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We define a multiparty entanglement measure, called generalized geometric measure, that can
detect and quantify genuine multiparty entanglement for any number of parties. The quantum
phase transitions in exactly solvable models like the anisotropic XY model can be detected by this
measure. We find that the multisite measure can be a useful tool to detect quantum phenomena in
more complex systems like quasi 2D and 2D frustrated Heisenberg antiferromagnets. We propose
an order parameter, called bound generalized geometric measure, in the spirit of bound quantum
states, that can recognize the gapless and gapped phases of the frustrated models by its sign. The
vanishing of the order parameter therefore signals the transition between such phases.

I. INTRODUCTION AND MAIN RESULTS

The rapid development of the theory of entanglement
over the last decade or so [1], and its usefulness in com-
munication systems and computational devices, as well as
the experimental observations of entangled states in a va-
riety of distinct physical systems [2], have attracted a lot
of attention from different branches of physics, including
condensed matter and ultra-cold gases [3, 4]. It has been
argued that entanglement can be used as a “universal
detector” of quantum phase transitions, with most of the
studies being on the behavior of bipartite entanglement
[5, 6]. A more natural way to study the many-body sys-
tems would be to consider multipartite entanglement, as
almost all naturally occurring multisite quantum states
are genuinely multi-party entangled. Such an enterprise
is however limited by the intricate nature of entangle-
ment theory in the multisite scenario. In particular, only
a few multisite entanglement measures are known, and
moreover their computation are difficult [1].

Multipartite states can have different hierarchies ac-
cording to their entanglement quality and quantity. The
simplest example is for three-particle states, where there
are fully separable, biseparable, and genuine multipartite
entangled states. A measure of genuine multiparty entan-
glement, quantifies, so to say, the “purest” form multi-
party entanglement. In this paper, we define an entan-
glement measure, called generalized geometric measure
(GGM), that can detect and quantify genuine multipar-
ticle entanglement. Interestingly, the measure is com-
putable for arbitrary pure states of multiparty systems
in arbitrary dimensions and arbitrary number of parties,
and therefore can turn out to be a useful tool to detect
quantum many-body phenomena, like quantum phase
transitions. In this respect, GGM has the potential of
gaining the same status in applications of multiparty en-
tanglement theory, as that of logarithmic negativity [6]
in the bipartite domain.

As an initial testing ground, we use the GGM to
successfully detect quantum phase transitions in the
anistropic XY model on a chain of spin-1/2 particles [7].
Our main aim however is to apply the measure to states of
frustrated spin systems, for which the phase diagrams are

not exactly known. Frustrated many-body systems are a
center of interest in condensed matter physics due to the
typically rich and novel phase diagrams in such systems.
Moreover, experimental realizations of many metal ox-
ides, including those exhibiting high-Tc superconductiv-
ity, typically have frustrated interactions in their Hamil-
tonians [8, 9]. As paradigmatic representatives of such
systems, we consider (i) the quasi 2D antiferromagnetic
J1 − J2 Heisenberg model with nearest neighbor cou-
plings, J1, and next-nearest neighbor couplings, J2 [10–
12], and (ii) the frustrated J1 − J2 model on a square
lattice [8] (see Fig. 1).

FIG. 1: (Color online.) Two-dimensional J1−J2 model, with
vertical and horizontal couplings, J1, and diagonal couplings,
J2 The predicted phase diagram is also schematically shown.

For studying such systems, we introduce an order pa-
rameter which is the difference between the GGM (E)
and its second derivative with respect to the system pa-
rameter, µ, that drives the transitions in the system. We
call the quantity as “bound GGM”, and is given by

EB ≡ E −
d2E

dµ2
.

The ground state manifold of the quasi 2D J1−J2 sys-
tem is not known exactly, except at the Majumdar-Ghosh
point [10], i.e. for α = J2/J1 = 0.5, where the system
is highly frustrated, and presents two dimer states as its
ground states. However, exact diagonalization and group
theoretical studies show that the system is gapless, and
hence critical, in the weakly frustrated regime, namely
0 ≤ α . 0.24 [10, 11]. For higher coupling ratio α, the
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system enters a dimerized regime, and is gapped [10, 13].
We study the GGM for this system by exact diagonal-
ization, and show that the bound GGM vanishes at the
fluid-dimer transition point α ≈ 0.24. Note here that it
is known that bipartite entanglement cannot detect the
gapless phase [14] (cf. [15]). We find that the bound
GGM is positive in the gapless phase while it becomes
negative in the gapped one. The Majumdar-Ghosh point
can also be detected by the GGM.
Finally we apply our measure of genuine multisite en-

tanglement to the ground state of the 2D Heisenberg sys-
tem. As depicted in Fig. 1, the Néel and collinear or-
dered phases (the gapless phases dissociated by a phase
having a finite gap between the singlet ground state and
the excited states. We show that the bound GGM can
detect both the quantum phase transitions – from the
Néel phase to the dimerized one at α ≈ 0.38, as well as
the transition from the dimer to the collinear phase at
α ≈ 0.69, as predicted, even for relatively small system-
size. Like in the J1 − J2 ring, the positivity (negativity)
of the bound GGM indicates the gapless (gapped) phase.
Armed with these findings, we propose that the

bound GGM can potentially be used for detecting
gapped/gapless phases in many-body systems:

EB > 0 ⇒ gapless, EB < 0 ⇒ gapped. (1)

This leads to an analogy with the thermodynamics of
bound entanglement [1, 16]. Analogous to the first law of
thermodynamics, internal energy = free energy + work
done, a thermodynamic equation of entanglement was
written: Entanglement cost = distillable entanglement
+ bound entanglement, where the bound entanglement
is the amount of entanglement necessary to keep the tran-
sition (under local quantum operations and classical com-
munication) from becoming irreversible. As another face
of this entanglement-energy analogy, a negative value of
EB, assuming the thesis in Eq. (1), indicates that the
system needs a nonzero amount of energy to free itself
from its ground state. We hope that this can help us in
a quantification of the first law of the emerging entan-
glement thermodynamics [1, 17]. This is the reason for
calling EB as bound GGM [18].

II. GENERALIZED GEOMETRIC MEASURE

Let us begin by defining the generalized geometric
measure. As mentioned above, GGM will quantify the
genuineness of multiparty entanglement. An N -party
pure quantum state is said to be genuinely N -party en-
tangled, if it is not a product across any bipartite parti-
tion. The simplest examples of genuine tripartite entan-
gled states are the Greenberger-Horne-Zeilinger [19] and
W [20] states. The GGM of an N -party pure quantum
state |ψ〉 is defined as

E(|ψ〉) = 1− Λ2
max(|ψ〉), (2)

where Λmax(|ψ〉) = max |〈φ|ψ〉|, with the maximization
being over all pure states |φ〉 that are not genuinely N -
party entangled. Note that the maximization performed
in GGM is different from the maximization in the geo-
metric measure of Ref. [21] (cf. [22]).

A. Properties

Clearly, E is vanishing for all pure multiparty states
that are not genuine multiparty entangled, and non-
vanishing for others. We considered this quantity for
four-party states in Ref. [23], and showed it to be a mono-
tonically decreasing quantity under local quantum opera-
tions and classical communication (LOCC). Applications
of GGM to quantum many-body systems requires us to
find its properties for an arbitrary number of parties.

Let |ψ〉 be anN -party pure quantum state in the tensor
product Hilbert space HA1

⊗HA2
⊗. . .⊗HAN

. Therefore,
the maximization in

Λmax(|ψ〉A1A2...AN
) = max

|φ〉A1A2...AN

|〈φ|ψ〉| (3)

is over all pure quantum states |φ〉A1A2...AN
, in HA1

⊗
HA2

⊗ . . .⊗HAN
, that are not genuinely multiparty en-

tangled, which is a rather large class of states. Note
however, that the square of Λmax(|ψ〉A1A2...AN

) can be
interpreted as the Born probability of some outcome in
a quantum measurement on the state |ψ〉. Now, entan-
gled measurements cannot be worse than the product
ones for any set of subsystems. Therefore, in the max-
imization, we do not need to consider the |φ〉A1A2...AN

that are product in a partition of A1, A2, . . . , AN into
three, four, ... sets. The only |φ〉A1A2...AN

that are to
be considered are the ones that are a product in a bi-
partition of A1, A2, . . . , AN . This greatly reduces the
class over which the maximization is carried out. Let
A : B be such a bi-partition. Then, max |〈φ|ψ〉|, where
the maximization is carried over the |φ〉 that are product
across A : B, is the maximal Schmidt coefficient, λA:B,
of the state |ψ〉A1A2...AN

in the A : B bipartite split.
Λmax(|ψ〉A1A2...AN

) is therefore the maximum of all such
maximal Schmidt coefficients in bipartite splits. Note
that the λ’s involved in this closed form for Λmax are all
increasing under LOCC [24]. We have therefore proven
the following theorem.
Theorem. The generalized geometric measure of

|ψ〉A1A2...AN
is given by

E(|ψ〉) = 1−max{λ2A:B|A∪B = {1, 2, . . . , N},A∩B = ∅}.
(4)

It is computable for a multiparty pure state of an ar-

bitrary number of parties, and of arbitrary dimensions.
Also, it is monotonically decreasing under LOCC.
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III. ANISOTROPIC XY MODEL

The one-dimensional XY model with N lattice sites is
described by the Hamiltonian

HXY =
J

2

(

N
∑

i=1

(1 + γ)σx
i σ

x
i+1 + (1− γ)σy

i σ
y
i+1

)

+h

N
∑

i=1

σz
i ,

(5)
where J is the coupling constant, γ ∈ [0, 1] is the
anistropy parameter, σ’s are the Pauli matrices, and h
represents the magnetic field in the transverse direction.
The quantum transverse Ising and the transverse XX
models correspond to two extreme values of γ, which are
resepectively γ = 1 and γ = 0. This model can be diago-
nalized by the Jordan-Wigner transformation [7]. Apart
from its other interests, it is the simplest model which
shows a quantum phase transition, driven by the mag-
netic field, at zero temperature. It is known to be de-
tectable by using bipartite entanglement measures [25],
like concurrence [5]. However, evaluating GGM will ad-
ditionally quantify the nature of genuine multiparty en-
tanglement of the ground state in this model, especially
as it crosses the transition point.
The diagonalization of this model can be achieved by

introducing the Majorana fermions

c2l−1 = (Πl−1

i=1σ
z
i )σ

x
l ; c2l = (Πl−1

i=1σ
z
i )σ

y
l . (6)

The Hamiltonian in Eq. (5) thereby reduces to a
quadratic fermionic Hamiltonian [7]. The eigenvalues of
the reduced density matrix of L sites of the ground state
of this system can be obtained by using the above for-
malism [4], and is given by

ex1x2...xl
=

L
∏

i=1

1 + (−1)xiνi
2

, xi = 0, 1 ∀i, (7)

where νi’s are the eigenvalues of GL, which in turn is

given by BL = GL ⊗

[

0 1
−1 0

]

, with

GL =





g0 · · gL−1

· · · ·
−gL−1 · · g0



 , BL =





Π0 · · ΠL−1

· · · ·
−ΠL−1 · · Π0



 .

Here, Πl =

[

0 gl
−g−l 0

]

, and the real coefficients, gl, are

given by

gl =
1

2π

∫ 2π

0

dφe−ilφ cosφ− λ− iγ sinφ

| cosφ− λ− iγ sinφ|
, (8)

where λ = J/h.
The derivative of GGM of the ground state, for differ-

ent anistropy parameters γ, clearly shows a logarithmic
divergence at the transverse field given by λ = 1, as seen
in Fig. 2. Note also that the ground state of the trans-
verse Ising model (γ = 1) has higher genuine multipartite

entanglement as compared to the ground states for other
values of γ. This result may help us to understand the
success of the dynamical states of the transverse Ising
model as a substrate for efficient quantum computation
[26].
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FIG. 2: (Color online.) GGM of the transverse XY model.
The GGM (actually E − 1/2) and its derivative (both dimen-
sionless) are plotted on the vertical axis for the anistropic
transverse XY model for different anisotropy parameters γ,
against the dimensionless system parameter λ on the hori-
zontal axis. The dashed (blue), circled (pink), and dotted
(green) lines are respectively for the Ising (γ = 1), γ = 0.8,
and γ = 0.2 models. The derivatives of GGM diverges at the
quantum critical point λ = 1.

IV. QUASI 2D FRUSTRATED J1 − J2 MODEL

We will now consider the frustrated quasi two-
dimensional J1 − J2 Heisenberg model, in the case when
both the nearest neighbor couplings, J1, and the next-
nearest neighbor couplings, J2, are antiferromagnetic.
Apart from its other interests, the intense interest for
studying this model lies in the fact that it is similar to
real systems, like SrCuO2 [27]. The Hamiltonian of this
model, with N lattice sites on a chain, is

H1D = J1

N
∑

i=1

~σi · ~σi+1 + J2

N
∑

i=1

~σi · ~σi+2, (9)

where J1 and J2 are both positive, and where peri-
odic boundary condition in assumed. The ground state
and the energy gap of this model were studied by us-
ing exact diagonalization, density matrix renormalization
group method, bosonization technique, etc [12]. For an
even number of sites, the ground state at the Majumdar-
Ghosh point (α = J2/J1 = 0.5), is doubly degenerate,
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and the ground state manifold is spanned by the two

dimers |ψ±
MG〉 = Π

N/2
i=1 (|0〉2i|1〉2i±1−|1〉2i|0〉2i±1), and the

model is gapped at this point [10]. For α = 0, the Hamil-
tonian reduces to the s = 1/2 Heisenberg antiferromag-
net and hence the the ground state, which is a spin fluid
state having gapless excitations [28], can be obtained by
Bethe ansatz. It is known that at α ≈ 0.2411, a phase
transtion from fluid to dimerization occurs [29].
The genuine multipartite entanglement measure

clearly signals the Majumdar-Ghosh point (See Fig. 3).
The fluid-dimer tranition at α ≈ 0.24 can also be de-
tected by the vanishing of the bound GGM as the order
parameter (for µ = α) (see Fig. 3). Moreover, EB > 0
signals the gapless phase, while EB < 0 indicates the
gapped phase.

0.1 0.2 0.3 0.4 0.5
α

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8
α

-0.2

0

0.2

FIG. 3: (Color online.) GGM and bound GGM for the
quasi-2D frustrated antiferromagnet. The left figure is for the
GGM on the vertical axis against α on the horizontal. The
Majumdar-Ghosh point at α = 0.5 is clearly signaled. The
figure on the right is for the bound GGM on the vertical axis,
against α on the horizontal, and the fluid-dimer transition is
signaled by the vanishing of the bound GGM. The two curves
are for 8 (red circles) and 10 (blue squares) spins in both the
figures. The GGM, bound GGM, and α are all dimensionless.

V. 2D FRUSTRATED J1 − J2 MODEL

We now consider spin-1/2 particles on a square lattice,
where nearest neighbor spins (both vertical and horizon-
tal) on the lattice are coupled by Heisenberg interactions,
with coupling strengths J1, and where all diagonal spins
are coupled by Heisenberg interactions, with coupling
strengths J2 (see Fig. 1). This 2D model have attracted
a lot of interest [30] due to its connection with the high
Tc-superconductors and its similarity with magnetic ma-
terials like Li2VOSiO4 and Li2VOGeO4 [31]. Although

the different phases of the ground state of this model
is well-studied, there seem to exist reasons to believe in
further secrets hidden. The Hamiltonian of the system is
therefore given by

H2D = J1
∑

〈i,j〉

~σi · ~σj + J2
∑

i,j∈D

~σi · ~σj . (10)

Both J1 and J2 are antiferromagnetic (> 0).
In the classical limit, the model exhibits only a first-

order phase transition from Néel to collinear at α =
J2/J1 = 0.5. The phase diagram changes its nature,
when quantum fluctuations are present, and in this case,
the exact phase boundaries are not known. It is expected
that two long range ordered (LRO) ground state phases
are separated by quantum paramagnetic phases without
LRO. Different methods, like exact diagonalization, se-
ries expansion methods, field-theory methods [32], etc.,
applied to this model, predict that the first transition
from Néel to dimer accurs at α ≈ 0.38 while other one
happens at α ≈ 0.66. Recent experimental observations
and proposals of detecting such phases in the laboratory
demand the precise quantification of the phase diagram
of this model at low temperature. Towards this aim, we
show that even for relatively small system size, the order
parameter based on the genuine multipartite entangle-
ment measure (the EB, introduced above) can detect and
quantify the phase diagram accurately.
We perform exact diagonalization to find the ground

state of the model, and we show that both the transitions
– Néel to dimer and dimer to collinear can be signaled
by the bound GGM. A synopsis of these facts is given
in Fig. 4. Precisely, we have found that EB vanishes at
α ≈ 0.38 and again at α ≈ 0.69. As observed in the
case of the quasi 2D J1 − J2 model, EB is positive in the
gapless phases while it is negative in the intermediate
gapped phase.

VI. CONCLUSIONS

Multipartite entangled states can be classified accord-
ing to their separability in different partitions. Due to the
complex classification, it is hard to obtain a unique multi-
partite entanglement measure. Instead of quantifying all
the classes of multipartite states, we define an entangle-
ment measure, called generlized geometric measure, that
quantifies the “purest” form of multiparty entanglement,
the genuine multipartite entanglement. This is akin to
the situation in bipartite pure states, where there is es-
sentially a unique entanglement measure, while mixed
bipartite states allows a number of such measures [1]. In
the case of multiparty states, we find “pure” and “non-
pure” forms of entanglement, even within the class of
pure states, where the “pure” part can be quantified by
the generalized geometric measure defined here. More-
over, we found that the measure can be reduced to a
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FIG. 4: (Color online.) GGM and bound GGM for the 2D
frustrated antiferromagnet. The horizontal axes in both the
figures represent α. The left figure is for the GGM on the
vertical axis while the right one is for the bound GGM. The
vanishing of the bound GGM signals both the Néel-to-dimer
and the dimer-to-collinear transitions. And the gapped (gap-
less) phase(s) is (are) signaled by a negative (positive) bound
GGM. The two curves are for 9 spins on a 3×3 square lattice
(red circles), and 12 spins on a 3× 4 rectangular lattice (blue
squares) in both the figures. The GGM, bound GGM, and α
are all dimensionless.

simplified closed form, and hence is computable for arbi-
trary dimensions and arbitrary number of parties.
We then applied this measure to detect phase dia-

grams in quantum many-body systems. After success-
fully verifying that the measure can detect quantum fluc-
tuation driven phase transitions in the exactly solvable
models like the XY Hamiltonian, we applied the gener-
alized geometric measure to frustrated models like quasi
two dimensional and two dimensional antiferromagnetic
J1 − J2 models. In the latter case, the phase diagram is
not known exactly, although there has been several pre-
dictions by different methods. In this paper, we show
that an order parameter, called bound GGM, based on
the multi-site entanglement measure defined, can signal
the phase boundaries in both the models. Moreover, we
found the the order parameter is positive when the sys-
tem is gapless and negative in the gapped phase. We
propose that the sign of the bound GGM can indicate
whether a many-body system is gapped or gapless, and
point to its implication for the first law of entanglement
thermodynamics.
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