9978 0.8948

7 33.24 1.3851 1.1769 0.2276 0.7625 0.5399 0.9972 0.9182

11 34.22 1.4262 1.1942 0.2343 0.7555 0.5202 0.9984 0.8701

Table VID. Error statistics computed for downscaled predictand Tmin for different spatial domains of predictor variables for the
validation period.

Spatial domain Model
no

SSE MSE RMSE NMSE Ef MAE MCE CC

Land (small domain) 13 112.9514 1.0458 1.0227 0.5788 0.4173 0.3719 0.9987 0.761
15 171.7722 1.5905 1.2611 0.6347 0.3594 0.1430 0.9946 0.604

17 136.9800 1.2683 1.1262 0.5061 0.4891 0.2539 0.9991 0.703

Land + ocean (large domain) 14 141.5507 1.3107 1.1448 0.5230 0.4721 0.2733 0.9971 0.693
16 184.4284 1.7077 1.3068 0.6814 0.3122 0.1232 0.9972 0.560

18 246.1000 0.8900 0.9443 0.1258 0.8738 0.6568 0.9979 0.936

Note: Optimal values of error statistics are highlighted in grey. They are used to identify the SVM model providing best performance.
SSE, sum of squares of errors; MSE, mean square error; RMSE, root mean square error; NMSE, normalized mean square error; Ef, Nash-Sutcliffe
error estimate; MAE, mean absolute error; MCE, mean cumulative error; CC, correlation coefficient.
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Table VII. Mean monthly temperatures computed using the
records at nine NCEP grid points in the study region.

Month Mean monthly temperature in °C

At 925 mb Earth’s surface

Land Ocean Land Ocean

Jan 22.64 22.24 23.48 26.91
Feb 24.50 22.60 25.54 26.69
Mar 28.02 25.26 28.64 27.70
Apr 29.48 26.30 30.11 28.70
May 29.42 25.57 29.74 29.02
Jun 25.08 22.60 25.66 27.98
Jul 22.35 21.18 23.39 26.98
Aug 21.87 20.81 23.05 26.57
Sep 22.52 21.61 23.33 26.89
Oct 22.88 22.55 23.55 27.52
Nov 22.55 22.76 23.32 28.05
Dec 21.86 22.17 22.52 27.37

whereas no trend is discerned with the COMMIT scenario
by using predictors in Groups A and C. The projected
increase in predictands is high for A2 scenario, whereas
it is least for B1 scenario. In contrast, projections for the
predictands using the predictors in Group B did not show
any trend for the SRES scenarios.

No trend is seen in the predictands that are projected
using predictors in Groups A and C, when Ta 925
was excluded from the predictor groups. Therefore, the
projected increase in trend of predictands for the Groups
A and C is attributed to the increasing trend evident in
Ta 925.

As the SVM downscaled predictand is affected by
trend in the predictors, this trend should be compared
with the trend in the predictand over historical and
future time periods considered. For this purpose, the

trend in land surface maximum and minimum tempera-
ture data extracted from GCM for the period 1978–2100
was analysed for each of the scenarios considered in
the study. The results show a similar trend as the pre-
dictor variable Ta 925 extracted from GCM, for all
the scenarios considered. Thus it is essential to con-
sider Ta 925 as a predictor for downscaling the pre-
dictands. Herein it is to be mentioned that the GCM-
simulated values are not considered acceptable because
of the coarse resolution of the model. However, the
trend in the GCM-simulated values is considered accept-
able as these are related to large-scale changes such as
global increase of greenhouse gases (GHG) concentra-
tions.

The projections obtained for temperature in the present
study strengthen the inferences drawn in Anandhi et al.
(2008) for precipitation in the study region. In the
referred work, the projected increase in precipitation
was high for A2 scenario, whereas it was least for B1
scenario. This could be because the rate of evaporation
is proportional to the increase in the earth’s surface
temperature, and the evaporated water would eventually
precipitate.

8. Summary and conclusions

The SVM downscaling model is developed for obtaining
projections of monthly mean maximum and minimum
temperatures (predictands) at river-basin scale. The effec-
tiveness of the model is demonstrated through application
to the catchment of Malaprabha reservoir in India. The
predictands are downscaled from simulations of CGCM3
for four IPCC scenarios, namely SRES A1B, A2, B1
and COMMIT. The results of validation indicate that the
SVM model is a feasible choice for downscaling the pre-
dictands.
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Figure 11. Typical results for comparison of the monthly observed Tmax with Tmax simulated using SVM downscaling model 11 for NCEP
data. In the figure, calibration period is from 1992 to 1997, and the rest is validation period. This figure is available in colour online at

www.interscience.wiley.com/ijoc
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Figure 12. Typical results for comparison of the monthly observed Tmin with Tmin simulated using SVM downscaling model 13 for NCEP
data. In the figure, calibration period is from 1992 to 1997, and the rest is validation period. This figure is available in colour online at

www.interscience.wiley.com/ijoc

The selected predictor variables are classified into
three groups namely A, B and C. Large-scale atmo-
spheric variables such as air temperature, zonal and
meridional wind velocities at 925 mb which are often
used for downscaling temperature are considered as pre-
dictors in Group A. Surface flux variables such as LH,
SH, shortwave radiation and longwave radiation fluxes
are tried as plausible predictors in Group B. Group
C comprises of all the variables in both Groups A
and B.

Scatter plots and cross-correlations used for studying
the reliability of the simulation of the predictor vari-
ables by the GCM, and to study the predictor–predictand
relationships indicate that the Group A predictors are
better simulated by the GCM than Group B predic-
tors.

Eighteen SVM models are developed, one for each
combination of predictor group, predictand, calibration
period and spatial domain of the climate variables.
The performance of the models is evaluated using the
statistical measures SSE, MSE, RMSE, NMSE, Ef, MAE,
MCE and CC.

The performance of the downscaling model did not
change significantly when the calibration period was
increased from 6 to 16 years indicating that SVM can
offer effective performance even with shorter records.
Further, the SVM models based on predictor variables
pertaining to land-based stratification showed better per-
formance than those based on predictor variables per-
taining to both land and ocean. Furthermore, the SVM
models developed using Group C predictors performed
better than those based on predictors in the other groups
indicating that surface flux variables are also necessary
for downscaling the predictands.

The results of downscaling show that Tmax and
Tmin are projected to increase in future for A1B, A2
and B1 scenarios, whereas no trend is discerned with

the COMMIT using predictors in Groups A and C.
The projected increase in predictands is high for A2
scenario, whereas it is least for B1 scenario. These
results are in agreement with those obtained for pre-
cipitation in Anandhi et al. (2008) for the same study
area.

In contrast, projections obtained for the predictands
using the predictors in Group B did not show any trend
for the four scenarios. This projected increase in trend
of predictands for Groups A and C is attributed to the
increasing trend in air temperature at 925 mb which is
one of the predictors in these groups. A similar trend
was observed in monthly surface temperature simulated
by GCM at grid points considered on land. The results
suggest that it is necessary to consider predictor variables
having trends similar to that of the predictand to be
downscaled.

Overall, the results of the SVM downscaling mod-
els indicate that between the two predictands, Tmax is
better simulated than Tmin. Although the present anal-
ysis is confined to only one river basin, the method-
ology developed for downscaling temperature using
LS-SVM can be extended to other river basins, as
well.
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Appendix: Abbreviations

Abbreviations used in text

CCCma Canadian Center for Climate Modelling and
Analysis

CGCM3 Third-generation Canadian Global Climate
Model

GCM Global Climate Model
IPCC Intergovernmental panel on climate change
LH Latent heat flux
LS-SVM Least square-support vector machine
LWR Longwave radiation flux
MAE Mean absolute error
MCE Mean cumulative error
MSE Mean square error
MMP Mean monthly precipitation
NMSE Normalized mean square error
PCA Principal component analysis
PC Principal component
RBF Radial basis function
RMSE Root mean square error
SH Sensible heat flux
SWR Shortwave radiation flux
SRES Special report of emission scenarios
SVM Support vector machine
Ta 925 Air temperature at 925 mb
Ua 925 Zonal wind at 925 mb
Va 925 Meridional wind at 925 mb

Appendix: Abbreviations used in Tables I, II and VII

Predictor Names

afs Surface airflow strength
di Divergence
Ef Nash-Sutcliffe error estimate
F Geostrophic airflow
geos Meridional component of geostrophic flow
geow Zonal component of geostrophic flow
hus Specific humidity
LH Latent heat
LWR Longwave radiation
MAE Mean absolute error
MCE Mean cumulative error
MSE Mean square error
mslp Mean sea level pressure
NMSE Normalized mean square error
pr Precipitation
prw Precipitable water content
ps Pressure
RMSE Root mean square error
rh Relative humidity
SH Sensible heat
SSE Sum of squares of errors
SWR Shortwave radiation
Tmean Mean temperature
ta Air temperature
ua Zonal wind
va Meridional wind

wd Wind direction
Z Vorticity
zg Geopotential height
zgt Geopotential height thickness

Note: M preceding the predictor variable name indicates
that the mean was used.

Measurement height of predictors

0 Pressure height at 1000 mb
2 Pressure heights at 200 mb
2m 2 m from surface
5 Pressure height at 500 mb
7 Pressure height at 700 mb
8 Pressure height at 850 mb
9 Pressure height at 925 mb
ns Near-surface
s Surface

Techniques

AM Analogue method
CCA Canonical correlation analysis
EOF Empirical orthogonal function
LS Local scaling
MLR Multi-linear regression
PCA Principal component analysis
SDSM Statistical downscaling model
SSA Singular spectrum analysis
TNN Temporal neural network

Data source

BMRC Bureau of Meteorology Research Centre
CSIRO Commonwealth Scientific and Industrial

Research Organization, Australia
DOE Department of Energy, USA
ECMWF European Centre for Medium-Range

Weather Forecasts
LMD Laboratoire de Météorologie Dynamique du.
NCAR National Center for Atmospheric Research,

USA

Climate models:

CLIGEN Climate Generator
CGCM Canadian Coupled Global Climate

Model
CSIRO-Mk2 CSIRO climate system model (make/

version 2)
ECHAM4 fourth generation GCM based on the

weather forecast model of the ECMWF,
modified and extended in Hamburg,
Germany

HadCM3 Third-generation coupled GCM devel-
oped by the Hadley Centre of United
Kingdom Meteorological Office, UK.

PCM Parallel Climate Model developed by
DOE and NCAR
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