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Channel Capacities versus Entanglement Measures in Multiparty Quantum States
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For quantum states of two subsystems, entanglement measures are related to capacities of com-
munication tasks – highly entangled states give higher capacity of transmitting classical as well as
quantum information. However, we show that this is no more the case in general: quantum ca-
pacities of multi-access channels, motivated by communication in quantum networks, do not have
any relation with genuine multiparty entanglement measures. Along with revealing the structural
richness of multi-access channel capacities, this gives us a tool to classify multiparty quantum states
from the perspective of its usefulness in quantum networks, which cannot be visualized by known
multiparty entanglement measures.

I. INTRODUCTION AND MAIN RESULTS

Understanding quantum entanglement [1] has been one
of the key features in the development of the science of
quantum information [2]. Applications of quantum in-
formation had started off in the fields of communica-
tion, cryptography, computation, and thermodynamics
[2], and has since diffused into diverse areas such as con-
densed matter physics, ultra-cold gases, and statistical
mechanics [3]. Measuring and detecting entanglement of
the quantum states appearing in different physical situ-
ations has been the cornerstones of the development in
these directions. It has therefore been very important
to propose entanglement measures of general quantum
states of systems consisting of more than one subsys-
tem, and there is a thriving industry of such proposals
(see [1, 4] and references therein). However, the main
progress in the theory of entanglement measures, and its
detection, has been in the case when the physical system
consists of only two subsystems. This has been a major
handicap in using entanglement as an instrument for han-
dling many-body physics systems like ultra-cold atomic
states, where the majority, if not all, of the quantum
states involved are of multiparty systems, i.e. a physical
system consisting of more than two subsystems. Under-
standing multiparty quantum entanglement is therefore
a distinct necessity to a large portion of physics of our
times.

One of the main reasons for the current interest in
quantum information is its potential for revolutionizing
future communication systems. It is therefore hard to
overestimate the importance of capacities of quantum
communication channels [5]. Again the main progress
in research in this area has been for quantum chan-
nels between a single sender and a single receiver, while
multi-access channels clearly have more commercial via-
bility. Moreover, a competent functioning of future quan-
tum computers [2] will require efficient communication of
quantum information between its different parts.

The archetypical quantum channels are bipartite quan-
tum states used as dense coding [6] and teleportation [7]
channels. They are channels respectively for transmitting
classical and quantum information, and form the basis of
most quantum channels. If a pure bipartite quantum

state |Ψ〉AB (∈ Cd⊗Cd) is shared between Alice (A) and
Bob (B), it can be used as a quantum channel to per-
form dense coding, by which classical information can
be sent, for example, by Alice to Bob, with the capacity
(measured in bits) being Cclassical (|Ψ〉) = log2 d+ S (̺L)
[6, 8], where ̺L is the local density matrix of state |Ψ〉AB,
and S(·) is the von Neumann entropy of the argument.
Similarly, the same quantum state |Ψ〉AB can be used
as a quantum channel to convey quantum information
from A to B, with the capacity (measured in qubits) be-
ing Cquantum (|Ψ〉) = S (̺L) [5, 7, 9]. Entanglement of
a bipartite pure quantum state |Ψ〉AB is, for most pur-
poses, the von Neumann entropy of a local subsystem,
i.e. E (|Ψ〉) = S (̺L) [9].

Clearly, higher entanglement for a pure quantum state
implies higher capacities for both the classical and quan-
tum instances, in the case of a single sender and a single
receiver. Here we find that a generalization of this be-
havior is not mirrored in the multiparty case. More pre-
cisely, we find quantum capacities of four-party quantum
states that are motivated by considering distillation pro-
tocols in multiparty quantum networks, and show that
their values are not correlated with those of a measure of
genuine four-party entanglement. The measure of gen-
uine four-party entanglement that we use here is a gen-
eralization of the “geometric measure of entanglement”
(GM) [10], and we call it the “generalized geometric mea-
sure” (GGM). As an important by-product, we obtain a
computable measure of genuine multiparty entanglement,
which can potentially have the same usefulness in the
multiparty case, as the logarithmic negativity [11] has
in the bipartite situation. We also provide bounds on
the capacities defined that help us in their understand-
ing as well as their evaluation in a variety of paradigmatic
classes of multipartite quantum states.

II. THE MULTI-ACCESS CAPACITIES

Let us begin by defining the multi-access capacities
that we will deal with, and by considering their quan-
tum computational significance. We will define two such
quantities, both of which are given from the perspec-
tive of quantum networks. Although the definitions, and
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the subsequent propositions, will be given only for four-
party systems, their generalizations to more parties (or
for three parties) are straightforward. The first quantity
is maximal assisted remote singlet production (Ca), and
defined for a single copy of a four-party pure quantum
state, |ψ〉, shared between Alice (A), Bob (B), Claire (C),
and Danny (D), as the maximal probability with which a

single copy of the singlet state, |ψ−〉 = (|01〉 − |10〉) /
√
2

(|0〉 and |1〉 are mutually orthonormal), can be prepared
at CD, by using an additional resource of a singlet state
shared between Alice and Bob, and by using local quan-
tum operations and classical communication (LOCC) be-
tween Alice, Bob, Claire, and Danny. Ca therefore mea-
sures the amount of entanglement that can be transferred
from Alice and Bob to Claire and Danny, when Alice and
Bob are assisted by an additional singlet. It is therefore
natural to multiply this quantity by the entanglement
(E) value of 1 ebit of the singlet state, and express the
capacity in ebits. If the state is not symmetric with re-
spect to interchange of the parties, we define Ca as the
maximum of the transfer probabilities corresponding to
all possible permutations of the parties.

The other quantity is maximal unassisted remote sin-

glet production (Cua), and has exactly the same defi-
nition as Ca, but without the additional singlet assis-
tance. These quantities, or their generalized versions for
large quantum networks, are important elements in quan-
tum computational setups, e.g. in the Knill-Laflamme-
Milburn model of quantum computation [12], or in the
cluster state model of quantum computation [13] (see also
[14]).

The multi-access capacities Cua and Ca can be shown
to be monotonically decreasing under LOCC between the
four observers. More importantly, we have the following
results.

Proposition C1. Cua ≤ Ca ≤ psmaxmin, where
psmaxmin is defined as follows. Consider the set of four
quantities

{

pi:restmax |i = A,B,C,D
}

, where e.g. pC:ABD
max is

the maximum probability of obtaining a singlet between
Claire and the other observers (who are at the same
location), and where A, B, C, and D share the quantum
state |ψ〉. Choose all six pairs from the set

{

pi:restmax

}

, find
the minimum for each pair, and then the maximum of
these six minima is psmaxmin.
Proof. The definitions of Cua and Ca imply
the first inequality. Now, pC:ABD

max (|ψ〉ABCD) =
pC:ABD
max (|ψ〉ABCD ⊗ |ψ−〉AB), as adding a lo-

cal ancilla (local with respect to the C : ABD
split) cannot change an LOCC monotone
pmax. Further, pC:ABD

max (|ψ〉ABCD ⊗ |ψ−〉AB) ≥
pAB→CD
max (|ψ〉ABCD ⊗ |ψ−〉AB), where pAB→CD

max is the
probability that A and B can create a singlet between
C and D, when all four parties, at separated locations,
share the quantum state in the argument. This is because
the probability of a singlet being prepared between C and
D by LOCC between all four observers, cannot exceed
the corresponding probability when A, B, and D are to-
gether. Similar relations hold when Claire is replaced by

Danny, and so we have pAB→CD
max (|ψ〉ABCD ⊗ |ψ−〉AB) ≤

min
{

pj:ABk
max (|ψ〉ABCD) |j, k = C,D; j 6= k

}

. Taking the
maximum, over all possible permutations of the four
parties, in the preceding inequality, we obtain the second
inequality in the proposition. �

Proposition C2. Cua ≤ pdmaxmin, where p
d
maxmin is

defined as follows. Consider the set of three quantities
{

pAC:BD
max , pAD:BC

max , pAB:CD
max

}

, where e.g. pAC:BD
max is the

maximum probability of obtaining a singlet in the
AC : BD bipartite split, and where A, B, C, and D
share the quantum state |ψ〉. Choose all three pairs from
the set, and find the minimum for each set. pdmaxmin is
the maximum of these minima.
Proof. Suppose that Alice and Claire are together, and so
are Bob and Danny. The probability of preparing a sin-
glet state in the AC : BD bipartite split must be greater
than or equal to the corresponding quantity in the situ-
ation when all four parties are at separate locations, and
the singlet is to be prepared between Claire and Danny.
That is, pAC:BD

max (|ψ〉ABCD) ≥ pAB→CD
max (|ψ〉ABCD). A

similar inequality holds when Alice and Bob change
sides, i.e. pAD:BC

max (|ψ〉ABCD) ≥ pAB→CD
max (|ψ〉ABCD),

so that we have pAB→CD
max (|ψ〉ABCD) ≤

min
{

pAC:BD
max (|ψ〉ABCD) , pAD:BC

max (|ψ〉ABCD)
}

. Tak-
ing a maximum, over all possible permutations of the
four observers, of the preceding inequality proves the
inequality in the proposition. �

III. THE GENERALIZED GEOMETRIC

MEASURE

These capacities, motivated by quantum networks, will
be compared with a measure of genuine four-party entan-
glement measure, GGM, which we now define. Consider a
four-party pure quantum state |ψ〉, and let Λmax (|ψ〉) =
max |〈φ|ψ〉|, where the maximum is over all four-party
pure quantum states |φ〉 that are not genuinely four-party
entangled. An n-party pure quantum state is said to be
genuinely n-party entangled, if it is not a product across
any bipartite partition. The GGM of |ψ〉 is defined as
E (|ψ〉) = 1 − Λ2

max (|ψ〉). Note that Λmax quantifies the
closeness of the state |ψ〉 to all pure quantum states that
are not genuinely multiparty entangled. Generalization
to arbitrary number of parties is straightforward. The
definition is motivated by the GM, introduced in [10], in
which the maximization in Λmax is only over pure states
that are product over every bipartite partition. [We de-
note the GM of a quantum state |ψ〉 as EG (|ψ〉).] Clearly,
E is vanishing for all pure states that are not genuine mul-
tiparty entangled, and non-vanishing for others. We will
now show that this measure is computable (for an arbi-
trary number of parties), and that it is indeed a mono-
tonically decreasing quantity under LOCC.
Proposition E1. The generalized geometric measure

can be written in closed (computable) form for all mul-
tipartite pure quantum states.
Proof. We provide the proof for four-party states,
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the other cases being similar. The maximization in
Λmax(|ψ〉ABCD) = max|φ〉ABCD

|〈φ|ψ〉| is over all pure
quantum states |φ〉ABCD that are not genuinely mul-
tiparty entangled. The square of Λmax(|ψ〉ABCD) can
therefore be interpreted as the Born probability of some
outcome in a quantum measurement on the state |ψ〉.
However, since entangled measurements cannot be worse
than the product ones for any set of subsystems, we have
that the only measurements that we need to consider
for the maximization are the ones in the single-party
versus rest, and in the two-parties versus remaining-
two splittings. Next we note that, if e.g. the maxi-
mization in Λmax(|ψ〉ABCD) is performed over all states
that are product in the A : BCD split, the result is
the maximal Schmidt coefficient, λA:BCD, of the state
|ψ〉ABCD, when written in the A : BCD split. Simi-
lar expressions hold for the other splittings. Therefore,
we have that the GGM of |ψ〉 is given by E(|ψ〉) =
1−max{λ2i:rest, λ2ij:rest|i, j = A,B,C,D; i 6= j}. �

Remark. The closed form of the GGM may induce
one to redefine the GGM in terms of Rényi entropies of
the Schmidt coefficients, especially for statistical mechan-
ical applications. The current definition is akin to the
case when the Rényi parameter tends to infinity, some-
times referred to as the min-entropy.
Proposition E2. The generalized geometric measure

is monotonically decreasing under LOCC.
Proof. The proof follows from the fact that the λ’s in-
volved in the closed form of the GGM, as derived in the
proof of Proposition E1, are all increasing under LOCC
[15]. �

IV. APPLICATIONS AND ESTABLISHING THE

REMAINING RESULTS

With these results in hand, we now move to apply
them to different classes of quantum states. As stated
in the introduction, our main motivation is to study the
defined quantum capacities from the perspective of quan-
tum computational networks. In line with that, we begin
by considering two classes of multiparty quantum states
that have been found to be useful in several quantum
informational and computational tasks.

A. Case I: Generalized GHZ

A very important class of states, with several in-
formational and computational applications, is that
of generalized Greenberger-Horne-Zeilinger states [16],
|GHZα〉ABCD = α|0〉⊗4 +β|1〉⊗4 (with |α| ≥ |β|), shared
between the four observers. By Proposition C1, Cua ≤
Ca ≤ 2|β|2. Supposing now that measurements in the

{|+〉 , |−〉} basis, where |±〉 = (|0〉 ± |1〉)/
√
2, are carried

out at both A and B, and the resulting pure state at CD,
corresponding to each set of measurement results at A
and B, is LOCC-transformed to the singlet state, we ob-

tain that Cua ≥ 2|β|2 [15]. Therefore, Cua = Ca = 2|β|2.
For the generalized GHZ state |GHZα〉ABCD, the GGM
and GM coincide and are equal to |β|2. The GM is found
by some algebra, while the GGM is found by using Propo-
sition E1. Therefore, for the GHZ state (generalized GHZ

state for α = β = 1/
√
2), the capacities are both unit

ebits, and the GGM and GM are both equal to one-half.

B. Case II: Cluster states

From the point of view of quantum computational
networks, the cluster states have acquired great sig-
nificance [13]. The cluster state for four observers is
|C〉ABCD = (|0000〉+ |0011〉+ |1100〉 − |1111〉). It is a
non-symmetric state. A trivial upper bound on the ca-
pacities is Cua ≤ Ca ≤ 1. However, Alice and Bob
can make measurements in the {|0〉 , |1〉} basis, and cor-
responding to every outcome, the state at the remain-
ing parties turns out to be local unitarily equivalent to
the singlet state. Therefore, we have that the unas-
sisted capacity Cua is 1 ebit, so that Cua = Ca = 1.
By explicit algebra, the GM for this state is 3/4, while
the GGM is 1/2. [Let us mention here that the state
|χ〉ABCD = 1

2
√
2
(|00〉(|00〉 − |11〉) + |11〉(|00〉 + |11〉) −

|01〉(|01〉 − |10〉) + |10〉(|01〉+ |10〉)) of Ref. [17] has ex-
actly the same values for Cua, Ca, E , and EG, as the cluster
state. However, the states are different, as can be seen
by looking at the their entanglements in the AB : CD
split.]

C. Bipartite versus multipartite

In the case of a single sender and a single receiver, we
have seen that the channel capacities are consistently cor-
related with entanglement measures. Precisely, for two
bipartite pure states |Ψ〉 and |Φ〉, if E (|Ψ〉) = E (|Φ〉)+ ǫ
for some positive ǫ, then C (|Ψ〉) = C (|Φ〉) + δ for some
positive δ, where C is either Cclassical or Cquantum. In the
case of multi-access quantum channels, we see that both
the assisted and unassisted quantum capacities (Ca and
Cua respectively) are unity for the GHZ state as well as
for the cluster state, while the geometric measure of en-
tanglement returns different values for the two states.
The GM however is not a measure of genuine multiparty
entanglement. [Indeed, it was defined by its inventors
from quite a different perspective.] The GGM, which is

a measure of genuine multiparty entanglement, of these
two states are however equal, and so we regain the rather
comfortable picture that is true in the case of a single
sender and a single receiver. We will soon find that this
simple picture to not hold in the case of multi-access
channels. In any case, the fact that the picture does hold
in certain cases also in the multi-access domain, espe-
cially in instances that are important from a quantum
networks perspective, is still satisfying. Let us now con-
tinue with our case studies.
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D. Case III: Generalized W

The next class of states that we handle is that of gen-
eralized W [18] (see also [19]), defined as |Wabcd〉ABCD =
a|0001〉 + b|0010〉 + c|0100〉 + d|1000〉 (with |a| ≥ |b| ≥
|c| ≥ |d|), and is another class of states with interesting
conceptual and practical utilities in quantum informa-
tion. This is also a non-symmetric state. By Proposi-
tion C1, Cua ≤ Ca ≤ psmaxmin = 2|b|2. Measuring in the
{|0〉, |1〉} basis at both A and B, we find that |00〉AB

clicks with probability pWabcd

00 = |a|2 + |b|2, and cre-

ates the state (a|01〉+ b|10〉) /
√

|a|2 + |b|2 at CD. The
latter can be locally transformed to the singlet state
with probability 2|b|2/

√

|a|2 + |b|2 [15]. The other clicks
at A and B always produces a product state. There-
fore, Cua ≥ pWabcd

00 × 2|b|2/
√

|a|2 + |b|2 = 2|b|2, whereby
Cua = Ca = 2|b|2. By using Proposition E1, the GGM
of the generalized W state is given by E (|Wabcd〉) = |d|2.
So for the W state (generalized W state for a = b =
c = d = 1/2), the capacities are both one-half ebits, and
E (|W〉) = 1/4. [Also, EG (|W〉) = 37/64 = 0.578125.]

E. Case IV: W2

Let us now consider the state |W2〉ABCD = (|0011〉+
|0110〉+ |1100〉+ |1001〉+ |0101〉+ |1010〉)/

√
6. Of course

we have Cua ≤ Ca ≤ 1. Now, in the assisted case, we can
use the singlet assistance to teleport [7, 20] the B-part
of the W2 state to A (or vice-versa). Subsequently, we
make a measurement in the Bell basis [21] at AB, which
creates a state at CD, that is local unitarily equivalent
to the singlet. Therefore, we have Ca (|W2〉) = 1. To find
the unassisted capacity, we will turn to Proposition C2,
to find that Cua ≤ 2/3. Suppose now that both Alice
and Bob measure in the {|0〉, |1〉} basis. The |00〉AB and
|11〉AB outcomes at AB produce product states at CD.
However, both the |01〉AB and the |10〉AB outcomes at

AB produce the state (|01〉+ |10〉) /
√
2 at CD, each with

probability 1/3. Consequently, we have Cua ≥ 2/3, so
that Cua (|W2〉) = 2/3. The GGM for the W2 state is
1/3. [EG (|W2〉) = 5/8 = 0.625.]

F. Case V: Two singlets

In this case, which we denote by |SS〉, any two ob-
servers share a singlet, and the other two share an-
other singlet. This is a non-symmetric case. The
unassisted transfer probability for the state |SS〉1 =
|ψ−〉AB ⊗ |ψ−〉CD is unity. For the other options, viz.
|SS〉2 = |ψ−〉AC⊗|ψ−〉BD or |SS〉3 = |ψ−〉AD⊗|ψ−〉BC ,
it is zero. But the unassisted capacity will still be given
by Cua (|SS〉) = 1. Using the method of entanglement
swapping [20], we have that the assisted capacity is unity
for all the three options: Ca (|SS〉) = 1. To see this, note
that the assisted transfer probability is unity by construc-

tion for the state |SS〉1, while entanglement swapping
can to be employed to produce unit probabilities for the
states |SS〉2 and |SS〉3. By definition, the GGM of |SS〉
is zero, while the GM of this state can be calculated to
be 3/4.
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FIG. 1: (Color online.) From resonating valence bond states
to ferromagnets. The unassisted capacity (in ebits) is plot-
ted on the vertical axis against a base consisting of the mea-
surement parameter x (for arbitrary projective measurements
in the basis {cos x|0〉 + exp (iϕ) sin x|1〉, exp (−iϕ) sin x|0〉 −
cosx|1〉, } at two parties), and the state parameter µ, for the
family of four-qubit quantum states |φµ

RF 〉. (The base vari-
ables are dimensionless.) The capacity for this strategy can
be readily read off from the figure for any µ. E.g. for the
resonating valence bond state, situated at µ = 0, the capac-
ity is 1/3, while for the ferromagnetic state at µ → ∞, the
corresponding quantity is unity.

G. Case VI: RVB to Ferromagnets

The resonating-valence-bond state [22], apart from its
significance in many-body physics, has potential applica-
tions in quantum information [23]. In our case, it can be
expressed as |RVB〉ABCD =

(

1√
2
(|01〉−|10〉)AB

1√
2
(|01〉−

|10〉)DC+
1√
2
(|01〉−|10〉)AC

1√
2
(|01〉−|10〉)DB

)

/
√
3, where

A and D are in sublattice 1, while B and C are in sub-
lattice 2, of the bipartite lattice formed by A, B, C, and
D, with the singlets being always directed from sub-
lattice 1 to sublattice 2. The state can be rewritten
as |ψµ

RF 〉ABCD
= (|0101〉 + |1010〉 + |0011〉 + |1100〉 −

µ|1001〉 − µ|0110〉)ABCD/
√

4 + 2µ2, for µ = 2. Interest-
ingly, the state |ψµ

RF 〉 is the ferromagnetic ground state
(GHZ state of Case I) for µ → ∞, and we will con-
sider the state for the whole range [2,∞). Certainly
we have Ca ≤ 1, for all µ, but this bound can be at-
tained by the following protocol. Suppose that A and
B are allowed to share the additional singlet state re-
source. This implies that entangled measurements are
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allowed in the AB sector of the state |ψµ
RF 〉. A mea-

surement in the Bell basis [21] at AB and subsequent
local unitary transformations at C and D, attains the
bound for all µ. By explicit calculation, we find that
pdmaxmin (|ψµ

RF 〉) = (µ2 − 2µ + 3)/(µ2 + 2), so that by
Proposition C2, Cua (|ψµ

RF 〉) ≤ (µ2 − 2µ + 3)/(µ2 + 2).
Measurements in the {|+〉, |−〉} basis by two parties, and
local operations by the remaining parties, produces a
lower bound: Cua (|ψµ

RF 〉) ≥ (µ2 − 2µ+ 2)/(µ2 + 2). For
the RVB state, this reduces to 1/3 ≤ Cua(|RVB〉) ≤ 1/2.
We have optimized over all projective measurements at
two parties and all LOCC at the other two, for all µ, and
the results are summarized in Fig. 1. For the RVB state,
the lower bound is the optimal one for the considered
strategy. The generalized geometric measure of |ψµ

RF 〉 is
(µ + 1)2/(4 + 2µ2) (by Proposition E1), so that for the
RVB state, E = 1/4. [EG(|RV B〉) = 2/3.]

GHZ C W W2 SS RVB

0.2

0.4

0.6

0.8

1

FIG. 2: (Color online.) The capacities and the measures. The
assisted capacities (blue triangles), unassisted capacities (red
boxes), generalized geometric measures (pink hexagons), and
geometric measures (green stars) for a selection of four-party
quantum states that are important from a quantum networks
perspective. While the capacities are measured in ebits, the
measures are dimensionless.

H. Bipartite versus multipartite revisited

Consider now the generalized GHZ (Case I) and RVB
states (|ψµ

RF 〉 for µ = 2 in Case VI). Choosing β in the
range 1/4 < |β|2 < 1/2, we find that while the assisted
capacity increases from generalized GHZ to RVB, the
unassisted capacity actually decreases. This therefore
leaves us with no option to reconcile with the picture

in the bipartite domain by using any multipartite entan-
glement measure. The multi-access channel capacities
therefore presents a much richer picture than its bipartite
variety. A similar situation arises if we compare the gen-
eralized GHZ states for β in the range 1/3 < |β|2 < 1/2
with the |W2〉 state (Case IV).
It is plausible that the unassisted capacity for the RVB

state is 1/3 (see Case VI). In that case, again such an
irreconcilable situation arises for the W (Case III) and
RVB pair.
The richness of the multiparty picture is further en-

forced by the other examples considered. In particular,
the generalized GHZ and generalized W states reveal a
situation where both the assisted and unassisted capac-
ities are equal (for certain choices of the parameters),
while the GGM can still be different. A synopsis of the
whole picture is presented in Fig. 2.

V. CONCLUSIONS

Capacities of quantum channels corresponding to
shared bipartite pure quantum states presents a relatively
simple image, viz. the capacities are monotonically in-
creasing with similar behavior for entanglement of the
states. Capacities of multi-access channels, however, of-
fers a much richer picture. Two such quantum capacities
are defined and considered for paradigmatic multiparty
quantum states, and compared against a measure of gen-
uine multiparty entanglement. The quantum capacities
are defined from the perspective of quantum computa-
tional networks.
The measure of genuine multiparty entanglement,

which we call the generalized geometric measure, is de-
fined, its properties are explored. In particular, we find
that it is possible to render it into a computable form for
any multiparty quantum state of any dimension and of
any number of parties.
The investigation also points to the fact that at least

for some multiparty situations, the additional singlet
state does not help to increase the capacity with respect
to that in the unassisted case. This is in contrast to the
bipartite case, where the singlet state is almost always
the most important resource.
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